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We use covariant phase space methods to study the metric and tetrad formulations of general relativity in
a manifold with boundary and compare the results obtained in both approaches. Proving their equivalence
has been a long-lasting problem that we solve here by using the cohomological approach provided by the
relative bicomplex framework. This setting provides a clean and ambiguity-free way to describe the
solution spaces and associated symplectic structures. We also compute several relevant charges in both
schemes and show that they are equivalent, as expected.
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I. INTRODUCTION

Space-time boundaries play a prominent role in classical
and quantum general relativity (GR). Their applications
range from black hole thermodynamics [1,2] to the study of
radiative modes at scri [3–6]. They are also fundamental to
describe isolated and dynamical horizons [7–11] or in the
definition of physical charges [12–15]. Boundary terms
also control the dynamical properties of some midisuper-
space models with “conical singularities” at spatial infinity
such as Einstein-Rosen waves coupled to massless scalar
fields [16–19].
Classical GR defined in a space-time without boundary

may be alternatively described by the first order Hilbert-
Palatini (or Holst) action in terms of tetrads or the Einstein-
Hilbert Lagrangian in metric variables. In particular, the
corresponding Hamiltonian descriptions are equivalent.
Moreover, by employing standard covariant phase space
(CPS) methods, it is possible to see that their respective
symplectic potentials differ by an exact form. Thus, when
this form is integrated over a Cauchy slice Σ, the result
vanishes as a consequence of Stokes’s theorem. This shows
that the presymplectic forms corresponding to the metric
and the tetrad formalisms are equivalent in the space of
solutions.

The situation changes substantially when boundaries
(possible at conformal infinity) are present. Some of the
concerns regarding the equivalence of the tetrad and metric
formulations may be attributed to the choice of bulk and
boundary Lagrangians. In fact, many discrepancies found
and discussed in the literature [20–23] are to be expected
since the boundary dynamics is not always explicit and the
solution spaces are not fully specified. To avoid these
problems, it is crucial to choose variational principles such
that the equivalence of the dynamics they describe, both in
the bulk and at the boundaries, is guaranteed. The choice of
the bulk and boundary Langrangians will determine the
presymplectic structure in the solution space as well as the
Noether charges.
The purpose of this paper is to prove that the metric and

tetrad formulations are equivalent in the CPS framework
with Dirichlet boundary conditions (BC) and (homo-
geneous) Neumann BC (the same methods can be applied
to other BC). This proof has profound physical implica-
tions. Although at first sight this may appear as a purely
mathematical result, nonequivalence would make physical
quantities formulation dependent. For instance, the con-
served charges might differ at conformal infinity and/or at
the black hole horizon. As suggested in [20], this would
have repercussions in the thermodynamics of black holes.
To prove the equivalence, we will rely on the relative

bicomplex framework, a formalism developed in [15]
which is cohomological in nature so no ad hoc choices
are required. This formalism will allow us to establish the
equality of the metric and tetrad symplectic potentials in the
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relative cohomology (equality up to a relative exact form as
explained in the Appendix). Consequently, the respective
presymplectic forms in the solution space are equivalent
and, as expected, there is a precise correspondence between
the Noether charges in both formulations. As a direct result
of our discussion, we will consider the asymptotically flat
case and rederive the well-known formula for the Arnowitt-
Deser-Misner (ADM) energy.
The paper is structured as follows. In the next section, we

present some of the geometric concepts relevant for the
implementation of the CPS algorithm developed in [15]. In
Sec. III, we apply this algorithm to the metric formulation
of GR. Section IV presents an analogous study for the
tetrad (or vielbein) formalism. In Sec. V both formulations
are compared and shown to be equivalent. We present our
conclusions in the last section of the paper. We have also
included in the Appendix a short summary of the relative
bicomplex framework together with some computational
details. Throughout the paper, we will use a mixed notation
combining explicit indices and index-free expressions. The
idea is to use each of them whenever they are useful: the
former is more standard and sometimes more explicit,
while the latter simplifies significantly some of the com-
putations. For the benefit of the reader, relevant results are
presented in both notations.

II. THE GEOMETRIC ARENA

A. M as a space-time

LetM be a connected and oriented n-manifold admitting
a foliation by Cauchy hypersurfaces. Without loss of
generality, M ¼ I × Σ for some interval I ¼ ½ti; tf�,
(ti < tf) and some (n − 1)-manifold Σ with boundary ∂Σ
(possibly empty). Denoting Σi ¼ ftig × Σ and
Σf ¼ ftfg × Σ, we split ∂M into three distinguished parts

∂M ¼ Σi ∪ ∂LM ∪ Σf

where Σi;f are the “lids” and ∂LM ≔ I × ∂Σ the “lateral
boundary.” M ¼ I × Σ is a manifold with corners
∂Σi ∪ ∂Σf, which, as a set are ∂ð∂LMÞ. The following
diagram summarizes relevant notational information about
embeddings and the induced geometric objects:

ð2:1Þ

The entries in each 4-tuple in (2.1) are the manifold, the
(nondegenerate) metric or pulled-back metric, its associated
Levi-Civita connection, and the abstract indices used to
describe tensors in the manifold. The arrow labels specify

the notation used for embeddings and normal unit vector
fields. Horizontal arrows are associated with future point-
ing normal unit vector fields and vertical arrows are used
for outward pointing normal unit vector fields at the
boundary. The notation just introduced is not consistent
for the bottom lid Σi, as it may be thought of as a spacelike
hypersurface embedded by {i or considered as part of ∂M.
Σi often appears as the boundary of M, so we choose the
outwards (past pointing) convention in this case. An
overline is often used to denote objects that live exclusively
at the boundary, such as ḡ, which in index notation reads
ḡᾱ β̄. Notice that the embeddings | and |̄ are fixed since the
boundaries are also fixed. However, { and {̄, which embed
ðΣ; ∂ΣÞ into ðM; ∂MÞ, can be chosen among the Cauchy
embeddings satisfying {ð∂ΣÞ ⊂ ∂LM.
As ðM; gÞ is oriented, we have the metric volume form

volg that assigns the value 1 to every positive orthonormal
basis. We orient Σ and ∂LM with volγ and volḡ, respectively
given by

{�ðιU⃗volgÞ¼−nαUαvolγ; |�ðιU⃗volgÞ¼ ναUαvolḡ ð2:2Þ

for every vector field U⃗. These orientations are the ones for
which Stokes’s theorem holds in its usual form. Finally, ∂Σ
can be oriented as the boundary of Σ. Thus volγ̄ is given by

|̄�ðιV⃗volγÞ¼ μaVavolγ̄ → {̄�ðιW⃗volḡÞ¼þm̄ᾱWᾱvolγ̄: ð2:3Þ

Notice that if we use Stokes’s theorem from ∂LM to
∂ð∂LMÞ ¼ ∂Σi ∪ ∂Σf, a minus sign appears in the integral
over ∂Σi.

B. From M-vector fields to F -vector fields

Let F be a space of tensor fields on M (sections of a

certain bundle E!π M) that may be thought of as an infinite
dimensional differential manifold where we assume that the
usual differential objects—like tensor fields, the exterior
derivative d, the interior derivative {, the wedge ⩕, or the
Lie derivative L—are well defined (see the appendix of
[15] for more details about this and other technicalities). As
a reminder for the reader, most objects defined over the
space of fields are denoted with a double font. Given a
vector field ξα onM, let us associate to it a canonical vector
field Xξ on F . To that purpose, we assume that ξ is tangent
to ∂LM but not necessarily to Σi and Σf (notice that we can
always extend the interval ½ti; tf� to avoid problems at the
lids) and take advantage of the fact that a field ϕr (r ranging
over the number of fields of the theory) can be interpreted
in two ways:

(i) As a tensor field on M. That is, a section ϕr∶ M →

Er of some bundle Er!π M such that
ϕr
p ≔ ϕrðpÞ ∈ Er

p ≔ π−1ðpÞ. In particular, we can

take its Lie derivative ðLξϕ
rÞp ¼ ∂τj0ðφξ

τÞ�ϕr
p,
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where fφξ
τgτ ⊂ DiffðMÞ is the flow of ξ. If F is

reasonable enough, as is the case in this paper, we
will have Lξϕ ∈ F .

(ii) As a point ofF . Avector fieldXξ ofF is a section of
the tangent bundle TF i.e., ðXξÞϕ ≔ XξðϕÞ ∈
TϕF ≅ F . The last isomorphism comes from the
fact that the field space F is linear in this case. The
nonlinear case is not as straightforward, but it is
possible to carry out similar constructions in con-
crete examples.

Taking into account these remarks, we define

ðXr
ξÞϕ ¼ Lξϕ

r ≡LXξ
ϕr ¼ Lξϕ

r: ð2:4Þ

Notice that dϕr (which appears in the definition of the Lie
derivative L through Cartan’s magic formula) has to be
interpreted as the exterior derivative of the evaluation
function.

