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We discuss the effect that small fluctuations of both local anisotropy and energy density may have on the
occurrence of cracking in spherical compact objects satisfying a polytropic equation of state. A systematic
scheme to bring the fluid configurations out of hydrostatic equilibrium is revisited. Various models of
polytropes are considered, and it is shown that departures from equilibrium may lead to the appearance of
cracking for a wide range of values of the parameters involved. Prospective applications of the obtained
results to some astrophysical scenarios are pointed out.
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I. INTRODUCTION

The concept of cracking was introduced by L. Herrera
in Ref. [1] (and fine-tuned in later works [2–10]), and
corresponds to the situation in which radial forces of
different signs appear within the system after it is perturbed.
We say that there is a cracking whenever, on a time smaller
than the hydrostatic timescale, the radial force is directed
inward in the inner part of the sphere and reverses its sign
beyond some value of the radial coordinate. In the opposite
case, we shall say that there is an overturning. As should be
clear at this point, the concept of cracking is closely related
to the problem of structure formation [11–13]. In Ref. [2], it
was shown that cracking results only if the local anisotropy
is perturbed, suggesting that fluctuations of such a quantity
may be crucial in the occurrence of cracking. Even more,
the appearance of cracking in initially isotropic configu-
rations shows that even small deviations from local
isotropy may lead to drastic changes in the evolution of
the system [3]. In any case, the relationship between
anistropy and cracking seems doubtless.
It is well known that deviations of the isotropy and

fluctuations of the local anisotropy in pressures may be
caused by a large variety of physical phenomena of the kind
we expect to find in compact objects (see Refs. [14–26]

for an extensive discussion on this point. See also
Refs. [27–31] for recent developments). Among all these
possibilities, we would like to mention two which might
be particularly related to our primary interest: (i) intense
magnetic field observed in compact objects such as white
dwarfs, neutron stars, or magnetized strange quark stars
(see, for example, Refs. [32–40]), and (ii) viscosity (see
Refs. [41–48] and references therein). Besides this, as it has
been recently proven, the isotropic pressure condition
becomes unstable by the presence of dissipation, energy
density inhomogeneities, and shear [49]. These points
mentioned above can explain the renewed interest in the
study of fluids not satisfying the isotropic condition and
justify our present work which is based on anisotropic
polytropes.
The general formalism to study polytropes for aniso-

tropic matter was presented in both the Newtonian [50] and
the general relativistic regimes [51,52] (for recent develop-
ments, see Refs. [53–57], and for polytropes in other
contexts, see Refs. [58–61], for example) motivated by
the fact that the polytropic equations of state allow us to
deal with a variety of fundamental astrophysical problems
(see Refs. [62–79]). The theory of polytropes is based on
the polytropic equation of state, which can be written as one
of the following possibilities:

Pr ¼ Kργ0 ¼ Kρ1þ1=n
0 ; ð1Þ
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Pr ¼ Kργ ¼ Kρ1þ1=n; ð2Þ

where Pr, ρ0, and ρ denote the radial pressure, the mass
(baryonic) density, and the energy density, respectively.
Constants K, γ, and n are usually called the polytropic
constant, polytropic exponent, and polytropic index,
respectively.
The fact that the principal stresses are unequal produces

an extra indeterminacy, so the introduction of an additional
condition to close the system is compulsory [80,81].
For example, in Refs. [50,51,82], a particular ansatz was
considered which allowed the authors to obtain an aniso-
tropic model continually linked with the isotropic case.
Another interesting choice for the local pressure anisotropy
was introduced in Refs. [53,54], where the main idea was
the additional assumption that both principal stresses
satisfy polytropic equations of state.
Other approaches to solving the field equations consist in

imposing conditions on the metric variables. The vanishing
of the Weyl tensor (usually referred to as the conformally
flat condition) is one of them [83]. Another one is the so-
called class I condition [84] (for recent developments, see
Refs. [85–91], for example), which allows us to construct
solutions embedded in a five-dimensional Euclidean space
(see Ref. [55] for details). Although both conformally flat
and class I conditions have been broadly implemented to
close the system of Einstein’s equations, the use of a new
concept of complexity based on the scalar YTF appearing
in the orthogonal splitting of the Riemann tensor has
increased in recent years [92]. The complexity factor in
Ref. [92] is quite different from previous ones given in
Refs. [93–98], in the sense that YTF contains contributions
from the energy density inhomogeneity and the local
pressure anisotropy, combined in a very specific way,
which vanishes for the homogeneous and locally isotropic
fluid distribution which is considered the less complex
system. It is worth mentioning that the complexity factor so
defined not only vanishes for the simple configuration
mentioned above, but may also vanish when the two terms
appearing in its definition cancel each other. So, vanishing
complexity may correspond to very different systems
[92,93]. It is worth mentioning that a very recent study
establishes a relationship between families of solutions that
have different complexities, with the possible occurrence of
cracking in the framework of gravitational decoupling [99].
In this work, to study the appearance of cracking for

our adopted polytrope models, we generalize the scheme
proposed in Ref. [5] in order to effectively break the
hydrostatic equilibrium of the system. Doing so, it should
be clear that assuming this lack of response of the fluid—
i.e., the inability to adapt its radial pressure to the perturbed
situation—is equivalent to assuming that the pressure-
density relation (the ratio of specific heats) never reaches
the value required for neutral equilibrium. Usually, the
study of cracking depends on handpicking two parameters

of the models that could be used to perform the energy
density and local anisotropy perturbations. The advantage of
our perturbation scheme, which is inspired by the develop-
ments in Ref. [5], is that it will be valid for any spherically
symmetric internal solution of Einstein’s equations obeying
barotropic/polytropic equations of state and is independent
of the particular model under study. It should be emphasized
that we shall restrict our focus here to the case described by
Eq. (2) for simplicity, just as the scheme was developed and
justified in Ref. [54]. In particular, we shall consider the
conformally flat, the double, and the Karmarkar class I
polytrope models reported in Refs. [52,54,55]. For com-
pleteness of this work, we also consider the recent vanishing
complexity polytrope [92].
This work is organized as follows: In the next section,

we study the basic equations of general relativity, as well as
a summary of the theory of relativistic polytropes. We
dedicate Sec. III to introducing the general perturbation
scheme raised in this work. In Sec. IV, we study the
appearance of cracking for the polytrope models consid-
ered. Finally, Secs. V and VI are devoted to the results and
concluding remarks, respectively.

