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Many effective field theories describing gravity cannot arise from an underlying theory based on
Riemann geometry or its extensions to include torsion and nonmetricity but may instead emerge from
another geometry or may have a nongeometric basis. The Lagrange density for a broad class of such
theories is investigated. The action for fermions coupled to gravity is linearized about a Minkowski
background and is found to include terms describing small deviations from Lorentz invariance and
gravitational gauge invariance. The corresponding nonrelativistic Hamiltonian is derived at second order in
the fermion momentum. The implications for laboratory experiments and astrophysical observations with
fermions are studied, with primary focus on anomalous spin-gravity couplings. First constraints on some
coefficients are extracted from existing data obtained via measurements at different potentials, comparisons
of gravitational accelerations, interferometric methods, and investigations of gravitational bound states.
Some prospects for future experimental studies are discussed.
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I. INTRODUCTION

The construction of a compelling and realistic under-
lying theory that unifies gravity with quantum physics
remains an open challenge. The description of spacetime in
the underlying theory might involve the usual Riemann
geometry of General Relativity (GR), or it might be a non-
Riemann geometry or have no geometrical basis. An
interesting and potentially vital issue is then the extent
to which current or feasible experiments can help to
distinguish between these possibilities.
Coupling GR to the Standard Model (SM) of particle

physics produces a theory that is quantum incomplete but
that yields an excellent match to experiments in suitable
regimes. Any deviations from known physics emerging
from the underlying unified theory are therefore expected
to be small, perhaps suppressed by a large scale such as the
Planck mass. A model-independent approach to studying
small deviations from a known theory is provided by
effective field theory (EFT) [1]. Investigations of the
geometric properties of the underlying unified theory can
therefore be based on the general EFT constructed from the
action of GR coupled to the SM.
To allow for deviations from Riemann geometry, the

general EFT must contain both terms preserving and
violating the spacetime symmetries of GR, which include
the invariances under local Lorentz transformations and
diffeomorphisms. The general EFT based on GR coupled to
the SM is presented in Ref. [2]. Each additional term in the
action involves a coupling coefficient combined with an
operator constructed from dynamical fields. A given
coupling coefficient k can be viewed as a background that
can carry spacetime or local indices and can depend on

spacetime position. Except for the special case of a constant
scalar coupling, any coefficient controls violations of one
ore more of the invariances of GR. The coefficients can also
be flavor dependent, so violations of the weak equivalence
principle (WEP) are incorporated. A given term in the EFT
action can be classified according to the mass dimension d
of the dynamical operator it contains, with minimal terms
defined to have d ≤ 4 and nonminimal ones d ≥ 5. A
systematic construction of all terms has recently been
presented in Ref. [3].
The background coefficients can be dynamical or pre-

scribed quantities. In the former case they are called
spontaneous, and in the latter explicit. At the EFT level,
a spontaneous background k ¼ hki þ δk consists of a
vacuum value hki solving the equations of motion, together
with dynamical fluctuations δk about hki that include
Nambu-Goldstone and massive modes. In contrast, an
explicit background k ¼ k̄ is a predetermined quantity.
The presence of the fluctuations δk generates correspond-
ing physical effects, which can distinguish a spontaneous
background hki from an explicit background k̄. In the
present work, we focus primarily on EFT based on GR
coupled to the SM and containing one or more explicit
backgrounds k̄.
The structure of an EFT with an explicit background k̄

can be constrained by the requirement of compatibility
between the variational procedure and the Bianchi iden-
tities of Riemann geometry [2–4]. It turns out that most
EFT terms with explicit backgrounds are perturbatively
incompatible with Riemann geometry or its extensions with
torsion and nonmetricity, and hence typical models con-
taining terms of this type must be based on a different
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geometry or have a nongeometric origin. These no-go
constraints provide a powerful tool to specify terms that
cannot arise in Riemann geometry and thereby to identify
physical effects serving as experimental signals for an
underlying unified theory based on nonstandard geometry
or on a nongeometrical structure.
In the present work, we explore this line of reasoning by

investigating physical effects in a large class of EFT based
on GR coupled to the SM and incorporating terms that
involve beyond-Riemann effects. For this initial study, we
focus on gravitational couplings of fermions and in
particular spin-gravity couplings, which have implications
for many existing laboratory and astrophysical observa-
tions. We consider in turn experiments involving measure-
ments at different potentials, comparisons of gravitational
accelerations, interferometric methods, and gravitational
bound states. We use existing experimental data to obtain
first constraints on the EFT coefficients governing beyond-
Riemann physics. We also discuss prospects for some
future experimental studies.
The organization of this paper is as follows. The setup

for the EFT containing beyond-Riemann effects is pre-
sented in Sec. II. We provide tables detailing the terms in
the action and their linearizations. The corresponding
nonrelativistic Hamiltonian is obtained, and its coefficients
are related to those in the linearized Lagrange density. The
flavor dependence of the coefficients corresponding to
WEP violations is discussed, including implications for
antiparticles. This material makes feasible the analysis of
various experiments. In Sec. III we adopt results from
existing experiments performed at different potentials to
extract first constraints on some coefficients in the EFT.
Another class of experiments, analyzed in Sec. IV, involves
comparing the gravitational accelerations of different
atoms. We consider tests with Sr atoms of different spins
and with Rb atoms in different hyperfine states, and we
discuss the prospects for comparing the gravitational
accelerations of matter and antimatter. In Sec. V, we turn
attention to interferometric experiments with neutrons to
obtain sensitivity to additional coefficients. Studies of
neutrons bound in the Earth’s gravitational field can also
provide interesting measurements and are treated in
Sec. VI. We summarize our results in Sec. VII.
Throughout this work, we follow the conventions of

Ref. [3], using natural units with c ¼ ℏ ¼ ϵ0 ¼ 1. For the
experimental analyses, we adopt standard reference frames
widely used in the literature. No laboratory on the Earth lies
in an inertial frame, so experimental results for coefficients
are reported in the canonical Sun-centered frame [5]. This
right-handed orthogonal system has spatial coordinates
J ¼ X, Y, Z, with the Z axis aligned along the Earth’s
rotation axis and with the X axis pointing from the Earth to
the Sun at the vernal equinox 2000, which serves as the
zero of the time T. For some calculations, it is convenient to
adopt a canonical laboratory frame having time coordinate t

and spatial coordinates j ¼ x, y, z, with the z axis oriented
toward the local zenith [5]. Neglecting the Earth’s boost,
the transformation from the Sun-centered frame to the
canonical laboratory frame is given by the rotation matrix

RjJ ¼

0
B@

cos χ cosω⊕T⊕ cos χ sinω⊕T⊕ − sin χ

− sinω⊕T⊕ cosω⊕T⊕ 0

sin χ cosω⊕T⊕ sin χ sinω⊕T⊕ cos χ

1
CA;

ð1Þ

where χ is the laboratory colatitude, ω⊕ ≃ 2π=ð23h 56mÞ
is the sidereal frequency of the Earth’s rotation, and T⊕ is a
suitable local sidereal time. In what follows, some expres-
sions involve coefficients with indices either summed over
tt, xx, yy, zz and denoted for brevity by the pair ss, or
summed over TT, XX, YY, ZZ and denoted by the pair ΣΣ.

II. THEORY

One goal of this work is to construct an EFT based on
GR coupled to the SM that contains a general class of terms
excluded in Riemann geometry. This provides a window on
physics effects from beyond-Riemann theories and permits
the extraction of experimental constraints. Here, we focus
specifically on fermion-gravity couplings, which are
ubiquitous and comparatively straightforward to analyze
for most laboratory experiments and astrophysical obser-
vations, while maintaining a broad and model-independent
perspective.
Our primary interest lies in spin-gravity couplings, in part

because they are particularly challenging to fit into Riemann
geometry [3], but in this section we include effects from
spin-independent terms as well. The methodology presented
here could therefore be applied to measurements of spin-
independent fermion-gravity couplings, including preci-
sion experiments associated with WEP tests [6]. Both
spin-dependent and spin-independent fermion-gravity cou-
plings are known to arise in beyond-Riemann contexts. In
Finsler geometry [7,8], for example, the metric is supple-
mented with objects on the manifold that have been con-
jectured to play the role of the explicit backgrounds k̄ in
generic EFT based on GR coupled to the SM [2]. Although a
complete demonstration of this link awaits the resolution of
open issues inLorentz-Finsler geometry [9–21], the resulting
trajectories arising from spin-gravity couplings in a fixed
gravitational background are known to correspond to
Riemann-Finsler geodesics [9,22–25]. Possible gravitational
couplings to boson fields, including photons, are also of
definite interest but lie beyond our present scope.

A. Setup

In theories with a geometric foundation, the equations of
motion obtained from the variational principle are supple-
mented by geometric conditions called theBianchi identities,
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which arise from the structure of the corresponding fiber
bundle [26]. For many geometric theories, such as Maxwell
electrodynamics or other gauge theories in Minkowski
spacetime, theBianchi identities are homogeneous equations
that are independent of the inhomogeneous equations gen-
erated via the variational procedure. In contrast, in some
geometric theories such as GR, the equations of motion are
entangled with the geometry. The Bianchi identities then
impose a self-consistency condition, which for GR turns out
to be the requirement of covariant conservationof the energy-
momentum tensor. This is compatible with the matter
equations of motion, so GR is self consistent. However,
for some theories the geometric conditions can be incom-
patible with the results of the variational principle and hence
serve as no-go constraints [2].
This issue is of particular relevance for theories that

purport to be based on Riemann geometry but that violate
spacetime symmetries. The geometric constraints become
particularly stringent for theories required to produce
only perturbative corrections to GR at low energies while
also maintaining the structure of Riemann geometry.
Indeed, most theories of this type with explicit breaking
of spacetime symmetries are incompatible with Riemann
geometry [2]. Many examples illustrating the no-go con-
straints are known [2–4]. The simplest may be the exten-
sion of GR containing a cosmological term that involves a
prescribed nontrivial function Λ̄ðxÞ of spacetime position
[4], resulting in explicit diffeomorphism violation (EDV).
Variation of the action yields Einstein equations taking
the usual form, but these are incompatible with the
Bianchi identities unless Λ̄ðxÞ is a spacetime constant,
which contradicts the initial assumption. A recent general
discussion of the no-go constraints along with other
examples is given in Sec. II F of Ref. [3].
The present work is based on the above results. We take

advantage of the potential incompatibility between the
Bianchi identities and the variation of the action to
investigate a large class of possible underlying theories
that have a non-Riemann geometry or a nongeometric
basis while nonetheless reducing at low energies to a
perturbatively corrected version of GR coupled to the
SM. The perturbative nature implies that this class of
theories can naturally be studied in the EFT framework [1].
A typical application of the framework would involve
constructing a specific EFT based on integrating over high-
energy degrees of freedom in a theory and ensuring self-
consistency via loops. Here, however, we adopt a different
approach, designed instead to study simultaneously a large
class of theories with a given symmetry structure and to
investigate their possible phenomenological EFT signa-
tures. The approach involves constructing all EFToperators
compatible with the specified symmetry and comparing
their effects to experimental data. This yields bounds that
restrict the viability of members of the class, thereby pro-
viding guidance on the acceptability of underlying models.

The technique is appropriate and powerful in situations
where no experimental evidence exists for the effects
being sought, as is the case here. For spacetime-symmetry
violations, this EFTapproach was developed in Ref. [27] to
study spontaneous Lorentz violation in string theory [28]. It
was subsequently applied to the SM to yield the Standard-
Model Extension (SME) in Ref. [29] and generalized to GR
coupled to the SM in Ref. [2].
Our focus here is on perturbations to GR coupled to the

SM involving EFT terms that have EDV while maintaining
local Lorentz invariance (LLI). The perturbative nature and
the EDV imply incompatibility between the equations of
motion and the Bianchi identities of Riemann geometry
[2,3], so these terms can be attributed to models within a
class of beyond-Riemann theories. The LLI-EDV sym-
metry structure is of particular interest because the corre-
sponding EFT terms lack the severe phenomenological
complications from additional modes that typically arise in
theories with explicit breaking. As a result, EFT operators
can be constructed explicitly for this class of theories and
can be constrained using experimental and observational
data. The latter is the primary goal of the present work.
Details of the framework for the EFT construction

have been presented in Refs. [2,3] and involve several
complications, notably the appearance of additional
physical modes beyond those arising in GR coupled to
the SM. The role of these additional modes can be reduced
by eliminating terms controlling their propagation, which
removes effects of extra long-range forces. One set of
such modes is the antisymmetric tensor χμν associated
with local Lorentz violation. To avoid these modes, we
restrict the EFT to preserve LLI, which insures that χμν
contains only unphysical gauge degrees of freedom. The
other set of additional modes is the vector ξμ associated
with diffeomorphism violation. To incorporate beyond-
Riemann effects when LLI holds, EDV must be present.
The resulting ξμ modes have physical effects, but their free
propagation can be avoided by taking the pure-gravity
sector to be conventional [4]. The ξμ modes can then be
viewed as nonpropagating auxiliary fields with derivative
couplings in the matter-gravity sector of the EFT. To
simplify the analysis here, we assume dynamical torsion
and nonmetricity are absent. However, the present EFT
framework applies also to phenomenological and exper-
imental studies of fermion couplings involving explicit
background torsion [30] and nonmetricity [31].
The laboratory experiments and astrophysical observa-

tions considered here involve comparatively weak gravi-
tational fields, so the linearized limit is sufficient for a
phenomenological analysis of dominant effects from the
EFT. In the linearized EFT, the local Lorentz and diffeo-
morphism transformations combine to yield Lorentz,
gauge, and translation transformations acting in approx-
imately Minkowski spacetime [3]. For simplicity, we can
limit attention to linearized terms that maintain translation
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invariance (TI). All such terms exhibit either Lorentz
invariance (LI) or Lorentz violation (LV), and either gauge
invariance (GI) or gauge violation (GV).
We remark in passing that the above choices for the EFT

can be matched to the classification presented in Table IVof
Ref. [3]. In this language, the present work limits attention
to EFT terms lying both in the row labeled LLI, EDVand in
the columns labeled LI-GI-TI, LV-GV-TI, LI-GV-TI, and
LV-GI-TI. These terms all generically violate the no-go
constraints because they are perturbatively incompatible
with the Bianchi identities of Riemann geometry. In the
context of Fig. 2 of Ref. [3], the EFTwe consider lies in the
lower left triangle of the hexagon, labeled LLI, EDV.
For our phenomenological analyses, we focus on lead-

ing-order effects arising from the propagation of a Dirac
fermion ψ of massm in the presence of a weak gravitational
field with metric gμν ¼ ημν þ hμν. The metric fluctuation
hμν includes contributions from the derivatives ∂λξμ of the
ξμ modes. Note, however, that in the EFT context these
contributions are determined by the backgrounds k and
represent small corrections to the GR value of hμν. The
weak-field assumption implies that the latter is already
small, so for many applications hμν can be approximated at
leading order by its GR value. For simplicity, we neglect
possible couplings to derivatives Dk of the backgrounds k.
It then suffices to consider quadratic fermion terms and
their gravitational couplings, allowing for arbitrary LLI-
EDV operators. All the relevant fermion-gravity terms
involving operators with d ≤ 6 and without background
derivatives are presented in Table XI of Ref. [3]. As d
increases, these terms acquire more fermion derivatives and

hence can be expected to generate suppressed effects in
laboratory experiments because the relevant fermion
momenta are small compared to the Planck scale.
Nonetheless, to capture effects from both minimal and
nonminimal terms, the analysis that follows includes terms
containing operators with d ≤ 5.
Implementing the linearization to extract all fermion

terms with operators of mass dimension d ≤ 5 in the
Lagrange density LL

ψ of the linearized EFT, we find the
results displayed in Table I. In the table, LL

ψ is separated
into pieces containing terms with specified d and number of
derivatives of hμν. These pieces are listed in the first
column, while the second column shows the explicit form
of the corresponding terms. The first two rows in the table
represent the linearization of the usual Lagrange density for
a massive Dirac fermion coupled to gravity, and they lie in
the LI-GI-TI class. All other terms in the table exhibit LV,
GV or both. The only LI terms are ones with coefficients
constructed from the Minkowski metric ημν and the Levi-
Civita tensor ϵκλμν. The only GI terms involve combinations
of two derivatives ∂∂h of the metric fluctuation that arise
from the curvature tensor. The notation for each coefficient
appearing in the table is chosen in accordance with standard
usage in the literature, with a superscript L indicating that
the corresponding operator is linearized. The primary letter
on a coefficient distinguishes the spin and charge-
conjugation, parity-inversion, and time-reversal (CPT)
properties of the dynamical operator, while the subscript
indicates the number of derivatives of hμν it contains.
The terms listed in Table I are obtained by linearization

of the full fermion-gravity Lagrange densityLψ provided in

TABLE I. Terms containing operators of mass dimension d ≤ 5 in the linearized fermion Lagrange density LL
ψ.