C. CPS algorithm

This paper relies heavily on the results of [15]. For
convenience, a summary has been included in the
Appendix, but we list here the main steps of the CPS
algorithm since it will be used throughout the paper. This
algorithm provides an ambiguity-free method to construct a
presymplectic structure in the space of solutions canoni-
cally associated with the action of the theory.
(0) Given the action S∶ F → R describing the dynam-

ics of a particular field theory, choose any Lagran-
gian pair ðL; l̄Þ such that

S ¼
Z
M
L −

Z
∂M

l̄:

(1) Compute dL ¼ Er ∧ dϕr þ dΘ and choose any Θ
compatible with the previous expression (uniquely
defined up to a d-exact form).

(2) Compute dl̄ − |�Θ ¼ b̄r ∧ dϕr − dθ̄ over ∂LM and
choose any admissible θ̄.

(3) Define SolðSÞ ¼ fϕ ∈ F jErðϕÞ ¼ 0; b̄rðϕÞ ¼ 0g
and the inclusion |S∶ SolðSÞ ↪ F .

(4) Compute the presymplectic structure canonically
associated with S

{
S ≔ d

�Z
Σ
{�Θ −

Z
∂Σ

{̄�θ̄
�

→ S ¼ |�S
{
S

where {∶ Σ ↪ M is any Cauchy embedding and {̄ ≔
{j∂Σ∶∂Σ ↪ ∂LM its restriction. S does not depend
on {.

It is important to notice that it is not always possible to
perform the second step. If b̄r and θ̄ do not exist (their
existence does not depend on the chosen Θ), that means
that the theory is not well defined and hence we will have to
changeF and/or the action [hence ðL; l̄Þ] to ensure that the
equality holds. Once we have the presymplectic structure,
the following two steps provide important additional
information about the theory at hand.
(5) Study symmetries; i.e., find out if Xξ is a

d-symmetry and obtain the ξ currents and ξ charges:

Jξ ≔ ιξL − {Xξ
Θ;

|̄ξ ≔ −ιξ̄l̄ − {Xξ
θ̄;

Q{
ξ ≔

Z
Σ
{�Jξ −

Z
∂Σ

{̄�|̄ξ:

(6) Compare S with the presymplectic structure ob-
tained in the standard Hamiltonian formulation.

III. GENERAL RELATIVITY
IN TERMS OF METRICS

A. Step 0: Action

Let us consider the following spaces of metrics on M:

F ðmÞ
N ¼ MetðMÞ; F ðmÞ

D ¼ fg ∈ MetðMÞjḡ ≔ |�g fixedg

that we will refer to as Neumann and Dirichlet metrics
respectively. Here MetðMÞ is the space of Lorentzian
metrics on M such that the lateral boundary is timelike
and the lids are spacelike (it is an open set of the space of all

Lorentzian metrics on M). Consider also the actions SðmÞ
N

and SðmÞ
D both equal to

SðmÞ
GR ðgÞ ¼

Z
M
LðmÞ
EH ðgÞ −

Z
∂LM

l̄ðmÞ
GHYðgÞ;

LðmÞ
EH ðgÞ ¼ ðRg − 2ΛÞvolg;

l̄ðmÞ
GHYðgÞ ¼ −2TrḡðK̄Þvolḡ

but suitably restricted to these spaces of metrics. Our
Lagrangian pair ðLðmÞ

EH ; l̄
ðmÞ
GHYÞ consists of the Einstein-

Hilbert term with cosmological constant in the bulk and
the Gibbons-Hawking-York term on the lateral boundary.
Rg denotes the g-scalar curvature (following the signs
conventions of [24]), volg and volḡ the metric volume

forms, and K̄ the extrinsic curvature of ∂LM ⊂ M
given by

K̄ ≔
1

2
|�Lν⃗g≡ K̄ᾱ β̄ ¼ |αᾱ|

β
β̄
∇ανβ

where ν⃗ is the g-normal vector field to ∂LMwith νανα ¼ þ1.
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B. Step 1 and 2: Variations

According to the computations given in the Appendix,
we have

dLðmÞ
EH ¼ Eαβ

ðmÞ ∧ dgαβ þ dΘðmÞ;

dl̄ðmÞ
GHY − |�ΘðmÞ ¼ b̄ᾱ β̄ðmÞ ∧ dḡᾱ β̄ − dθ̄ðmÞ

where

Eαβ
ðmÞðgÞ ¼ −

�
Ricαβ −

�
Rg

2
− Λ

�
gαβ

�
volg;

b̄ᾱ β̄ðmÞðgÞ ¼ −ðK̄ᾱ β̄ − K̄ḡᾱ β̄Þvolḡ;
ΘðmÞðgÞ ¼ ιW⃗volg; θ̄ðmÞðgÞ ¼ ιV⃗volḡ;

Wα ¼ ∇βdgαβ − gβγ∇αdgβγ; V̄ ᾱ ¼ −|αᾱνβdgαβ:

C. Step 3: Space of solutions

Once we know the basic variations, we can compute the
variation of the action

dgS¼L
Z
M
Eαβ
ðmÞðgÞ⩕ dgαβ −

Z
∂LM

b̄ᾱ β̄ðmÞðgÞ⩕ dḡᾱ β̄ ð3:1Þ

where ¼L denotes equality up to integrals over the lids.
Notice that those integrals are unimportant because the
values of the dynamical fields on the lids are kept fixed
when obtaining the equations of motion of the theory. The

solutions obtained from SðmÞ
N are given by metrics g ∈ F ðmÞ

N
satisfying Einstein’s equations EðmÞðgÞ ¼ 0 and the
Neumann boundary condition b̄ðmÞðgÞ ¼ 0, whereas those

from SðmÞ
D correspond to metrics g ∈ F ðmÞ

D satisfying
Einstein’s equation and no additional BC. Indeed, in the
latter case the boundary integral of (3.1) vanishes as a
consequence of the Dirichlet BC introduced a priori on the

definition of F ðmÞ
D .

Remark.—It is important to realize that a boundary term
must be included in the two theories that we consider
(i.e., when no a priori BC are imposed on the space of
fields and with Dirichlet BC). Otherwise, as explained in
Sec. II C, the second step cannot be performed and thus
the space of solutions is not well defined. Nonetheless, it
is possible to impose homogeneous Neumann BC a priori
and include a different boundary term [25] (which
vanishes for dimension 4). However, as we have shown,
this is not necessary. Finally, it is worth noting that
nontrivial BC may lead to constrained variations, which
must be properly handled.

D. Step 4: Symplectic form

Given a Cauchy embedding {∶ Σ ↪ M, we compute the
presymplectic structure canonically associated with the
action as

{
ðmÞ ¼ d

�Z
Σ
{�ΘðmÞ −

Z
∂Σ

{̄�θ̄ðmÞ

�
:

Using the results of the previous sections and the compu-
tations of the Appendix, we obtain:

{
ðmÞ ¼

1

2

Z
Σ
nαδλησαβζg

βρgζϕdgηρ ⩕∇λdgσϕvolγ

−
1

2

Z
∂Σ
ðnαgβημλ þmανβḡη̄ λ̄|ηη̄|

λ
λ̄
Þdgαβ ⩕ dgηλvolγ̄:

ð3:2Þ
As indicated in (2.1), nα is the g-normal to {ðΣÞ ⊂ M, νβ is
the g-normal to ∂LM ⊂ M, mα is the pushforward of the ḡ-
normal to {̄ð∂ΣÞ ⊂ ∂LM, and μλ is the pushforward of the γ-
normal to ∂Σ ⊂ Σ. We have also used the generalized
Kronecker delta

δβ1���βsα1���αs ¼

���������

δβ1α1 � � � δβsα1

..

. ..
.

δβ1αs � � � δβsαs

���������
:

E. Step 5: Charges

The Noether currents associated with an arbitrary vector
field ξα tangent to the lateral boundary are computed in the
Appendix. The result is

JðmÞ
ξ ¼ dQðmÞ

ξ þ 2⋆gðιξẼðmÞÞ;
|̄ðmÞ
ξ ¼ |�QðmÞ

ξ − 2⋆ḡðιξ̄b̃ðmÞÞ; ð3:3Þ

where QðmÞ
ξ ¼ ⋆gdξ is the ξ-Noether potential and

ðẼðmÞ; b̃ðmÞÞ are the 2-tensors that multiply the top forms
in ðEðmÞ; b̄ðmÞÞ. As usual, ⋆g is the g-Hodge dual operator
and, in order to ease the notation, we represent also by ξ the
1-form metrically equivalent to the vector field ξ. The ξ
charge is then given by

Q{
ξ;ðmÞ ¼ 2

Z
Σ
{�⋆gðιξẼðmÞÞ þ 2

Z
∂Σ

{̄�⋆ḡðιξ̄b̃ðmÞÞ: ð3:4Þ

The last expression, when pulled back to SolðSðmÞ
N Þ ⊂ F ðmÞ

N ,
vanishes as expected because the theory is diffeomorphism

invariant [15]. However, over SolðSðmÞ
D Þ ⊂ F ðmÞ

D , the boun-
dary integral is not necessarily zero as b̄ðmÞ does not vanish
in general. Notice that fixing the metric on the boundary
breaks diffeomorphism invariance.
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F. Step 6: Comparing with the Hamiltonian formulation

In the case ∂Σ ¼ ∅, the equivalence between the CPS
presymplectic form obtained in step 4 and the canonical
ADM presymplectic form has been established in [26,27].
The case with boundaries is not as straightforward and will
be studied elsewhere.

