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Near-horizon symmetries are studied for static black hole solutions to Einstein equations containing a
supertranslation field. A supertranslation field is defined at the unit sphere. We consider general diffeo-
morphisms which preserve the gauge and the near-horizon structure of the metric. Diffeomorphisms are
generated by the vector fields and form a group of near-horizon symmetries. The densities of variation of the
surface charge associated to horizon symmetries of the metric are calculated in different coordinate systems
connected by “large” transformations containing a supertranslation field in the metric. Variations of the
surface charge corresponding to horizon symmetries are calculated in different coordinate systems. It is
shown that the variations of the charge in systems connected by a large transformation have different
integrability properties over the space of metrics. In the case of a supertranslation field depending only on the
spherical angle @ it is shown that, although the variations of the surface charge in two coordinate systems
connected by a large transformation are equal to each other, in one coordinate system the charge variation,

having the form of variation of a functional of metrics, is integrable, but in another system it is not.
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I. INTRODUCTION

The final state of gravitational collapse is a stationary
metric diffeomorphic to the metric of the Kerr black hole
[1-3]. General diffeomorphisms contain pure gauge trans-
formations which are changes of coordinates and “large”
transformations which change a supertranslation field in
metric. Physically large transformations map a physical
state to another physical state with a different cloud of soft
particles [4-6].

Supertranslations naturally appear in a study of sym-
metries of the asymptotically flat gravity at the null infinity
initiated by Bondi, van der Burg, Metzner and Sachs [7,8].
The infinite-dimensional group of the asymptotic sym-
metries (the BMS group) extends the Poincaré group and
contains a normal subgroup of supertranslations which are
the angle-dependent translations of retarded time at the null
infinity [9].

BMS algebra can be further enhanced to contain super-
rotations [10-13]. Exponentiation of the infinitesimal
supertranslation and superrotation generators produces
finite transformations, but in distinction to supertransla-
tions, exponentiation of the infinitesimal superrotations
when acting on physical states produces the states with the
energy unbounded from below [14]. One cannot introduce
a physical state with a finite superrotation charge, but
there exist conserved charges associated with super-
translations and superrotations [10—13]. Supertranslation
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charges vanish except for a charge corresponding to the
mass of a state, but finite superrotation charges differ for
states with different supertranslation fields.

BMS transformations are naturally formulated at the null
infinity, but there is a complicated problem of extension of
an asymptotically defined metric containing a supertrans-
lation field in the bulk. In paper [14] a family of 4D vacua
containing a supertranslation field was constructed in the
bulk, and in paper [15] a solution-generation technique was
developed and the black hole metrics diffeomorphic to the
Schwarzschild metric and containing a supertranslation
field were obtained.

In this paper we study the near-horizon symmetries of
the black holes containing a supertranslation field. The
near-horizon symmetries are the main characteristics of
horizon microstates which in turn define thermodynamic
properties, the entropy and evaporation of a black hole.
Near-horizon symmetries were extensively investigated in a
large number of papers (a very incomplete list of references
is [16-39]).

The near-horizon region is foliated by a set of surfaces
enclosing the horizon surface and located at a distance x
from the horizon (x is defined differently in different
coordinate systems). Near-horizon symmetries are gener-
ated by transformations which preserve the horizon structure
of a metric, and do not change the power of the leading in x
terms in the components of the metric considered at a near-
horizon surface at a distance x in the limit x — O.

We consider the near-horizon transformations of the
static black hole solutions of the Einstein equations
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containing a supertranslation field. Transformations are
generated by the vector fields &. The metric variations 5:¢g
are elements of the tangent space to the space of metrics
and are solutions to the linearized Einstein equations. On
the tangent space is defined a bilinear presymplectic form.
The presymplectic Lee-Wald form [20] is

wiW(519.8,9. g) = 6104 (829, g) — 6,0%(8,9. 9)
- ©(g, 5[1,2]9)’

where ®* is the boundary term in variation of the Einstein
action

5(v/=gR) = E(9)dg + 0,0/ (59, 9),

and E(g) = 0 for a solution of the Einstein equations. Other
forms of the presymplectic structures [22,38] differ from
the Lee-Wald form by the terms vanishing on solutions of
the linearized Einstein equations. A symplectic 2-form is
defined as an integral over a codimension-1 spacelike
surface

QWY (5,9.6,9.9) = L wiV(5,9.8,9. 9)dx,.

The Lee-Wald presymplectic form contracted with a metric
perturbation generated by a vector field £ and any metric
variation 6g from the tangent space of metrics satisfies the
on-shell relation

wW (89, 8¢9, g) = dK (89, g),

where Kéw is the Iyer-Wald surface charge form [21,23],
and the equality is valid up to terms vanishing on shell.
Variation of the surface charge associated with a trans-
formation generated by a vector field & is defined as

[

where integration is over a surface enclosing the horizon
[20-23,37-39].

The black hole solutions containing a supertranslation
field are obtained from the Schwarzschild solution (in
isotropic spherical coordinates) by applying the large
transformations containing a supertranslation field. A
supertranslation field is a real function on the unit sphere.
The event horizon of a metric containing a supertranslation
field “constructed in [15] in the p-system” is located at a
surface which depends on a supertranslation field. It is
possible to construct another coordinate system (r-system),
connected to the p-system by a large transformation, in
which the horizon is located at the surface r = 2M, where
M is the mass of the black hole.

We calculate the surface charge forms K7 in different
coordinate systems connected by large transformations and
also within p and r systems in coordinate systems corre-
sponding to different parametrizations of the unit sphere on
which a supertranslation field is defined.