Component Expression

LL
ψ ;0

1
2
ðψ̄γμi∂μψ −mψ̄ψÞ þ H:c:

LL
ψ ;h

1
4
hψ̄γμi∂μψ − 1

4
hκμψ̄γκi∂μψ − 1

4
mhψ̄ψ þ 1

8
ϵκμνρð∂μhνρÞψ̄γ5γκψ þ H:c:

Lð3ÞL
ψ −ðm0LÞμνhμνψ̄ψ − iðmL

5 Þμνhμνψ̄γ5ψ − ðaLÞκμνhμνψ̄γκψ − ðbLÞκμνhμνψ̄γ5γκψ − 1
2
ðHLÞκλμνhμνψ̄σκλψ

Lð4ÞL
ψh

− 1
2
ðcLhÞκμνρhνρψ̄γκi∂μψ − 1

2
ðdLhÞκμνρhνρψ̄γ5γκi∂μψ

− 1
2
ðeLhÞμνρhνρψ̄ i∂μψ − 1

2
iðfLhÞμνρhνρψ̄γ5i∂μψ − 1

4
ðgLhÞκλμνρhνρψ̄σκλi∂μψ þ H:c:

Lð4ÞL
ψ∂h −ðcL∂hÞκμνρð∂μhνρÞψ̄γκψ − ðdL∂hÞκμνρð∂μhνρÞψ̄γ5γκψ

−ðeL∂hÞμνρð∂μhνρÞψ̄ψ − iðfL∂hÞμνρð∂μhνρÞψ̄γ5ψ − 1
2
ðgL∂hÞκλμνρð∂μhνρÞψ̄σκλψ

Lð5ÞL
ψh − 1

2
ðmð5ÞL

h Þμνρσhρσψ̄i∂μi∂νψ − 1
2
iðmð5ÞL

5h Þμνρσhρσψ̄γ5i∂μi∂νψ

− 1
2
ðað5ÞLh Þκμνρσhρσψ̄γκi∂μi∂νψ − 1

2
ðbð5ÞLh Þκμνρσhρσψ̄γ5γκi∂μi∂νψ

− 1
4
ðHð5ÞL

h Þκλμνρσhρσψ̄σκλi∂μi∂νψ þ H:c:

Lð5ÞL
ψ∂h − 1

2
ðmð5ÞL

∂h Þμνρσð∂νhρσÞψ̄i∂μψ − 1
2
iðmð5ÞL

5∂h Þμνρσð∂νhρσÞψ̄γ5i∂μψ

− 1
2
ðað5ÞL∂h Þκμνρσð∂νhρσÞψ̄γκi∂μψ − 1

2
ðbð5ÞL∂h Þκμνρσð∂νhρσÞψ̄γ5γκi∂μψ

− 1
4
ðHð5ÞL

∂h Þκλμνρσð∂νhρσÞψ̄σκλi∂μψ þ H:c:

Lð5ÞL
ψ∂∂h −ðmð5ÞL

∂∂h Þμνρσð∂μ∂νhρσÞψ̄ψ − iðmð5ÞL
5∂∂hÞμνρσð∂μ∂νhρσÞψ̄γ5ψ

−ðað5ÞL∂∂h Þκμνρσð∂μ∂νhρσÞψ̄γκψ − ðbð5ÞL∂∂h Þκμνρσð∂μ∂νhρσÞψ̄γ5γκψ
− 1

2
ðHð5ÞL

∂∂h Þκλμνρσð∂μ∂νhρσÞψ̄σκλψ
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Table XI of Ref. [3]. The coefficients appearing in Table I
are therefore combinations of relevant parts of the breve
coefficients appearing in Table XI of Ref. [3]. Each breve
coefficient is a linear combination of backgrounds con-
tracted with vierbeins, metrics, and Levi-Civita tensors. In
the linearized scenario relevant to the EFTof interest here, a
generic breve coefficient k̆ ��� can be written as a sum of two
parts involving explicit backgrounds,

k̆ ��� ≡ k̄ ��� þ k̄ ���μνgμν þ � � �
≈ k̄ ���

asy þ ðk̄ LÞ���μνhμν; ð2Þ

where the background k̄ ���
asy appearing in the approximately

Minkowski spacetime is the breve coefficient k̆ ��� taken at
zeroth order in vierbein and metric fluctuations,

k̄ ���
asy ≡ k̄ ��� þ k̄ ���μνημν þ � � � ;

ðk̄ LÞ���μν ≡ k̄ ���μν þ � � � : ð3Þ

For example, the breve coefficient ăκ appearing in the

piece Lð3Þ
ψ of Lψ reduces in the present EFT context to

ăκ ¼ āκasy þ ðā LÞκμνhμν, with āκasy ≡ āκ þ āκμνημν þ � � �
and ðā LÞκμν ≡ ā κμν þ � � �. Note that our assumption of
TI for the linearized theory implies that all coefficients
considered here are spacetime constants.
The explicit relationships between the linearized coef-

ficients appearing in Table I and the breve coefficients
appearing in Lψ are provided in Table II. The first column
of this table displays the linearized coefficients appearing in
LL
ψ , while the second column establishes the link to the

explicit backgrounds contained in the breve coefficients
appearing in Lψ and defined via Eq. (2). Note that the
asymptotic parts of certain breve coefficients are absent in
Table II because they contribute to the linearized EFT only
for d ≥ 6.

B. Nonrelativistic Hamiltonian

The linearized Lagrange density LL
ψ given in Table I can

be used as the basis for phenomenological analyses.
However, many laboratory experiments sensitive to fer-
mion-gravity couplings involve slow-moving particle spe-
cies experiencing the gravitational field of the Earth. For
these types of experiments, the analysis of data for signals
of physics beyond Riemann gravity involves the non-
relativistic particle Hamiltonian H. This can be extracted
from the linearized Lagrange density LL

ψ via a generalized
Foldy-Wouthuysen transformation [32], using techniques
established for backgrounds violating spacetime sym-
metries [33–41].
At leading order in the backgrounds, the perturbative

relativistic Hamiltonian can be identified from the Euler-
Lagrange equations obtained by variation of the linearized
action [37]. In approximately flat spacetime, this bypasses

the complications of nonstandard time evolution introduced
by certain background components and hence avoids
the necessity for prior field redefinitions [36] or modifi-
cations to the inner product in the Hilbert space [42].
The relativistic Hamiltonian can then be block diagona-
lized at the desired order in the particle 3-momentum pj ¼
−i∂j using an iterative method, and the nonrelativistic
Hamiltonian can be extracted from the upper 2 × 2 block
[33]. The results obtained via this procedure generalize
those in Ref. [38] obtained for a Dirac fermion in
Minkowski spacetime in the presence of Lorentz-violating
operators of arbitrary mass dimension d.
With the above techniques, the derivation of the non-

relativistic Hamiltonian H from the linearized Lagrange
density LL

ψ in Table I is lengthy but straightforward. It is
convenient to express the result as a sum of pieces,

H ¼ H0 þHϕ þHσϕ þHg þHσg þ � � � ; ð4Þ

where H0 is the Hamiltonian in the absence of back-
grounds. In this sum, the spin-dependent terms containing
the Pauli spin matrices σ⃗ are identified with a subscript σ.
The perturbative corrections of this type represent anoma-
lous spin-gravity couplings and in this context can be
viewed as WEP violations. The pieces with a subscript ϕ
depend directly on the gravitational potential ϕ ≈ −h00=2,
while those with a subscript g depend only on the

gravitational acceleration g⃗≡ −∇⃗ϕ. The ellipsis indicates
terms that depend on higher derivatives of ϕ.
For applications to laboratory experiments, it typically

suffices to take the gravitational acceleration in the labo-
ratory as uniform and directed along −ẑ in the canonical
laboratory frame, g⃗ ¼ −gẑ, so the gravitational potential is
ϕ ¼ −g⃗ · z⃗ ¼ gz. We incorporate here relativistic correc-
tions to second order in pj. With these approximations, we
can extract explicit forms for the various terms in the
Hamiltonian (4).
For the piece H0, the procedure generates the expression

H0 ¼
p⃗2

2m
−mg⃗ · z⃗ −

3

4m
ðp⃗2g⃗ · z⃗þ g⃗ · z⃗p⃗2Þ

þ 3

4m
ðσ⃗ × p⃗Þ · g⃗: ð5Þ

The first two terms on the right-hand side are the usual strict
nonrelativistic limit. The third term is the leading-order
relativistic correction, while the last term is the spin-orbit
coupling. Note that no Darwin-type term proportional to
the divergence of g⃗ appears because g⃗ is uniform by
assumption. The form of H0 has been the subject of
numerous investigations in the literature [43–51]. Our
result (5) matches Eq. (14) in Ref. [51], which was derived
for uniform acceleration and expressed in the physical
Foldy-Wouthuysen representation.
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The spin-independent piece of H coupling via the
gravitational potential ϕ can be written in the form

Hϕ ¼ ðkNRϕ Þg⃗ · z⃗þ ðkNRϕp Þj
1

2
ðpjg⃗ · z⃗þ g⃗ · z⃗pjÞ

þ ðkNRϕppÞjk
1

2
ðpjpkg⃗ · z⃗þ g⃗ · z⃗pjpkÞ; ð6Þ

where the coefficient ðkNRϕppÞjk is defined to be symmetric,

ðkNRϕppÞjk ¼ ðkNRϕppÞkj: ð7Þ

Each term in Eq. (6) depends on position z⃗ through the
dependence on the gravitational potential. The coefficients
ðkNRϕ Þ, ðkNRϕp Þj, and ðkNRϕppÞjk are spacetime constants that

control the magnitude of the effects produced by the
operators in Hϕ. The superscripts NR serve as a reminder
that the coefficients are defined in the nonrelativistic limit,
while the subscripts ϕ and p reflect the dependence on the
potential and on the fermion momentum. The term with
coefficient ðkNRϕ Þ and the component of the third term

governed by the trace ðkNRϕppÞjj of ðkNRϕppÞjk are invariant
under rotations, and they represent EFT contributions that
shift the sizes of the second and third terms in H0. The
remaining terms in Hϕ violate rotation symmetry. The term
in Hϕ with coefficient ðkNRϕp Þj violates parity P and time
reversal T, while the other two are P and T even.
The spin-dependent piece of H coupling via the gravi-

tational potential ϕ is given by

TABLE II. Relationships between coefficients in LL
ψ and in Lψ .