G. The asymptotically flat case

As a further application of the CPS algorithm, let us
obtain the ADM energy of an asymptotically flat space-
time (see [28,29] for similar approaches). For that purpose,
consider M ¼ Σ ×R endowed with the Minkowski metric
g0 ¼ −dt2 þ σ. Then Σ is a 3-manifold with Euclidean
metric σ and boundary ∂Σ ¼ S2

r, a 2-sphere of σ radius r0.
Take a small perturbation h ∈ Tg0MetðMÞ, such that h̄ ≔
|�h ¼ 0 (compatible with the Dirichlet condition, other-
wise the charge is zero as the theory is diffeomorphism
invariant). The ξ charge given by (3.4) restricted to the
space of solutions is given by

Qξ ¼ 2

Z
∂Σ

ξ̄ᾱm̄β̄ðK̄ᾱ β̄ − K̄ḡᾱ β̄Þvolγ̄:

Expanding the integrand in terms of h, and labeling with a
circle the quantities associated with g0 (the “background”
objects), we obtain

Qξ ¼ 2

Z
∂Σ

ξ̄ᾱðm̄β̄

∘ þLhm̄β̄ÞðK̄
∘ ᾱ β̄

þLhK̄ᾱ β̄

− ðK̄
∘
þLhK̄Þðḡ∘ ᾱ β̄ −Lhḡᾱ β̄ÞÞðvolσ̄ þLhvolγÞ þ � � �

where we omit higher order terms in h as they vanish when
r0 → ∞ if we consider ξ ≔ n and the inertial foliation
fftg × Σgt (in particular, we take n⃗ ¼ ∂t).
Using the decomposition of the normal να ¼ −ν⊥nα þ

ν⊤α and some of the results of Sec. A 2, we have

Lhm̄ᾱ ¼ |αᾱLh

�
nα þ ν⊥να

jν⊤j
�

¼ {h

�
1

jν⊤j |
α
ᾱdnα − m̄ᾱ

ν⊥
jν⊤jdν⊥

�

¼ 1

jν∘⊤j
|αᾱ{h

�
−1
2

nαnβnγdgβγ

�
− m̄ᾱ

ν
∘
⊥

jν∘⊤j
Lhν⊥

¼ −
1

2
ξ̄ᾱξ

βξγhβγ þ 0 ¼ −
1

2
ξ̄ᾱξ̄

β̄ξ̄γ̄h̄β̄ γ̄ ¼ 0

where we have used that ν
∘
⊥ ¼ 0, ξ ¼ n and the fact that ξ is

tangent to the lateral boundary (hence we can replace hwith
h̄, which is zero). Notice that the previous computation is
performed at the point g0 in the space of fields and at the
lateral space-time boundary.

This computation together with m̄β̄

∘ ¼ ξ̄β̄ takes care of
the first parentheses of Qξ. The last one can also be easily
computed by using the variation of the volume given in
Sec. A 2. Let us now deal with the term in the second

parentheses. First notice that K̄ᾱ β̄
∘

vanishes when contracted

with ξ̄ᾱξ̄β̄ (in coordinates this would be K̄tt
∘
), while

Lhḡᾱ β̄ ¼ h̄ ¼ 0. A long but straightforward computation
gives the following variations:

ξ̄ᾱξ̄β̄LhK̄ᾱ β̄ ¼ 1

2
ξαξβð∇∘ ν⃗hαβ − 2νγ∇∘ αhβγÞ;

LhK̄ ¼ 1

2
{αa{

β
bγ

abð∇∘ ν⃗hαβ − νγ∇∘ αhβγÞ

−
1

2
ξαξβð∇∘ ν⃗hαβ − 2νγ∇∘ αhβγÞ

−
1

2
D̄ā

∘
ðγ̄ā b̄|̄ᾱ

b̄
|αᾱðιν⃗hÞαÞ

þ 1

2
ξανβLn⃗gαβξγνμhγμ:

As the result is independent of the Cauchy slice, we
introduce coordinates ft; x1; x2; x3g and take, as we men-
tioned before, a Cauchy slice given by Σ ¼ ft ¼ t0g, then

ν⃗ ¼ 1

r0
ð0; x1; x2; x3Þ:

Notice that everything is constant along the t direction
(which is the ξ direction because n⃗ ¼ ∂t). Thus we have

K̄
∘
ᾱ β̄ ¼ |αᾱ|

β
β̄
∇∘ ανβ; K̄

∘
AB ¼

1

r30
ðδABr20−xAxBÞ; K̄

∘
¼D−2

r0

where here A;B ¼ 1, 2, 3 label the coordinates. Finally,

notice that the integral of hK̄
∘
volσ̄ goes to zero in the limit

r0 → ∞ and ιξK̄ ¼ 0 because the normal is constant along
the foliation. Putting everything together, we obtain

Qξ ¼
Z
∂Σ
ðK̄
∘
þ γBCνAð∇∘ AhBC −∇∘ BhCAÞÞvolσ̄ þ � � � :

A final comment is now in order. As we can see we have a
divergent constant term in the limit r0 → ∞. To remove it,
we introduce the following r0-dependent boundary
Lagrangian:

l̄ðr0Þ ¼ 2ðTrḡðK̄
∘
Þ − TrḡðK̄ÞÞvolḡ:

By doing this, the constant term does not appear, the limit is
well defined, and we recover the well-known expression for
the ADM energy.
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IV. GENERAL RELATIVITY
IN TERMS OF TETRADS

A. Notation

In order to introduce the tetrad formulation for GR, we
will use internal abstract indices as discussed, for instance,
in [30–32]. For the convenience of the unfamiliar reader,
we have included this short subsection with the basic
ingredients. The more familiar reader can go directly to
Eq. (4.2), where we introduce some new notation.
Let V → M be a Minkowski vector bundle i.e., with

typical fiber V, an n-dimensional vector space with internal
indices fI; J;…g, endowed with a Minkowskian metric η,
which in abstract index notation reads ηIJ. This metric
allows us to define the η-metric volume form ε, the
η-Hodge dual ⋆η, and the η-trace Trη (see [33] for a recent
review). The latter is given by

Trηðα ∧ βÞ ¼ ηI1J1 � � � ηI1JrαI1���Ir ∧ βJ1���Jr :

Tetrads are bundle isomorphisms TM → V. In abstract
index notation they look like eIα, so it is clear that a tetrad,
together with the nondegenerate metrics gαβ and ηIJ,
provides a way to swap space-time and internal indices.
It is also clear from the index notation that tetrads can be
identified with sections of the product bundle V ⊗ T�M
i.e., elements of ΓðV ⊗ T�MÞ, the set of V-valued 1-forms
over M, although in practice it would be more useful to
identify them with V-valued 1-forms over M. This is the
case, for instance, ifM is parallelizable (an example would
be a noncompact manifold admitting a spinor structure
[34]). In that case it is enough to work with coframes
which, loosely speaking, are the local version of a tetrad.
Indeed, a coframe eIαðpÞ at p ∈ M is a linear ismorphism
TpM → V satisfying

gαβðpÞ ¼ ηIJeIαðpÞeJβðpÞ:

Equivalently, a coframe can be thought of as an orthonor-
mal basis in T�

pM. When M is parallelizable, coframes
can be identified with global covector fields but, otherwise,
they can only be considered as local covector fields [32].
It is also useful to introduce objects with more

indices, the so-called generalized tensor fields
t ∈ ΓðV⊗p ⊗ V�⊗q ⊗ TM⊗r ⊗ T�M⊗sÞ, where V� → M
is the dual bundle of the Minkowski bundle. In index

notation, generalized tensor fields look like t
β1���βpJ1���Jr
α1���αsI1���Iq .