II. GENERAL RELATIVISTIC POLYTROPES

A. Relevant equations and conventions

Let us consider a static, spherically symmetric distribu-
tion of an anisotropic fluid bounded by a surface Σ. In
Schwarzschild-like coordinates, the metric is given by

ds2 ¼ eνdt2 − eλdr2 − r2ðdθ2 þ sin2 dϕ2Þ; ð3Þ

where ν and λ are functions of r.
The matter content of the sphere is described by the

energy-momentum tensor

Tμν ¼ ðρþ P⊥Þuμuν − P⊥gμν þ ðPr − P⊥Þsμsν; ð4Þ

where

uμ ¼ ðe−ν=2; 0; 0; 0Þ ð5Þ

is the four-velocity of the fluid, and sμ is defined as

sμ ¼ ð0; e−λ; 0; 0Þ ð6Þ

with the properties sμuμ ¼ 0, sμsμ ¼ −1 (assuming geo-
metric units c ¼ G ¼ 1). The metric in Eq. (3) has to
satisfy the Einstein field equations, which are given by

ρ ¼ −
1

8π

�
−

1

r2
þ e−λ

�
1

r2
−
λ0

r

��
; ð7Þ

Pr ¼ −
1

8π

�
1

r2
− e−λ

�
1

r2
þ ν0

r

��
; ð8Þ
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P⊥ ¼ 1

8π

�
e−λ

4

�
2ν00 þ ν02 − λ0ν0 þ 2

ν0 − λ0

r

��
; ð9Þ

where primes denote derivatives with respect to r.
Outside the fluid distribution, the spacetime is given by

the Schwarzschild exterior solution, namely

ds2 ¼
�
1 −

2M
r

�
dt2 −

�
1 −

2M
r

�
−1
dr2

− r2ðdθ2 þ sin2 dϕ2Þ: ð10Þ

Furthermore, we require the continuity of the first and
the second fundamental forms across the boundary surface:
r ¼ rΣ ¼ constant, which implies

eνΣ ¼ 1 −
2M
rΣ

; ð11Þ

e−λΣ ¼ 1 −
2M
rΣ

; ð12Þ

PrΣ ¼ 0; ð13Þ

where the subscript Σ indicates that the quantity is
evaluated at the boundary surface Σ.
From the radial component of the conservation law,

∇μTμν ¼ 0; ð14Þ

one obtains the generalized Tolman-Oppenheimer-Volkoff
(TOV) equation for anisotropic matter, which reads

R≡ P0
r þ

ν0

2
ðρþ PrÞ −

2

r
ðP⊥ − PrÞ ¼ 0; ð15Þ

whereR defines the total radial force on each fluid element.
Alternatively, using

ν0 ¼ 2
mþ 4πPrr3

rðr − 2mÞ ; ð16Þ

where the mass function m is defined through

e−λ ¼ 1 − 2m=r; ð17Þ

or, equivalently as

m ¼ 4π

Z
r

0

r̃2ρdr̃; ð18Þ

we may rewrite Eq. (15) in the form

P0
r ¼ −

mþ 4πr3Pr

rðr − 2mÞ ðρþ PrÞ þ
2

r
Δ; ð19Þ

where

Δ ¼ P⊥ − Pr ð20Þ

measures the anisotropy of the system.
It is important to note that, on the one hand, if the fluid is

in equilibrium, the radial pressure gradient is balanced by a
gravitational term that contains the derivative of the metric
(gravitational potential) variable ν and a term that includes
the local anisotropy distribution (a pressure difference
divided by the radial coordinate) in Eq. (15). On the other
hand, R has dimensions of force per unit volume, so it is
the total force per unit volume on each fluid element.
Now, if the system is in equilibrium, these contributions
cancel out so that R ¼ 0 (a vanishing total force).
Nevertheless, in the case of generating (via perturbations)
a dynamic instability, we will obtain a nonzero local
contribution representing the hydrodynamic force on each
fluid element. The scheme that is presented to perturb the
system clearly produces a nonzero R immediately after
taking the system out of equilibrium, which allows us to
analyze the cracking of the stellar object.
For the physical variables appearing in Ref. [19], the

following boundary conditions apply:

mð0Þ ¼ 0; mðΣÞ ¼ M; PrðrΣÞ ¼ 0: ð21Þ

Polytropes are static fluid configurations, which satisfy
either Eq. (1) or Eq. (2). The full set of equations describing
the structure of these self-gravitating objects, in both cases,
were derived and discussed in Refs. [51,52,54,55].
All the models have to satisfy physical requirements

such as

ρ > 0;
Pr

ρ
≤ 1;

P⊥
ρ

≤ 1: ð22Þ

As already mentioned in the previous section, in order to
integrate Eq. (19), we shall need an additional condition,
besides Eq. (2). In this work, such conditions on the metric
variables and their derivatives are obtained by imposing
that the only nonvanishing component of the Weyl tensor is
zero (conformally flat condition) [52], applying the class I
(Karmarkar) condition [55], and using the reasonable fact
that we can choose for the tangential pressure also a
polytrope equation of state [54]. Our last model considers
that the polytrope has a zero complexity factor (vanishing
complexity polytrope) [92].
In what follows, we shall very briefly review the main

equations corresponding to the general case.