LL
ψ Lψ

ðm0LÞμν ðm̄0LÞμν þ 1
2
m̄0

asyη
μν

ðmL
5 Þμν ðm̄L

5 Þμν þ 1
2
m̄5asyη

μν

ðaLÞκμν ðāLÞκμν þ 1
2
āκasyημν þ 1

4
ðāμasyηνκ þ āνasyημκÞ

ðbLÞκμν ðb̄LÞκμν þ 1
2
b̄κasyημν þ 1

4
ðb̄μasyηνκ þ b̄νasyημκÞ

ðHLÞκλμν ðH̄LÞκλμν þ 1
2
H̄κλ

asyη
μν þ 1

4
½ðH̄μλ

asyηκν þ H̄νλ
asyη

κμÞ − ðκ ↔ λÞ�
ðcLhÞκμνρ ðc̄LÞκμνρ þ 1

2
c̄κμasyηνρ þ 1

4
ðc̄νμasyηρκ þ c̄ρμasyηνκÞ

ðdLhÞκμνρ ðd̄LÞκμνρ þ 1
2
d̄κμasyηνρ þ 1

4
ðd̄νμasyηρκ þ d̄ρμasyηνκÞ

ðeLhÞμνρ ðēLÞμνρ þ 1
2
ēμasyηνρ

ðfLhÞμνρ ðf̄LÞμνρ þ 1
2
f̄μasyηνρ

ðgLhÞκλμνρ ðḡLÞκλμνρ þ 1
2
ḡκλμasyηνρ þ 1

4
½ðḡνλμasyηκρ þ ḡρλμasy ηκνÞ − ðκ ↔ λÞ�

ðcL∂hÞκμνρ 1
8
ðd̄ανasyηαβϵβμρκ þ d̄αρasyηαβϵβμνκÞ

ðdL∂hÞκμνρ 1
8
ðc̄ανasyηαβϵβμρκ þ c̄αρasyηαβϵβμνκÞ

ðeL∂hÞμνρ 1
4
ðḡμνρasy þ ḡμρνasy Þ

ðfL∂hÞμνρ − 1
8
ðḡαβνasy ηαγηβδϵ

γδμρ þ ḡαβρasy ηαγηβδϵ
γδμνÞ

ðgL∂hÞκλμνρ 1
8
½ðēνasyηκμηλρ þ ēρasyηκμηλνÞ − ðκ ↔ λÞ� þ 1

8
ðf̄νasyϵκλμρ þ f̄ρasyϵκλμνÞ

ðmð5ÞL
h Þμνρσ ðm̄ð5ÞLÞμνρσ þ 1

2
ðm̄ð5Þ

asyÞμνηρσ
ðmð5ÞL

5h Þμνρσ ðm̄ð5ÞL
5 Þμνρσ þ 1

2
ðm̄ð5Þ

5asyÞμνηρσ
ðað5ÞLh Þκμνρσ −ðāð5ÞLÞκμνρσ − 1

2
ðāð5ÞasyÞκμνηρσ − 1

4
½ðāð5ÞasyÞρμνηκσ þ ðāð5ÞasyÞσμνηκρ�

ðbð5ÞLh Þκμνρσ −ðb̄ð5ÞLÞκμνρσ − 1
2
ðb̄ð5ÞasyÞκμνηρσ − 1

4
½ðb̄ð5ÞasyÞρμνηκσ þ ðb̄ð5ÞasyÞσμνηκρ�

ðHð5ÞL
h Þκλμνρσ ðH̄ð5ÞLÞκλμνρσ þ 1

2
ðH̄ð5Þ

asyÞκλμνηρσ þ 1
4
½½ðH̄ð5Þ

asyÞρλμνηκσ þ ðH̄ð5Þ
asyÞσλμνηκρ� − ðκ ↔ λÞ�

ðmð5ÞL
∂h Þμνρσ 1

2
½ðH̄ð5Þ

asyÞνσμρ þ ðH̄ð5Þ
asyÞνρμσ �

ðmð5ÞL
5∂h Þμνρσ − 1

4
½ðH̄ð5Þ

asyÞαβμρηαγηβδϵγδνσ þ ðH̄ð5Þ
asyÞαβμσηαγηβδϵγδνρ�

ðað5ÞL∂h Þκμνρσ 1
4
½ðb̄ð5ÞasyÞαμρηαβϵβνσκ þ ðb̄ð5ÞasyÞαμσηαβϵβνρκ�

ðbð5ÞL∂h Þκμνρσ 1
4
½ðāð5ÞasyÞαμρηαβϵβνσκ þ ðāð5ÞasyÞαμσηαβϵβνρκ�

ðHð5ÞL
∂h Þκλμνρσ 1

4
½½ðm̄ð5Þ

asyÞμρηνκησλþ ðm̄ð5Þ
asyÞμσηνκηρλ� − ðκ ↔ λÞ� þ 1

4
½ðm̄5

ð5Þ
asyÞμρϵκλνσ þ ðm̄5

ð5ÞÞμσϵκλνρ�
ðmð5ÞL

∂∂h Þμνρσ 1
2
½ðm̄ð5Þ

R;asyÞμρσν þ ðm̄ð5Þ
R;asyÞνρσμ� þ 1

4
ðm̄ð5Þ

asyÞρσημν − 1
8
½½ðm̄ð5Þ

asyÞμρηνσ þ ðm̄ð5Þ
asyÞμσηνρ� þ ðμ ↔ νÞ�

ðmð5ÞL
5∂∂hÞμνρσ 1

2
½ðm̄ð5Þ

5R;asyÞμρσν þ ðm̄ð5Þ
5R;asyÞνρσμ� þ 1

4
ðm̄ð5Þ

5asyÞρσημν − 1
8
½½ðm̄ð5Þ

5asyÞμρηνσ þ ðm̄ð5Þ
5asyÞμσηνρ� þ ðμ ↔ νÞ�

ðað5ÞL∂∂h Þκμνρσ − 1
2
½ðāð5ÞR;asyÞκμρσν þ ðāð5ÞR;asyÞκνρσμ� − 1

4
ðāð5ÞasyÞκρσημν þ 1

8
½½ðāð5ÞasyÞκμρηνσ þ ðāð5ÞasyÞκμσηνρ� þ ðμ ↔ νÞ�

ðbð5ÞL∂∂h Þκμνρσ − 1
2
½ðb̄ð5ÞR;asyÞκμρσν þ ðb̄ð5ÞR;asyÞκνρσμ� − 1

4
ðb̄ð5ÞasyÞκρσημν þ 1

8
½½ðb̄ð5ÞasyÞκμρηνσ þ ðb̄ð5ÞasyÞκμσηνρ� þ ðμ ↔ νÞ�

ðHð5ÞL
∂∂h Þκλμνρσ 1

2
½ðH̄ð5Þ

R;asyÞκλμρσν þ ðH̄ð5Þ
R;asyÞκλνρσμ� þ 1

4
ðH̄ð5Þ

asyÞκλρσημν − 1
8
½½ðH̄ð5Þ

asyÞκλμρηνσ þ ðH̄ð5Þ
asyÞκλμσηνρ� þ ðμ ↔ νÞ�
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Hσϕ ¼ ðkNRσϕ Þjσjg⃗ · z⃗þ ðkNRσϕpÞjk
1

2
σjðpkg⃗ · z⃗þ g⃗ · z⃗pkÞ

þ ðkNRσϕppÞjkl
1

2
σjðpkplg⃗ · z⃗þ g⃗ · z⃗pkplÞ: ð8Þ

In this equation, the coefficient ðkNRσϕppÞjkl is defined to be
symmetric on the last two indices,

ðkNRσϕppÞjkl ¼ ðkNRσϕppÞjlk; ð9Þ

and all the coefficients are spacetime constants. Each term
in Hσϕ inherits dependence on the position z⃗ from the
gravitational potential. The second term contains a rotation-
invariant component controlled by the trace ðkNRσϕpÞjj. The
corresponding operator ðσ⃗ · p⃗Þðg⃗ · z⃗Þ represents rotation-
invariant effects that are distinct from those appearing in the
Hamiltonian H0 with vanishing backgrounds. The compo-
nent of ðkNRσϕppÞjkl proportional to ϵjkl is absent in Hσϕ

because the corresponding operator vanishes identically.
The first and third terms inHσϕ are P even and Todd, while
the second term is P odd and T even.
Turning next to the pieces of H coupling via the

gravitational acceleration g⃗, we find that the spin-indepen-
dent piece Hg can be written in the form

Hg ¼ ðkNRg Þjgj þ ðkNRgp Þjkpjgk þ ðkNRgppÞjklpjpkgl: ð10Þ

where we define

ðkNRgppÞjkl ¼ ðkNRgppÞkjl: ð11Þ

All three terms in the expression (10) are position inde-
pendent. All are rotation violating, except for the operator
p⃗ · g⃗ in the second term associated with the trace ðkNRgp Þjj.
Note that in principle a totally antisymmetric component of
ðkNRgppÞjkl ∝ ϵjkl would govern rotation-invariant effects, but
the corresponding operator ðp⃗ × p⃗Þ · g⃗ vanishes identically.
The second term in Hg is P even and T odd, while the other
two are P odd and T even.
Finally, the spin-dependent terms coupling with the

gravitational acceleration g⃗ are found to be

Hσg ¼ ðkNRσg Þjkσjgk þ ðkNRσgpÞjklσjpkgl

þ ðkNRσgppÞjklmσjpkplgm; ð12Þ

where we define

ðkNRσgppÞjklm ¼ ðkNRσgppÞjlkm: ð13Þ

The three terms in Eq. (12) are all position independent.
Each term contains a rotation-invariant component. The
first involves the dipole spin-gravity operator σ⃗ · g⃗, gov-
erned by the trace ðkNRσϕpÞjj. In the absence of backgrounds,

the possible appearance of this operator in the Hamiltonian
H0 has been the subject of discussion in the literature [50],
but it is known to be absent when the physical Foldy-
Wouthuysen representation is adopted [51]. Here, despite
the use of this representation, the dipole spin-gravity
operator nonetheless appears because the general EFT
provides additional contributions to H, so its detection
would represent a signal of new physics. Note that the third
term in Hσg incorporates a rotation-invariant component
∝ p⃗2σ⃗ · g⃗, which corrects the dipole spin-gravity coupling
at Oðp2Þ, along with another rotation scalar ðσ⃗ · p⃗Þðg⃗ · p⃗Þ.
The second term also contains a rotation scalar associated
with the component ðkNRσgpÞjkl proportional to ϵjkl, which
acts to correct the size of the last term in H0. The first and
third terms in Hσg are P and T odd, while the second is P
and T even.
It is useful to collect all the rotation-invariant contribu-

tions H
∘
to H, which gives

H
∘ ¼ p⃗2

2m
− ðm − ðkNRϕ ÞÞg⃗ · z⃗þ ðkNRσg Þ0σ⃗ · g⃗

þ ðkNRgp Þ0p⃗ · g⃗þ
�

3

4m
þ ðkNRσgpÞ0

�
ðσ⃗ × p⃗Þ · g⃗

þ 1

2
ðkNRσϕpÞ0ðσ⃗ · p⃗ g⃗ ·z⃗þ g⃗ · z⃗ σ⃗ ·p⃗Þ

−
�

3

4m
−
1

2
ðkNRϕppÞ0

�
ðp⃗2g⃗ · z⃗þ g⃗ · z⃗p⃗2Þ

þ ðkNRσgppÞ0p⃗2σ⃗ · g⃗þ ðkNRσgppÞ00ðσ⃗ · p⃗Þðg⃗ · p⃗Þ; ð14Þ

where the correction terms are ordered by increasing
powers of the 3-momentum. The coefficients with primes
denote suitably normalized irreducible representations of
the rotation group obtained from the nonrelativistic coef-

ficients in Eqs. (6)–(12). The expression (14) for H
∘
is of

interest for certain experimental applications, in part
because the rotation invariance ensures that all terms take
the same form at leading order when expressed either in the
laboratory frame or the Sun-centered frame. This implies,
for example, no leading-order dependence on the local
sidereal time or laboratory colatitude in experimental

signals for these terms. Note, however, that H
∘

can be
modified by boosts, including the boost associated with the
revolution of the Earth about the Sun. Note also that some
of the rotation-invariant terms (14) have been proposed in
other contexts as phenomenological modifications to con-
ventional fermion-gravity couplings [52,53]. The present
work reveals how these and other effects can arise in the
EFT context.
The expressions (5), (6), (8), (10), and (12) are derived

for the special gravitational potential ϕ ¼ −g⃗ · z⃗ associated
with a uniform gravitational field g⃗. The nonrelativistic
coefficients appearing in these expressions are therefore
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strictly defined only in this restricted scenario, which
makes challenging direct comparisons of their measure-
ments with results from other types of laboratory experi-
ments and astrophysical observations. It is therefore crucial
to report the results of any given data analysis also as
measurements of coefficients in the linearized Lagrange
density LL

ψ in Table I.
The explicit relationships between coefficients in the

nonrelativistic Hamiltonian H and coefficients in the linear-
ized Lagrange density LL

ψ are provided in Table III. The first
column of the table lists the nonrelativistic coefficients
appearing in the Hamiltonian (4), and the second column
provides their expressions in terms of the linearized coef-
ficients appearing in Tables I and Table II. These results
reduce correctly to those of Ref. [38] in the SME limit in
Minkowski spacetime with appropriate metric signature.
Note that all types of nonrelativistic coefficients are gen-
erated from the linearizedEFT.However, to guarantee that all
components of all nonrelativistic coefficients are nonzero

requires extending our present treatment of the EFT to
include derivative background couplings Dk. For example,

the piece Lð5ÞL
ψ∂∂h in Table I acquires distinct and comple-

mentary contributions from the EFT arising either from the
commutator ½Dμ; Dν� or from the anticommutator fDμ; Dνg
of covariant derivatives. The symmetries of the construction
imply that the former occur for any background, while that
the latter are associated only with nonzero derivative back-
ground couplings DDk.

C. Flavor dependence

Different experiments may use distinct particle species
w, and many individual experiments use more than one
species. It is therefore necessary to incorporate multiple
fermion flavors in the analysis. The Lagrange density for
the EFT based on GR coupled to the SM with all known
flavors of fermions is presented in Ref. [3]. The coefficients
can depend on flavor, which introduces further types of

TABLE III. Correspondence between nonrelativistic and linearized coefficients.

NR coefficient Linearized coefficient

ðkNRϕ Þ 2ðm0LÞss − 2ðaLÞtss þ 2mðeLhÞtss − 2mðcLhÞttss þ 2m2ðmð5ÞL
h Þttss − 2m2ðað5ÞLh Þtttss

ðkNRϕp Þj 2
m ðaLÞjss − 2ðeLhÞjss þ 2ðcLhÞjtss þ 2ðcLhÞtjss − 4mðmð5ÞL

h Þjtss þ 2mðað5ÞLh Þjttss þ 4mðað5ÞLh Þtjtss
ðkNRϕppÞjk − 1

m ½ðcLhÞjkss þ ðcLhÞkjss� þ 2ðmð5ÞL
h Þjkss − 2ðað5ÞLh Þtjkss − 2½ðað5ÞLh Þjktss þ ðað5ÞLh Þkjtss�

−δjk½ 1m2 ðm0LÞss þ 1
m ðcLhÞttss − ðmð5ÞL

h Þttss þ 2ðað5ÞLh Þtttss�
ðkNRσϕ Þj −2ðbLÞjss þ ϵjklðHLÞklss − 2mðdLhÞjtss þmϵjklðgLhÞkltss − 2m2ðbð5ÞLh Þjttss þm2ϵjklðHð5ÞL

h Þklttss
ðkNRσϕpÞjk 2ðdLhÞjkss − ϵjmnðgLhÞmnkss þ 4mðbð5ÞLh Þjktss − 2mϵjmnðHð5ÞL

h Þmnktss

þδjk½2m ðbLÞtss þ 2ðdLhÞttss þ 2mðbð5ÞLh Þtttss� − ϵjkl½2m ðHLÞtlss þ 2ðgLhÞtltss þ 2mðHð5ÞL
h Þtlttss�

ðkNRσϕppÞjkl −2ðbð5ÞLh Þjklss þ ϵjmnðHð5ÞL
h Þmnklss þ δkl½ 1

m2 ðbLÞjss þ 1
2m ϵ

jmnðgLhÞmntss − ðbð5ÞLh Þjttss þ ϵjklðHð5ÞL
h Þmnttss�

þ 1
2
½ð−δjk½ 1m2 ðbLÞlss þ 1

2m2 ϵlmnðHLÞmnss þ 2
m ðdLh Þtlss þ 1

m ðdLhÞltss þ 1
2m ϵ

lmnðgLhÞmntss

þ4ðbð5ÞLh Þttlss þ ðbð5ÞLh Þlttss þ 1
2
ϵlmnðHð5ÞL

h Þmnttss� þ ϵjkm½2m ðgLhÞtmlss þ 4ðHð5ÞL
h Þtmltss�Þ þ ðk ↔ lÞ�

ðkNRg Þj 1
m ðHLÞtjss þ 2ðeL∂hÞjss − 2ðcL∂hÞtjss þ ðgLhÞtjtss þ 2mðmð5ÞL

∂h Þtjss − 2mðað5ÞL∂h Þttjss þmðHð5ÞL
h Þtjttss

ðkNRgp Þjk 2
m ðcL∂hÞjkss − 1

m ðgLhÞtkjss − 2ðmð5ÞL
∂h Þjkss þ 2ðað5ÞL∂h Þtjkss þ 2ðað5ÞL∂h Þjtkss − 2ðHð5ÞL

h Þtkjtss
−ϵjkl½ 1

2m2 ðbLÞlss þ 1
2m ðdLhÞltss þ 1

2
ðbð5ÞLh Þlttss� − ϵjklϵlmn½ 1

4m2 ðHLÞmnss þ 1
4m ðgLhÞmntss þ 1

4
ðHð5ÞL

h Þmnttss�
ðkNRgppÞjkl − 1

m ðað5ÞL∂h Þjklss − 1
m ðað5ÞL∂h Þkjlss þ 1

m ðHð5ÞL
h Þtljkss

−δjk½ 1m2 ðeL∂hÞlss − 1
2m2 ðgLhÞtltss þ 1

m ðað5ÞL∂h Þttlss − 1
m ðHð5ÞL

h Þtlttss�
þϵjlm½ 1

2m2 ðdLhÞmkss þ 1
m ðb

ð5ÞL
h Þmtkss� þ ϵjlmϵmnr½ 1

4m2 ðgLhÞnrkss þ 1
2m ðH

ð5ÞL
h Þnrtkss�

ðkNRσg Þjk −2ðdL∂hÞjkss þ ϵjmnðgL∂hÞmnkss − 2mðbð5ÞL∂h Þjtkss þmϵjmnðHð5ÞL
∂h Þmntkss

