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We use covariant phase space methods to study the metric and tetrad formulations of general relativity in

a manifold with boundary and compare the results obtained in both approaches. Proving their equivalence

has been a long-lasting problem that we solve here by using the cohomological approach provided by the

relative bicomplex framework. This setting provides a clean and ambiguity-free way to describe the

solution spaces and associated symplectic structures. We also compute several relevant charges in both
schemes and show that they are equivalent, as expected.
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I. INTRODUCTION

Space-time boundaries play a prominent role in classical
and quantum general relativity (GR). Their applications
range from black hole thermodynamics [1,2] to the study of
radiative modes at scri [3—6]. They are also fundamental to
describe isolated and dynamical horizons [7—11] or in the
definition of physical charges [12-15]. Boundary terms
also control the dynamical properties of some midisuper-
space models with “conical singularities™ at spatial infinity
such as Finstein-Rosen waves coupled to massless scalar
fields [16-19].

Classical GR defined in a space-time without boundary
may be alternatively described by the first order Hilbert-
Palatini (or Holst) action in terms of tetrads or the Einstein-
Hilbert Lagrangian in metric variables. In particular, the
corresponding Hamiltonian descriptions are equivalent.
Moreover, by employing standard covariant phase space
(CPS) methods, it is possible to see that their respective
symplectic potentials differ by an exact form. Thus, when
this form is integrated over a Cauchy slice X, the result
vanishes as a consequence of Stokes’s theorem. This shows
that the presymplectic forms corresponding to the metric
and the tetrad formalisms are equivalent in the space of
solutions.
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The situation changes substantially when boundaries
(possible at conformal infinity) are present. Some of the
concerns regarding the equivalence of the tetrad and metric
formulations may be attributed to the choice of bulk and
boundary Lagrangians. In fact, many discrepancies found
and discussed in the literature [20-23] are to be expected
since the boundary dynamics is not always explicit and the
solution spaces are not fully specified. To avoid these
problems, it is crucial to choose variational principles such
that the equivalence of the dynamics they describe, both in
the bulk and at the boundaries, is guaranteed. The choice of
the bulk and boundary Langrangians will determine the
presymplectic structure in the solution space as well as the
Noether charges.

The purpose of this paper is to prove that the metric and
tetrad formulations are equivalent in the CPS framework
with Dirichlet boundary conditions (BC) and (homo-
geneous) Neumann BC (the same methods can be applied
to other BC). This proof has profound physical implica-
tions. Although at first sight this may appear as a purely
mathematical result, nonequivalence would make physical
quantities formulation dependent. For instance, the con-
served charges might differ at conformal infinity and/or at
the black hole horizon. As suggested in [20], this would
have repercussions in the thermodynamics of black holes.

To prove the equivalence, we will rely on the relative
bicomplex framework, a formalism developed in [15]
which is cohomological in nature so no ad hoc choices
are required. This formalism will allow us to establish the
equality of the metric and tetrad symplectic potentials in the

© 2021 American Physical Society
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relative cohomology (equality up to a relative exact form as
explained in the Appendix). Consequently, the respective
presymplectic forms in the solution space are equivalent
and, as expected, there is a precise correspondence between
the Noether charges in both formulations. As a direct result
of our discussion, we will consider the asymptotically flat
case and rederive the well-known formula for the Arnowitt-
Deser-Misner (ADM) energy.

The paper is structured as follows. In the next section, we
present some of the geometric concepts relevant for the
implementation of the CPS algorithm developed in [15]. In
Sec. III, we apply this algorithm to the metric formulation
of GR. Section IV presents an analogous study for the
tetrad (or vielbein) formalism. In Sec. V both formulations
are compared and shown to be equivalent. We present our
conclusions in the last section of the paper. We have also
included in the Appendix a short summary of the relative
bicomplex framework together with some computational
details. Throughout the paper, we will use a mixed notation
combining explicit indices and index-free expressions. The
idea is to use each of them whenever they are useful: the
former is more standard and sometimes more explicit,
while the latter simplifies significantly some of the com-
putations. For the benefit of the reader, relevant results are
presented in both notations.