To obtain the surface charge H., variation 6H should be
integrated over the space of metrics. The unique surface
charge is obtained, if the integral over the space of metrics
is independent of a path of integration. We find that in the
general case variation of the surface charge 6H: cannot be
written as a variation of a certain functional over the space
of metrics, and integration over the space of metrics does
not yield a path-independent charge. We discuss a special
case in which the surface charge of horizon symmetries is
obtained in the closed form.

The paper is organized as follows.

In Sec. II we review the form of the static vacuum metric
containing a supertranslation field in the p-system obtained
in [15]. Next, by a large transformation we transform the
metric to the r-system. In both p- and r-systems we obtain
the metrics in different parametrizations of the unit sphere
on which is defined supertranslation field.

In Sec. III we study diffeomorphisms preserving the
near-horizon form of the metric in p- and r-systems. We
find constraints on the generators of transformations
preserving the gauge and the near-horizon form of the
metric.

In Sec. IV we consider supertranslations preserving the
gauge and the near-horizon structure of the metric which
are extendable in the bulk. Supertranslations form a group
under the modified bracket [15]. A case of a supertrans-
lation field depending only on an angle @ is considered in
detail. It is shown that in the case of a supertranslation field
depending only on 6 the requirement that supertranslation
preserves the gauge and the form of the metric fixes the
parameter of the transformation through the supertransla-
tion field C(9).

In Sec. V we calculate variations of the surface
charge corresponding to horizon symmetries in the
p- and r-systems. Variation of the charge is obtained by
integration of the surface charge forms over the surfaces
enclosing the horizon and located at a distance x from the
horizon.

In the p-system, the variation of the charge 6H, receives
contributions from the integrals of the charge densities Kg”
with the components (u,v) = (t,p), (t,0), (t,¢). In the
r-system the only contribution is from integration of the
component with (uv) = (r,t) over the horizon sphere.

The surface charge is obtained in the limit x — 0. In the
charge densities we separate the leading in x terms in
accordance with the power of x coming from the determi-
nant of metric so that the resulting expression for the
variation of the charge is independent on x.

In Sec. VI we discuss integrability of the variation of the
surface charge in the case of a supertranslation field
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depending only on a spherical angle 0. In the p-system, the
variation of the charge cannot be presented as a variation of
a functional over the space of metrics. In the r-system we
show that the variation of the charge is integrable. Although
the variations of the charge have different forms in the
p- and r-systems, performing the change of coordinates, we
show that the expressions are equal.
The last section contains a brief summary of results.

II. STATIC VACUUM SOLUTION OF THE
EINSTEIN EQUATIONS WITH A
SUPERTRANSLATION FIELD

We begin this section with a short review of a black hole
solution with a supertranslation field constructed in [15].
Next, we transform the metric to a form in which the
horizon is located at the surface r = 2M.

The vacuum solution of the Einstein equations contain-
ing a supertranslation field C(z%) is

dSZ = gttdt2 + g/)/)dp2 + gabdzadzb
2
(14+M/2p;)
+ (1+M/2pg)*dp* + (((p = E)* + U)rap
+ (p — E)Cpp)dz"dz"],

(2.1)

where z¢ are coordinates on the unit sphere. A supertrans-
lation field C(z%) is a real regular function on the unit sphere.
Coordinates on the sphere z¢ can be realized as spherical
coordinates 6, ¢ with the metric ds> = d6> 4+ sin>0dg?, or as
projective coordinates z! =z=cotge’”, 2> =z = cot§ e~
with the metric ds* =2y..dzdZ, y.=2e, y=
In(1 + |z|?). Covariant derivatives D, are defined with
respect to the corresponding metric on the sphere. Here

pu(p.C) =1/ (p = C = Coo)? + D,CDC. (2.2)

Cyp is the lowest spherical harmonic mode of C(z%). In the
following we do not write Cy, explicitly understanding
C — C — Cyy. The horizon of metric (2.1) is located at the
surface p, = M /2. Here p C (0, +o0). The tensor C,;, and
the functions U and E are defined as

Cab = _(2Dan - yasz)C’
1

U = gCubC"“,
1
E= ED2C +C. (2.3)

The metric (2.1) in coordinates (p, 8, ¢) with supertranslation
field C(@, ¢) was obtained from the Schwarzschild metric

1-M/2 2
ds? — — J dr?
1+ M/2p,

+ (14 M/2p,)*(dx? + dy? + dz?)
pr=x+yl+7?

by the diffeomorphism [15]

x; = (p—C)sinfcos @+ 9,Csing/ sinf — dyCcosfcos g,

(p—C)sinfsing —9,Ccosgp/sinf — 9pCcosfsin g,
(p—C)cosf—0yCsind. (2.4)

Vs

s

In coordinates (p, 8, ¢) the transformed metric is

ds* = g, dr* + g, dp* 4 23, d0dp + Good6* + G, dp”]

(ps_M/z)z
Mt

+(1+M/2p,)* [dpz +2(p—E)Cy,dbdyp
1 2 1 2
+<p—E+§C69> d92+sin29<p—E—§C99> d(p2:|,
(2.5)

where

C

. = — C@g Sil’l2 0
sin’@ " ’

Cyp = —C" + C' cot0 +

Cyp = —2(C' = Ccotd).

Here dot and prime are derivatives over ¢ and 6.
In variables (p, z, Z) the metric with supertranslation field
C(z,7) has a form

ds* = g,d* + g,,[dp* + Jupdzdz"]

_ 2
_ _78 - %Z’);z dr + (1 + M/2p,)*[dp?