−δjk½1m ðmL
5 Þss þ ðfLhÞtss þmðmð5ÞL

5h Þttss� þ ϵjkl½1m ðaLÞlss þ ðcLhÞltss þmðað5ÞLh Þlttss�
ðkNRσgpÞjkl 2ðbð5ÞL∂h Þjklss − ϵjmnðHð5ÞL

∂h Þmnklss þ ϵjkl½ 1
2m2 ðm0LÞss þ 1

2m2 ðaLÞtss þ 1
2m ðeLhÞtss þ 1

2m ðcLhÞttss
þ 1

2
ðmð5ÞL

h Þttss þ 1
2
ðað5ÞLh Þtttss� þ δjk½2m ðdL∂hÞtlss þ 2ðbð5ÞL∂h Þttlss� þ δjl½1m ðfLhÞkss þ 2ðmð5ÞL

5h Þktss�
−ϵjkm½2m ðgL∂hÞtmlss þ 2ðHð5ÞL

∂h Þtmtlss� − ϵjlm½1m ðcLhÞmkss þ 2ðað5ÞLh Þmktss�
ðkNRσgppÞjklm −δjmδkl½ 2m2 ðfLhÞtss 1

m ðm
ð5ÞL
5h Þttss� − δjm 1

m ðm
ð5ÞL
h Þklss þ δkl½ 1m2 ðdL∂hÞjmss þ 1

2m ϵ
jnrðHð5ÞL

∂h Þnrtmss�
þδklϵjmn½ 1

2m2 ðcLhÞntss þ 1
m ðað5ÞLh Þnttss� þ ϵjmn 1

m ðað5ÞLh Þnklss
− 1

2
½ðδjk½ 1m2 ðdL∂hÞlmss þ 1

2m2 ϵlnrðgL∂hÞnrmss þ 2
m ðb

ð5ÞL
∂h Þtlmss þ 1

m ðb
ð5ÞL
∂h Þltmss þ 1

2m ϵ
lnrðHð5ÞL

∂h Þnrtmss�
þϵjkm½ 1

2m2 ðeLhÞlss þ 1
2m2 ðcLhÞtlss þ 1

m ðmð5ÞL
h Þltss þ 1

m ðað5ÞLh Þtltss� − ϵjkn 2
m ðHð5ÞL

∂h ÞtnlmssÞ þ ðk ↔ lÞ�
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WEP violations in addition to the anomalous spin-gravity
effects discussed above. For the experiments studied in the
present work, it suffices to consider electrons, protons,
neutrons, and muons, which we denote by w ¼ e, p, n, and
μ. For simplicity, we disregard here possible flavor-mixing
effects, which require accompanying violations of the
conservation of electric charge, baryon number, or lepton
number. For instance, we exclude positron-proton-
curvature couplings in the EFT.
The linearized Lagrange density LL

ψ in Table I and the
nonrelativistic Hamiltonian H in Eq. (4) can be used to
describe the gravitational couplings of any given fermion
w. For practical applications and to report experimental
results, the various coefficients can be labeled accordingly.
For example, the nonrelativistic coefficients of interest are
then denoted as ðkNRϕ Þw, ðkNRϕp Þjw, ðkNRϕppÞjkw , ðkNRσϕ Þjw, ðkNRσϕpÞjkw ,
ðkNRσϕppÞjklw , ðkNRg Þjw, ðkNRgp Þjkw , ðkNRgppÞjklw , ðkNRσg Þjkw , ðkNRσgpÞjklw ,

ðkNRσgppÞjklmw , and the Hamiltonian H is written as Hw. The
WEP violations in the EFT are thus encoded in expressions
as the w dependence of background coefficients.
Many experiments involve atoms or ions, which can be

viewed as aggregates of fermions. In what follows, we treat
these following standard techniques in the literature
[54,55]. First, the Schmidt model [56,57] is adopted as
the basis for determining sensitivities of individual nuclei
to the various nonrelativistic coefficients for the nucleons
p and n. The sensitivity of the full atom or ion to all
coefficients with w ¼ e, p, n and for exotic atoms also
w ¼ μ can then be obtained using standard electron-shell
methods and general symmetry properties of the system.
Some investigations are performed with antiparticles.

For nonrelativistic laboratory experiments, this implies that
the data analysis requires instead using the nonrelativistic
antiparticle Hamiltonian Hw̄ corresponding to the particle
Hamiltonian Hw. In the EFT, the particle and antiparticle
for each species are both encoded in a single quantum field.
As a result, Hw and Hw̄ are simultaneously generated from
the block diagonalization of the relativistic Hamiltonian
associated with the linearized Lagrange density LL

ψ in
Table I. The nonrelativistic antiparticle Hamiltonian Hw̄
is given by expressions of the same forms as Eqs. (5)–(12),
but the corresponding nonrelativistic coefficients ðkNRϕ Þw̄,
ðkNRϕp Þjw̄, ðkNRϕppÞjkw̄ , ðkNRg Þjw̄, ðkNRgp Þjkw̄ , ðkNRgppÞjklw̄ , ðkNRσϕ Þjw̄,
ðkNRσϕpÞjkw̄ , ðkNRσϕppÞjklw̄ , ðkNRσg Þjkw̄ , ðkNRσgpÞjklw̄ , ðkNRσgppÞjklmw̄ that
appear in these equations involve different combinations
of the linearized coefficients than those given in Table III.
The explicit conversion between Hw and Hw̄ can be

implemented using the charge-conjugation operator C,
which interchanges particles and antiparticles. Incor-
porating the opposite 4-momenta of particles and antipar-
ticles, this conversion can conveniently be described
instead in terms of the CPT properties of the operators
in Hw. The results can then be interpreted to obtain the

equivalent of Table III for antiparticles. We find that the
expressions for the antiparticle nonrelativistic coefficients
take the same form as those in Table III up to sign changes
in front of certain linearized coefficients. For linearized
coefficients that have either no subscript or a subscript h,
these sign changes occur for coefficients with an odd
number of spacetime indices. In contrast, for linearized
coefficients having a subscript ∂h, the sign changes appear
for coefficients with an even number of spacetime indices.
For example, we find that the particle expression

ðkNRϕ Þw ¼ 2ðm0LÞssw − 2ðaLÞtssw þ 2mðeLhÞtssw þ � � � ð15Þ

converts to

ðkNRϕ Þw̄ ¼ 2ðm0LÞssw þ 2ðaLÞtssw − 2mðeLhÞtssw þ � � � ð16Þ

for the corresponding antiparticle. We emphasize that the
particle and antiparticle nonrelativistic coefficients can
differ for each species, but only one independent set of
linearized coefficients exists per species because terms in
the linearized EFT simultaneously include both particles
and antiparticles.
Comparative experiments on particles and antiparticles

are typically sensitive to differences between nonrelativistic
coefficients. The sign changes in converting from particles
to antiparticles imply that taking the difference of non-
relativistic coefficients either cancels or doubles the con-
tributions from the linearized coefficients. One example of
relevance in what follows is the difference of nonrelativistic
coefficients

ΔðkNRϕ Þw̄w ≡ ðkNRϕ Þw̄ − ðkNRϕ Þw
¼ 4ðaLÞtssw − 4mðeLhÞtssw þ 4m2ðað5ÞLh Þtttssw ð17Þ

that involves the spin-independent ϕ-coupled pieces of the
particle and antiparticle Hamiltonians. Another is the
difference of nonrelativistic coefficients

ΔðkNRσϕ Þjw̄w ≡ ðkNRσϕ Þjw̄ − ðkNRσϕ Þjw
¼ 4ðbLÞjssw − 2mϵjklðgLhÞkltssw þ 4m2ðbð5ÞLh Þjttssw

ð18Þ

that involves the spin-dependent ϕ-coupled pieces of the
particle and antiparticle Hamiltonians.

III. POTENTIAL DIFFERENCES

The unconventional contributions to the linearized
Lagrange density LL

ψ in Table I and to the nonrelativistic
Hamiltonian H in Eq. (4) produce physical effects on the
behavior of particles studied in laboratory experiments and
astrophysical observations. Among the effects are depend-
ences on the magnitudes and directions of the particle
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momentum and spin, on the particle flavor, and on the
gravitational potential and the magnitudes and directions of
its derivatives. These dependences can be used in experi-
ments designed to disentangle and measure the various
coefficients for different species. In this section, we focus
on the position dependence arising from the gravitational
potential and deduce constraints on the linearized coef-
ficients appearing in Table I by comparing published
measurements obtained at different potentials. The results
selected for analysis here are chosen from among the
numerous existing ones [58] to yield sharp constraints.
The values adopted are taken from Refs. [54,59–89] for
electrons, protons, and neutrons and Refs. [90–96]
for muons.
Many experiments have already been performed to

measure SME coefficients for Lorentz violation under the
assumption that spacetime is Minkowski [58]. However,
the locations of the laboratories performing these experi-
ments are typically at different elevations and hence at
different gravitational potentials ϕ. Since the linearization
(2) of a breve coefficient k̆��� contains hμν, which depends on
ϕ via

h00 ≈ −2ϕ; h0j ≈ 0; hjk ≈ −2ϕδjk; ð19Þ

it follows that experiments at distinct laboratories purport-
edly measuring a given coefficient k̄ ���

expt may in fact be
measuring quantities that differ slightly due to the gravi-
tational coupling,

k̄ ���
expt ¼ k̄ ���

asy þ ðkLÞ���μνhμν
≈ k̄ ���

asy − 2ðkLÞ���ssϕ: ð20Þ

Comparing experiments measuring coefficients k̄ ���
expt at

different elevations can therefore provide access to the
combination ðkLÞ���ss of linearized coefficients.
We note in passing that the expression (20) depends

on the absolute value of the gravitational potential ϕ.
However, the comparison of coefficients k̄ ���

expt at two
different points x⃗1 and x⃗2 involves only the potential
difference Δϕ ¼ ϕðx⃗2Þ − ϕðx⃗1Þ, and so the zero of the
potential is irrelevant. The dependence of observables on
Δϕ rather than ϕ is conventionally associated with gauge
invariance, but here it is an artifact of the linearization
procedure and holds true despite the presence of gauge-
violating terms in the Lagrange density in Table I.
More generally, the absolute value of ϕ can become an

observable in the presence of gauge-violating terms from
beyond-Riemann gravity, so sufficiently precise experi-
ments could in principle measure it. This would require a
treatment including higher orders in hμν, and for some
applications would also involve a reformulation of the
procedure to account for fluctuations around a cosmologi-
cal spacetime rather than the approximately Minkowski

spacetime considered here. The measured coefficients k̄ ���
expt

would then have the schematic dependence k̄expt ∼ k̄asyþ
kLhþ kQhhþ � � �, so comparing experimental results
could permit measurements of the combinations kQϕ,
ultimately leading to measurement of the absolute value
of ϕ provided at least one coefficient kQ is nonzero.
Developing this line of investigation is of definite interest
and would become vital in the event of a compelling
nonzero experimental signal, but it lies beyond our
present scope.
For laboratory experiments on the Earth, the assumption

of a uniform gravitational field implies that the comparison
of coefficients at two different elevations z1 and z2 involves
the potential difference Δϕ ¼ ϕðz2Þ − ϕðz1Þ ¼ gðz2 − z1Þ.
Using the expression (20) to extract constraints on ðkLÞ���ss
from results obtained at a fixed latitude and longitude then
requires only knowledge of the relative elevations of the
experimental measurements. However, the measurements
compared here are performed in laboratories located at
distinct points on the Earth’s surface. Extracting constraints
therefore requires knowledge of the potential differenceΔϕ
at different geographic locations, which can be challenging
to establish. Indeed, the accurate determination of the gra-
vitational equipotentials at the Earth’s surface is a famous
and formidable problem in geodesy [97]. Observations can
be made from the ground or from satellites, and relevant
options for height measurements include elevations taken
relative to mean sea level or vertical data based on a
reference geoid. Issues such as ocean topography and local
density fluctuations must also be incorporated for an exact
treatment. Here, our goal is to obtain initial estimates of the
sensitivities to linearized coefficients that are implied by
published experimental limits on Lorentz violation. For this
purpose, it suffices to adopt the values of the laboratory
elevations above mean sea level listed in Table IV, from
which Δϕ and hence approximate constraints on linearized
coefficients can be deduced. Future experimental analyses
that incorporate detailed precision techniques to determine
relative elevations and hence Δϕ can be expected to
sharpen substantially the results reported in this work.
Published results from the various experiments consid-

ered here are typically expressed in the Sun-centered frame
[5] and reported using a standard set of tilde coefficients,
which are linear combinations of coefficients naturally
appearing in the nonrelativistic limit and are defined in
Minkowski spacetime with gravitational effects disre-
garded. For minimal terms involving operators of mass
dimension d ≤ 4, these standard tilde combinations are
summarized in Table P48 of Ref. [58]. Generalizations of
some of these have been found that include also coefficients
controlling nonminimal operators with d ≥ 5 [55,98–101].
However, in the present context with gravitational cou-
plings, the published results expressed in terms of standard
tilde coefficients must be converted using Eq. (20) into
expressions involving the linearized coefficients in Table II
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instead. The relevant combinations of the latter that appear
in the analysis to follow are defined in Table V. Note that in
this table J,K, L range over the values X, Y, Z. Each row of
the table contains the generalized tilde coefficient followed
by its expression in terms of the linearized coefficients
appearing in Table II. The notation and definitions for the
generalized tilde coefficients parallel those for the standard
tilde coefficients. Differences include the addition of the
indices ΣΣ representing the sum over TT, XX, YY, and ZZ
that emerges from the expansion (20), and sign changes
arising from index positions and the convention for the
metric signature.
We remark in passing that the tilde coefficient ðb̃LÞJΣΣ is

proportional to the spin-dependent nonrelativistic coeffi-
cient ðkNRσϕ ÞJ,

ðb̃LÞJΣΣ ¼ −
1

2
ðkNRσϕ ÞJ: ð21Þ

No other coefficient in Table Venjoys a simple relationship
like this. The expression (21) emerges as follows. In a
uniform gravitational field, restricting the nonrelativistic
Hamiltonian H given by Eq. (4) to terms without depend-
ence on the 3-momentum p⃗ and without derivatives of the
potential ϕ retains only the perturbative corrections involv-
ing the product ðkNRϕ Þϕ in Hϕ and ðkNRσϕ ÞJϕ in Hσϕ. The
latter combination couples to the spin σJ. However, in the
nonrelativistic limit in Minkowski spacetime, the coupling
to σJ is governed by the standard tilde coefficient b̃J. In
approximately flat spacetime, this coefficient acquires a
dependence on ϕ given by Eq. (20). Comparing this
dependence to the product ðkNRσϕ ÞJϕ then reveals the
relationship (21). Note that a similar line of reasoning

suggests that kNRϕ is related to a combination ðãLÞTΣΣ of
coefficients, which we can define as