B. Relativistic polytrope for anisotropic matter

This section is devoted to exposing the basics of the
theory of relativistic polytropes for anisotropic matter (for
details, see Refs. [51,54]). The starting assumption is to
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adopt the polytropic equation of state [Eq. (2)] for the radial
pressure. As is well known from the general theory of
polytropes, there is a bifurcation at the value γ ¼ 1. Thus,
the cases γ ¼ 1 and γ ≠ 1 have to be considered separately.
In the context of our work, we need bounded, fluid
configurations, so the γ ¼ 1 case will not be considered.
Let us define the variable Ψ by

ρ ¼ ρcΨn; ð23Þ

where ρc denotes the energy density at the center (from now
on, the subscript c indicates that the variable is evaluated at
the center), and we express Eq. (2) as

Pr ¼ KργcΨnγ ¼ PrcΨ1þn; ð24Þ

with Prc ¼ Kργc. Note that from Eq. (24), we can write

P0
r ¼ Prcð1þ nÞΨnΨ0; ð25Þ

so that the TOV equation (15) can be written as

2αð1þ nÞΨ0 þ ðαΨþ 1Þν0 − 4
Δ

rρcΨn ¼ 0; ð26Þ

where we have defined α ¼ Prc
ρc
. From this, we get

ν0 ¼ 4Δ
rρcΨnðαΨþ 1Þ −

2αð1þ nÞ
αΨþ 1

Ψ0: ð27Þ

The integration of Eq. (27), and the subsequent replacement
of Eqs. (17) and (27) in Eq. (8), produces

αw
dm
dr

þm
r
þ αð1þ nÞ r

1þ αw
dw
dr

�
1 −

2m
r

�

−
2Δ
ρc

ð1 − 2m
r Þ

ð1þ αwÞwn ¼ 0: ð28Þ

Let us now introduce the following dimensionless
variables:

η ¼ mðrÞA3

4πρc
; ð29Þ

r ¼ ξ=A; ð30Þ

A2 ¼ 4πρc
ðnþ 1Þα ; ð31Þ

in terms of which Eq. (28) can be written as

�
ξ− 2αð1þ nÞη

1þ αΨ

��
ξΨ0 −

2Δ
ρcαð1þ nÞΨn

�
þ ηþ αξΨη0 ¼ 0;

ð32Þ

where (see Ref. [54] for details)

η0 ¼ ξ2Ψn: ð33Þ

Notice that from now on, the prime denotes a derivative
with respect to the variable ξ. At the boundary surface
r ¼ rΣ (ξ ¼ ξΣ), we have ΨðξΣÞ ¼ 0. In this case, con-
ditions (22) read

ρ > 0; αΨ ≤ 1; αΨþ Δ
ρcΨn ≤ 1: ð34Þ

Equations (32) and (33) form a system of two first-
order ordinary differential equations for the three
unknown functions: Ψ, η, Δ, depending on a duplet of
parameters n, α. Thus, as we have mentioned, it is
obvious that in order to proceed further with the modeling
of a compact object, we need to provide additional
information. Such information, of course, depends on
the specific physical problem under consideration. As we
have already mentioned here, we shall further assume the
metric conditions or equations of state used in the models
built up in Refs. [52,54,55,92].

III. PERTURBATION SCHEME

In this work, we propose a schematic perturbation
scheme which corresponds to an extension of Ref. [5].
Let us start with a spherical anisotropic relativistic fluid
distribution satisfying the generalized hydrostatic equilib-
rium equation (15). Besides, the pressures are considered
as functions of the energy density and the anisotropic
function—i.e.,

Prðρ;ΔÞ; P⊥ðρ;ΔÞ: ð35Þ

Now, to study the appearance of cracking, we shall perform
perturbations of the energy density and the local pressure
anisotropy

ρ̃ ¼ ρþ δρ; ð36Þ

Δ̃ ¼ Δþ δΔ; ð37Þ

where δρ and δΔ indicate small perturbations that may
depend on r. Thus, we can write the perturbed quantities
(up to first order) as

Pr → P̃r ¼ Pr þ
�∂P̃r

∂ρ̃
�

ρ̃ ¼ ρ

Δ̃ ¼ Δ

δρ;

þ
�∂P̃r

∂Δ̃
�

ρ̃ ¼ ρ

Δ̃ ¼ Δ

δΔ; ð38Þ
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m → m̃ ¼ mþ
�∂m̃
∂ρ̃

�
ρ̃ ¼ ρ

Δ̃ ¼ Δ

δρ; ð39Þ

Δ → Δ̃ ¼ Δþ δΔ: ð40Þ

Now, let us assume

P̃r ¼ ð1þ δϕÞPr; jδϕj ≪ 1; ð41Þ

where δϕ is a constant which ensures that the radial
pressure maintains the same functional behavior. As a
consequence, we have

dP̃r

dr
¼ ð1þ δϕÞ dPr

dr
⇒ δP0

r ¼ P0
rδϕ: ð42Þ

Moreover, this implies a restriction over the perturbation
functions, which is

�∂P̃r

∂ρ̃
�

ρ̃ ¼ ρ

Δ̃ ¼ Δ

δρþ
�∂P̃r

∂Δ̃
�

ρ̃ ¼ ρ

Δ̃ ¼ Δ

δΔ ¼ Prδϕ;

which leads to

δρ ¼
��∂P̃r

∂ρ̃
�−1�

Prδϕ −
�∂P̃r

∂Δ̃
�
δΔ

��
ρ̃ ¼ ρ

Δ̃ ¼ Δ

; ð43Þ

and in this way Eq. (41) is satisfied.
The total radial force of the gravitational system before

the perturbation is defined, by means of Eq. (19), as

R≡ P0
r þ

mþ 4πr3Pr

rðr − 2mÞ ðρþ PrÞ − 2
Δ
r
¼ 0: ð44Þ

Then, after perturbation, we can write

R̃ðρ̃; Δ̃Þ ¼ Rðρ;ΔÞ þ δRðρ;ΔÞ; ð45Þ

where

δR ¼
�∂R
∂Pr

�
ρ̃ ¼ ρ

Δ̃ ¼ Δ

δPr þ
�∂R
∂ρ

�
ρ̃ ¼ ρ

Δ̃ ¼ Δ

δρ

þ
�∂R
∂m

�
ρ̃ ¼ ρ

Δ̃ ¼ Δ

δmþ
�∂R
∂Δ

�
ρ̃ ¼ ρ

Δ̃ ¼ Δ

δΔ

þ
�∂R
∂P0

r

�
ρ̃ ¼ ρ

Δ̃ ¼ Δ

δP0
r: ð46Þ

From Eq. (44), it is straightforward to show that

∂R
∂Pr

¼ 4πr
1 − 2m=r

ðρþ PrÞ þ
mþ 4πr3Pr

r2ð1 − 2m=rÞ ; ð47Þ

∂R
∂ρ ¼ mþ 4πr3Pr

r2ð1 − 2m=rÞ ; ð48Þ

∂R
∂Δ ¼ −

2

r
; ð49Þ

∂R
∂P0

r
¼ 1; ð50Þ

∂R
∂m ¼ ρþ Pr

ðr − 2mÞ2 ð1þ 8πr2PrÞ: ð51Þ

Now, for simplicity, let us write

δΔ ¼ fðrÞδβ; jδβj ≪ 1; ð52Þ

where δβ is constant, and fðrÞ is arbitrary. However, to
ensure that the radial force in the center of the distribution
remains finite, we will assume that