II. THE GEOMETRIC ARENA

A. M as a space-time

Let M be a connected and oriented n-manifold admitting
a foliation by Cauchy hypersurfaces. Without loss of
generality, M =1xZX for some interval I = [t 1],
(t; < ty) and some (n — 1)-manifold X with boundary X
(possibly  empty). Denoting X, ={f;} xX and
X, = {t;} x X, we split OM into three distinguished parts

where X, ; are the “lids” and 9, M := I x O the “lateral
boundary” M =1xZX is a manifold with corners
0Z; U 0X;, which, as a set are 0(0,M). The following
diagram summarizes relevant notational information about
embeddings and the induced geometric objects:

(2n%)

(37D, {a,b,...}) (M,9,9,{e 8,..})
G| Tow
(az,w,D, {a,B,...}) — (aM,g,v,{a,B,...})

(7,m®

(2.1)

The entries in each 4-tuple in (2.1) are the manifold, the
(nondegenerate) metric or pulled-back metric, its associated
Levi-Civita connection, and the abstract indices used to
describe tensors in the manifold. The arrow labels specify

the notation used for embeddings and normal unit vector
fields. Horizontal arrows are associated with future point-
ing normal unit vector fields and vertical arrows are used
for outward pointing normal unit vector fields at the
boundary. The notation just introduced is not consistent
for the bottom lid X;, as it may be thought of as a spacelike
hypersurface embedded by ¢; or considered as part of OM.
Y, often appears as the boundary of M, so we choose the
outwards (past pointing) convention in this case. An
overline is often used to denote objects that live exclusively
at the boundary, such as g, which in index notation reads
G- Notice that the embeddings ; and j are fixed since the
boundaries are also fixed. However, 1 and 7, which embed
(X,0%) into (M,0M), can be chosen among the Cauchy
embeddings satisfying 1(0X) C 9, M.

As (M, g) is oriented, we have the metric volume form
vol, that assigns the value 1 to every positive orthonormal
basis. We orient £ and 9; M with vol, and vol;, respectively
given by
*(15voly) = —n,U*vol,,  j*(15vol,) =v,U%ol;  (2.2)
for every vector field U. These orientations are the ones for
which Stokes’s theorem holds in its usual form. Finally, 0Z
can be oriented as the boundary of X. Thus vol; is given by

T (tgvol,) = u,Vevol, = * (1 voly) = +mz;Wvol,.  (2.3)

Notice that if we use Stokes’s theorem from 0; M to
0(0 M) = 0X; U 0%, a minus sign appears in the integral
over J%;.

B. From M-vector fields to F-vector fields
Let F be a space of tensor fields on M (sections of a

certain bundle E55M) that may be thought of as an infinite
dimensional differential manifold where we assume that the
usual differential objects—Ilike tensor fields, the exterior
derivative d, the interior derivative 1, the wedge A, or the
Lie derivative £—are well defined (see the appendix of
[15] for more details about this and other technicalities). As
a reminder for the reader, most objects defined over the
space of fields are denoted with a double font. Given a
vector field £&* on M, let us associate to it a canonical vector
field X on F. To that purpose, we assume that ¢ is tangent
to d; M but not necessarily to %; and X, (notice that we can
always extend the interval [#;, 7] to avoid problems at the
lids) and take advantage of the fact that a field ¢" (r ranging
over the number of fields of the theory) can be interpreted
in two ways:

(1) As atensor field on M. That is, a section ¢": M —

E" of some bundle E"5M such that
¢, =¢"(p) € El, :== ' (p). In particular, we can
take its Lie derivative (L:4"), = 0,lo(0%) ),
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where {@:}, C Diff(M) is the flow of & If F is
reasonable enough, as is the case in this paper, we
will have L:¢p € F.
(i) Asapointof F. Avector field X; of F is a section of
the tangent bundle TF ie., (X;);:=X:(¢) €
TyF = F. The last isomorphism comes from the
fact that the field space F is linear in this case. The
nonlinear case is not as straightforward, but it is
possible to carry out similar constructions in con-
crete examples.
Taking into account these remarks, we define
(X2)¢ =L =Ly p" =L (2.4)
Notice that d¢p” (which appears in the definition of the Lie
derivative £ through Cartan’s magic formula) has to be
interpreted as the exterior derivative of the evaluation
function.