ðãLÞTΣΣ ≡ −
1

2
kNRϕ : ð22Þ

The corresponding combination of coefficients does indeed
appear in the nonrelativistic Hamiltonian in Minkowski
spacetime [54], but it produces no measurable effects in that
context because it amounts to an unobservable redefinition
of the zero of energy or, equivalently, because it can be
removed from the theory via field redefinitions [29]. The
observability of kNRϕ is thus confirmed to be a consequence
of the coupling to the gravitational potential, the presence
of which restricts the applicability of field redefinitions [2].
In addition to using published laboratory experiments

to deduce constraints from Eq. (20), we can also consider
astrophysical observations. These have been used by
Altschul to deduce a variety of constraints in the absence
of gravity [66,68–70,89]. To compare these with laboratory
results via Eq. (20) requires knowledge of the difference
Δϕ between the gravitational potential on astrophysical
scales and the potential in the laboratory. The astrophysical
sources of interest here include pulsars and supernova
remnants within the Milky Way, along with active galaxies,
quasars, and blazars within and outside the Virgo super-
cluster. These sources span a substantial range of distance
scales, so the relevant gravitational potentials are disparate.
Moreover, some of the coefficient constraints are derived
from multiple sources, while some involve propagation
across significant distances. Establishing definitive values
for the relevant gravitational potentials is therefore chal-
lenging. Here, we note that contributions to the gravita-
tional potential ϕ⋆ on these astrophysical scales typically
are of order ϕ⋆ ≃ −5 × 10−6, substantially exceeding the
contributions ϕ⊕ from the Earth and ϕ⊙ from the Sun at the
laboratory location, ϕ⊕ ≃−7×10−10 and ϕ⊙ ≃ −1 × 10−8.
To place conservative bounds on coefficients via compar-
isons using Eq. (20), we can therefore adopt the value
Δϕ ≃ 1 × 10−8. This corresponds to assuming cancellation
of the contributions ϕ⋆ at the astrophysical source and at
the laboratory. The cancellation is unlikely to be exact in
reality, so a detailed investigation of the potential difference
between any given astrophysical source and an Earth-based
laboratory could well lead to improvements of one or
two orders of magnitude on the conservative constraints
derived here.
With the above framework in place, using Eq. (20) to

perform comparisons among the various laboratory and
astrophysical results yields bounds on many of the tilde
coefficients defined in Table V. Table VI displays con-
straints on these combinations of linearized coefficients in
the electron, proton, and neutron sectors. The first column
of the table lists the tilde coefficients. The second column
contains the constraints deduced for the tilde coefficients in

TABLE IV. Laboratory elevations.

Laboratory location Elevation (m) Ref.

Amherst, MA, USA 70 [61,75]
Bad Homburg, Germany 165 [86]
Berkeley, CA, USA 186 [73,83]
Berlin, Germany 30 [67]
Berlin, Germany 75 [77,78,88]
Boston, MA, USA 5 [60,63]
Boulder, CO, USA 1637 [59,79,80]
Darmstadt, Germany 139 [81]
Geneva, Switzerland 442 [85,90]
Heidelberg, Germany 309 [64]
Los Alamos, NM, USA 2226 [92]
New York, NY, USA 24 [94]
Paris, France 66 [65,87]
Perth, Australia 14 [67]
Princeton, NJ, USA 37 [72,74,84]
Seattle, WA, USA 26 [71,76]
Hsinchu, Taiwan 71 [62]
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the electron sector, and the third column lists the references
from which the constraints are deduced. The fourth and
fifth columns contain analogous information for the proton
sector, while the last two columns concern the neutron
sector.
In Table VI, all constraints accompanied by two or

more references are obtained by comparison of two
published limits as described above. Where three or more
references are cited, a combination of experimental results
and theoretical analysis has been used to establish the
two published limits adopted in deducing our constraints.
References in the table with an asterisk denote works con-
taining results deduced on theoretical grounds, as opposed
to direct experimental measurements. A few constraints
listed in the table are accompanied by a single experimental
reference [102–104], and these are derived using tech-
niques described in later sections of the present paper. Note
that many coefficients are unconstrained to date by poten-
tial-difference comparisons. Relevant results from a single
elevation are available for many of them [58], but inter-
pretation in the present context must await second mea-
surements at other laboratories.
In addition to independent results at different elevations,

future prospects for improving the constraints in Table VI
could include the use of a network of time-synchronized
clocks to provide simultaneous monitoring for the

corresponding potential-dependent effects [105,106]. For
example, the Global Network of Optical Magnetometers to
search for Exotic physics (GNOME) is geographically
spread and encompasses multiple elevations [105].
Another option is to use space-based clocks, which offer
several advantages in searches for Lorentz violation
[36,107]. Comparisons of clocks on a space platform to
ones on the surface of the Earth involve larger potential
differences than attainable in ground-based laboratories and
can therefore be expected to yield substantially improved
sensitivities to the linearized coefficients.
The muon sector offers another interesting source of

constraints on beyond-Riemann physics. An analysis along
the lines performed above for electrons, protons, and
neutrons can be performed to obtain constraints on linear-
ized coefficients for muons. Table VII displays the results.
Each row of this table provides the relevant linearized
coefficient and the constraint obtained, followed by the
references used in deducing it. The table has comparatively
few entries, reflecting in part the paucity of measurements
at different elevations. The experiments cited in the table
involve both boosted and nonrelativistic muons, so a
nonrelativistic treatment in terms of the tilde coefficients
is impractical. Instead, constraints can be deduced on
individual linearized coefficients, as displayed in the table.
With the successful operation of the Fermilab g − 2

TABLE V. Definitions for tilde combinations of linearized coefficients.

Coefficient Combination

ðb̃LÞJΣΣ ðbLÞJΣΣ − 1
2
ϵJKLðHLÞKLΣΣ þmððdLh ÞJTΣΣ − 1

2
ϵJKLðgLh ÞKLTΣΣÞ

ðb̃LÞTΣΣ ðbLÞTΣΣ −mðgLh ÞXYZΣΣ
ðb̃LÞ�JΣΣ ðbLÞJΣΣ þ 1

2
ϵJKLðHLÞKLΣΣ −mððdLh ÞJTΣΣ þ 1

2
ϵJKLðgLh ÞKLTΣΣÞ

ðc̃LÞ−ΣΣ mððcLh ÞXXΣΣ − ðcLh ÞYYΣΣÞ
ðc̃LÞQΣΣ mððcLh ÞXXΣΣ þ ðcLh ÞYYΣΣ − 2ðcLh ÞZZΣΣÞ
ðc̃LÞJΣΣ mjϵJKLjðcLh ÞKLΣΣ

ðc̃LÞTJΣΣ mðcLh ÞTJΣΣ þ ðcLh ÞJTΣΣÞ
ðc̃LÞTTΣΣ mðcLh ÞTTΣΣ
ðd̃LÞ�ΣΣ mððdLh ÞXXΣΣ � ðdLh ÞYYΣΣÞ
ðd̃LÞQΣΣ mððdLh ÞXXΣΣ þ ðdLh ÞYYΣΣ − 2ðdLh ÞZZΣΣ − ðgLh ÞYZXΣΣ − ðgLh ÞZXYΣΣ þ 2ðgLh ÞXYZΣΣÞ
ðd̃LÞXYΣΣ mððdLh ÞXYΣΣ þ ðdLh ÞYXΣΣ − ðgLh ÞZXXΣΣ þ ðgLh ÞZYYΣΣÞ
ðd̃LÞYZΣΣ mððdLh ÞYZΣΣ þ ðdLh ÞZYΣΣ − ðgLh ÞXYYΣΣ þ ðgLh ÞXZZΣΣÞ
ðd̃LÞZXΣΣ mððdLh ÞZXΣΣ þ ðdLh ÞXZΣΣ − ðgLh ÞYZZΣΣ þ ðgLh ÞYXXΣΣÞ
ðd̃LÞJΣΣ mððdLh ÞTJΣΣ þ 1

2
ðdLh ÞJTΣΣÞ þ 1

4
ϵJKLðHLÞKLΣΣ

ðH̃LÞXTΣΣ ðHLÞXTΣΣ −mððdLh ÞZYΣΣ − ðgLh ÞXTTΣΣ − ðgLh ÞXYYΣΣÞ
ðH̃LÞYTΣΣ ðHLÞYTΣΣ −mððdLh ÞXZΣΣ − ðgLh ÞYTTΣΣ − ðgLh ÞYZZΣΣÞ
ðH̃LÞZTΣΣ ðHLÞZTΣΣ −mððdLh ÞYXΣΣ − ðgLh ÞZTTΣΣ − ðgLh ÞZXXΣΣÞ
ðg̃LÞTΣΣ ðbLÞTΣΣ þmððgLh ÞXYZΣΣ − ðgLh ÞYZXΣΣ − ðgLh ÞZXYΣΣÞ
ðg̃LÞcΣΣ mððgLh ÞXYZΣΣ − ðgLh ÞZXYΣΣÞ
ðg̃LÞQΣΣ mððgLh ÞXTXΣΣ þ ðgLh ÞYTYΣΣ − 2ðgLh ÞZTZΣΣÞ
ðg̃LÞ−ΣΣ mððgLh ÞXTXΣΣ − ðgLh ÞYTYΣΣÞ
ðg̃LÞTJΣΣ mjϵJKLjðgLh ÞKTLΣΣ

ðg̃LÞJKΣΣ mððgLh ÞJTTΣΣ þ ðgLh ÞJKKΣΣÞ, (no K sum, J ≠ K)
ðg̃LÞDJΣΣ ðbLÞJΣΣ þmϵJKLððgLh ÞKTLΣΣ þ 1

2
ðgLh ÞKLTΣΣÞ

V. ALAN KOSTELECKÝ and ZONGHAO LI PHYS. REV. D 104, 044054 (2021)

044054-12



experiment [108], future improvements on these results can
be envisaged.
The techniques adopted here to obtain constraints on

linearized coefficients for electrons, protons, neutrons, and
muons could in principle be extended to other species. In
many cases, sufficient data are lacking to obtain results, but

substantial datasets are available for certain species such as
quarks and neutrinos [58]. However, treating these species
systematically requires consideration of flavor-changing
effects and hence a extension of the theoretical framework
presented here. This line of investigation would be of
definite interest but lies beyond our present scope.

TABLE VI. Constraints on tilde combinations of linearized coefficients for electrons, protons, and neutrons.

Coefficient Electron Ref. Proton Ref. Neutron Ref.

jðb̃LÞXΣΣj <3 × 10−15 GeV [62,71] <8 × 10−16 GeV [72,77],[82]* <6 × 10−19 GeV [72,78]

jðb̃LÞYΣΣj <3 × 10−15 GeV [62,71] <8 × 10−16 GeV [72,77],[82]* <6 × 10−19 GeV [72,78]

jðb̃LÞZΣΣj <7 × 10−14 GeV [62,71] <2 × 10−11 GeV [75,85] <5 × 10−5 GeV [102]

jðb̃LÞTΣΣj <6 × 10−2 GeV [71],[79]*,[80]* � � � <6 × 105 GeV [63],[80]*

jðb̃LÞ�XΣΣj � � � � � � � � �
jðb̃LÞ�YΣΣj � � � � � � � � �
jðb̃LÞ�ZΣΣj � � � � � � � � �
jðc̃LÞ−ΣΣj <1 × 10−10 GeV [66]*,[88] <4 × 10−9 GeV [65,74],[84]*,[87]* <1 × 10−13 GeV [54]*,[60,74]
jðc̃LÞQΣΣj <5 × 10−11 GeV [67],[89]* <1 × 103 GeV [65,81],[87]* <1 × 10−5 GeV [70]*,[83]
jðc̃LÞXΣΣj <6 × 10−11 GeV [66]*,[88] <3 × 10−9 GeV [65,74],[84]*,[87]* <3 × 10−13 GeV [54]*,[59,74]
jðc̃LÞYΣΣj <7 × 10−11 GeV [66]*,[88] <9 × 10−10 GeV [65,74],[84]*,[87]* <3 × 10−13 GeV [54]*,[59,74]
jðc̃LÞZΣΣj <7 × 10−11 GeV [66]*,[88] <2 × 10−9 GeV [65,74],[84]*,[87]* <1 × 10−13 GeV [54]*,[60,74]
jðc̃LÞTXΣΣj <3 × 10−11 GeV [88],[89]* <2 × 105 GeV [64]*,[65],[87]* <1 × 103 GeV [70]*,[86]*
jðc̃LÞTYΣΣj <1 × 10−11 GeV [88],[89]* <2 × 105 GeV [64]*,[65],[87]* <3 × 103 GeV [70]*,[86]*
jðc̃LÞTZΣΣj <3 × 10−11 GeV [66]*,[88] <2 × 105 GeV [64]*,[65],[87]* <3 × 103 GeV [70]*,[86]*
jðc̃LÞTTΣΣj <1 × 10−10 GeV [68]*,[89]* <4 × 108 GeV [65,73],[87]* <7 × 10−3 GeV [104]

jðd̃LÞþΣΣj <6 × 10−10 GeV [69]*,[71] <2 × 105 GeV [80]*,[82]* � � �
jðd̃LÞ−ΣΣj � � � � � � � � �
jðd̃LÞQΣΣj <7 × 10−10 GeV [69]*,[71] <6 × 105 GeV [80]*,[82]* � � �
jðd̃LÞXYΣΣj <5 × 10−11 GeV [69]*,[71] � � � � � �
jðd̃LÞYZΣΣj � � � � � � � � �
jðd̃LÞZXΣΣj <5 × 10−10 GeV [69]*,[71] � � � � � �
jðd̃LÞXΣΣj <1 × 10−9 GeV [54]*,[61],[69]* � � � � � �
jðd̃LÞYΣΣj <1 × 10−10 GeV [54]*,[61],[69]* � � � � � �
jðd̃LÞZΣΣj � � � <2 × 10−3 GeV [103] <4 × 10−2 GeV [102]

jðH̃LÞXTΣΣj � � � � � � � � �
jðH̃LÞYTΣΣj � � � � � � � � �
jðH̃LÞZTΣΣj � � � � � � � � �
jðg̃LÞTΣΣj � � � � � � � � �
jðg̃LÞcΣΣj � � � � � � � � �
jðg̃LÞQΣΣj � � � � � � � � �
jðg̃LÞ−ΣΣj � � � � � � � � �
jðg̃LÞTXΣΣj � � � � � � � � �
jðg̃LÞTYΣΣj � � � � � � � � �
jðg̃LÞTZΣΣj � � � � � � � � �
jðg̃LÞXYΣΣj � � � � � � � � �
jðg̃LÞYXΣΣj � � � � � � � � �
jðg̃LÞZXΣΣj � � � � � � � � �
jðg̃LÞXZΣΣj � � � � � � � � �
jðg̃LÞYZΣΣj � � � � � � � � �
jðg̃LÞZYΣΣj � � � � � � � � �
jðg̃LÞDXΣΣj <2 × 10−8 GeV [54]*,[61],[76]* � � � � � �
jðg̃LÞDYΣΣj <2 × 10−8 GeV [54]*,[61],[76]* � � � � � �
jðg̃LÞDZΣΣj � � � <4 × 10−3 GeV [103] <2 × 10−2 GeV [102]
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IV. GRAVITATIONAL ACCELERATIONS