lim
r→0

fðrÞ
r

¼ 0: ð53Þ

Thus, using Eq. (18), we obtain

δm ¼ 4πðF1ðrÞδϕ − F2ðrÞδβÞ; ð54Þ

with

F1ðrÞ≡
Z

r

0

r̄2GðrÞPrdr̄; ð55Þ

F2ðrÞ≡
Z

r

0

r̄2GðrÞ
�∂P̃r

∂Δ̃
�
fðrÞdr̄; ð56Þ

GðrÞ≡
�∂P̃r

∂ρ̃
�−1

: ð57Þ

Finally, the total radial force after the perturbation reads

R̃ ¼
�
Pr

�
4πrðρþ PrÞ
1 − 2m=r

þ ð1þGðrÞÞ
�

mþ 4πr3Pr

r2ð1 − 2m=rÞ
��

þ 4πðρþ PrÞð1þ 8πr2PrÞF1ðrÞ
r2ð1 − 2m=rÞ2 þ P0

r

�
δϕ

−
�
GðrÞfðrÞ

��∂Pr

∂Δ
��

mþ 4πr3Pr

r2ð1 − 2m=rÞ
��

þ 4πðρþ PrÞð1þ 8πr2PrÞF2

r2ð1 − 2m=rÞ2 þ 2

r
fðrÞ

�
δβ: ð58Þ
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Now, it is clear that the change of sign which has to be
present in the total radial force, required for the existence
of cracking (or overturning), implies R ¼ 0 for some
r ∈ ð0; rΣÞ. This leads to

δϕ ¼ Γδβ; ð59Þ

where

Γ−1 ¼
�
Pr

�
4πrðρþ PrÞ
1 − 2m=r

þ ð1þGðrÞÞ
�

mþ 4πr3Pr

r2ð1 − 2m=rÞ
��

þ 4πðρþ PrÞð1þ 8πr2PrÞF1ðrÞ
r2ð1 − 2m=rÞ2 þ P0

r

�
��

GðrÞfðrÞ
��∂Pr

∂Δ
��

mþ 4πr3Pr

r2ð1 − 2m=rÞ
��

þ 4πðρþ PrÞð1þ 8πr2PrÞF2

r2ð1 − 2m=rÞ2 þ 2

r
fðrÞ

�
: ð60Þ

At this point, a couple of comments are in order. First,
note that with Eqs. (58)–(60), it is possible to evaluate the
occurrence of cracking (overturning) in any spherically
symmetric system satisfying barotropic/polytropic equa-
tions of state. Furthermore, if the system satisfies the
physical acceptability conditions, it is easy to show that
the total radial force will be free of singularities and equal
to zero in the center of the distribution. Second, when a
perturbation is introduced using our scheme, the modified
(anisotropic) TOV equation does not vanish anymore. The
rest of the work is devoted to the implementation of the
scheme developed here in some particular models.

IV. MODELS

In this section, we shall study the appearance of cracking
(overturning) for systems described by a polytropic equa-
tion of state given by Eq. (2). In this case, the radial
pressure is a function of the energy density only, which
implies a huge simplification in the perturbation method.
Also, the parameter δϕ measures the perturbation in the
energy density, while δβ measures the perturbation over the
local anisotropy. Now, for simplicity we will consider that
fðrÞ ¼ Δ. Evidently, for a well-behaved internal solution,
this choice satisfies Eq. (53). Then, using Eq. (23) and the
dimensionless variables presented in Eqs. (29)–(31), we
obtain directly from Eq. (58) the total radial force as

R̂ ¼
�
Ψn dΨ

dξ
þ αΨnþ1

aðξÞ
�
ξΨnbðξÞ

þ cðξÞ
ξ2

�
1þ n

αðnþ 1ÞΨ
��

þ αnΨnη

ξ2ðnþ 1Þ
bðξÞdðξÞ
aðξÞ2

�
δϕ

−
2Δ

αðnþ 1Þρcξ
δβ; ð61Þ

where

R̂≡
�

A
4πρ2c

�
R̃; ð62Þ

aðξÞ≡ 1 − 2ðnþ 1Þη=ξ; ð63Þ

bðξÞ≡ 1þ αΨ; ð64Þ

cðξÞ≡ ηþ αξ3Ψnþ1; ð65Þ

dðξÞ≡ 1þ 2ξ2ðnþ 1Þα2Ψnþ1: ð66Þ

At this point, it should be emphasized that evaluating R̂
in Eq. (61) requires the knowledge of the pair fψ ; ηg for
certain models specified by the anisitropy Δ. Nevertheless,
the generalized Lane-Emden system, Eqs. (32) and (33),
does not admit analytical solution, so all our computations
here will be numerically performed. To be more precise, we
should integrate numerically for the pair fψ ; ηg and then
use the values to evaluate R̂. In what follows, we shall
consider some particular cases.