C. CPS algorithm

This paper relies heavily on the results of [15]. For
convenience, a summary has been included in the
Appendix, but we list here the main steps of the CPS
algorithm since it will be used throughout the paper. This
algorithm provides an ambiguity-free method to construct a
presymplectic structure in the space of solutions canoni-
cally associated with the action of the theory.

(0) Given the action S: F — R describing the dynam-

ics of a particular field theory, choose any Lagran-
gian pair (L, #) such that

Sz/L—/ 7
M oM

(1) Compute dL = E, A d¢p” + dO® and choose any ©
compatible with the previous expression (uniquely
defined up to a d-exact form).

(2) Compute dZ — j*® = b, A d¢p” — df over 9; M and
choose any admissible 6.

(3) Define Sol(S) ={¢ € F|E,(¢) =
and the inclusion js: Sol(S) & F.

0.5,(¢) = 0}

SQ@%<4L$Mn—AM3$Am,

but suitably restricted to these spaces of metrics. Our
Lagrangian pair (LE'E,?G"QY) consists of the Einstein-
Hilbert term with cosmological constant in the bulk and
the Gibbons-Hawking-York term on the lateral boundary.
R, denotes the g-scalar curvature (following the signs

conventions of [24]), vol, and vol; the metric volume

(4) Compute the presymplectic structure canonically
associated with S

QL :=d]</l*®—/ r*é) - Qg = JEQL
z (9>

where 1: X < M is any Cauchy embedding and 7 :=
1|51 0X & O; M its restriction. {ds does not depend
on 1.
It is important to notice that it is not always possible to
perform the second step. If b, and € do not exist (their
existence does not depend on the chosen ®), that means
that the theory is not well defined and hence we will have to
change F and/or the action [hence (L, 7)] to ensure that the
equality holds. Once we have the presymplectic structure,
the following two steps provide important additional
information about the theory at hand.
(5) Study symmetries; i.e., find out if X, is a
d-symmetry and obtain the & currents and & charges:

Q%::/I*Jg—/ fkjf
z 0%

(6) Compare (s with the presymplectic structure ob-
tained in the standard Hamiltonian formulation.

J§ = l:L — le@,
jﬁf = —152 - lX5é1

III. GENERAL RELATIVITY
IN TERMS OF METRICS

A. Step 0: Action

Let us consider the following spaces of metrics on M:
F = Met(M), Fi) = {g € Met(M)|g = j*gfixed}

that we will refer to as Neumann and Dirichlet metrics
respectively. Here Met(M) is the space of Lorentzian
metrics on M such that the lateral boundary is timelike
and the lids are spacelike (it is an open set of the space of all

Lorentzian metrics on M). Consider also the actions Sx")

and S both equal to

Ly (9) = (R, = 2A)vol,,
28 (9) = =2Try(R)vol,

I
forms, and K the extrinsic curvature of O,M Cc M
given by

1 _
Ki=27Log=Kap= J2I N ap

where U is the g-normal vector field to 9; M with v,0* = +1.
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B. Step 1 and 2: Variations

According to the computations given in the Appendix,
we have

dLi) = E?) A dggs +d0y,).