The unconventional contributions to the linearized
Lagrange density LL

ψ in Table I can modify the accelera-
tion experienced by a system in a uniform gravitational
field. Experiments comparing the gravitational accelera-
tions of different systems therefore offer the opportunity to
measure the coefficients appearing in the nonrelativistic
Hamiltonian (4).
Consider first the comparatively simple modification

of the gravitational acceleration provided by the spin-
dipole term with operator σ⃗ · g⃗ in the rotation-invariant
Hamiltonian (14). This term is governed by the coefficient
ðkNRσg Þ0w and can be studied in experiments comparing the
spin-precession frequencies of different atomic species
[109–111] or via a spin-torsion pendulum [112]. Con-
straints on ðkNRσg Þ0w ≡ ðkNRσg Þwjj=3 for electrons, protons, and
neutrons are tabulated in Ref. [111] as

ðkNRσg Þ0e < 10; ðkNRσg Þ0p < 2 × 105; ðkNRσg Þ0n < 103: ð23Þ

The implications of these constraints for the linearized
coefficients appearing in the Lagrange density LL

ψ given in
Table I can be seen from the correspondence provided in
Table III. Note that only the trace contributions from
ðkNRσg Þjkw are relevant for ðkNRσg Þ0w, so the terms proportional
to ϵjkl in Table III play no role. Note also that the remaining
linearized coefficients contained in ðkNRσg Þ0w are otherwise
unconstrained by the experiments considered in this work.
In the remainder of this section, we consider compar-

isons of the free-fall properties of Sr atoms [102], Rb atoms
[103], and antimatter [113–116]. We generalize the tech-
niques of Refs. [54,55] to analyze these types of experi-
ments and use existing results to extract constraints on
nonrelativistic coefficients.
Consider a generic atom of mass matom formed from Ne

electrons, Np protons, and Nn neutrons. The Hamiltonian
Hatom governing the gravitational acceleration of the atom
contains a conventional piece and a correction δH arising
from the unconventional terms in Table I that can be
expressed as a sum of the perturbations for each particle,

δH ¼
XNe

N¼1

δHe;N þ
XNp

N¼1

δHp;N þ
XNn

N¼1

δHn;N: ð24Þ

In the nonrelativistic limit and a uniform gravitational field,
each component Hamiltonian δHw;N involves the explicit
forms (6)–(12) for the corresponding particle, containing
coefficients labeled with the appropriate flavor w ¼ e, p, n.
In free fall, the motion of each component particle w can

be separated into two parts, the motion with the atom and
the motion relative to the atom. The positions z⃗w and the
momenta p⃗w of the particles can therefore be written as

z⃗w ¼ z⃗atomw þ z⃗relw ; p⃗w ¼ p⃗atom
w þ p⃗rel

w : ð25Þ

In terms of the position z⃗atom and momentum p⃗atom of
the atom,

z⃗atomw ¼ z⃗atom;
p⃗atom
w

mw
¼ p⃗atom

matom
; ð26Þ

where mw is the mass of particle w. In the experiments
considered here, the motion of the atom can be taken along
the laboratory z axis, so z⃗atom ¼ zatomẑ and p⃗atom ¼ patomẑ.
The size of the atom is much smaller than the distance
traveled, so z⃗w ≈ z⃗atomw ¼ z⃗atom. Also, the speed of the atom
is of order 10−9, so p⃗atom

w is negligible and p⃗w ≈ p⃗rel
w .

At leading order, the Hamiltonian Hatom therefore takes
the form

Hatom ≈
p2
atom

2matom
þmatomgzatom þ δHðz⃗atomw ; p⃗rel

w Þ; ð27Þ

To derive the effective gravitational acceleration of the
atom, we apply the Ehrenfest theorem on the atomic motion
to obtain

matom
d2

dt2
hzatomi ¼

d
dt

hpatomi ¼ −ih½patom; Hatom�i;
¼ −matomg − ih½patom; δH�i; ð28Þ

where the expectation values are taken in the atomic state
and we use the identity ½z⃗atom; p⃗rel

w �≡ 0. Since the compo-
nent Hamiltonians Hg and Hσg in Eqs. (10) and (12) are
independent of the position and ½p⃗atom; p⃗rel

w �≡ 0, the only
corrections to the gravitational acceleration arise from Hϕ

andHσϕ in Eqs. (6) and (8). Moreover, the parity symmetry
of the relative motion guarantees the vanishing of the
expectation of odd powers of p⃗rel

w . The operator correcting
the free-fall gravitational acceleration of the atom can
therefore be taken as

−i½patom; δH� ¼
X
w;Nw

½ðkNRϕ Þw þ ðkNRϕppÞjkw pj
wpk

w

þ ðkNRσϕ Þjwσjw þ ðkNRσϕppÞjklw σjwpk
wpl

w�g; ð29Þ

which sums over contributions from the Nw particles of
species w. The first two terms on the right-hand side of this

TABLE VII. Constraints on linearized coefficients for muons.

Coefficient Constraint Ref.

jðbLÞXΣΣj <2 × 10−10 GeV [92,94]
jðbLÞYΣΣj <2 × 10−10 GeV [92,94]
jðbLÞZΣΣj <6 × 10−9 GeV [90],[91]*,[93,94]
jðcLÞTTΣΣj <9 × 105 GeV [90],[95]*,[96]*
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expression are independent of spin, so they can be neg-
lected in experiments comparing the gravitational accel-
eration of an atom in different spin states. The last two
terms are spin dependent and hence can be neglected in
experiments involving unpolarized atoms. Note that in
typical atoms the expectation values of the momentum
squared are of order [54] hp⃗2ie ≃ 10−11 GeV2 and hp⃗2ip ≈
hp⃗2in ≃ 10−2 GeV2, so the contributions from electrons
to the terms quadratic in momenta can be neglected in
what follows.
To determine the expectation value of the operator (29),

suppose the atom is in the state jα; F;mFi, where F is the
quantum number for the total angular momentum andmF is
the azimuthal quantum number. We can then decompose
the right-hand side of the operator (29) into combinations
of irreducible tensor operators and evaluate the expectation
values using the Wigner-Eckart theorem [117]. For a rank-r

tensor operator TðrÞ
q with q ¼ −r;…r, the expectation value

can be written in the form

hα; F;mFjTðrÞ
q jα; F;mFi

¼ hF;mFjr; q; F;mFi
hF;Fjr; q; F; Fi hα; F; FjTðrÞ

q jα; F; Fi; ð30Þ

where hF;mFjr; q; F;mFi and hF;Fjr; q; F; Fi are

Clebsch-Gordan coefficients. It follows that hTðrÞ
q i vanishes

for q ≠ 0 or r > 2F.
Inspection of Eq. (29) reveals that it contains spin-

dependent tensor operators with rank 1 ≤ r ≤ 3. The q ¼ 0
components of these operators are

Tð1Þ
0 ⊃ σz; σzpjpj; σjpjpz;

Tð2Þ
0 ⊃ ðσxpy − σypxÞpz;

Tð3Þ
0 ⊃ σzpxpx þ σzpypy

þ 2σxpxpz þ 2σypypz − 2σzpzpz: ð31Þ

Except for the rank-three case, these operators already
appear in the Minkowski-spacetime treatment of clock-
comparison experiments [54]. In any given experiment
involving a specific atom, one or more of these operators
may have vanishing expectation value. Any nonzero
expectation values can be expected to produce modifica-
tions of the gravitational acceleration.
The above analysis is performed in the standard labo-

ratory frame, which is noninertial. As described in Sec. II,
our focus here is on unconventional effects that preserve
translation invariance in the Sun-centered frame [5], which
over a time scale large compared to experimental data
acquisition can be taken as an approximately inertial frame.
The nonrelativistic coefficients appearing in the operator

(29) are therefore constant in the Sun-centered frame, and
hence in the noninertial laboratory frame they appear to
vary with the local sidereal time T⊕ and the laboratory
colatitude χ. The explicit form of the coefficient depend-
ence on time can be obtained by performing the rotation (1)
from the laboratory frame to the Sun-centered frame.
The structure of the operators (31) then reveals that the
measured gravitational accelerations in experiments with
atoms can display oscillations with sidereal time at har-
monics up to third order in the sidereal frequency ω⊕.

A. Sr atoms

We consider first an experiment [102] performed to
compare the gravitational accelerations of two isotopes of
strontium atoms having different spins, the spin-9=2
fermion 87Sr and the spin-zero boson 88Sr. The experiment
measured the gravitational accelerations via the delocal-
ization of atomic matter waves in a vertical optical lattice.
The laboratory is located at colatitude χ ≃ 46.2°.
For present purposes, the atoms can be modeled using

standard techniques [54,55]. The electrons in both 87Sr and
88Sr form a closed shell. In the Schmidt model [56,57], the
spin I ¼ 9=2 of the 87Sr nucleus is associated with an
unpaired valence neutron, while all nucleons in the 88Sr
nucleus are paired. Any spin-dependent effects on the
gravitational response of the two isotopes can therefore
be assigned to the spin I of the 87Sr nucleus.
The total angular momentum F of 87Sr is F ¼ I ¼ 9=2,

so the atomic states of 87Sr can be denoted as
jα; I ¼ 9=2; mIi, where α represents the radial part of
the wave function and mI ¼ −I;−I þ 1;…; I is the
spin projection along ẑ. The orbital angular momentum
L of the 87Sr nucleus is found to be L ¼ 4 [118], so we can
identify I ¼ Lþ 1=2. The expectation values of the irre-
ducible tensor operators (31) in the state jα; I; Ii can then be
evaluated as

hσzi ¼ 1; hσzpjpji ¼ hp⃗2i; hσjpjpzi ¼ 1

2Lþ 3
hp⃗2i;

hTð2Þ
0 i ¼ 0; hTð3Þ

0 i ¼ 2L
2Lþ 3

hp⃗2i: ð32Þ

Note that the rank-two tensor operator provides no con-
tribution to the gravitational acceleration.
Combining the results (32) with the Clebsch-Gordan

coefficients (30) enables calculation of the expectation
values of the operator (29) correcting the gravitational
acceleration. Working in the laboratory frame, we find that
the spin-dependent correction gSr;σ to the effective gravi-
tational acceleration gSr of an 87Sr atom polarized in the
state jα; I; mIi is given by
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gSr;σ
g

¼ −
mI

mSr

�
2

9
ðkNRσϕ Þzn þ

�
2

27
ðkNRσϕppÞzjjn þ 1

99
ðkNRσϕppÞjjzn

�
hp⃗2in

þ 20m2
I − 293

6930
½ðkNRσϕppÞzxxn þ ðkNRσϕppÞzyyn þ 2ðkNRσϕppÞxxzn þ 2ðkNRσϕppÞyyzn − 2ðkNRσϕppÞzzzn �hp⃗2in

�
; ð33Þ

where mSr ¼ 80.9 GeV is the mass of the 87Sr atom, and
repeated j indices indicate summation over the spatial
coordinates j ¼ x, y, z in the laboratory frame. Note
that the identity (9) is used in deriving this result. Note
also that the appearance of nonrelativistic coefficients only
in the neutron sector is a consequence of adopting the
Schmidt model. A more detailed nuclear model for 87Sr
might reveal also dependence on nonrelativistic coefficients
in the proton sector, but attempting this lies beyond our
present scope.
The nonrelativistic coefficients appearing in Eq. (33) are

expressed in the laboratory frame and therefore oscillate
with the local sidereal time T⊕. The explicit dependence on
T⊕ can be displayed by transforming to the Sun-centered
frame using the rotation (1). Binning measurements of
the effective gravitational acceleration gSr in sidereal time
could therefore provide a signal of effects beyond Riemann
geometry. The oscillations can contain up to third harmon-
ics of the Earth’s sidereal frequency ω⊕, and each harmonic
contains information about different combinations of coef-
ficients. Here, for purposes of comparison with the reported
results [102], we treat the experimental data as averaged
over sidereal time. A reanalysis of the experimental data
incorporating time-stamp information would yield addi-
tional information and be of definite interest.
The experimental analysis in Ref. [102] reported the

measurement of a parameter k¼ð0.5�1.1Þ×10−7, defined
via a phenomenological correction to the gravitational
potential of the form ϕðzÞ ¼ ð1þ β þ kmIÞgz, where β
is a species-dependent constant. This expression contains
only a term linear in mI, whereas the result (33) contains
also a cubic term in mI. Since the experimental measure-
ment used unpolarized 87Sr atoms, the cubic term can be
weighted equally over mI and replaced with its linear
approximation. Performing the match yields a bound on a
combination of nonrelativistic coefficients in the neutron
sector. Given the comparatively small size of the expect-
ation value hp⃗2in, it is convenient and standard practice
[58] to separate the bound into two pieces, one assuming
only ðkNRσϕ ÞJn is nonzero and the other assuming only
ðkNRσϕppÞJKLn is nonzero. In the canonical Sun-centered
frame, we thereby find the constraints

jðkNRσϕ ÞZn j< 1 × 10−4 GeV ð34Þ
and

jðkNRσϕppÞZJJn − 0.4ðkNRσϕppÞZZZn j< 5 × 10−2 GeV−1 ð35Þ

at the 95% confidence level. Here, repeated J indices
denote summation over the spatial coordinates J ¼ X, Y, Z
in the Sun-centered frame.
Using the expressions in Table III, the above con-

straints on nonrelativistic coefficients can be converted
into bounds on the linearized coefficients appearing in
Table II. These in turn imply constraints on the terms in the
Lagrange density given in Table I. We can also express the
results in terms of the tilde coefficients defined in Table V.
This yields the constraints displayed in Table VI associated
with Ref. [102]. The sensitivities achieved are seen to be
complementary to those derived in Sec. III from compar-
isons of data at different potentials.