A. The conformally flat polytrope

The conformally flat polytrope is obtained by imposing
the condition for the vanishing of the Weyl tensor Cμνρλ. In
the spherically symmetric case, all components of the Weyl
tensor become proportional to a single scalar function,
expressed through the component C3

232,

W ≡ r
2
C3
232

¼ r3e−λ

6

�
eλ

r2
þ ν0λ0

4
−

1

r2
−
ν02

4
−
ν00

2
−
λ0 − ν0

2r

�
: ð67Þ

Then, a relation can be established that expresses the Weyl
tensor in terms of the energy density contrast and the local
anisotropy of pressure (see Ref. [83]):

W ¼ −
4π

3

Z
r

0

r3ρ0drþ 4π

3
r3ðPr − P⊥Þ: ð68Þ

It has been shown in Ref. [83] that the conformally flat
condition (W ¼ 0) can be integrated, producing

eν ¼ B2r2cosh2
�Z

eλ=2

r
drþ A

�
; ð69Þ

where B and A are integration constants. Thus, the
conformally flat condition reduces the number of unknown
functions of the system. Using the field equations (8), (9),
and the condition W ¼ 0, we get an anisotropic function
that can be written as
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Δ ¼ r
8π

�
e−λ − 1

r2

�0
: ð70Þ

Then, in the case represented by Eq. (2), we obtain

Δ ¼ ρc

�
3η

ξ3
−Ψn

�
: ð71Þ

Now, we are ready to write the total radial force
[Eq. (61)] as

R̂ ¼
�
Ψn dΨ

dξ
þ αΨnþ1

aðξÞ
�
cðξÞ
ξ2

�
1þ n

αðnþ 1ÞΨ
�

þ ξΨnbðξÞ
�
þ αnΨnη

ξ2ðnþ 1Þ
bðξÞdðξÞ
aðξÞ2

�
δϕ

−
2

αðnþ 1Þξ
�
3η

ξ3
−Ψn

�
δβ: ð72Þ

In Figs. 1–3, we show the behavior of R̂ for different values
of the parameters involved. To complement the discussion,
in Fig. 4, we show the behavior of the anisotropy as a
function of the polytropic index n.

B. The Karmarkar class I polytrope

Embedding of four-dimensional spacetimes into higher
dimensions is an invaluable tool in generating both cos-
mological and astrophysical models [85]. Recently,
Ref. [55] exposed in detail a model for a compact object
composed of an anisotropic fluid that meets the equation of
state of the polytrope together with the Karmarkar con-
dition. We will summarize the basic aspects that lead us to
obtain a particular anisotropy for this model. As is well

FIG. 1. R̂ as a function of ξ=ξΣ, for n ¼ 0.1; α ¼ 1; and Γ ¼
−5 (black line), Γ ¼ −2 (blue line), Γ ¼ 2 (red line), and Γ ¼ 5
(green line).

FIG. 3. R̂ as a function of ξ=ξΣ, for n ¼ 0.1; α ¼ 0.7 (black line), α ¼ 0.8 (blue line), α ¼ 0.9 (red line), and α ¼ 1 (green line); with
Γ ¼ 5 (left panel) and Γ ¼ −5 (right panel).

FIG. 2. R̂ as a function of ξ=ξΣ, for α ¼ 1; n ¼ 0.1 (black line), n ¼ 0.2 (blue line), n ¼ 0.3 (red line), and n ¼ 0.4 (green line); with
Γ ¼ 5 (left panel) and Γ ¼ −5 (right panel).
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known, the Karmarkar condition is necessary and sufficient
to ensure class I solutions [84], which for spherically
symmetric spacetimes reads (Rθϕθϕ ≠ 0)

RrtrtRθϕθϕ ¼ RrθrθRtϕtϕ þ RrθtθRrϕtϕ; ð73Þ

leading to

2
ν00

ν0
þ ν0 ¼ λ0eλ

eλ − 1
; ð74Þ

with eλ ≠ 1. Now, using Eqs. (23), (24), and (74) in
Eq. (20), we obtain

Δ ¼ ð4πPrcΨnþ1r3 −mÞðrm0 − 3mÞ
16πmr3

; ð75Þ

from where, after using the set of dimensionless variables
in Eqs. (29), (30), and (31), we arrive at

Δ ¼ ρc
ðαΨnþ1ξ3 − ηÞðξ3Ψn − 3ηÞ

4ξ3η
; ð76Þ

which represents the particular form of the anisotropy
obtained for the class I polytrope. Then, after we perturb the
system, the total radial force is given by

R̂ ¼
�
Ψn dΨ

dξ
þ αΨnþ1

aðξÞ
�
cðξÞ
ξ2

�
1þ n

αðnþ 1ÞΨ
�

þ ξΨnbðξÞ
�
þ αnΨnrη

ξ2ðnþ 1Þ
bðξÞdðξÞ
aðξÞ2

�
δϕ

−
ðαΨnþ1ξ3 − ηÞðξ3Ψn − 3ηÞ

2αðnþ 1Þξ4η δβ: ð77Þ

Figures 5 and 6 show the behavior of R̂ for different
values of the parameters involved.

C. The double polytrope

In a recent paper [54], the extra information needed to
close the system is supplied by the assumption that the
tangential pressure also satisfies a polytropic equation of
state. Since we have now two polytropic equations of state,
we shall clearly differentiate two polytropic exponents
(indices) γr, γ⊥ (nr, n⊥), one for each polytrope. Thus,
three possible cases may be considered, but only two of
these represent bounded configurations for the fluid dis-
tribution of the compact object. We will briefly expose
these two cases, and in this way be able to obtain the
specific anisotropy shape for this model, which is necessary
to introduce into the total radial force and establish the
analysis.

1. Both polytropes with γ ≠ 1

In this subsection, we shall assume that γr ≠ 1, γ⊥ ≠ 1,
and the tangential pressure satisfies the polytropic equation
of state:

FIG. 4. Anisotropy Δ=ρc as a function of ξ=ξΣ, for α ¼ 1 and
n ¼ 0.1 (black line), n ¼ 0.2 (blue line), n ¼ 0.3 (red line), and
n ¼ 0.4 (green line).

FIG. 5. R̂ as a function of ξ=ξΣ, for α ¼ 1; Γ ¼ 1; and n ¼ 0.01
(black line), n ¼ 0.05 (blue line), n ¼ 0.1 (red line), and n ¼ 0.2
(green line).

FIG. 6. R̂ as a function of ξ=ξΣ, for n ¼ 0.1; Γ ¼ 1; and α ¼
0.88 (black line), α ¼ 0.9 (blue line), α ¼ 0.98 (red line), and
α ¼ 1 (green line).