We denote as Ωk
rðMÞ the space of k-forms on M with r

totally upper antisymmetric internal indices. Using Greek
abstract indices fα; β;…g for M and capital Latin letters
fI; J;…g for the internal indices, an element ofΩk

rðMÞwill
be written as

ωI1���Ir
α1���αk ¼ ω½I1���Ir�

½α1���αk�:

To ease the notation, space-time indices will often be
omitted and we will simply write ωI1���Ir . Using the
generalized Kronecker delta with internal indices, δJ1���JmI1���Im ,
we define the graded wedge f· ∧ ·g∶Ωk

rðMÞ ×Ωm
s ðMÞ →

Ωkþm
rþs ðMÞ

fA ∧ BgI1���IrJ1���Js ≔
1

r!s!
δK1���KrL1���Ls
I1���Ir J1���Js AK1���Kr

∧ BL1���LS

ð4:1Þ

(this is analogous to the usual space-time wedge, although
we have included curly brackets—not necessary, strictly
speaking—as a reminder for those readers who may prefer
explicit indices) and the graded bilinear product
½·⟑ ·�∶ Ωk

rðMÞ ×Ωm
s ðMÞ → Ωkþm

rþs−2ðMÞ

½A⟑B�I1…Ir−1J1…Js−1

≔ δK1…Kr−1L1…Ls−1
I1 …Ir−1 J1…Js−1

AK1…Kr−1M ∧ BM
L1…Ls−1

ð4:2Þ

where the symbol ⟑ will be called the ledge (Lie wedge).
The previous operation is performed by contracting the last
index of A with the first one of B and antisymmetrizing the
remaining ones. Although not necessary for our purposes, it
is worth mentioning that Ωk

2ðMÞ with the ledge product

½A⟑B�IJ ¼ AIK ∧ BK
J − AJK ∧ BK

I

is a Lie algebra. Moreover, notice that fe ∧ egIJ ¼
2eI ∧ eJ. The rest of the paper will use the following
straightforward formula:

Trηðα ∧ fβ ∧ γgÞ ¼ −Trηð½α⟑ β� ∧ γÞ;
α ∈ Ω�

2ðMÞ; β; γ ∈ Ω�
1ðMÞ: ð4:3Þ

B. Constructing the geometric objects

Consider feIαg a coframe, such that εI1���Ine
I1 ∧ � � � ∧ eIn

defines a volume form on M. We define the Lorentzian
e-metric

g ¼ Trηðe ⊗ eÞ≡ gαβ ¼ ηIJeIαeJβ

together with its g-Levi-Civita connection ∇. We can now
define the dual frame fEα

I g, given by the relations

Eα
I e

I
β ¼ gαβ; Eα

I e
J
α ¼ ηJI

as well as the e-connection ω defined by

∇XEI ¼ωðXÞKIEK≡∇μEα
I ¼ωμ

K
IE

α
K≡ωμ

K
I ¼ eKα∇μEα

I

which can be proven to uniquely determine ω. Notice that
the internal indices of ω are antisymmetric once the second
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one is raised ωIJ
μ ¼ −ωJI

μ . Notice also that we have the
covariant derivative of forms over Ωr

sðMÞ given by

Dα ¼ dαþ ½ω⟑ α�; α ∈ Ωr
sðMÞ

where here and in the following, we will sometimes omit
the internal indices when not needed. Let us also denote the
associated e Christoffel as Γ, the e torsion as T, the e
curvature as R, and the ω curvature as F, which are
given by

∇EI
EJ ¼ ΓK

IJEK ≡ eIΓK
IJ ¼ ωK

J;

TorðEI; EJÞ ¼ TL
IJEL ≡ TL

IJ ¼ eLðTorðEI; EJÞÞ;
RiemðEI; EJÞEK ¼ RL

KIJEL ≡ RL
KIJ

¼ eLðRiemðEI; EJÞEKÞ;

F ¼ dωþ 1

2
½ω⟑ω�≡ FIJ

¼ dωIJ þ ωIK ∧ ωK
J;

where Tor and Riem are the torsion and the Riemannian
curvature of the g-Levi-Civita connection. In particular
Tor ¼ 0. It is interesting to notice that, as mentioned in the
introduction of this section, we are using Eα

I and eIα to

transform the space-time indices in Tor and Riem into
internal indices in order to define T and R. From the
previous equations, the following relations are easy to
derive:

FI
J ¼

1

2
RI

JKLeK ∧ eL; TL
IJ ¼ DeLðEI; EJÞ: ð4:4Þ

It is also straightforward to show that the following
properties hold:

ðD2αÞI1���Ir ¼ ½F ⟑ α�I1���Ir ; DFIJ ¼ 0; DeI ¼ 0:

C. Step 0: Action

Let us consider the following spaces of nondegenerate
tetrads on M:

F ðtÞ
N ¼ fe ∈ Ω1

1ðMÞjeIeI ∈ F ðmÞ
N g;

F ðtÞ
D ¼ fe ∈ Ω1

1ðMÞjeIeI ∈ F ðmÞ
N and ē ≔ |�e fixedg

that we will refer to as Neumann and Dirichlet tetrads,

respectively. The actions SðtÞ
N and SðtÞ

D are both defined by
the same expression

SðtÞ
GRðeÞ ¼

Z
M
LðtÞðeÞ −

Z
∂LM

l̄ðtÞðeÞ; LðtÞðeÞ ≔ LðmÞ
EH ðTrηðe ⊗ eÞÞ;

l̄ðtÞðeÞ ≔ l̄ðmÞ
GHYðTrηðe ⊗ eÞÞ

but suitably restricted to these spaces of tetrads. Notice that,
essentially, we have only performed a “change of variables”
from g to e through the (surjective but not injective) map

ΦðeÞαβ ¼ ηIJeIαeJβ:

Indeed, we have SðtÞ ¼ Φ�SðmÞ ¼ SðmÞ ∘Φ. Since Φ is
Lorentz invariant, the tetrad action is also Lorentz invariant
i.e., if Ψ ∈ SOð1; 3Þ, then SðΨ:eÞ ¼ SðeÞ. By using (4.4),
it is possible to show that the Lagrangian admits the
following explicit expression:

LðtÞðeÞ ¼ 1

2
Trη

��
F −

Λ
12

fe ∧ eg
�

∧ ⋆ηfe ∧ eg
�

¼ 1

2
εIJKL

�
FIJ −

Λ
6
eI ∧ eJ

�
∧ eK ∧ eL: ð4:5Þ

Finding a useful explicit expression for the boundary
Lagrangian requires more work. Let us define the “internal”
normal NI ≔ ιν⃗eI ∈ Ω0

1ðMÞ, which satisfies NIēIᾱ ¼ 0 and

NINI ¼ 1, and the “internal” projector γIJ ≔ ηIJ − NINJ.
With these elements at hand, together with εIJKL ¼
volαβγδEα

I E
β
JE

γ
KE

δ
L and (2.2), it is easy to rewrite l̄ðtÞ as

l̄ðtÞðeÞ ¼ −εIJKLNID̄NJ ∧ ēK ∧ ēL

where

D̄NJ ¼ dNJ þ ½ω̄⟑N�J ¼ dNJ þ ω̄J
I ∧ NI ð4:6Þ

is the induced covariant derivative over the boundary given
by the pullback connection ω̄ ¼ |�ω. Recall also that ē ≔
|�e which, in turn, allows us to define its dual Ēᾱ

I ≔

ḡᾱ β̄ηIJēJβ̄ which satisfies

Ēᾱ
I ē

I
β̄
¼ ḡᾱ

β̄
; Ēᾱ

I ē
J
ᾱ ¼ γKI : ð4:7Þ

With these ingredients, it is possible to obtain a better
expression for l̄ðtÞ by considering
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2εIJKL

��
NIdNJ −

1

2
ω̄IJ

�
− NID̄NJ

�
∧ ēK ∧ ēL

¼ −εIJKLðω̄IJ þ 2NIω̄JKNKÞ ∧ ēK ∧ ēL ¼ −εIJKLω̄KJðηIK − 2NINKÞ ∧ ēK ∧ ēL

¼ −εIJKLω̄KAðγJA þ NJNAÞðγIK − NINKÞ ∧ γKBē
B ∧ γLCē

C

¼ −γKBγLCεIJKLω̄KAðγJAγIK − ðγJANINK − NJNAγ
I
KÞ − NJNANINKÞ ∧ ēB ∧ ēC

¼ −γKBγLCγJAγIKεIJKLω̄KA ∧ ēB ∧ ēC

which is zero as all four internal indices of ε are projected.
This identity allows us to obtain, as already done for
instance in [35,36], the alternative expression

l̄ðtÞðeÞ ¼ −
1

2
TrηððfN ∧ dNg − ω̄Þ ∧ ⋆ηfē ∧ ēgÞ

¼ −
1

2
εIJKLð2NIdNJ − ω̄IJÞ ∧ ēK ∧ ēL:

D. Step 1 and 2: Variations

As before, we rely on the results and computations of the
Appendix to obtain

dLðtÞ ¼EðtÞ
I ∧deIþdΘðtÞ; dl̄ðtÞ−|�ΘðtÞ ¼ b̄ðtÞI ∧dēI−dθ̄ðtÞ

where

EðtÞ
I ðeÞ ¼ −½⋆ηFðΛÞ ⟑ e�I ¼

1

2
εIJKLFKL

ðΛÞ ∧ eJ;

b̄ðtÞI ðeÞ ¼ ½⋆ηðfN ∧ dNg − ω̄Þ⟑ ē�I − 2ðιĒJdēKÞ⋆ηfN ∧ ēgJKNI

¼ 1

2
εIJKLð2NK ∧ dNL − ω̄KLÞ ∧ ēJ − 2ðιĒJdēKÞεJKRSNR ∧ ēSNI;

ΘðtÞ ¼ 1

2
Trηð⋆ηfe ∧ eg ∧ dωÞ ¼ 1

2
ϵIJKLeK ∧ eL ∧ dωIJ;

θ̄ðtÞ ¼ 1

2
Trηð⋆ηfē ∧ ēg ∧ fN ∧ dNgÞ ¼ ϵIJKLēK ∧ ēL ∧ NI ∧ dNJ;

FIJ
ðΛÞ ≔ FIJ −

Λ
3
eI ∧ eJ ¼

�
F −

Λ
6
fe ∧ eg

�
IJ
:

E. Step 3: Space of solutions

The solutions derived from SðtÞ
N are nondegenerate

tetrads e ∈ F ðtÞ
N satisfying EðtÞ

I ðeÞ ¼ 0 and the

“Neumann” boundary condition b̄ðtÞI ðeÞ ¼ 0. The solutions

obtained from SðtÞ
D are tetrads e ∈ F ðtÞ

D satisfying

EðtÞ
I ðeÞ ¼ 0 and no additional condition at the boundary

(the Dirichlet BC are part of the definition of F ðtÞ
D ).