B. Rb atoms

Next, we turn to an experiment [103] comparing the
gravitational accelerations of 87Rb atoms with different
projections mF of the total angular momentum F. The
experiment used an atom interferometer oriented vertically
to compare the gravitational accelerations of the hyperfine
states jF ¼ 1; mF ¼ þ1i and jF ¼ 1; mF ¼ −1i. The lab-
oratory is at colatitude χ ≃ 59.4°.
The 87Rb atom has a single valence electron in the 52S1=2

level, so the total electronic angular momentum is J ¼ 1=2
with orbital angular momentum L ¼ 0, so J ¼ Lþ 1=2.
The nucleus has spin I ¼ 3=2 with orbital angular
momenta L ¼ 1 [119], so I ¼ Lþ 1=2. In the Schmidt
model, the nuclear properties are assigned to a single
valence proton. This is expected to be a comparatively
accurate description for 87Rb because the nucleus contains
50 neutrons, which is a magic number.
Since the angular momenta for the electrons and nucleus

are good quantum numbers, we can express the atomic state
as the tensor product of two parts, one for the valence
electron and one for the Schmidt proton [54,55]:

jα; F;mFi ¼ hF;mFjJ;mJ; I; mIijα0; J;mJijα00; I; mIi;
ð36Þ

where hF;mFjJ;mJ; I; mIi is a Clebsch-Gordan coefficient
and α, α0, α00 denote the radial dependences. Both the
valence electron and the Schmidt proton have total angular
momentum Lþ 1=2, so evaluation of the expectation
values of the irreducible tensor operators (31) in the
component wave functions again yields results of the form
(32). We see that the rank-two tensor operators in the
electron and proton sectors have no effect on the gravita-
tional acceleration due to the vanishing (32) of their
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expectation values, while the rank-three tensor operators
have r > 2F and so according to the Wigner-Eckart
theorem cannot contribute either.
Collecting the results and working in the laboratory

frame, we obtain the spin-dependent correction gRb;σ to the
effective gravitational acceleration gRb of a 87Rb atom in the
state with azimuthal quantum number mF,

gRb;σ
g

¼ −
mF

mRb

�
5

6
ðkNRσϕ Þzp −

1

2
ðkNRσϕ Þze

þ
�
5

18
ðkNRσϕppÞzjjp þ 1

12
ðkNRσϕppÞjjzp

�
hp⃗2ip

�
; ð37Þ

where mRb ¼ 80.9 GeV is the mass of the 87Rb atom.
Repeated j indices denote summation over the spatial
coordinates j ¼ x, y, z in the laboratory frame, and the
identity (9) has again been used.
By virtue of the Earth’s rotation, the nonrelativistic

coefficients in the result (37) vary harmonically with the
local sidereal time T⊕. Conversion to the Sun-centered
frame can be implemented using the rotation (1). Extracting
the maximum information about the nonrelativistic coef-
ficients in the Sun-centered frame therefore requires meas-
uring both the time-independent gravitational acceleration
and its variations with the Earth’s sidereal frequency ω⊕.
For present purposes, we view the published result as
averaged over sidereal time. A search for sidereal depend-
ence in the experimental data would permit measure-
ments of additional nonrelativisitc coefficients and be well
worthwhile.
The analysis in Ref. [103] yielded a measurement of the

Eötvös ratio [120] η ¼ ð0.2� 1.2Þ × 10−7. Using the result
(37), we find

η≡ 2
gRbðmF ¼ −1Þ − gRbðmF ¼ þ1Þ
gRbðmF ¼ −1Þ þ gRbðmF ¼ þ1Þ

≈ 2
gRb;σðmF ¼ −1Þ

g
ð38Þ

at leading order in nonrelativistic coefficients. Matching to
the experimental result provides a constraint. Following
standard procedure [58], we express the constraint first
under the assumption that only the coefficients ðkNRσϕ ÞJw are
nonzero, and then assuming only ðkNRσϕppÞJKLw are nonzero.
Evaluated in the Sun-centered frame, this gives

jðkNRσϕ ÞZp − 0.6ðkNRσϕ ÞZe j< 2 × 10−5 GeV ð39Þ

and

jðkNRσϕppÞZJJp þ 0.3ðkNRσϕppÞJJZp j< 7 × 10−3 GeV−1 ð40Þ

at the 95% confidence level. Repeated J indices denote
summation over spatial indices J ¼ X, Y, Z in the Sun-
centered frame.

Note that these results from 87Rb involve nonrelativistic
coefficients in the electron and proton sectors, whereas
those from 87Sr discussed in the previous subsection
involve coefficients in the neutron sector. The two experi-
ments are thus complementary in their coverage of the
coefficient space. Also, in parallel with the treatment of
results from 87Sr, the above constraints can be converted
into bounds on linearized coefficients using Table III and
thereby on the terms in the Lagrange density given by
Tables I and II. Constraints on the tilde coefficients defined
in Table V can also be obtained, and these are assigned to
the entries for Ref. [103] listed in Table VI. The prospects
are excellent for future improved measurements of these
spin-gravity couplings using recent developments in Rb
interferometry [121,122].

C. Antimatter

Another interesting option is to compare the gravitational
accelerations of matter and antimatter. Several experimental
collaborations are developing tests to compare the free fall
of hydrogen H and antihydrogen H̄ [113–116]. On the
theory side, the CPT transformation is formally defined in
Minkowski spacetime [123] but can be extended opera-
tionally to the gravitational context [2], and possible
manifestations of CPT violation include different gravita-
tional responses of matter and antimatter. The dominant
spin-independent effects on the gravitational couplings of
H and H̄ have been determined for spontaneous violations
of local Lorentz and diffeomorphism symmetries [36,99].
In some scenarios, the effects cancel for H but add for H̄,
leading to measurable and potentially striking differences
between the gravitational accelerations of H and H̄. In this
subsection, we use the techniques developed in the present
work to provide a treatment of explicit violations for H and
H̄, including spin-gravity couplings.
Consider first H. Since the nucleus is a single proton, no

relative motion occurs and so hp⃗2ip ¼ 0. The operator (29)
correcting the gravitational acceleration can therefore be
restricted to pj-independent terms, and in the laboratory
frame the only relevant irreducible operators are the
identity and σz. The ground state has J ¼ 1=2 and L ¼
0 for the electron and I ¼ 1=2, L ¼ 0 for the proton.
Working in the Zeeman limit where the total angular
momentum F is a good quantum number, we denote the
atomic state as jα; F;mFi with F ¼ 0 or F ¼ 1. In this
state, the effective gravitational acceleration of H in the
laboratory frame is found to be

gH
g

¼ 1 −
1

mH

X
w¼e;p

ððkNRϕ Þw þmFðkNRσϕ ÞzwÞ; ð41Þ

where mH ≃ 0.939 GeV is the mass of the H atom. This
expression contains both spin-independent and spin-
dependent terms.
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A similar derivation holds for H̄. The coefficients in the
operator (29) must now be replaced with those appropriate
for antiparticles, as described in Sec. II C. In particular, the
coefficients of interest become ðkNRϕ Þw̄ and ðkNRσϕ Þjw̄, where w̄
denotes the antiparticles ē≡ eþ and p̄. The calculation
otherwise proceeds as before, yielding the effective gravi-
tational acceleration of H̄ in the laboratory frame as

gH̄
g

¼ 1 −
1

mH

X
w̄¼ē;p̄

ððkNRϕ Þw̄ þmFðkNRσϕ Þzw̄Þ; ð42Þ

where the mass mH̄ of the H̄ atom is taken as mH at
leading order.
To parametrize the difference between the gravitational

accelerations of H and H̄, we adopt the Eötvös ratio [120]
defined as

η≡ 2
gH̄ − gH
gH̄ þ gH

: ð43Þ

Applying the results (41) and (42), we find

η ¼ −
1

mH

X
w¼e;p

ððkNRϕ Þw̄ − ðkNRϕ Þw

þ ðmF;H̄ðkNRσϕ Þzw̄ −mF;HðkNRσϕ ÞzwÞ ð44Þ

in the laboratory frame. We see that comparisons of the free
fall of H and H̄ in different hyperfine states can produce
different results for the relative gravitational accelerations.
In principle, measurements of distinct combinations of
coefficients could thereby be obtained.
If the H and H̄ atoms are unpolarized, the Eötvös ratio

contains only spin-independent terms, reducing to

η ¼ −
1

mH
ðΔðkNRϕ Þēe þ ΔðkNRϕ Þp̄pÞ

¼ −
4

mH
ððaLÞTΣΣe −mðeLhÞTΣΣe þm2ðað5ÞLh ÞTTTΣΣe

þ ðaLÞTΣΣp −mðeLhÞTΣΣp þm2ðað5ÞLh ÞTTTΣΣp Þ: ð45Þ

In this derivation, the result (17) has been used. Also, the
linearized coefficients appearing here are expressed directly
in the Sun-centered frame, as they are all invariant under the
rotation (1).
More generally, if both the H and the H̄ atoms are in the

same state jα; F;mFi, then spin-gravity couplings contrib-
ute to the Eötvös ratio as well. The rotation (1) to the
Sun-centered frame then generates dependence on the
local sidereal time T⊕ and the colatitude χ of the laboratory.
We find

η ¼ −
1

mH

X
w¼e;p

ðΔðkNRϕ Þw̄w þmFΔðkNRσϕ Þzw̄wÞ

¼ −
1

mH
½ΔðkNRϕ Þēe þ ΔðkNRϕ Þp̄p

þmFðΔðkNRσϕ ÞZēe þ ΔðkNRσϕ ÞZp̄pÞ cos χ
þmFðΔðkNRσϕ ÞXēe þ ΔðkNRσϕ ÞXp̄pÞ sin χ cosω⊕T⊕

þmFðΔðkNRσϕ ÞXēe þ ΔðkNRσϕ ÞXp̄pÞ sin χ sinω⊕T⊕�; ð46Þ

which involves zeroth and first harmonics in the Earth’s
sidereal frequency ω⊕. Substitution of the results (17) and
(18) provides an expression in terms of linearized coef-
ficients appearing in Table II, which could be used to place
constraints on the terms in the Lagrange density given in
Table I.
In the future, techniques for manipulating antihydrogen

may be extended to heavier antiatoms. Antideuterium,
which has an antideuteron nucleus, is expected to be stable
and so could provide another option for comparing the
gravitational accelerations of matter and antimatter. Since
the nucleons in deuterium undergo relative motion, con-
tributions to the gravitational acceleration can be expected
from all the operators in Eq. (29). Comparing the gravi-
tational accelerations of deuterium and antideuterium
would therefore provide unique sensitivities to electron,
proton, and neutron coefficients controlling matter-gravity
and antimatter-gravity couplings.

V. GRAVITATIONAL PHASE SHIFTS

At the quantum level, the propagation of a nonrelativistic
particle in a uniform gravitational field can be described by
a Schrödinger equation containing a term for the gravita-
tional potential energy. As a result, coherently split de
Broglie waves propagating at different heights are predicted
to acquire a relative quantum phase shift. In the present
context, the unconventional contributions to the linearized
Lagrange density LL

ψ in Table I generate extra terms in the
nonrelativistic Hamiltonian (4), and these imply that a
neutron propagating in a gravitational potential undergoes
an additional phase shift. In this section, we use results
from interferometric experiments measuring the gravita-
tionally induced phase shift for neutrons [124–129] to
derive some constraints on nonrelativistic coefficients in the
neutron sector.
The original experiment by Colella, Overhauser, and

Werner (COW) [124] used Bragg diffraction in silicon cry-
stals to measure the relative phases between two branches
of a coherent neutron beam traversing paths at different
heights. The experiment involved unpolarized neutrons,
so the spin-dependent operators appearing in the compo-
nents Hσϕ and Hσg of the nonrelativistic Hamiltonian (4)
produce no effects. The neutron velocities in the experiment
were nonrelativistic, so contributions from momentum-
dependent operators are suppressed and can be neglected.
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Also, the momentum-independent operators in the compo-
nentHg represent a position-independent pure potential and
so cannot be measured in the COW experiment. The only
relevant nonrelativistic coefficient in this case is therefore
ðkNRϕ Þn. Inspection of Eq. (6) shows that it acts to rescale the
conventional gravitational potential.
These considerations imply that the effective gravita-

tional acceleration gn of the neutron in the COW experi-
ment can be written as

gn
g
¼ 1 −

ðkNRϕ Þn
mn

; ð47Þ

where mn ¼ 0.940 GeV is the neutron mass. This expres-
sion is derived in the laboratory frame, but it is a rotation
scalar and so is valid also in the Sun-centered frame. Note
that no sidereal effects appear. The original experiment
measured the gravitational acceleration to an accuracy of
10%, which implies the estimated constraint ðkNRϕ Þn < 1×
10−1 GeV. However, more recent versions of the experi-
ment have reached an accuracy of about 1% [128],
corresponding to the constraint

ðkNRϕ Þn < 1 × 10−2 GeV: ð48Þ

The first row of Table III reveals the implications of this
result for linearized coefficients in the Lagrange density LL

ψ

given in Table I. Note that this set of linearized coefficients
are unobservable in nongravitational experiments because
they can be removed from the Lagrange density via field
redefinitions [2].
The above analysis applies to experiments with unpo-

larized neutrons. An interferometric experiment applying
magnetic fields to split a beam of neutrons into two
beams having opposite polarizations and moving along
different paths has been performed with a neutron spin-
echo reflectometer (OffSpec) using the ISIS Neutron and
Muon Source at the Rutherford Appleton Laboratory [129].
This setup is sensitive to spin-dependent gravitational
couplings as well. The beam neutrons are nonrelativistic
with comparatively small momenta, so we can analyze the
experiment using momentum-independent terms in the
nonrelativistic Hamiltonian (4). The components Hg and
Hσg are position independent and hence for fixed initial
polarization cannot affect the measured experimental
observables. It follows that we can proceed using the
2 × 2 matrix operator

gspin ¼ g

�
I −

ðkNRϕ Þn
mn

I −
ðkNRϕσ Þjn
mn

σj
�

ð49Þ

to describe the gravitational acceleration in spin space.
To gain insight, consider first a scenario with the mag-

netic field along a direction ẑ0 in the standard laboratory

frame and the initial neutron polarization along an orthogo-
nal direction x̂0. The initial state can then be written as
jþix0 ¼ ðjþiz0 þ j−iz0 Þ=

ffiffiffi
2

p
. After passing through the inter-

ferometer, the neutron is in the final state ðeiϕþjþiz0 þ
eiϕ− j−iz0 Þ=

ffiffiffi
2

p
, where ϕþ and ϕ− are 2 × 2 matrices

governing the phase changes in the interferometer. These
phase matrices can be obtained by replacing g in the
original calculation with gspin. The experiment measured
the final state in the �x̂0 direction. The amplitude Aþ for
finding this state in the þx̂0 direction is

Aþ ¼ 1ffiffiffi
2

p ðhþjz0 þ h−jz0 Þ ·
1ffiffiffi
2

p ðeiϕþjþiz0 þ eiϕ− j−iz0 Þ:

ð50Þ
In the OffSpec analysis, the corresponding probability Pþ
was assumed to have the form Pþ ¼ ð1þ cosΔϕeffÞ=2.
Calculation shows the effective gravitational acceleration
in this scenario is gn;x0 ¼ gð1 − ððkNRϕ Þn þ ðkNRσϕ Þx

0
n Þ=mnÞ.