+2((p = E)* + U)yzdzdz

+ (p = E)(C.odzdz + Cdzdz)], (2.6)

where

C,..,=-2D.0,C, C:: = -2D:0:C, C:=0.
Transformation from (0, ¢, p) to (z,Z,p) is a pure gauge
transformation.

If the supertranslation field depends only on |z|, or in
coordinates (r,6, @) only on 6, the metric simplifies with
9o, = 01in (2.5). On the other hand, if the supertranslation
field depends only on z/Z, or on ¢, the metric retains its
general form.
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Next, we transform the metric (2.6) to new variables
(r,z%), where z% = (z,Z) or (0, ¢). The new variables are
chosen so that in new variables the ¢ component of metric
is equal to V [40]

gy =1=2M/r=V.

Variable r > 2M is defined through the variables p, 0, ¢ by
the relation

O (1+5m). @
r=p.p,C (1—1—7) . 2.7
2p4(p.C)
Inversely, p is expressed through r as
K? K
p=C+H+ T—DaCD“C:C+5\/1—bab”, (2.8)
where we introduced the functions
K
K:r—M—l—er/z, ps:E7
2D,C
b, =——, b* = b,b*. (2.9)
K
Differential dp(r, z%) is
dp=p .dz*+p .dr
K 0,b? > K
pa=7bi—F—). p,=—————. (2.10
2 < 2V1-0? 2V1-02rV12 .
Using the relations
1—M/2p,)? 2M
gtt:(—)zz l-——=V,
(1+M/2p,) r
472
Gpp = (L+M/2p)* = R (2.11)

we introduce the transformed metric components (in
variables (r,z,Z) or (r,0,¢) the metric components are
written with hats, in variables (p,z,Z) or (p,6,¢) with
tildas)

1
Vil - b?)’
@ab = gpp(gab + paﬂb)'

A

— 2
9rr = gp/)p,r -

N

9ra = g/)/)p,rp,a )

(2.12)

We obtain the metric in variables (r,z%) in a form

ds? = §,di® + §,,dr* + 2§,,drdz® + §,,dz°dz"
4
= -Vd* + el [p2dr* + 2p,p,drdz®

+ (Jap + papp)dz®dz?). (2.13)

For the above expressions to be well defined, we require
that 1 — b> > 0. Because K is an increasing function of r
which has its minimum at » = 2M, the sufficient condition
is 1 — (2DC/M)? > const > 0. In the following we work
in the units M = 1.

II1. DIFFEOMORPHISMS PRESERVING THE
NEAR-HORIZON FORM OF THE METRIC

A. The metric in variables p, z*

In this section we study diffeomorphisms which preserve
the near-horizon form and the gauge of the metric (2.6) in
the p-system. Near-horizon foliation of the space-time is
done as follows. Let x be a parameter specifying the
distance from a near-horizon to horizon surface (the choice
of x depends on the choice of coordinates and is specified
below). Horizon is located at the surface p, = 1/2, where
p, 1s defined in (2.2). The near-horizon surface is defined as
a surface p, = 1/2 + x. Assuming that at the horizon
the equation \/(p — C)> + D,CD“C = 1/2 has a unique
solution,

pu(z%,x)=C++/1/4-D,CD"C,

by continuity the equation

(3.1)

po=\/(p=CP+D,LDC=1/24x (32)

in some vicinity of p, = 1/2 also has the unique solution:

plx,z9) =C+ \/(1/2 +x)? - D,CD“C.
For a small |x| < 1 we obtain
p(x.2%) = py(z*) + X,

where

P S— (3.4)

2y/1/4 - (DC)*

There are two branches of p:p = C + \/p? — (DC)?. To
have a smooth limit to the Schwarzschild metric, C — 0,

we choose the plus sign.
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In the near-horizon region the metric has a form

ds® = (9,5 + O(¥))dr* + (g,, + O(%))dp?

+ (Gap + O(F))dz"dz". (3.5)
Here ,, are the O(x°) parts of g,,.

We consider transformations generated by the vector
field

ED; = £, + &0, + £°0,. (3.6)

& are assumed to be independent of 7. General near-horizon
transformations are required to preserve the gauge of the
metric and the power X" of the leading in X terms in the
difference g, (X) — g,,(0) up to a numerical coefficient at
the leading term in X.

The metric is written in the gauge g,, = g,; = 9or = 0.
Transformations which preserve the gauge satisfy the
relations

L.fgpa = apgbgba + 8a€pgpp =0, (37)
Lf.gpt = 6/)5[91‘1,‘ + arfpgpp =0, (38)
Lega = 0489, + a,fbgba =0. (3-9)

Conditions (3.8) and (3.9) give & = const.
At the near-horizon surface p,=1/2+x, or p = py + X,
the component g,; is

G = 4(py — C)* X2 + O(F). (3.10)

Under the action of transformation generated by vector
field & the component g,, is transformed as

ps—l/2

Légtt =4

where

prs = (‘j:pap +§aDa)ps
_&2(p-C) +£(=2(p-C)D,C+D,(D,CD"C))
B 2p; '

(3.12)

To preserve the near-horizon behavior of g, (3.10), it is
necessary that

£2(p~ C) + &(=2(p — C)D,C + D,(D,CD"C) = O(%).
(3.13)

At the horizon, this condition gives the relation connecting
& and &%

&(pu = C) + &((=pu + €)D,C + (D,D,C)D"C) = 0.
(3.14)

Because g,, is a function of p,, using condition (3.13), we
have

dg -
Lfgp/) = WWLépS + 23p§pgpp = 256p§/7 + O(X)

s

(3.15)

B. The metric in variables r, z*

In variables (r,z) the horizon of the metric (2.13) is
located at the surface r = 2. In the foliation of the near-
horizon region defined through p, = 1/2 + x, in variables
(r,z%) the near-horizon surfaces are at r = 2 + &, where
% =2x%> + O(x*). In the near-horizon region the metric
(2.13) has a form

ds? = §udr + ,,dr? + 20, drdz® + §pdztdz?