F. Step 4: Symplectic form

Given a Cauchy embedding {∶ Σ ↪ M, we have

{
ðtÞ ¼ d

�Z
Σ
{�ΘðtÞ −

Z
∂Σ

{̄�θ̄ðtÞ
�
:

Using the results of the previous section, we immediately
obtain

{
ðtÞ ¼

1

2

Z
Σ
Trηð⋆ηdfe ∧ eg⩕ dωÞ

−
1

2

Z
∂Σ

Trηð⋆ηdfē ∧ ēg⩕ fN ∧ dNg

þ ⋆ηfē ∧ ēg ∧ fdN ⩕ dNgÞ:

G. Step 5: Charges

A direct computation using the definition of the ξ-current

JðtÞξ leads to

JðtÞξ ¼ 1

2
Trηð2½⋆ηFðΛÞ ⟑ e� ∧ ιξe − ⋆ηDfe ∧ eg

∧ ιξωþ ⋆ηfe ∧ eg ∧ ðLξ −LXξ
ÞωÞ

− dTrη

�
1

2
⋆ηfe ∧ eg ∧ ιξω

�

J. FERNANDO BARBERO G. et al. PHYS. REV. D 104, 044048 (2021)

044048-8



where we have used ιξF ¼ ðLξ −DιξÞω, which follows

from Cartan’s magic formula. The second term of JðtÞξ
vanishes as the torsion De is zero, while the third one is
also zero as a consequence of (2.4) and the fact that the only
background object is η, which is “constant.” Thus we obtain

JðtÞξ ¼ Trηðιξe ∧ EðtÞÞ − dTrη

�
1

2
⋆ηfe ∧ eg ∧ ιξω

�

→ QðtÞ
ξ ≔ −

1

2
Trηð⋆ηfe ∧ eg ∧ ιξωÞ:

JðtÞξ is then exact over the space of solutions with ξ-

potential QðtÞ
ξ . Similarly, we have for the boundary

|̄ðtÞξ − |�QðtÞ
ξ ¼ −

1

2
TrðfN ∧ ðLξ −LXξ

gNÞ ∧ ⋆ηfē ∧ ēg
− 2⋆ηðfN ∧ dNg − ω̄Þ ∧ fιξ̄ē ∧ ēgÞ

¼ Trð0þ ½⋆ηðfN ∧ dNg − ω̄Þ⟑ ē� ∧ ιξ̄ēÞ
¼ Trηðιξ̄ē ∧ b̄ðtÞÞ:

In the last equality, a term may seem to be missing
according to the definition of b̄ðtÞ but, in fact, such term
vanishes as a consequence of ēINI ¼ 0. We then conclude
that the ξ charges are given by

Q{
ξ;ðtÞ ¼

Z
Σ
{�Trηðιξe ∧ EðtÞÞ −

Z
∂Σ

{̄�Trηðιξ̄ē ∧ b̄ðtÞÞ: ð4:8Þ

This expression, when pulled back to SolðSðtÞ
N Þ ⊂ F ðtÞ

N ,
vanishes as expected because the theory is diffeomorphism

invariant [15]. However, over SolðSðtÞ
D Þ ⊂ F ðtÞ

D the boun-
dary integral will not be zero in general, as b̄ðtÞ does not
necessarily vanish (fixing the tetrad on the boundary breaks
the invariance under diffeomorphisms).

H. Step 6: Comparing with
the Hamiltonian formulation

From step 6 of the CPS algorithm in the metric
formalism and the following section, the equivalence is
assured when no boundaries are present. The case with
boundaries is again not as straightforward and it will be
studied elsewhere.

V. METRIC VERSUS TETRAD FORMULATION

We have obtained in the previous sections the presym-
plectic structure over the space of solutions for both the
metric and tetrad formulations together with their ξ charges.
In this section, we prove that the spaces can be naturally
mapped, that their symplectic structures are equivalent
(without considering the internal gauge freedom), and that
the ξ charges are equal.

A. Space of solutions

Let us first show the correspondence between the
solution spaces of metric and tetrad gravity. To this end,
we define the maps

ΦN∶ F ðtÞ
N → F ðmÞ

N ; ΦD∶ F ðtÞ
D → F ðmÞ

D

both obtained by assigning the following metric to a given
tetrad

ΦðeÞ ¼ Trηðe ⊗ eÞ≡ΦðeÞαβ ¼ ηIJeIαeJβ:

Of course, in the Dirichlet case the compatibility condition
ḡᾱ β̄ ¼ ηIJēIᾱē

J
β̄
must hold forΦD to be well defined. On one

hand, it is well known that Φ is surjective but not injective.
For instance, Φð−eÞ ¼ ΦðeÞ. In fact, it can be proved that
ΦðeÞ ¼ Φðe0Þ if and only if e0I ¼ ΨI

JeJ for
some Ψ ∈ SOð1; 3Þ.
On the other hand, we have that SðtÞ ¼ SðmÞ ∘Φ so

deS
ðtÞ
GR ¼ deðSðmÞ

GR ∘ΦÞ ¼ dΦðeÞS
ðmÞ
GR ∘deΦ:

It is easy tocheck thatdeΦ is surjective.Hence, the relation

betweenthespacesofsolutions isclear: ife ∈ SolðSðtÞ
GRÞ, then

ΦðeÞ ∈ SolðSðmÞ
GR Þ and if g ∈ SolðSðtÞ

GRÞ, then every e ∈
Φ−1ðfggÞ belongs to SolðSðtÞ

GRÞ. This is equivalent to

SolðSðtÞ
GRÞ ¼ Φ−1SolðSðmÞ

GR Þ: ð5:1Þ

B. Presymplectic structures

Let us now compare {
ðmÞ and {

ðtÞ by looking at their
symplectic potentials. For that purpose, we perform the
“change of variable” g ¼ ΦðeÞ ≔ eIeI in ðΘðmÞ; θ̄ðmÞÞ.
First, we notice that instead of working with ΘðmÞ, it is
more convenient to work with its g dual

ð⋆gΘðmÞÞμ ¼ ð⋆gιW⃗volgÞμ ¼ Wμ ð5:2Þ

where Wμ ≔ ∇βdgμβ − gαβ∇μdgαβ was obtained in step 1
of Sec. III. Using the variation

dωKL
μ ¼ ðdeKα Þ∇μEαL þ EαK∇μdeLα

− ðeαIdeIβ þ eβIdeIαÞEαK∇μEβL − EβKeLγ ðd∇Þγμβ

which follows from the definition of ωIJ
μ , and the definition

of Wμ, we obtain on one hand

Wμ ¼ 2Eμ
I ιEJ

dωIJþðδUÞμ; Uαμ ≔ ðgβμEα
L−gβαEμ

LÞdeLβ
ð5:3Þ
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where ðδUÞμ ≔ −∇αUαμ is the codifferential. On the
other hand, a standard computation using the definition
of the g-Hodge star operator leads to

ð⋆gΘðtÞÞμ ¼ 2Eμ
I ιEJ

dωIJ: ð5:4Þ

Taking the Hodge dual of (5.3), using (5.2) and (5.4), and
the fact that for k-forms we have ⋆g⋆g ¼ ð−1Þkðn−kÞþ1Id
and ⋆gδ ¼ ð−1Þkd⋆g, we finally obtain

ΘðmÞ ¼ ⋆gW ¼ ⋆g⋆gΘðtÞ þ ⋆gδU ¼ ΘðtÞ þ d⋆gU:

Once we have taken care of the bulk terms, we focus on
the boundary ones. If we use εIJKL ¼ volαβγδEα

I E
β
JE

γ
KE

δ
L,

NI ¼ ναEα
I , and dNI ¼ −NJιĒIdēJ, we can obtain on one

hand

ðθ̄ðtÞÞᾱ β̄ ¼ εIJKLðēK ∧ ēLÞᾱ β̄NIdNJ

¼ −ðvolgÞαβγδeIαeJβEγ
KE

δ
LðēKᾱ ēLβ̄

− ēK
β̄
ēLᾱ ÞνσEσ

I NRιĒJ
dēR

¼ −2NRð|�ιν⃗volgÞσ̄ ᾱ β̄ḡσ̄ μ̄dēRμ̄ ¼ ðιU⃗volḡÞᾱ β̄

where Ūμ̄ ≔ −2NRḡμ̄ ᾱdēRᾱ . On the other hand, using (A8),
we compute the following expression:

θ̄ðmÞ − θ̄ðtÞ − |�ð⋆gUÞ ¼ ιV⃗volḡ − ιU⃗volḡ − ⋆ḡ|�ιν⃗U

¼ ιðV⃗ − U⃗ − |�ιν⃗UÞvolg

where V̄ ᾱ ≔ −|αᾱðιν⃗dgÞα was obtained in the step 2 of
Sec. III. Notice that we have made a small abuse of notation
because |�ιν⃗U is a 1-form so an index must be raised with
the help of ḡ. Finally, we show that this last expression is in
fact zero

V̄ ᾱ − Ūᾱ − ḡᾱ β̄|β
β̄
gμβναUαμ

¼ −ḡᾱ β̄|β
β̄
ναηIJðeIαdeJβ þ eIβde

J
αÞ þ 2NRḡᾱ β̄dēRβ̄

− ḡᾱ β̄|β
β̄
gμβναðgσμEα

L − gσαEμ
LÞdeLσ

¼ −NJḡᾱ β̄dēJβ̄ − ḡᾱ β̄ηIJēIβ̄ν
αdeJα þ 2NRḡᾱ β̄dēRβ̄

− ḡᾱ β̄NLdēLβ̄ þ ḡᾱ β̄νσηLKēKβ̄ de
L
σ ¼ 0

which proves that

θ̄ðmÞ ¼ θ̄ðtÞ þ |�ð⋆gUÞ: ð5:5Þ

Putting everything together, we finally obtain the main
result of the paper

ðΘðmÞ; θ̄ðmÞÞ ¼ ðΘðtÞ; θ̄ðtÞÞ þ dð⋆gU; 0Þ: ð5:6Þ

Hence, the symplectic potentials are equal up to a relative
exact form. Notice that the fact that the left-hand side comes
from the metric formalism while the right-hand side comes
from the tetrad formalism is not a problem because the
left-hand side is implicitly evaluated at the e-dependent
metric ΦðeÞ ≔ ηIJeIeJ.
Taking now the d exterior derivative of (5.6), integrating

over a Cauchy slice ðΣ; ∂ΣÞ, and using the relative Stokes’s
theorem (A2), we obtain the desired equality of the two
presymplectic forms ðtÞ and ðmÞ (see Appendix A 1 for a
brief account of the relative framework). More specifically,
we have

ðtÞ ¼ Φ�ðmÞ: ð5:7Þ

A final comment is in order now: the previous formula says
that both presymplectic structures are equivalent modulo
the gauge freedom given by the kernel of Φ�. This gauge
freedom is present in the tetrad formalism and originates in
the SOð1; 3Þ invariance of Φ but it has no metric counter-
part. In particular, this means that ðtÞ has more degenerate
directions than ðmÞ. This can be neatly understood by
noticing that if we consider a curve Ψτ ∈ SOð1; 3Þ and its
associated vector V ðtÞ ≔ d

dτ j0Ψτ · e ∈ TeF ðtÞ, we have

Ψ�V ðtÞ ¼
d
dτ

����
0

ΦðΨτ · eÞ ¼
d
dτ

����
0

ΦðeÞ ¼ 0 → {V ðtÞðtÞ

¼ {V ðtÞΦ
�ðmÞ ¼ Φ�ð{Φ�V ðtÞðmÞÞ ¼ 0:

V ðtÞ is a nonzero vector which belongs to the kernel of ðtÞ
(as a consequence of being in the kernel of Ψ�) so it is a
gauge vector field. However, the metric counterpart V ðmÞ ≔
Ψ�V ¼ 0 is not gauge because by definition the zero vector
is not gauge. Finally, the equivalence of the charges (3.4)
and (4.8) is obvious as both theories are equivalent,
implying that b̄ðmÞ and b̄ðtÞ are equivalent as well.

VI. CONCLUSIONS

In this paper, we have studied the metric and tetrad
formulations for general relativity on a manifold with
boundary. By considering the appropriate bulk and boun-
dary Lagrangians, we have shown that both theories are
equivalent and hence, as one would expect, they are
symplectically equivalent in the covariant phase space.
Here we have focused on Dirichlet and Neumann BC, but
any other BC will give the same results as long as the metric
and tetrad actions are in a suitable correspondence.
It has been known for some time that, in the absence of

boundaries, the metric symplectic current ΩðmÞ ≔ dΘðmÞ is
equal to the tetrad symplectic current ΩðtÞ ≔ dΘðtÞ up to an
exact form dA (and thus cohomologically equal).
Therefore, their presymplectic forms over the space of
solutions are equivalent since the integral of dA over a
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Cauchy slice Σ is zero according to Stokes’s theorem. On
the other hand, if one considers a space-time with boun-
daries, the boundary-free covariant phase space procedure
fails. This is due to some ambiguities that arise in the
construction of the presymplectic form that hinder the
direct comparison between metric and tetrad formulations.
This has caused some discrepancies in previous works
[20,22,23], but as we have shown, these difficulties arise
because the traditional covariant phase space methods are
only suited for the boundary-free case.
When boundaries are present, it is necessary to use more

sophisticated techniques, like the relative bicomplex frame-
work [15]. Following the ideas of that formalism, we obtain
the main result of the paper: the metric symplectic currents
ðΩðmÞ; ω̄ðmÞÞ ≔ ðdΘðmÞ;dθ̄ðmÞÞ and the tetrad symplectic
currents ðΩðtÞ; ω̄ðtÞÞ ≔ ðdΘðtÞ;dθ̄ðtÞÞ are equal up to a
relative exact form dðA; āÞ. This implies, in particular,
that they are equal in the relative cohomology (see
Appendix A 1 for the relevant definitions) and that their
presymplectic forms over the space of solutions are
equivalent. Indeed, the relative Stokes’s theorem tells us
that the integral of dðA; āÞ over a relative Cauchy slice
ðΣ; ∂ΣÞ is zero. Furthermore, we have proved that the
Noether charges are equivalent as expected. Finally, we
have applied the covariant phase space methods to the
asymptotically flat case to recover the well-known formula
for the ADM energy.
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APPENDIX: ANCILLARY MATERIAL

1. Mathematical background

a. Relative bicomplex framework

In this section we include a summary of the definitions
and results of [15]. Consider an n-dimensional manifoldM
with boundary ∂M (possibly empty) and a space of fieldsF
defined on it (sections of a bundle E → M). The geometric
structure of F may be understood by studying the infinite
jet space of E. However, it is also possible to deal withF as
is customary in the physics literature: by considering it as
an infinite dimensional manifold endowed with standard
operations such as the exterior derivative d, the interior
product {, or the Lie derivativeL. Physical field theories are
described in terms of locally constructed fields over the
space M × F , a space consisting of points of M and fields
over M.
We define the relative pair ðM;NÞ with N ⊂ M being a

submanifold N↪
|
M of codimension 1 of M. In this paper,

we will always assume N ⊂ ∂M. Then, we have that the
relative boundary of the pair is defined as

∂ðM;NÞ ≔ ð∂MnN; ∂NÞ

which satisfies ∂2 ¼ 0 and ∂ðM; ∂MÞ ¼ ∅. The space of
relative forms and the generalizations of some familiar
operators to the present case are defined as

ΩkðM;NÞ ≔ ΩkðMÞ ⊕ Ωk−1ðNÞ; dðA; āÞ ≔ ðdA; |�A − dāÞ;
ιVðA; āÞ ≔ ðιVA;−ιV̄ āÞ; ⋆gðA; āÞ ≔ ð⋆gA;⋆ḡāÞ;
f�ðA; āÞ ¼ ðf�A; ðfjNÞ�āÞ; dðA; āÞ ¼ ðdA;dāÞ;

where V̄ ≔ VjN has to be tangent to N. Notice that d2 ¼ 0,
hence, we can define the so called relative cohomology
HkðM;NÞ. Two classes ½ðA1; ā1Þ�; ½ðA2; ā2Þ� ∈ HkðM;NÞ
are equal if and only if there exists ðB; b̄Þ ∈ Ωk−1ðM;NÞ
such that ðA1; ā1Þ ¼ ðA2; ā2Þ þ dðB; b̄Þ. The integral of a
relative top-form ðA; āÞ ∈ ΩnðM;NÞ over the relative pair
ðM;NÞ is defined as

Z
ðM;NÞ

ðA; āÞ ≔
Z
M
A −

Z
N
ā: ðA1Þ

We have the relative Stokes’s theorem given byZ
ðM;NÞ

dðB; b̄Þ ¼
Z
∂ðM;NÞ

|�ðB; b̄Þ ðA2Þ

which in turn implies that (A1) for N ¼ ∂M is well defined
on relative cohomology because ∂ðM; ∂MÞ ¼ ∅. We in-
troduce now the space of forms ðr;sÞðM × F Þ of degree r
in M (horizontal part) and s in F (vertical part). Endowed
with the wedge product ⩕, this space becomes a bigraded
algebra with two exterior derivatives: the horizontal d,
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which increases r in one unit, and the vertical d, increasing
s in one unit. The wedge product ⩕ restricted to ðk; 0Þ-
forms coincides with ∧. We will often abuse notation and
use the latter. If we replace ðM; dÞ by the relative pair
ððM;NÞ; dÞ, we can define the relative bicomplex