P. LEÓN, E. FUENMAYOR, and E. CONTRERAS PHYS. REV. D 104, 044053 (2021)

044053-8



P⊥ ¼ K⊥ργ⊥ ; ð78Þ

whereas the radial pressure satisfies Eq. (2). Then, from
Eq. (20) we have

Δ ¼ K⊥ργ⊥ − Krρ
γr : ð79Þ

IntroducingΨ, α, and the same definitions and conventions,
we arrive at

Δ ¼ PrcðΨnrγ⊥ −ΨnrγrÞ ¼ ρcαΨnrðΨθ − ΨÞ; ð80Þ

where θ ¼ nr=n⊥. Thus, Eq. (61) leads to

R̂ ¼
�
Ψnr

dΨ
dξ

þ αΨnrþ1

aðξÞ
�
cðξÞ
ξ2

�
1þ nr

αðnr þ 1ÞΨ
�

þ ξΨnrbðξÞ
�
þ αnrΨnrη

ξ2ðnr þ 1Þ
bðξÞdðξÞ
aðξÞ2

�
δϕ

−
2

ðnr þ 1ÞξΨ
nrðΨθ − ΨÞδβ: ð81Þ

Figures 7–9 show the behavior of R̂ for different values
of the parameters in the legend. Also, to complement the
discussion, we plot in Fig. 10 the behavior of the anisotropy
as a function of θ. We see from expression (80) that
θ ¼ nr=n⊥ constitutes a parameter that allows us to control
the anisotropy of the system in the case where both
polytropes have γ ≠ 1. In Ref. [54], it was shown that if
θ ¼ 1, the system is isotropic.

FIG. 7. R̂ as a function of ξ=ξΣ, for nr ¼ 0.5; α ¼ 1; θ ¼ 0.5;
and Γ ¼ −2.5 (black line), Γ ¼ −1 (blue line), Γ ¼ 1 (red line),
and Γ ¼ 2.5 (green line).

FIG. 8. R̂ as a function of ξ=ξΣ, for nr ¼ 0.3; θ ¼ 0.5; and α ¼ 0.6 (black line), α ¼ 0.7 (blue line), α ¼ 0.8 (red line), and α ¼ 0.9
(green line); with Γ ¼ 1.5 (left panel) and Γ ¼ −1.5 (right panel).

FIG. 9. R̂ as a function of ξ=ξΣ, for nr ¼ 0.3; α ¼ 1; and θ ¼ 0.3 (black line), θ ¼ 0.4 (blue line), θ ¼ 0.5 (red line), and θ ¼ 0.6
(green line); with Γ ¼ 1.5 (left panel) and Γ ¼ −1.5 (right panel).
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2. Radial polytrope with γr ≠ 1 and tangential
polytrope with γ⊥ = 1

In this case, we assume Pr ¼ Krρ
1þ 1

nr with ρ ¼ ρcΨnr

and

P⊥ ¼ K⊥ρ; ð82Þ

from where the anisotropy reads

Δ ¼ PrcΨnrð1 − ΨÞ: ð83Þ

So, we have obtained the specific form of the anisotropy for
this case of the double polytrope model [54]. This will
allow us to complete the perturbative scheme exposed
before, and then study the possibility of cracking when the
fluid configuration is taken out of hydrostatic equilibrium.
Now, the total radial force after the perturbation is

R̂ ¼
�
Ψnr

dΨ
dξ

þ αΨnrþ1

aðξÞ
�
cðξÞ
ξ2

�
1þ nr

αðnr þ 1ÞΨ
�

þ ξΨnrbðξÞ
�
þ αnrΨnrη

ξ2ðnr þ 1Þ
bðξÞdðξÞ
aðξÞ2

�
δϕ

−
2

ðnr þ 1ÞξΨ
nrð1 −ΨÞδβ: ð84Þ

In Figs. 11–13, we show the behavior of R̂ for different
values of the parameters. To complement the discussion,
we plot the behavior of the anisotropy [Eq. (83)] as a
function of the polytropic index nr, shown in Fig. 14. Note
that in this case (radial polytrope with γr ≠ 1 and tangential
polytrope with γ⊥ ¼ 1), the anisotropy is controlled only
by the radial polytropic index nr.

D. The vanishing complexity polytrope

A new definition of complexity for spherically symmet-
ric, static, self-gravitating fluids, in the context of general
relativity, was introduced in Ref. [92]. The scalar function,
YTF, that arises from the interpretation of the orthogonal
splitting of the Riemann tensor, describes how the local
anisotropy of pressure and density inhomogeneity modify
the value of the Tolman mass, with respect to its value for
the homogeneous isotropic fluid, so it constitutes a good
quantity to be defined as a complexity factor. A simple

FIG. 10. Anisotropy Δ=αρc as a function of ξ=ξΣ, for α ¼ 1;
nr ¼ 0.3; and θ ¼ 0.3 (black line), θ ¼ 0.4 (blue line), θ ¼ 0.5
(red line), and θ ¼ 0.6 (green line).

FIG. 11. R̂ as a function of ξ=ξΣ, for nr ¼ 0.7; α ¼ 1; and
Γ ¼ −2.5 (black line), Γ ¼ −1.5 (blue line), Γ ¼ 1.5 (red line),
and Γ ¼ 2.5 (green line).

FIG. 12. R̂ as a function of ξ=ξΣ, for nr ¼ 0.3; and α ¼ 0.6 (black line), α ¼ 0.7 (blue line), α ¼ 0.8 (red line), and α ¼ 0.9 (green
line); with Γ ¼ 1.5 (left panel) and Γ ¼ −1.5 (right panel).
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calculation [18,92] allows us to express YTF in terms of the
inhomogeneity of the energy density and the local
anisotropy of the system as

YTF ¼ −8πΔ −
4π

r3

Z
r

0

r̃3ρ0dr̃: ð85Þ

According to Eq. (85), the vanishing complexity factor
condition reads

YTF ¼ 0 ⇒ Δ ¼ −
1

2r3

Z
r

0

r̃3ρ0dr̃; ð86Þ

which may be regarded as a nonlocal equation of state.
Now, integrating this expression by parts and using the
definition of the mass function, it is a straightforward
computation to show that

Δ ¼ 1

8πr3

�
3m − r

dm
dr

�
; ð87Þ

which can be written as

Δ ¼ r
16π

�
e−λ − 1

r2

�0
; ð88Þ

which, with the exception of a 1=2 factor, constitutes the
same expression for the anisotropy obtained for the con-
formally flat polytrope. Therefore, this anisotropy function
has essentially the same behavior as that shown in Fig. 4.
Thus, when we adopt the polytropic equation of state, the
total radial force becomes

R̂ ¼
�
Ψn dΨ

dξ
þ αΨnþ1

aðξÞ
�
cðξÞ
ξ2

�
1þ n

αðnþ 1ÞΨ
�

þ ξΨnbðξÞ
�
þ αnΨnη

ξ2ðnþ 1Þ
bðξÞdðξÞ
aðξÞ2

�
δϕ

−
1

αðnþ 1Þξ
�
3η

ξ3
−Ψn

�
δβ; ð89Þ

which in essence has the same behavior as the case exposed
for the conformally flat polytrope, so we will not repeat
the analysis.