Generalizing the above derivation, we find that the effective
gravitational acceleration gn;ŝj for a neutron beam initially
polarized along direction ŝj is

gn;ŝj ¼ g

�
1 −

ðkNRϕ Þn
mn

−
ðkNRσϕ Þjnŝj

mn

�
ð51Þ

in the laboratory frame.
In the OffSpec experiment, the maximum deviation of

gn;ŝj from g was found to be 2.5%. We can therefore place
the constraint

jðkNRϕ Þn þ ðkNRσϕ Þjnŝjj< 2.5 × 10−2 GeV ð52Þ

on nonrelativistic coefficients in the laboratory frame. This
result includes both spin-dependent and spin-independent
effects. The implications for the linearized coefficients in
the Lagrange density LL

ψ given in Table I can be found
using the relationships in Table III. Note that the coefficient
ðkNRϕ Þn is a scalar under the rotation (1) and so remains
unchanged when transformed to the Sun-centered frame.
However, ðkNRσϕ Þjn is found to contain oscillations in the local
sidereal time T⊕ at the Earth’s sidereal frequency. In the
Sun-centered frame, where the coefficient ðkNRσϕ ÞJn is con-
stant, the oscillations are instead attributed to the rotation of
the initial polarization ŝJ with the Earth.
Future experiments with the neutron spin-echo spec-

trometer have considerable potential for exploring the
variety of other unconventional contributions to spin-
dependent gravitational effects described by the nonrela-
tivistic Hamiltonian (4). For example, one option might be
to use horizontally split beams and compare phase changes
for different initial spin orientations. These changes are
sensitive at leading order to the coefficients ðkNRσg Þjk
appearing in Eq. (12).
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VI. GRAVITATIONAL BOUND STATES

The nonrelativistic vertical motion of a neutron placed
above a mirror in a uniform gravitational field is gover-
ned by a one-dimensional Schrödinger equation with an
infinite potential well. The bound states ψ i of the system are
Airy functions, and the lowest eigenenergies Ei are of order
10−21 GeV [130]. The presence of the unconventional con-
tributions to the linearized Lagrange density LL

ψ in Table I
shifts the energy levels and the transition frequencies of this
system. In this section, we consider experiments performed
to measure the quantum properties of bouncing neutrons
[104,131] and derive some constraints from existing exper-
imental results on nonrelativistic coefficients in the neutron
sector. Our analysis complements existing studies of Lorentz
violation in this system [132–134].

A. Critical heights

Each neutron eigenenergy Ei can be associated with a
critical height zi > 0 above the mirror,

Ei ¼ mngzi; ð53Þ

where g is the effective gravitational acceleration of the
neutron and the mirror is taken to be located at z ¼ 0. The
experimental values of the first two critical heights have
been measured [131] as zexp1 ¼ 12.2� 1.9 μm and zexp2 ¼
21.6� 2.3 μm. With conventional gravitational couplings,
the theoretical values for these critical heights are zth1 ¼
13.7 μm and zth2 ¼ 24.0 μm. In this subsection, we deter-
mine the corrections to these theoretical values for the
nonrelativistic Hamiltonian (4) and use the experimental
measurements to constrain nonrelativistic coefficients.
Since the componentsHg andHσg of the Hamiltonian (4)

are independent of position, they cannot affect the critical
heights zi. Also, the neutron momenta are small, so
momentum-dependent terms in the Hamiltonian can be
omitted. The corrections to the critical heights are therefore
governed by the perturbation

δH ¼ ðkNRϕ Þng⃗ · z⃗þ ðkNRσϕ Þjnσjg⃗ · z⃗: ð54Þ

The first term is spin independent, while the second term
depends on the neutron polarization. This perturbation
affects zi through changes both to the eigenenergies Ei
and to the effective gravitational acceleration g of the
neutron.
For the spin-independent term in Eq. (54), we can use

nondegenerate perturbation theory. Including the correc-
tions to both Ei and g, Eq. (53) is modified into

ðmng − ðkNRϕ ÞngÞzspin-indepi ¼ Ei − ðkNRϕ Þnghzi; ð55Þ

whereEi is the unperturbed energy, g is the unperturbed gra-
vitational acceleration, and hzi≡ hψ ijzjψ ii ¼ 2Ei=ð3mngÞ.

The neutron spin introduces a degeneracy in the unper-
turbed energy levels, which is split by the perturbation
δH. Treating the spin-dependent term in Eq. (54) therefore
requires degenerate perturbation theory. Diagonalization
of the degenerate perturbation can be performed directly by
writing

ðkNRσϕ Þjnσj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðkNRσϕ Þjn�2

q
σk̂; ð56Þ

where ½ðkNRσϕ Þjn�2 ¼
P

jðkNRσϕ ÞjnðkNRσϕ Þjn and σk̂ is the spin

operator in the ðkNRσϕ Þjn direction. This modifies Eq. (53)
to the form

	
mng ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðkNRσϕ Þjn�2

q
g


zspin-depi ¼ Ei ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðkNRσϕ Þjn�2

q
ghzi;

ð57Þ

where the upper and lower signs are for neutrons with
spins aligned along and opposite to the direction ðkNRσϕ Þjn,
respectively.
Combining the results (55) and (57) reveals that the

modified critical heights are given by

z0i ¼ zi

0
B@1þ ðkNRϕ Þn

3mn
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðkNRσϕ Þjn�2

q
3mn

1
CA: ð58Þ

This expression is derived in the laboratory frame, but the
form of the result is observer-rotation independent and
hence is also valid for coefficients ðkNRϕ Þn and ðkNRσϕ ÞJn in the
Sun-centered frame. Comparing with the experimental
results [131] and taking as usual only one coefficient
nonzero at a time, we can deduce the constraints

jðkNRϕ Þnj< 8.2 × 10−1 GeV;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðkNRσϕ ÞJn�2

q
< 5.4 × 10−1 GeV ð59Þ

at the 95% confidence level. The second of these results is
obtained from the standard deviation of zi.
The expression (58) for the modified critical heights is

frame independent in form and so at first glance might seem
to contain no sidereal variations, despite the dependence of
the coefficients ðkNRσϕ Þjn on T⊕ arising from the rotation (1)
to the Sun-centered frame. However, the� signs in Eq. (58)
refer to spins aligned along or against the direction of
ðkNRσϕ Þjn, which rotates at the Earth’s sidereal frequency ω⊕.
As a result, if the experiment involves neutrons of definite
polarization in the laboratory frame, the polarization along
ðkNRσϕ ÞJn rotates in the Sun-centered frame. The measured
value of zi therefore can vary with sidereal time with the
first harmonic of ω⊕. An experimental search for this
sidereal dependence would be of definite interest.
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B. Transition frequencies

The transition frequencies between different energy
levels Ei have also been measured experimentally via
resonance with acoustic oscillations [104]. Denoting the
transition frequency between Ei0 and Ei by νii0, the experi-
ment obtained the results νexp13 ¼ 464.8� 1.3 Hz and
νexp14 ¼ 649.8� 1.8 Hz. Under the assumption of conven-
tional gravitational couplings, the theoretical values for
these frequencies are νth13 ¼ 463.0 Hz and νth14 ¼ 647.2 Hz.
Next, we find the corrections to these frequencies arising
from the nonrelativistic Hamiltonian (4) and use the
experimental results to place bounds on nonrelativistic
coefficients for the neutron.
The neutron momenta in the experiment are small, so

momentum-dependent terms in the Hamiltonian (4) can be
neglected. Moreover, the term ðkNRg Þjgj in Hg represents a
constant potential in this context and hence leaves unaf-
fected the energy differences. The relevant terms in the
perturbation Hamiltonian are therefore

δH ¼ ðkNRϕ Þng⃗ · z⃗þ ðkNRσϕ Þjnσjg⃗ · z⃗þ ðkNRσg Þjkn σjgk: ð60Þ

The first term is spin independent and shifts all energy
levels, while the others are spin dependent and split the
energy levels. The acoustic oscillations used in the experi-
ment preserved the neutron spin, so the experiment
measured transitions between energy levels with same spin
orientation, as shown in Fig. 1.
We use nondegenerate perturbation theory for spin-

independent interactions and degenerate perturbation
theory for spin-dependent interactions. After some calcu-
lation, we find the energy shifts δEi are given by

δEi ¼ −
2

3

ðkNRϕ Þn
mn

Ei ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

3

ðkNRσϕ Þjn
mn

Ei þ ðkNRσg Þjzn g
�

2

s

ð61Þ

in the laboratory frame, where the square inside the square
root denotes summation over j,

ffiffiffiffiffiffiffiffiffiffi
ðkjÞ2

p ≡ ðPj k
jkjÞ1=2.

The upper and lower signs indicate neutrons with
spins aligned along and opposite the direction
2ðkNRσϕ ÞjnEi=ð3mnÞ þ ðkNRσg Þjzn g, respectively. This direction

typically differs for different energy levels because it
depends on the unperturbed eigenenergies Ei. As a result,
the spin-up state of the ith energy level is oriented differ-
ently from the spin-up state of the i0th energy level when
i ≠ i0. The generic analysis of transitions between different
energy levels can therefore be involved.
For present purposes, it suffices to adopt the standard

practice [58] of taking only one of the coefficients ðkNRσϕ Þjn
and ðkNRσg Þjkn to be nonzero at a time. In this scenario, the
spins of either spin-up or spin-down states with different
energy levels are aligned, simplifying the discussion of
transitions. Also, when only ðkNRσg Þjkn is nonzero, different
energy levels are split by the same amount. This has no
effect on the frequencies measured in the experiment, so we
can disregard ðkNRσg Þjkn in this context. Therefore, assuming

only one of ðkNRσϕ Þjn and ðkNRσg Þjkn is nonzero, we find the
energy differences in the laboratory frame are shifted
according to

δEi − δE1 ¼ −
2

3

ðkNRϕ Þn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðkNRσϕ Þjn�2

q
mn

ðEi − E1Þ: ð62Þ

The form of the expression (62) is independent of
rotations of the observer frame and thus can be applied
with the coefficients ðkNRϕ Þn and ðkNRσϕ ÞJn in the Sun-centered
frame instead. By comparing it to the experimental results
[104], we deduce the constraints

jðkNRϕ Þnj< 1.3 × 10−2 GeV;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðkNRσϕ ÞJn�2

q
< 7.8 × 10−3 GeV ð63Þ

at the 95% confidence level. The latter bound is derived
using the standard deviation of the transition frequencies.
Note that the constraints (63) are sharper than those in
Eq. (59) because transition frequencies can be measured
more precisely than critical heights. Using the appropriate
rows in Table III, the above constraints can be converted
into conditions on linearized coefficients and hence on the
terms in the Lagrange density given by Tables I and II. We
can also extract constraints on the tilde coefficients intro-
duced in Table V. These are incorporated in Table VI as the
entries associated with Ref. [104].
In parallel with the result (58) for critical heights, the

expression (62) for the transition frequencies contains
hidden dependence on the local sidereal time T⊕ emerging
from the rotation (1) to the Sun-centered frame. The �
signs represent spin projections along a direction deter-
mined by coefficients in the laboratory frame, which rotates
at the sidereal frequency when expressed in the Sun-
centered frame. The measured values of the transition
frequencies can therefore fluctuate harmonically with T⊕FIG. 1. Splitting of the neutron energy levels.
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when polarized neutrons are used. This signal would be
worthwhile seeking in future experimental analyses.

VII. SUMMARY

In this work, we investigate observable effects arising in
underlying theories based on non-Riemann geometry or
having a nongeometric basis, and we constrain them by
analyzing existing results from laboratory experiments
and astrophysical observations. The theoretical framework
adopted for this purpose is effective field theory based onGR
coupled to the SM, allowing for arbitrary backgrounds. We
focus on the LLI-EDV class of underlying theories, which
permit comparatively straightforward treatment of observ-
able signals, and consider primarily the effects of spin-
gravity couplings linearized around Minkowski spacetime.
Numerous first constraints are deduced on background
coefficients in these beyond-Riemann scenarios.
The methodology adopted for this work is described in

Sec. II. The motivation and setup are presented for the class
of underlying theories considered here, with all fermion-
gravity terms of mass dimension d ≤ 5 in the linearized
Lagrange densityLL

ψ displayed in Table I. The relationships
between the linearized coefficients appearing in this
table and the underlying coefficients in the full Lagrange
density are listed in Table II. We use a generalized Foldy-
Wouthuysen technique to extract the corresponding non-
relativistic Hamiltonian H, with the explicit form for a
uniform gravitational acceleration given in Eqs. (4), (5),
(6), (8), (10), and (12). The match between the non-
relativistic coefficients appearing in H and the linearized
coefficients appearing in LL

ψ is provided in Table III. We
also discuss the dependence of the coefficients on particle
and antiparticle flavor.
Using this methodology, we explore the implications

for the underlying theories that arise from a variety of
laboratory experiments and astrophysical observations. We
begin in Sec. III by considering constraints on linearized
coefficients that can be inferred from existing measure-
ments performed at different gravitational potentials. The
generic dependence of a coefficient on the potential is given
in Eq. (20). Many of the experimental results in the
literature turn out to be conveniently discussed in terms
of a set of tilde coefficients, defined in Table V. The
constraints obtained here apply to the electron, proton,

neutron, and muon sectors, and they are summarized in
Tables VI and VII.
In Sec. IV, we turn attention to experiments comparing

the gravitational accelerations of different atoms. The
modifications to the gravitational acceleration relevant to
these studies are given by the operator (29). Constraints
from tests with 87Sr atoms of different spins are derived and
reported in Eqs. (34) and (35), while those from tests with
87Rb atoms in different hyperfine states are obtained in
Eqs. (39) and (40). Future prospects are discussed for
measurements of the gravitational acceleration of antimat-
ter, in particular for comparisons using H atoms and H̄
antiatoms. Among the results is the derivation of the Eötvös
ratio (44) describing the difference in free fall between H
and H̄ in various hyperfine states.
Studies of the quantum properties of nonrelativistic

neutrons also offer interesting sensitivity to fermion-gravity
couplings. In Sec. V, we examine interferometric experi-
ments with split coherent neutron beams that traverse differ-
ent paths in a gravitational potential. Constraints from the
classic COW experiment with unpolarized neutrons are
derived in Eq. (48), while ones from the spin-dependent
OffSpec experiment are obtained in Eq. (52).We also discuss
measurements of the quantum bound states of nonrelativistic
neutrons above a neutron mirror. Published results on the
critical heights for low-lying bound states lead to the
constraints (59), while measurements of transition frequen-
cies yield the bounds (63). Where appropriate, all our
constraints on nonrelativistic coefficients are translated into
ones on tilde coefficients and reported in Table VI.
The methodology and results outlined in this work

establish techniques for investigating gravitational effective
field theories arising from a class of underlying theories
with beyond-Riemann structures. The various calculations
presented here illustrate the derivation of experimental and
observational constraints for these theories. The work
establishes a path for further phenomenological and exper-
imental studies seeking unconventional signals in realistic
gravitational effective field theories, with considerable
prospects for discovery.
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