ðr;sÞ
loc ððM;NÞ × F Þ ¼ ðr;sÞ

loc ðM × F Þ ⊕ ðr−1;sÞ
loc ðN × F Þ

ðA3Þ

where the loc subscript indicates that we only consider
ðr; sÞ-forms which are locally constructed i.e., a form α

evaluated at p only depends on p, ϕðpÞ, and finitely many
of the derivatives of ϕ at p.

b. Lagrangians and actions

Definition A.3We define a Lagrangian pair as an
element of

LagðMÞ ≔ ðn;0Þ
loc ððM; ∂MÞ × F Þ:

Remember that

½ðL1; l̄1Þ� ¼ ½ðL2; l̄2Þ�≡ ðL2; l̄2Þ ¼ ðL1; l̄1Þ þ dðY; ȳÞ≡ L2 ¼ L1 þ dY

l̄2 ¼ l̄1 þ |�Y − dȳ
: ðA4Þ

Definition A.4A local action is a map S∶ F → R of the
form

SðϕÞ ¼
Z
ðM;∂MÞ

ðL; l̄ÞðϕÞ ðA5Þ

for some local Lagrangian pair ðL; l̄Þ ∈ LagðMÞ.
Definition A.6 ðLi; l̄iÞ ∈ LagðMÞ are

R
-equivalent,

which we denote as ðL1; l̄1Þ⨎ ðL2; l̄2Þ, if for every
ϕ ∈ F , we have

Z
ðM;∂MÞ

ðL1; l̄1ÞðϕÞ ¼
Z
ðM;∂MÞ

ðL2; l̄2ÞðϕÞ: ðA6Þ

In this work, we have only considered contractible
bundles, for which the

R
equivalence is the same as the

cohomological equivalence (a proof was given in [15]).
Nevertheless, if the bundles are not contractible, it is still
possible to keep track of the ambiguities that arise from the
fact that there exist nonzero Lagrangians ½ðL; l̄Þ� ≠ 0
whose Euler-Lagrange equations and BC are zero.

c. Variations

Weassume that the action is defined in such away that it is
possible to find Euler-Lagrange equations and boundary
equations ðE; b̄Þ, and symplectic potentials ðΘ; θ̄Þ, such that

dL¼Er ∧dϕrþdΘ; dl̄− |�Θ¼ b̄r ∧dϕr−dθ̄ ðA7Þ

where r labels the fields of the theoryϕ ¼ ðϕ1;…;ϕRÞ ∈ F.
If this is not possible, the theory is ill posed and we have to
change the space of fields F and/or the action S. The
symplectic potentials ðΘ; θ̄Þ are defined up to a relative exact
form. The space of solutions is

SolðSÞ ≔ fϕ ∈ F jðE; b̄ÞðϕÞ ¼ 0g:

d. Symplectic structure

We define the symplectic currents as ðΩ; ω̄Þ ≔ dðΘ; θ̄Þ.
The relevant object is the relative integral of the sym-
plectic currents over a Cauchy embedding {∶ ðΣ; ∂ΣÞ ↪
ðM; ∂LMÞ

{
S ≔

Z
ðΣ;∂ΣÞ

d {�ðΘ; θ̄Þ ∈ 2ðF Þ:

It can be proved that the pullback of {
S to the space of

solutions is independent of the Cauchy embedding, endow-
ing SolðSÞ with a presymplectic structure canonically
associated with S.

e. Currents and charges

Given some vector field ξα tangent to the lateral
boundary, we define the ξ currents and the ξ charges as

ðJξ; |̄ξÞ ≔ ιξðL; l̄Þ − {Xξ
ðΘ; θ̄Þ;

Q{
ξ ≔

Z
ðΣ;∂ΣÞ

{�ðJξ; |̄ξÞ ∈ {0ðF Þ:

The ξ charges in general depend on the chosen Lagrangians
and on the embedding. If we compare the ξ charges
associated with two embeddings we obtain the following
flux law:

Q{2
ξ −Q{1

ξ ¼
Z
ðN;∂LNÞ

ðEr; b̄rÞðϕÞLξϕ
r

þ
Z
ðN;∂LNÞ

ðLξ −LXξ
ÞðL; l̄Þ

where N is the manifold bounded by the Cauchy slices
{1ðΣÞ and {2ðΣÞ. In general, the charge Q{

ξ is not the
Hamiltonian of the vector field Xξ because
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dQ{
ξ ¼ {Xξ

{
S þ

Z
ðΣ;∂ΣÞ

{�ð{ξðEr; b̄rÞ ∧ dϕrÞ

þ
Z
ðΣ;∂ΣÞ

{�ðLξ −LXξ
ÞðΘ; θ̄Þ:

The ξ charge is the Hamiltonian of Xξ over ðSolðSÞ;SÞ
if and only if the last integral vanishes.

2. Some computations in the metric case

Let us start off with a list of some of the well-known
variations of the relevant objects used in the metric
formalism

(i) ðd∇Þαβγ ¼
1

2
gαμð∇βdgμγ þ∇γdgβμ −∇μdgβγÞ;

(ii) dðg−1Þαβ ¼ −gαμgβνdgμν;

(iii) dRicβγ ¼ ∇αðd∇Þαβγ −∇βðd∇Þααγ;

(iv) dνα ¼
1

2
νβνγdgβγνα;

(v) dR ¼ −Ricαβdgαβ þ∇α∇βdgαβ −∇α∇αdg;

(vi) dvolg ¼
dg
2
volg;

(vii) dKᾱ β̄ ¼
1

2
ðKᾱ β̄ν

ανβdgαβ þ |αᾱ|
β
β̄
ð∇ν⃗dgαβ

− νμ∇αdgμβ − νμ∇βdgμαÞÞ;

(viii) dðTrḡKÞ ¼
1

2
ð∇ν⃗dg − να∇βdgαβ − Kᾱ β̄dḡᾱ β̄

− ∇̄β̄ð|β
β̄
ðιν⃗dgÞβÞÞ;

where dg ≔ gαβdgαβ stands for the g trace of dgαβ (not to be
confused with the variation of the determinant of g, which
we do not use in this paper). Besides, we use the
notation ðιν⃗dgÞβ ≔ ναdgαβ.

a. Variations

With those variations and the Lagrangians

ðLðmÞ
EH ; l̄

ðmÞ
GHYÞ ¼ ððR − 2ΛÞvolg;−2KvolḡÞ, we have

dðLðmÞ
EH ; l̄

ðmÞ
GHYÞ ¼ ðEðmÞ; b̄ðmÞÞ ∧ dgþ dðΘðmÞ; θ̄ðmÞÞ

where

Eαβ
ðmÞ ¼

��
R
2
− Λ

�
gαβ − Ricαβ

�
volg; b̄ᾱ β̄ðmÞ ¼ ðKᾱ β̄ − Kḡᾱ β̄Þ volḡ;ΘðmÞ ¼ ιW⃗volg; θ̄ðmÞ ¼ ιV⃗volḡ;

Wα ¼ ðgαμgβλ − gαλgβμÞ∇λdgβμ; V̄ᾱ ¼ −ḡᾱ β̄gαλ|β
β̄
νλdgαβ:

b. Symplectic form

The symplectic currents are given by

ΩðmÞ ≔ dΘðmÞ ¼ ιdW⃗volg − ιW⃗dvolg ¼ ι

�
dW⃗ − W⃗ ⩕ dg

2

�
volg;

ω̄ðmÞ ≔ dθ̄ðmÞ ¼ ιdV⃗volḡ − ιV⃗dvolḡ ¼ ι

�
dV⃗ − V⃗ ⩕ dḡ

2

�
volḡ:

To ease the notation, here we are using the parenthesis for the interior product instead of a subscript. These terms can then be
rewritten as follows:
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gαβ

�
dWβ −Wβ ⩕ dg

2

�
¼ 1

2
dgαμ ⩕∇μdgþ 1

2
gσβgμλdgσμ ⩕∇αdgβλ þ

1

2
dg⩕∇βdgαβ −

1

2
dg⩕∇αdg − gμλdgβμ ⩕∇βdgαλ

¼ −
1

2
δλησαβζg

βρgζϕdgηρ ⩕∇λdgσϕ þ
1

2
∇ηðgβλdgαβ ⩕ dgηλÞ;

dV̄ ᾱ − V̄ ᾱ ⩕ dḡ
2

¼ ḡᾱ γ̄ ḡβ̄ δ̄|β
β̄
dḡγ̄ δ̄ ⩕ ðιν⃗dgÞβ þ |β

β̄
ḡᾱ β̄

�
gαγðιν⃗dgÞγ ⩕ dgαβ −

1

2
ι2ν⃗dg⩕ ðιν⃗dgÞβ þ

1

2
ðιν⃗dgÞβ ⩕ dg

�

¼ 1

2
ḡᾱ β̄|β

β̄
ðιν⃗dgÞβ ⩕ ðgλσ − νλνσÞdgλσ ¼

1

2
ḡᾱ β̄|β

β̄
ðιν⃗dgÞβ ⩕ dḡ:

Consider a Cauchy embedding {∶ Σ ↪ M, where we have the g-normal nα to {ðΣÞ ⊂ M, the ḡ-normal m̄ᾱ to
{ð∂ΣÞ ⊂ ∂LM, the γ-normal μb to ∂Σ ⊂ Σ, and the induced metric γ ¼ {�g. We denote also mα ≔ |αᾱm̄

ᾱ and μβb ≔ {βbμ
b.