Gty =1 O = by A dGz5— A0y

where
E? (g) = —( Ric* — &—A * Jvol
(m) 9) = D) g g0
Bion9) = ~(K*7 = Kg/)vol,,

W= vﬁd]ga/;’ - fyvadg/}ya V(i = _]gyﬂd]ga/i'

C. Step 3: Space of solutions

Once we know the basic variations, we can compute the
variation of the action

=i

0 (@) Mdgep  (3.1)

3

L 0, a
d]qg = E'((y/;) (g) A d]ga/} - b(
M

M

where = denotes equality up to integrals over the lids.
Notice that those integrals are unimportant because the
values of the dynamical fields on the lids are kept fixed
when obtaining the equations of motion of the theory. The

solutions obtained from ") are given by metrics g € 7"
satisfying Einstein’s equations E(,,(g) =0 and the
Neumann boundary condition E(m)(g) = 0, whereas those

from Sg") correspond to metrics g € ]-"g") satisfying

Einstein’s equation and no additional BC. Indeed, in the
latter case the boundary integral of (3.1) vanishes as a
consequence of the Dirichlet BC introduced a priori on the

definition of F\".

Remark.—It is important to realize that a boundary term
must be included in the two theories that we consider
(i.e., when no a priori BC are imposed on the space of
fields and with Dirichlet BC). Otherwise, as explained in
Sec. 11 C, the second step cannot be performed and thus
the space of solutions is not well defined. Nonetheless, it
is possible to impose homogeneous Neumann BC a priori
and include a different boundary term [25] (which
vanishes for dimension 4). However, as we have shown,
this is not necessary. Finally, it is worth noting that
nontrivial BC may lead to constrained variations, which
must be properly handled.

D. Step 4: Symplectic form

Given a Cauchy embedding :: ¥ < M, we compute the
presymplectic structure canonically associated with the

action as
Q  =d /z*@)m—/ r*ém>.
(m) (2 (m) s (m)

Using the results of the previous sections and the compu-
tations of the Appendix, we obtain:

1 1 a Ao
Q(m B 5/2 " angﬂpgwdgnp AV dgg4vol,

1

—3 Az(nag/fn,ui + mayﬂfi]gjﬁ)d]gaﬂ A dg,;vols.

(3.2)

As indicated in (2.1), n® is the g-normal to 1(X) C M, * is
the g-normal to 9; M C M, m* is the pushforward of the g-
normal to 7(X) C 9, M, and y* is the pushforward of the y-
normal to 0X C £. We have also used the generalized
Kronecker delta

5/;1

1
Shhs =

o

s

E. Step 5: Charges

The Noether currents associated with an arbitrary vector
field £&* tangent to the lateral boundary are computed in the
Appendix. The result is

m) _ 30 i
Jf —dQé +2*g(l§E(m)),

J-gm — J*Qg"” — 2 ;(1h(m)). (3.3)

where Qém) = %,d¢ is the &-Noether potential and
(E(m), E(m)) are the 2-tensors that multiply the top forms

in (E(;), bim)). As usual, %, is the g-Hodge dual operator
and, in order to ease the notation, we represent also by & the
I-form metrically equivalent to the vector field & The &
charge is then given by

Q=2 L g (1zE ) + 2 /) Paglih). (34

The last expression, when pulled back to Sol(Sj(vm) )CF jvm) ,
vanishes as expected because the theory is diffeomorphism

invariant [15]. However, over Sol(SE,m)) CF g"), the boun-
dary integral is not necessarily zero as E(m) does not vanish
in general. Notice that fixing the metric on the boundary

breaks diffeomorphism invariance.
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F. Step 6: Comparing with the Hamiltonian formulation

In the case X = @, the equivalence between the CPS
presymplectic form obtained in step 4 and the canonical
ADM presymplectic form has been established in [26,27].
The case with boundaries is not as straightforward and will
be studied elsewhere.

G. The asymptotically flat case

As a further application of the CPS algorithm, let us
obtain the ADM energy of an asymptotically flat space-
time (see [28,29] for similar approaches). For that purpose,
consider M = X x R endowed with the Minkowski metric
go = —dt> + . Then X is a 3-manifold with Euclidean
metric ¢ and boundary OX = S2, a 2-sphere of ¢ radius 7.
Take a small perturbation i € T, Met(M), such that / :=
J*h = 0 (compatible with the Dirichlet condition, other-
wise the charge is zero as the theory is diffeomorphism
invariant). The ¢ charge given by (3.4) restricted to the
space of solutions is given by

Q:=2 | Eung(K* — Kg*P)vol;.
o
Expanding the integrand in terms of 4, and labeling with a

circle the quantities associated with g, (the “background”
objects), we obtain

Q=2 [ E(mg+ Lyng) (K + LK
— (R + LK) (G = L£,3P))(vols + Lyvol,) + - --

where we omit higher order terms in / as they vanish when
ro — oo if we consider £:=n and the inertial foliation
{{r} x £}, (in particular, we take 7 = 0,).