= (=guk + O(3%))dr* + <g— - 0(&-1/2)) di?
X

+2 < ;’/“2 + 0(;%0)) didz
+ (Gap ok + O(R?))dzdz". (3.16)

G = O(R) are the coefficients at the leading in & terms in
the metric components. The metric (3.16) is written in the
gauge

._art = gta =0.

The near-horizon transformations are generated by the
vector fields

250k = x'0,+ 170, + 1O, (3.17)

We assume that y* are independent of ¢. Transformations
preserving the gauge conditions are

L)(.art =0 )"0 + O Grr + O Guy =
L;{@at = aa)([.att + at)(rgru + 8txb§ba =0. (318)

From conditions (3.18) we obtain that y' = const.
Transformations preserving the leading in X behavior of
the metric components are
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L,9u = 20,94 = O(%),
LyGrr = 270, 8rr + X 0afrr + 20,0 Gar + 200Gy,
=0,
LyGar = X" 0rGar + 2 0plar + Oak Gy + Oult" Ui
+ 0ot Jar + 01" Gap = O(371/2),
L,Gap = X"0,Jab + X OcGab + Ouk Grp + OuX  eb

+ ab)(r.@ra + ah)(cgca = 0(520) (319)

We look for the components of the vector field y* in a form
of expansion in powers in &'/2:

X =6 +xl/)(1/2 +Rf

From the relations (3.19) we obtain the form of generators
preserving the near-horizon form of the metric

Xo=Xin=0, ¥ =xi% xt=xi+37x5. (320

The vector fields generating the near-horizon transforma-
tions form the Lie brackets

Xy xl :)(]{12), (3.21)
where
X(2).1 :If’n,og;)(fz)l
X120 :Zﬁl).ogbﬂf?z),o’
X212 :Zh g’%u ).1/2
1/2(;r = (1=2).  (3.22)

The vector field (3.17) is connected with the vector field
(3.6) by a transformation

or or or Op, or Op,
r_ gp~ a —_ £ S a :
d 58p+§ 0z% é:6,05 8p+§ Op,; 07¢°
0z° 0z°
a—pgp—_ 4 ¢gb =&, 3.23
H=E ke =t (3.23)
From (2.7) and (2.8), we have
K* -1 —
ar/aps = K2 8ps/a/) = 1- b27
Op, /929 = [ 26,1 - b +D, bﬂ (3.24)

Using the relations (3.24), we obtain

)(t — é:t
K2 -1

1= &1 -b? +§“ (=2b,V/' 1 = b*+ D, b?)

=& (3.25)

The expression in the square brackets in y” is the same as in
(3.14). For |3 < 1 we have

K~1+V2% b, =20,C(1-+23),
(K> - 1)/K> = O(x'/?). (3.26)

At the near-horizon surface the metric component g,, is

—Z40).

: (3.27)

Gy =
To have the transformed metric component §,, of order
O(%), the vector component y” should be of order O(%).
It follows that

/11— b2 + gﬂg (—Zba\/l o Dabz)

= 0(x'?). (3.28)
Noting that & ~ ¥2, we see that condition (3.28) coincides
with the condition (3.14).

IV. SUPERTRANSLATIONS EXTENDED IN A
BULK: SYMPLECTIC TRANSFORMATIONS

In this section we consider supertranslations
preserving the near-horizon form of the metric which
are defined not only in a vicinity of the horizon, but extend
to the bulk. Supertranslations which preserve the gauge
of metric (2.1) were constructed in [15]. Supertranslation
field in metric (in coordinates 6, ) transforms under
supertranslations as

6rC(0.9) =T(0.9).
where T(0, ¢) is an arbitrary smooth function on the unit
sphere. Generator of supertranslations preserving the
static gauge of the solution (2.1) in coordinates (p, z%)
has a form
ér = Too0; —

(T —Ty)d, + F**D,TD,, (4.1)

where

C® — 24" (p — E)
2(p-EP-U)

Transformations (4.1) are defined in the bulk and form a
commutative algebra under the modified bracket [15]

Fab _
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(1. &2)moa = [€1:&2] = 67,& + 67,65 (4.2)
It is explicitly verified that
fl%% = Orps, (4.3)
where
519,(C) = limlp,(C+eT) = p,(C)) /e, (44)
and
819yt = 619y = 0. (4.5)

General transformations (4.1) do not respect the near-
horizon form of the metric (3.5) changing the component
gy To preserve the near-horizon form of the metric
(3.5), transformation generated by (4.1) must satisfy
condition (3.13).