Integrating the symplectic current over ðΣ; ∂ΣÞ we obtain the presymplectic form

{
ðmÞ ¼

Z
ðΣ;∂ΣÞ

{�ðΩðmÞ; ω̄ðmÞÞ ¼ðII:2Þ
ðII:3Þ

¼ −
Z
Σ
nα

�
dWα −Wα ⩕ dg

2

�
volγ −

Z
∂Σ

m̄ᾱ

�
dV̄ ᾱ − V̄ ᾱ ⩕ dḡ

2

�
volγ̄

¼ 1

2

Z
Σ
nαδλησαβζg

βρgζϕdgηρ ⩕∇λdgσϕvolγ −
1

2

Z
∂Σ
ðnαgβημλ þmανβḡη̄ λ̄|ηη̄|

λ
λ̄
Þdgαβ ⩕ dgηλvolγ̄:

Notice that we have used Stokes’s theorem, Gauss’s lemma (to write the covariant derivative ∇ of M in terms of the
covariant derivative D of Σ and its extrinsic curvature) together with the fact that Tαη ≔ gβλdgαβ ⩕ dgηλ is antisymmetric
(which kills the extrinsic curvature terms) to take nα∇ηTαη to the boundary.

c. Charges

The ξ currents are given by

ðJðmÞ
ξ ; |̄ðmÞ

ξ Þ ¼ ιξðLðmÞ
EH ; l̄

ðmÞ
GHYÞ − {Xξ

ðΘðmÞ; θ̄ðmÞÞ ¼ ðιξ⃗L
ðmÞ
EH ; ιξ⃗l̄

ðmÞ
GHYÞ − ðιW⃗volg; ιV⃗volḡÞ

¼ ððR − 2ΛÞιξ⃗volg; 2Kιξ⃗volḡÞ − ðι{Xξ
W⃗volg; ι{Xξ

V⃗volḡÞ

¼ ðιfðR − 2ΛÞξ⃗ − {Xξ
W⃗gvolg; ιf2Kξ⃗ − {Xξ

V⃗gvolḡÞ
¼ ð⋆gfðR − 2ΛÞξ − {Xξ

Wg;⋆ḡf2Kξ̄ − {Xξ
V̄gÞ:

Using the definition of the Ricci and Riemann tensor together with (2.4), we obtain

ðR − 2ΛÞξα − {Xξ
Wα ¼ ðδdξÞα þ 2ðιξ⃗ẼÞα

where δ is the codifferential (which is equal to minus the divergence) and Ẽαβ
ðmÞ ≔ Eαβ

ðmÞ=volg (the prefactor multiplying the

volume form in EðmÞ). Meanwhile, at the boundary

2Kξ̄ᾱ − {Xξ
V̄ ᾱ ¼ 2Kξ̄ᾱ þ ḡᾱ β̄|β

β̄
ναð∇αξβ þ∇βξαÞ ¼ξ⃗⊥ν⃗

2Kξ̄ᾱ þ ḡᾱ β̄|β
β̄
ðναðdξÞαβ − 2ξα∇βν

αÞ
¼ 2Kξ̄ᾱ þ ḡᾱ β̄ð|β

β̄
ναðdξÞαβ − 2ξ̄μ̄Kμ̄ β̄Þ

¼ −2ðKᾱ μ̄ − ḡμ̄ ᾱKÞξ̄μ̄ þ ḡᾱ β̄|β
β̄
ðιν⃗dξÞβ

¼ −2ðιξ⃗b̃Þᾱ þ ð|�ιν⃗dξÞᾱ

where b̃ ≔ b=volḡ. Thus, using that for 2-forms the equality δ⋆g ¼ ⋆gd holds, we can write

ðJðmÞ
ξ ; |̄ðmÞ

ξ Þ ¼ ð⋆gδdξþ 2⋆gιξ⃗Ẽ;−2⋆ḡιξ⃗b̃þ |�#ιν⃗dξÞ
¼ 2⋆gιðẼ; b̃Þ þ ðd⋆gdξ; |�ðν ∧ #dξþ #ιν⃗dξÞÞ ¼ 2⋆gιðẼ; b̃Þ þ dð⋆gdξ; 0Þ
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where in the first line we have used the operator #α ¼ ⋆gðν ∧ αÞ which satisfies

⋆gα ¼ ν ∧ #αþ #ιν⃗α and |�# ¼ ⋆ḡ|� ðA8Þ

3. Some tetrad computations

a. Variations

dLðtÞ ¼ 1

2
dTrη

�
⋆ηfe ∧ eg ∧

�
F −

Λ
12

fe ∧ eg
��

¼ 1

2
Trη

�
2⋆ηfde ∧ eg ∧ F þ ⋆ηfe ∧ eg ∧ dF −

Λ
3
⋆ηfde ∧ eg ∧ fe ∧ eg

�

¼ 1

2
Trη

�
2⋆ηF ∧ fe ∧ deg þ ⋆ηfe ∧ eg ∧ Ddω −

Λ
3
⋆ηfe ∧ eg ∧ fe ∧ deg

�
¼ðIV:3Þ

¼ Trη

�
−½⋆ηFðΛÞ ⟑ e� ∧ de −

1

2
⋆ηDfe ∧ eg ∧ dω

�
þ dTrη

�
1

2
⋆ηfe ∧ eg ∧ dω

�
;

dl̄ðtÞ − |�ΘðtÞ ¼ −
1

2
dTrηððfN ∧ dNg − ω̄Þ ∧ ⋆ηfē ∧ ēgÞ − |�Trη

�
1

2
⋆ηfe ∧ eg ∧ dω

�

¼ −
1

2
TrηððfdN ∧ dNg þ fN ∧ ddNgÞ ∧ ⋆ηfē ∧ ēg þ 2ðfN ∧ dNg − ω̄Þ ∧ ⋆ηfdē ∧ ēgÞ

¼ −
1

2
Trηð2fdN ∧ dNg ∧ ⋆ηfē ∧ ēg þ dðfN ∧ dNg ∧ ⋆ηfē ∧ ēgÞ − 2fN ∧ dNg ∧ ⋆ηfdē ∧ ēg

þ 2⋆ηðfN ∧ dNg − ω̄Þ ∧ fdē ∧ ēgÞ
¼ −TrηðfdN ∧ dNg ∧ ⋆ηfē ∧ ēg − fN ∧ dNg ∧ ⋆ηfdē ∧ ēg − ½⋆ηðfN ∧ dNg − ω̄Þ⟑ ē� ∧ dēÞ

− dTrη

�
1

2
fN ∧ dNg ∧ ⋆ηfē ∧ ēg

�
:

Let us prove that the first term vanishes. First notice that ε½IJKLNM� ∈ Ω0
5ðMÞ ¼ f0g. Thus

0 ¼ 5ε½IJKLNM�ēK ∧ ēL ∧ dNI ∧ ðιĒJ
dēMÞ

¼ ðεIJKLNM þ εJKLMNI þ εKLMINJ þ 2εLMIJNKÞēK ∧ ēL ∧ dNI ∧ ðιĒJ
dēMÞ

¼ −εIJKLēK ∧ ēL ∧ dNI ∧ dNJ ¼ −⋆ηfē ∧ ēgIJ ∧ dNI ∧ dNJ

where we have used dNI ¼ −NJιĒI
dēJ,NIĒᾱ

I ¼ 0,NIdNI ¼ 0, andNIēI ¼ 0. Let us now rework the second term to obtain
the desired expression of Sec. IV D

TrηðfN ∧ dNg ∧ ⋆ηfdē ∧ ēgÞ ¼ fN ∧ dNgIJ 1
2
εIJKLfdē ∧ ēgKL

¼ 2NIdNJεIJKLðdēKÞ ∧ ēL ¼ −2NINRðιĒJdēRÞεIJKLðdēKÞ ∧ ēL

¼ −2NINRεIJKLðιĒJðdēR ∧ dēK ∧ ēLÞ þ dēR ∧ ðιĒJdēKÞ ∧ ēL þ dēR ∧ dēK ∧ γJLÞ
¼ −2NINRεIJKLð0þ dēR ∧ ðιĒJdēKÞ ∧ ēL þ 0Þ ¼ −2NINRεIJKLðιĒJdēKÞ ∧ ēL ∧ dēR

¼ −NRεIJKLðιĒJdēKÞfN ∧ ēgIL ∧ dēR ¼ −2NRðιĒJdēKÞ⋆ηfN ∧ ēgJK ∧ dēR:
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