Using the decomposition of the normal v, = —v n, +
v} and some of the results of Sec. A2, we have

Ny +UV U
Lyimg = jgLy, aiTM
v
( 1 ag _ UV d )
=\ ey — Mg AV
e v

1 —1 _ Uy
= |OT| Jaln (7 ”anﬁ"”ﬂgﬁy> - maFLhVL
v

I
o

I 1. 5o -
= —5 &l Thy +0 = - EFE Ry,

where we have used that v | =0, & = n and the fact that £ is
tangent to the lateral boundary (hence we can replace 4 with
h, which is zero). Notice that the previous computation is
performed at the point g, in the space of fields and at the
lateral space-time boundary.

This computation together with rfzﬁ = E/; takes care of
the first parentheses of Q. The last one can also be easily
computed by using the variation of the volume given in
Sec. A2. Let us now deal with the term in the second

o

parentheses. First notice that K' @/ yanishes when contracted

with £;&; (in coordinates this would be K'), while

L£,5%7 = h =0. A long but straightforward computation
gives the following variations:

= oo ] - y
JL1R TP = 2 &8 (Vihap = 2V ohy,).

1 ° °
LK =5 @ty (Vshgy = V'V ohy,)

As the result is independent of the Cauchy slice, we
introduce coordinates {7, xy, x,, x3} and take, as we men-
tioned before, a Cauchy slice given by X = {r = 1}, then

. 1
v=—(0,x1,x,Xx3).
ro

Notice that everything is constant along the ¢ direction
(which is the & direction because # = 0,). Thus we have

o ° 2 1 ° D=2
5
Kap :]3];;val//37 Kag :F(5A3r(2) —xaxg), K= p
0 0

where here A, B = 1, 2, 3 label the coordinates. Finally,

notice that the integral of 2K vol; goes to zero in the limit
ro — oo and 1K = 0 because the normal is constant along
the foliation. Putting everything together, we obtain

fo = / (IZ + 7BCVA(VAI’IBC — vBhCA))Volﬁ 4.
[

A final comment is now in order. As we can see we have a

divergent constant term in the limit 7y — oo. To remove it,

we introduce the following ry-dependent boundary

Lagrangian:
Z(ry) = 2(Trz(K) — Trz(K))volj.

By doing this, the constant term does not appear, the limit is

well defined, and we recover the well-known expression for
the ADM energy.
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IV. GENERAL RELATIVITY
IN TERMS OF TETRADS

A. Notation

In order to introduce the tetrad formulation for GR, we
will use internal abstract indices as discussed, for instance,
in [30-32]. For the convenience of the unfamiliar reader,
we have included this short subsection with the basic
ingredients. The more familiar reader can go directly to
Eq. (4.2), where we introduce some new notation.

Let V - M be a Minkowski vector bundle i.e., with
typical fiber V, an n-dimensional vector space with internal
indices {1, J, ...}, endowed with a Minkowskian metric 7,
which in abstract index notation reads #;;. This metric
allows us to define the z-metric volume form e, the
n-Hodge dual «,, and the n-trace Tr,, (see [33] for a recent
review). The latter is given by

Tr (@ A B) =n"r--g"ray o A By,

Tetrads are bundle isomorphisms 7M — V. In abstract
index notation they look like e, so it is clear that a tetrad,
together with the nondegenerate metrics g,; and 7y,
provides a way to swap space-time and internal indices.
It is also clear from the index notation that tetrads can be
identified with sections of the product bundle V ® T*M
i.e., elements of I'(V ® T*M), the set of V-valued 1-forms
over M, although in practice it would be more useful to
identify them with V-valued 1-forms over M. This is the
case, for instance, if M is parallelizable (an example would
be a noncompact manifold admitting a spinor structure
[34]). In that case it is enough to work with coframes
which, loosely speaking, are the local version of a tetrad.
Indeed, a coframe e’ (p) at p € M is a linear ismorphism
T,M — V satisfying

9ap(P) = nuset(p)ey(p).