If the supertranslation field depends only on 6,
C = C(0), the generator of supertranslations simplifies to
|

xr = X70; + x50, + x30,

K
(—T 1—b2 4 ZF“”D,,T(—Zba\/l T Dub2)>8r + FD,Ta,,

T/

§r =To0, — (T =Ty)0, Y Yeley

dp.  (4.6)

The near-horizon structure of the metric is preserved
provided the parameter of transformation (4.6) T'(6) sat-
isfies the relation

~T(py — C) + T'C' = O(%). (4.7)

At the horizon, condition (4.7) is an ordinary differential
equation on 7'(@) with the solution

T(0) = aexp/gdﬁy/l/4— c?/C,

where a is an integration constant. Generators of super-
translations in coordinates (p, x*) and (r, z%) are connected
by the transformation (3.23). In variables (r,z%) the
generator of supertranslations is

(4.8)

(4.9)

where in F? it is substituted p — C = K(1 — b%)!'/2/2. Acting by the generator of supertranslations on the component §,,,

we obtain

2K>-1 K
Lo = (—T\/l =B+ P FODLT (<26, 1= b 4 Db )

r2 KZ

In the near-horizon region the relations for K are (3.26). To
preserve the form of §,,, it is necessary that

K
V1 + ZF”bDbT(—2ba V1-p+ Dazﬂ)

= 0(&'?). (4.11)

This imposes the condition on 7(z,7):

|
[—Tx/l—b2+ZFabD,,T(—2ba\/1—b2+Dab2)] —0.

r=0

(4.12)

Equation (4.12) for T is solved in the Appendix. In the
case of a supertranslated field in the metric depending only
on 6, relation (4.11) turns into (4.7). It is seen that in the

(4.10)

|
near-horizon region in variables r,z“ the generator of

supertranslations has the following structure:

xr = 0(x")0; + 0(x)0, + 0(x")0,.  (4.13)

V. SURFACE CHARGE OF ASYMPTOTIC
HORIZON SYMMETRIES

In this section, we calculate the variation of the surface
charge corresponding to diffeomorphisms preserving the
near-horizon form of the metric. Calculations are performed
both in p- and r-systems. Variation of the surface charge
associated with a symmetry generated by a vector field & is

Jtielonh) = tim fidx [ (@), v=aKE. (5)

where (d°x),, = (1/4)€yp,,dx*dx”. The charge density is
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1
KL = V= VI 4 &,V ShVAE = hV

a
W (Ve + Vo) + (u < v). (5.2)
where @ = 1 in the Barnich-Brandt form [22] and ¢ = 0 in
the Iyer-Wald form [21]. Here OX is a codimension-2
compact spacelike surface enclosing the horizon surface.

A. Variation of the surface charge in the p-system

First, let us consider parametrization of the unit sphere in
variables (p, z,Z). The metric of the black hole is (2.6),
and the near-horizon region is foliated by surfaces
ps =V (p—=C)*+(DC?>=1/2+x, |x| < 1.

To the variation of the surface charge (5.1) contribute
integrations over (z,Z2), (p, z) and (p,2):

/ V=9€1,zdz N dZK", / VY€ dp N dzK",

/ V=€ pzdp N dZK". (5.3)
Taking the differential of the equation of the horizon
surface \/(p—C)> + (DC)>—1/2 =0, we express dp
through dz“:

(p—C)dp = (p — C)(C.dz + C:dz)

1

=5 (0:(DC)dz + 0:(DC)Y*dz).  (5:4)

Setting €,,.: = 1 and introducing evident notations p . and
Pz, we obtain

1 B}
gH: = E/ dz N dz\/=g K" +p:K* —p_K*]. (5.5)
The charge density K?’ in the Iyer-Wald form is
1
KL = Vb = &V + &, VR 42 hOPe
—h°VE — (p < 1). (5.6)
From (2.6) we have
9(p.2.2) = 9ugpp .
where
9% =092~ G = vE(p - EP - UP. (57

In variables p, 0, ¢ expressions (5.3)—(5.6) have the same
functional form as in p,z,Z with the formal change
2.2—0,¢:

1
ﬁHét :E/dg/\d(p\/—g[Ktp+p'(ﬁK”ﬂ—pﬂK’6].

At the near-horizon surface p = py(z%) + X the determi-
nant of the metric is of order O(%?), and to obtain a nonzero
result for §H, in K’g" we collect the terms of order O(X7).

The leading in X terms of the metric components are seen
from (3.5). Variations of the metric have the same order in X
as the metric components.

The five contributions to K%' are

1. &Vh—EVPh =g g'd,h—Egrd,h,

2. =V, 4 BV S,

3. & VPR — E N,

4 L -ve)=tpve-gve),

5. —hVE + RSV, (5.8)

Because & is independent of # and ¢?” = O(x°), the two
terms in the item 1 are of order x°.
The first term in the item 2,

—EV 0 == (V1 V1P 4V, h)
= & (20, R T 1 4 T, bt 4T h T4, b
= 0’

1s zero, because all I vanish. The second term in the
item 2 is

EVSh’” — gt(vlhf)t + vphp/) + vah/)a)
= &(DLh" + T, h7) + O(X°).

The first term in the item 3 is transformed as

ENVPRS = P (EN W + &NV WP+ £V W)
= ¢P[£,(0,h" + 2T, k")
+ &,(T%,h?? +T,h'") + O(x%)]
= &g (0,h" + ¢" g, ,h") + O(X°).