V. RESULTS

Figures 1, 7, and 11 show the dependency of the total
radial force for different values of the Γ, which, according
to Eq. (59), provides the relationship between the param-
eters ϕ and β used for perturbing the physical system. We
observed that when Γ increases, the radius where the total
radial force has a change of sign (the cracking surface)
moves towards deeper regions inside the compact object.
This is a recurrent fact for all our models. Besides, in some
cases, we may have the absence of cracking for negative
values of Γ, which indicates that the system is stable in
this sense. For example, this occurs for Γ ¼ −5 (black line
in Fig. 1) for the conformally flat polytrope model, for
Γ ¼ −2.5 (black line in Fig. 7) for the case-1 double
polytrope, and for Γ ¼ −2.5, Γ ¼ −1.5 (black and blue
lines in Fig. 11) for the case-2 double polytrope model.

FIG. 14. Anisotropy Δ=αρc as a function of ξ=ξΣ, for α ¼ 1;
and nr ¼ 0.3 (black line), nr ¼ 0.5 (blue line), nr ¼ 0.7 (red
line), and nr ¼ 0.9 (green line).

FIG. 13. R̂ as a function of ξ=ξΣ, for α ¼ 1; and nr ¼ 0.3 (black line), nr ¼ 0.5 (blue line), nr ¼ 0.7 (red line), and nr ¼ 0.9 (green
line); with Γ ¼ 1.5 (left panel) and Γ ¼ −1.5 (right panel).
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A similar behavior is obtained, for all the models, when
the dependence of R̂ with respect to α ¼ Prc

ρc
is studied. The

situation described in Figs. 3, 6, 8 and 12 is representative
for a wide range of parameters (for which there exist
bounded configurations satisfying the required physical
conditions). Note that the cracking radius (R̂ ¼ 0) moves
to deeper regions of the object as α increases. Furthermore,
we observe that in some cases, for small values of α, there is
no cracking: see the black line (α ¼ 0.88) and blue line
(α ¼ 0.90) in Fig. 6 for the Karmarkar model. Also, see the
black line (α ¼ 0.60) in Fig. 8 for the case-1 double
polytrope model. Then, for smaller α, the critical radius
moves towards the surface of the object until it does not
produce cracking at all. It seems that the strongest and
deepest crackings are associated with the largest values
of α. The right panels of Figs. 3, 8, and 12 show that for
negative values of Γ, there is no cracking (for all α),
indicating stability against this phenomena for that relation-
ship of the parameters involved.
Figures 2, 5, and 13 exhibit the relationship existing

between the occurrence of cracking and the polytropic
index n. For the conformally flat model, the critical radius
moves to more internal regions as n increases (see Fig. 2),
showing deeper and softer cracking for these values.
Instead, in the case of the Karmarkar polytrope (Fig. 5),
and the case-2 double polytrope (Fig. 13), the behavior is
totally the opposite. An increase in the polytropic index
corresponds to a displacement of the cracking radius
towards external regions of the compact object, where it
is also observed that cracking is smoother. We can even
have configurations that do not present cracking for a
certain range of parameters and certain values of n. This is
observed, for example, in the Karmarkar model (Fig. 5,
green line), corresponding to n ¼ 0.2 and for the case-2
double polytrope model (Fig. 13, green line), correspond-
ing to n ¼ 0.9. Again, we observe that the system shows
stability against cracking, for some negative Γ values, in all
cases (observe the right panels of the figures).
Finally, we have presented Figs. 4, 10, and 14 in order to

exhibit further the close relationship existing between the
occurrence of cracking and the type of anisotropy displayed
for each model. Figure 4 represents the anisotropy asso-
ciated with the conformally flat model, exposed for differ-
ent values of the polytropic index n. In Fig. 10, we plot the
behavior of the anisotropy, for the case-1 double polytrope,
as a function of θ. Figure 14 shows the case-2 double
polytrope, where the anisotropy is expressed by means of
the polytrope index nr. In all cases, an anisotropy appears
as a properly increasing function.
We see in Fig. 4 that for greater values of n, the

anisotropy grows. Comparing with Fig. 2, it seems to
indicate that for greater anisotropy, the cracking is more
internal and less abrupt for the conformally flat model. In
the same sense, Fig. 10 shows the dependence of the local

anisotropic function with respect to θ for the case-1 double
polytrope model, showing that an increase in θ implies a
decrease of the anisotropy (mainly in the outer layers of
the object). Relating this fact to the behavior observed in
Fig. 9, we get that external and stronger cracking are
produced for smaller values of anisotropy and positive
values of Γ (left panel). The opposite occurs for negative
values of Γ (right panel): deeper and smoother cracking
are produced for smaller values of anisotropy. In Fig. 14,
it is observed that the anisotropy decreases with increas-
ing value of nr, mostly in the outer regions of the object,
for the case-2 double polytrope model. In essence, this
behavior is similar to that of the case-1 double polytrope
model. Now, corresponding to the same external zone, we
observe a cracking shift towards outer regions (besides
the cracking getting softer) of the stellar object, according
to Fig. 13. The right panel (negative Γ) of this figure
shows again the interesting result of the system’s stability
against cracking.
It is important to mention that no graphical represen-

tation or analysis for the polytrope model with vanishing
complexity was performed. The main reason is that the
inherited anisotropy produced by the vanishing condition
of the complexity parameter is identical (except for a
global constant factor) to that of the conformally flat
polytrope model. In fact, the total radial force R̂ is
essentially the same as in the corresponding first model
of this work, so qualitatively, we have the same results.
This, in itself, represents an interesting and nontrivial
result worth reporting.