Equivalently, a coframe can be thought of as an orthonor-
mal basis in T,M. When M is parallelizable, coframes
can be identified with global covector fields but, otherwise,
they can only be considered as local covector fields [32].

It is also useful to introduce objects with more
indices, the so-called generalized tensor fields
teT(V® @ V®1 @ TM® @ T*M®*), where V' - M
is the dual bundle of the Minkowski bundle. In index

By,
el

We denote as Qf(M) the space of k-forms on M with r
totally upper antisymmetric internal indices. Using Greek
abstract indices {a, /3, ...} for M and capital Latin letters
{1, J, ...} for the internal indices, an element of Q¥ (M) will
be written as

notation, generalized tensor fields look like 7,

R AN I A
Oyt = Dl ]

To ease the notation, space-time indices will often be
omitted and we will simply write @'/, Using the
generalized Kronecker delta with internal indices, 5{::_’,]”’1",
we define the graded wedge {- A -}: Q¥ (M) x Q"(M) —
Qk+m ( M)

r+s

1 Ky--K,L;--L
= 1K LyLy
{A A B}Il“'lr‘ll“",s = sl 611"'1»‘ Jydy AKI"'Kr A BL]---LS

(4.1)
(this is analogous to the usual space-time wedge, although

we have included curly brackets—not necessary, strictly
speaking—as a reminder for those readers who may prefer

explicit indices) and the graded bilinear product
[ A QFM) x Q2 (M) — Q77 (M)
[AABl; 1 00,
Ky..K,_\Ly...L,_
=0, Ak ko A BILWI‘..LS_I (4.2)

where the symbol A will be called the ledge (Lie wedge).
The previous operation is performed by contracting the last
index of A with the first one of B and antisymmetrizing the
remaining ones. Although not necessary for our purposes, it
is worth mentioning that Q% (M) with the ledge product

[AAB;; = Aix ABX)—Ajx A BX,

is a Lie algebra. Moreover, notice that {e A e}, =
2e! A e’. The rest of the paper will use the following
straightforward formula:

Try(@ A {B A 7}) = =T, ([anf] A7),
ae Q;(M), p.y € Qi(M). (4.3)
B. Constructing the geometric objects

Consider {e!,} a coframe, such that&; .; 't A - A el
defines a volume form on M. We define the Lorentzian
e-metric

9= Trn(e ®e)= Gop = Uljeéeé

together with its g-Levi-Civita connection V. We can now
define the dual frame {E¢}, given by the relations

Efey=g5.  Efel=n]

as well as the e-connection @ defined by

VyEi=o(X)X Ex =V, Ef =0, E{ =0

K _ K o
i =ea Vi E]

which can be proven to uniquely determine w. Notice that
the internal indices of @ are antisymmetric once the second
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one is raised w/ = —w;’. Notice also that we have the

covariant derivative of forms over Qf(M) given by
Da=da+ [wAa],a € QM)

where here and in the following, we will sometimes omit
the internal indices when not needed. Let us also denote the
associated e Christoffel as I', the e torsion as 7, the e
curvature as R, and the w curvature as F, which are
given by
VEIEJ = FK]JEK = BIFKIJ = COKJ,
TOI‘(EI, EJ) = TLIJEL = TLIJ = €L<T0r(E1, E])),
Riem(E;, E;)Ex = R" g1, E;, = RFgyy
= eL(Riem(El, EJ)EK),