The leading in X terms in this expression cancel,
f_l” gtt hit
ftg/)p (a/)h” + gngtt.phn) = gtgngpp <_2§ + ?25@11 ?)
= O’

and the remaining expression is of order %°. The second
term in the item 3,
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—E IV = =g (EV W+ EN R 4 EN )
— _gt(r/’htt + Ft hpp) + 0(560),

cancels the corresponding expression in the item 2.
Collecting the items 4 and 5, we obtain

h h
Pt __ t o8 _ pps ) 0| 0 ts _ pts
KY =V, (2 7 —h ) V& <2 g —h )

+ 0(x%). (5.9)

Taking into account the form of the metric in the p-system,
we write K%' as

h h
v (b ) v ()

+ 0(x%). (5.10)
The leading in ¥ part of K”* of order 7! is
pt t gt h P Y P £t h 1t 1t
ngrptg 59’0 —h - & 59 —h
é:t
=3 9up(hg"q” = g"I” — g7 k")
— é:l "taPP ab 5.11
=3 9upd" 9 havg (5.11)
The expression h,,g*” can be written in a form
hapg™ = (ho.g* + hzzg** + 2h2g%)
1 59
= ﬁ (hzngZ + hz:9.. — 2hzzgzz) - W : (5-12)
Thus, we obtain
& 59( )
th ) gttpg”gﬂ (5.13)
Calculating the charge density,
1
I = EVh — EV R + E VR + Ehvzét
—h*V i - (z o 1), (5.14)

we note that the contribution from the item 1 is O(3°),
contributions from the items 2 and 3 cancel up to terms
O(x"), and the items 4 and 5 yield

ft h a a
KY =3 9uag" (597~ I°

& h
=5 99" 59” —h").

(5.15)

Expression (5.15) is transformed to a form

h . _
]) + Gz <§9ZZ - hzz>:|

(5.16)

5[
5 =" G2 (g G5 + Dz

+0(x%).

7t _
K~§

In the same way for the charge density K? we have

1

2 & _ h .
Ki=24" [gn.z(hppg”"gzz + 2?7 + g (59“ —h#

+0(x%). (5.17)

In variables ¢, p, 6, ¢ we obtain the expressions of the
form (5.16) and (5.17) with 6, ¢ substituted for z, Z

Let us consider the case of a supertranslation field C(0)
depending on . The metric (2.5) takes a form

ds* = g, di* + g,,[dp* + Geed& + §,,dp*]
—1/2\2
— _(M) dr?
ps+1/2
+ (1+1/2p)*[dp* + (p — C = C")*a6*
+ sin?@(p — C — C' cot §)?].

Because p , = 0, we have

1
JH: = s / do A Sp\/—g[K"" — p oK. (5.18)
The charge density K is
. &
KE =3 9u,9"9" (39009" + 89,p9"")-  (5.19)
For the density K% we obtain
5 PP q
K" =>-9109"9"(69,,9” + 69,99"].  (5.20)

2

Variation of the surface charge is

H:= lim —
ﬁf pir}’1/24

—P o9 9999 <%+5gﬂ>] .
' . Ypp Ype

1) o
do N d(ﬂ\/_ g |:gft pggp < ggeg +_9¢¢>
00

e

(5.21)

Here ggo = 9009pp> 999 = Jpp9pp- In the near-horizon
region we have
Yirp 9.0
L ~4(p-0C), =~ 4(=C")(p-C-C"), (5.22)
\ Yu VY

and
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C'(p-C-C")
po=—"—""—""F+"".
p—C

We obtain variation of the charge as

.1 '
JH: = lim 4—/d9 A d(PE [(P = C)0\/906909

ps—1/247m
Cl2(p —-C- C//)

* 4(p-C)

S, /gwg/,p] , (5.23)

where at the horizon py — C = /1/4 — C”.

Integrability of variation of the charge means that the
integral of variation over the manifold of metrics is path
independent. Integrability is verified explicitly, if variation
of the charge is obtained in a form of variation of a
functional over the space of metrics. The expression for
¢H  (5.23)) is not of the form of variation of a function over
the space of metrics.

B. Variables r, z*

Let us turn to calculation of the variation of the surface
charge in variables (r,z%). First, we perform calculations
with the metric (2.13):

ds® = §,dt* + §,,dr* + 2§,,drdz® + §,,dz"dz".
At the surface r =2 + X enclosing the horizon surface

r = 2, the near-horizon forms of the metric (2.13) and its
inverse are

Gt 0 0 0
@ o 0 grr/)% grz/\/§ grz/\/} .
" 0 grz/\/;c gzz gzZ ,
0 §:/V: Gzz
750 0 0
0 TR —rz \/§ —r7 \/§
g = 7r el (5.24)
0 grz\/;c 7 G~
0 ng \/)TC gZZ gZ b4

where §,,, denotes the factor of order O(&°). Variation of
the surface charge is

1 N
g1, 0.0) = 5 [ (@), /TR @0.0). (525)

where

A

- £ a TP fpngs e PN
K}I{Wrt :erlh —;(’Vsh"‘ _I_)(svrhm 4 Evr}([ _ h"‘Vs)(’

—(r—1 (5.26)

and %, is a surface r = 2 + &. Here § = ¢,,§>, and % is
the determinant of the 3D part of the metric:

~ AD A

9(3)(r7 Z, Z) = @rr(.azzgii - .@%E) — 9r:9z77
- .a%z.azz + Zerszrz@zz- (527)
Through the variables (p,z%), determinant 93 can be

written as §®) = g,,p25'». Near the horizon, substituting
p,r from (2.10) and g,, (2.11), we have

§<2)

Pyt
V(1 -4(DC)?)