VI. CONCLUSIONS

It is important to stress that the occurrence of cracking
has direct implications on the structure and evolution of
the compact object, only at timescales that are smaller
than, or equal to, the hydrostatic timescale. This is so
because, as already mentioned, what we do is to take a
snapshot just after the system leaves the equilibrium. To
find out whether or not the system will return to the state
of equilibrium afterward would require an integration
of the evolution equations in the dynamic case for a
finite period of time (greater than hydrostatic time).
Nevertheless, it is clear that the occurrence of cracking
would drastically affect the future structure and evolution
of the compact relativistic object.
We have investigated the conditions under which general

relativistic polytropes for anisotropic matter exhibit crack-
ing (and/or overturning), when submitted to fluctuations of
energy density and anisotropy. To achieve this, a general
and systematic method was proposed to study the departure
from equilibrium for any internal, anisotropic, and spheri-
cally symmetric solution of Einstein field equations. This
method has the advantage of being independent of the
particular characteristics (parameters) of the considered
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models (see Ref. [5] for previous developments). Thus, we
have shown that cracking occurs for a wide range of the
parameters. For various types of polytropes, the main
conclusions are basically the same: namely, that the
strongest and deepest crackings occur for bigger values
of the parameters Γ and α. Also, most of the polytrope
models seek to stabilize when Γ grows negatively. This
result is also observed for small values of α, which
represents an interesting fact (since the α parameter is
related with the nonrelativistic limit). The anisotropy of the
pressure, depending on the case, can be “controlled” by the
polytrope index n or the θ parameter. A distinct feature of
all the models studied here is the fact that the “core” (the
inner part) and the “envelope” (the outer part) respond
differently to different degrees of anisotropy. This fact was
already pointed out in Refs. [10,51,100].
From the first moments in which cracking was defined

[1–5], some hypotheses of possible applications to different
types of astrophysical events were raised, and so there are
several indications that allow us to assume such a fact. We
are modeling an event that could take place in a very
compact object where general relativity and the presence of
local anisotropy play a predominant role. Furthermore, it
has been shown that cracking results only if, in the process
of perturbation leading to departure from equilibrium, the
local anisotropy is perturbed. The number of physical
processes giving rise to small deviations from local isotropy
and variations of local anisotropy in the high-density
regime is quite large. The first one is the intense magnetic
field observed in compact objects such as white dwarfs and
neutron stars. These, in turn, can also cause fluctuations in
the anisotropy of the system. It is well known that for
various types of astrophysical objects, magnetic fields lie at
the heart of stellar dynamics and possess activity cycles
which can involve a significant fraction of the energy
budget of the star. However, attempts to relate the observed
characteristics of late-type main sequence stars to a global
description of their magnetic properties are complicated.
Nevertheless, the are several reports that indicate that there
is a very little room for the formation of nonmagnetic
neutron stars from supernova events [101–103] due to
processes like dynamical field amplification in a carbon-
burning core [104]. Also, we have the possibility of
neutrino viscosity produced by neutrino trapping or the
existence of a solid core and the presence of type-p
superfluid or type-II superconductivity can be invoked as
possible sources of local anisotropy. There are also exotic
phase transitions that may occur during the process of
gravitational collapse [105], like the transition to a pion
condensate [106]. Finally, the superposition of two perfect
fluids may be formally described as an anisotropic fluid.
This scheme allows one to evaluate the fractional
anisotropy in a neutron star due to the contamination of
electrons and protons required to stabilize neutron matter
against β decay [107].

It is important to mention that another source of dynamic
instability can occur in astrophysical scenarios due to the
violation of the Harrison-Zeldovich-Novikov stability con-
dition (see, for example, Ref. [108]). This criterion implies
that as the central density of amodel increases, so does its total
mass. As a consequence, this criterion finds a critical point
that separates stable configurations from unstable ones when
the total mass decreases with increasing central density. This
is relevant, since the existence of the Tolman-Oppenheimer-
Volkoff limit is known for more compact configurations than
white dwarfs. The best predictions about local physical
characteristics come from modeling these objects through
a degenerate cold Fermi gas. Fermi temperature fluctuations
can produce fluctuations in density, especially if we consider
complicated nuclear reactions, and even unknown internal
processes can be of relevance.
We would like to conclude this work by speculating

about possible scenarios where the occurrence of cracking
might be invoked, in order to understand the related
observational data. One of these situations could be the
collapse of a supermassive star. The occurrence of
cracking at the inner core would certainly change (and
in some cases probably enhance) the conditions for the
ejection of the outer mantle in a supernova event. This will
be so for both the “prompt” [109,110] and the “long-term”
mechanisms [111–114].
Also, one is tempted to invoke cracking as the possible

origin of quakes in neutron stars [115–117]. In fact, large-
scale crust cracking in neutron stars and its relevance in the
occurrence of glitches and bursts of x rays and gamma rays
has been considered in detail by Ruderman (see Ref. [118]
and references therein). Evidently, the characteristics of
these quakes, and those of the ensuing glitches, would
strongly depend on the depth at which the cracking occurs.
In this respect, it is worth noticing the already mentioned
fact that the depth at which the cracking may appear is
highly dependent on the parameters α and Γ, and also on n
and θ (used to measure the anisotropy) in our models. The
specific facts are clearly dependent on each model.
However, neutron stars are rotating objects, and in

general the same causes that generate anisotropy (intense
magnetic fields, Fermi fluid) may produce deviations from
spherical symmetry, so the situation is clearly controversial.
The assumption of relatively large-scale crust cracking is a
hypothesis which must still be supported mainly by
comparisons of its consequences with neutron star obser-
vations. Anyway, we would like to emphasize that our aim
here is not to model in detail any of the scenarios, but just
call attention to the possible occurrence of cracking in such
important configurations as those satisfying a polytropic
equation of state, and its relationship with fluctuations of
local anisotropy. In this way, whatever the origin of the
anisotropy would be (no matter how small), cracking may
occur, and this fact would drastically affect the outcome of
the evolution of the system.
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