(5.28)

where §% = §..3:- — §%. From (5.28) it is seen that
§® =0(i:"), and the determinant of the metric,
G =0,0%, is of order O(i°). To have an expression
nonzero at the horizon, we must select in the surface

charge form K the terms of order O(3°).
The five terms in (5.26) are

1.y V'h=y'V'h=yhg"0.h -y gm0k — 45790, h
= 0(3'?).
2. — VA + VR

3. ){S@rl’:lts _)(Sﬁll’:lrs :)(t@ri’\l” _)(I@tilrt _)(r@tilrr
_){a@tilra.
]:[ 771 Vi il APINT ot AIENT ol ~1/2
4. S (V' =V =219"Vox' = gV + O

oA PN 1 ~ -~ n~n
5. =N BN = =S (RN = RV )

+ O(%'?). (5.29)

Estimating two terms in the item 1, we have
290 =2 (470, + g7 0,h) = O(31)?)

and the item 1 does not contribute to K'".
Because all the terms containing I" one index ¢ are zero,
in the item 2 the first term vanishes:

=g
[¢]
=
g
-t
NN
—
<
<
=
3
+
<
&
=
N
N
SN—
—_
7
[¢]
1%}
5".
o
=t
a
o
o)
17}
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}(t@rilrr )(t(arilrr + 2F;r]’,‘lrr + 2F;ailra) _

Because of the identity g, + §™“g,, = 1 the sum of the
terms in round brackets in (5.30) is equal to —A’". The term
%'V,h™ is of order O(2'/2). In the item 2 there remains the
term y'V, A"
In the item 3 the first term is
)(S@rilm :){t@ri/‘ln +)(r@ri,‘ltr +Xa@rilta
=00V PNV 4 1, (7Y V)R
+ 0(29).

The term 4'§,,§"*V, A" is of order £!/2. In the term

[N Arr@ i f= A=A Ijlff gtt— ljln ~0
2009V h" = ¥ 5,87 % —?+§gn§+0(ﬂ

the leading-order parts cancel, and it is also of order
O(3'/?). The remaining term in the item 3, equal to

- @,fz” , cancels the corresponding term in the item 2.
We obtain K™ as

~

N o h N
PR

)(I ilf\rr rrr r ]/:l,\ 2 R
:E|:F§[(§g —h >—Fn<§g”—h”>+0(xl/2):|.

(5.31)
Because g, = V(r), we have I'), =T, =
In K" the leading terms are
. ¥ N N N
Ky > Gu ARG = hTg =GR
_)(t ~ Atf]’,\l ~rraab _ Aransrb 5.32
=5 908" han (G757 = 557)- (5.32)

The combination in the rhs of (5.32) is presented as

A s Ara T fl g”‘f’il”@ —2;} ’A?
hap (G 9 =3 gb) = &Iz 191(3§Z 22922
591
o 9(3) ’ (5.33)

where

- 1 1 -
){t |:hrr + (grr&grr <_ ’\2> + 2graj\cl/2§m (_2,\%/2>>hrr2 + 0()%1/2):| — 0(561/2)
X X"

){’(f_z’r+2F£,fz”—|— 0(21/2))

(5.30)
|
Variation of the surface charge is
o] 7 591
~ — o = ~A(3)A A Alt
FH, (9, h) = lim e / dz N dZ\[VGV 5 Gurd e
(5.34)

Using (5.28) this expression is presented as

|
H,(5.h)=— [ d
gH (. h) 47r[:HZ

_x 89 i
L 1/4—(D 2,
/\a’z2 §<2)(/ (DC)?%)

NGEl

(5.35)

In the general case the integral (5.35) is not of the form of a
variation of a functional over the space of metrics. A special
case of the supertranslation field with the integrable
variation of the surface charge is discussed in the next
section.

VI. INTEGRABLE VARIATION
OF SURFACE CHARGE

In this section we consider an example of integrable
variation of the charge. We consider the case of a super-
translation field C(z,Z) in coordinate system (r,z,Z)
depending only on |z, or in coordinates (r,6, ), only
on 0.

In coordinates (7, 8, ¢) the metric (2.13) with C = C(0)
takes a form

dr? br(VI— b2 — b))
ds® = —VdP +— 4 2drde
g i T T Ty
a0 =)
(1-0%)

+ dg?rsin20 (b cotd — /1 - bz)z,

where b =2C'(0)/K. The charge density IA(;’(@, 9)
(5.32) is

(6.1)

t

% X A A 7 AT 2 AT 7 AFT 2
Ky =% 0,9 Thoo (79 = (7)) + " 97). (6:2)
Using the relation

R A

9 = G000 — 0 =7 (6.3)

and noting that
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we obtain the charge density K" as

. ! h h
K?=’i@,,,,@"<v 2y “"”)
996' g(p(p

2 ! .@99 g(/u/)
Variation of the surface charge §H,, is
H,(3.69) = lim— | d0 A dg/=3u0@ 5, K"
gH,(9.69) = 13;4— A dor\[ =319 G

X' 0(9069,p)
lrl_{n do A do [ Ge0dpp 4 ?gw'
v

(6.4)

A. Proof of equality of the variations of the surface
charges §H, and §H,

Let us show that the variation §H,, in variables (7,6, ¢) is
equal to the variation §H in variables (p, 6, ¢). Because the
charge densities contain derivatives of the metric which
transform noncovariantly, we establish the equality by
direct calculation.

The 00 and ¢¢ metric components in the r- and

p-systems are connected as (2.12)

KZ
900 = 900 3
4(p -

C)Z ’ (66)

Jpp = Ypyp-

Using (6.6), we obtain a connection between the determi-
nants of the metrics

= K?
VA=V e o)

K—1\24r2 )1/2
o= [=——) ==— . 6.7
Finally, we have ((K + 1) K2 900900 (6.7)
| Y The metric variations are connected as
.0 = 1= [ a0~ g5\ fawd. (65)
4 2 op\?
5906) = 5996‘ + 5gpp (%) 5 5ggo(p = 59(/1(/7' (68)
The expression (6.5) is of the form of the variation of the
functional and is integrable. Variation of the charge gH, is presented as
|
1 X' [8900 + 89,05 4(p — C)* &g,
H,=— | d0dy\/36000,=V , £y s
PH, 471'/ P/ 900900 2 [ 9o K? - Yoy
1 ! K3 8900 4(p— C)* & 8,,4(p — C)?
4r 2(K2=1)(p=C)r* | gy K 9o  Joo K ’
1 / ¥y 4K {5999 89,, K> 89,, C?
=— [ ddo\/—9=———5 |— (p-C)+ ————5 +—F . (6.9)
4z 2 (K2-1)r? ) 9op 4(p—=C)? g, p—C
Next, using the relations
K-1 p-C K-1 (-C)(p-C-C")
=16——x——, =16 ,
Gutp (K+1? K o = DK 1 1) K
we transform gH: (5.21):
0 1) 1) 1)
ng /\/_dngD |:gttp <ﬂ+ g(pga> —po 90 (ﬂ‘F g¢(p>:|
gttgpp Yoo ggo(p gttgpp gpp g(p(p
4K (Sggg 5g¢(ﬂ K2 égpp (:/2
=— ,/—gd&d(p—— {— (p—-0C)+ — . (6.10)
4,[/ 2 (K> = 1)r* | geo 9op 40 =C)?* g, p—C

', the expressions (6.9) and (6.10) coincide. The variations of the charges (6.9) and (6.10) are written for the
K?/4, and for K = 1, at the horizon, are identical with (5.23).

Because & =
surfaces (p — C)? + C? =
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VII. SUMMARY AND CONCLUSIONS

In this paper we studied the near-horizon symmetries of
the metric of a black hole containing a supertranslation field
which preserve the gauge and the near-horizon structure of
the metric. The aim of the paper was practical calculation of
the variation of the surface charge corresponding to
asymptotic symmetries preserving the near-horizon form
of the metric. The horizon symmetries were considered in
different coordinate systems (p- and r-systems) connected
by a large diffeomorphism containing a supertranslation
field and also in coordinate systems obtained by a pure
coordinate (gauge) transformations which do not contain
the supertranslation field.

In units M = 1, where M is the mass of a black hole, in
the p-system the horizon of a black hole is located at the
surface p, = ((p — C)*> + (DC)*)'/?> =1/2, where C =
C(z%) [z* = (0, ¢) or (z,Zz) are different parametrizations
of the unit sphere] is a supertranslation field in the metric.
In the r-system the horizon is located at the surface r = 2.
Foliation of the near-horizon region was defined through a
smooth deformation of the horizon surface p, =1/2
top,=1/2 4 x.

Horizon transformations preserving the form of the
metric were generated by vector fields. Infinitesimal diffeo-
morphisms preserving the form of the metric were studied
in both p and r systems. Variation of the surface charge
associated with a transformation generated by a vector field
&™ is the limit x — O of the integral of the charge density
K:(6:9.g) over the near-horizon surface enclosing the
horizon surface. Here g = g,,, and 6:g,,, are the metric
of the black hole and its variation generated by the vector
field &".

In the p-system, variation of the surface charge is equal
to the sum of three integrals over the surface enclosing the
horizon surface with the charge densities KQ:', K?t and K?t

and corresponding integrations are over the variables
(0,9),(p,p) and (p,0). In the r-system, the surface
corresponding to deformation p; = 1/2 4 x is the sphere
of the radius r = 2 + 2x2.

The square root of the determinant of the metric in the
p-system is of order x (as for the Schwarzschild metric in
the isotropic coordinates), in the r-system it is of order x°.
Correspondingly, the charge densities were calculated in
order x~! in the p-system and in order £° in the r-system, so
that the resulting integrals for the variation of the surface
charge were independent of x.

We discussed symplectic transformations which are
extendable from the near-horizon region in the bulk.
Under the simplectic transformations the supertranslation
field in the metric transforms as 6;C(0, ¢) = T (6, ¢). In
the case of a supertranslation field depending only on 0 a
condition that transformation preserves the near-horizon
form of metric at the horizon is an ordinary differential
equation with a solution for 7'(9) expressed through C(9).

In the general case the surface charges obtained by
integration of variations of the charges over the space of
metrics are path dependent. In a special case of the
supertranslation field depending only on a spherical angle
0, variation of the charge in the r-system has a form of
variation of a functional over the space of metrics and can
be integrated in a path-independent way. By an explicit
calculation we show that the variations of the surface
charge in both p- and r-systems are equal. However, in the
p-system, in coordinates (p,z?) the expression for the
variation of the charge is not integrable.
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APPENDIX: SOLUTION OF EQ. (4.12)

In this Appendix we find a general solution for the function
T(z,7) in the generator of supertranslations Eq. (4.1). We
solve Eq. (4.12) which is a condition on the generator 7T at the
horizon (written in notations of Sec. II):

-T 1—b2+%F“”DbT(—2ba\/1—b2+Dab2)] —0.

r=2

(A1)
Equation (A1) can be presented in a form
T+ F‘D,T =0,

where

1
W:EW%m+@VLwQ

r=2

Following the general rules of solving the differential
equations with partial derivatives [41], we consider a
function W(T, z, 7) satisfying the equation

_OW
Fi=— =0.
820

oW oW
T+ FP ot

A
oT 0z (A3)

Equation (A3) is solved by writing the system of ordinary
differential equations

T dz 4z

=— =, A4
T F* F* (A4)

Let the independent first integrals of Eq. (A4) be
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wi(T,z,2) = Cy, wa(T,2,2) = Cp. (AS)
The general solution of Eq. (A3) for W(T, z,7) is
W= f(u/l’ U/Z)ﬂ (A6)

where f is an arbitrary smooth function. The function 7'(z, Z)
is implicitly determined from the equation

fwi.w,) =0. (A7)
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