1
= da)IJ +CU]K A C()KJ,

where Tor and Riem are the torsion and the Riemannian
curvature of the g-Levi-Civita connection. In particular
Tor = 0. It is interesting to notice that, as mentioned in the
introduction of this section, we are using EY and el to

but suitably restricted to these spaces of tetrads. Notice that,
essentially, we have only performed a “change of variables”
from g to e through the (surjective but not injective) map

D(e)yp = ﬂljefzeﬁ-

Indeed, we have S = ®*S("m) = S(") o ®, Since @ is
Lorentz invariant, the tetrad action is also Lorentz invariant
ie., if ¥ € SO(1,3), then S(¥.¢) = S(e). By using (4.4),
it is possible to show that the Lagrangian admits the
following explicit expression:

LO(e) = %Trn ((F - %{e A e}) A xyle e}>

1 A
:28]J](L<F[J—6€]/\€J> /\eK/\eL. (45)

Finding a useful explicit expression for the boundary
Lagrangian requires more work. Let us define the “internal”
normal N’ := ;¢! € QJ(M), which satisfies N;&% = 0 and

transform the space-time indices in Tor and Riem into
internal indices in order to define 7 and R. From the
previous equations, the following relations are easy to
derive:

1
Fly= ERIJKLeK A eb, Tt =De"(Ep Ey).  (4.4)

It is also straightforward to show that the following
properties hold:

(D2a)111r - [F/-\a]lllr, DF]J - 0, Del - 0.

C. Step 0: Action

Let us consider the following spaces of nondegenerate
tetrads on M:

FU = {e € QL(M)|eje! € U,
FO = {ecQ!(M)lee! € FI" and & := e fixed}

that we will refer to as Neumann and Dirichlet tetrads,

respectively. The actions Sl(\l,) and Sg) are both defined by
the same expression

LW (e) == LY (Tr,(e ® ¢)),
2(t)(e) = Eg'gY(Trﬂ(e ® 6))

I
N;N" =1, and the “internal” projector y} := n, — N'N,.
With these elements at hand, together with &5, =
volaﬂy(;E?ElJ}E?{E‘z and (2.2), it is easy to rewrite Z(") as

f?O)(e) = —8IJKLNIﬁNJ AN e_K A éL
where
DN’ = dN’ + [@AN) =dN’ + &', AN (4.6)

is the induced covariant derivative over the boundary given
by the pullback connection @ = j*®. Recall also that ¢ :=

J*e which, in turn, allows us to define its dual E}i =

7Py, ,e‘lf; which satisfies

4 —

Egél = 7,

R

i
Efe

[~

=rf. (4.7)

=i

With these ingredients, it is possible to obtain a better
expression for Z() by considering
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2e1kL ((N’de - %@”) - N’DN’) A ek A et
= —epgr (@Y + 2NT@'EN ) A eK A et = —e 0 (nh, — 2NTNg) A eK A et
= —ek @ (rh + N'NA)(rk — N'Ng) A rie? A yee©
= —yRyvLe kA (riyk — (FAN'Ng — N'Nvh) — NVNAN'Ng) A B A e©

_ _ K, L. J.I KA A 5B A 5C
= —YBYCYAYKELKLW™ ™ N e N e

which is zero as all four internal indices of ¢ are projected. D. Step 1 and 2: Variations
This identity allows us to obtain, as already done for

. ) ; . As before, we rely on the results and computations of the
instance in [35,36], the alternative expression

Appendix to obtain

_ 1 _ _
f(f)(e) = —ETI‘”(({N AN dN} - a)) AN *,7{6 A\ e}) d]L(t) ZEEI) /\d]e’—i—d@(’), d]?,z(t) —j*G‘)(t) Zl;;t) /\d]EI—dé(t)

1 _ _ _
= —ESIJKL(ZNIdNJ - C()]J) VAN eK A\ EL. where

1
E(e) = —[xyFay Al = EelfKLFg\L) nel,
b\ (e) = [%,({N A AN} — @) A&, = 2(15:deE ) w, {N A &} ¢ N,
1
= ESIJKL<2NK A dNL - (l_)KL) A\ €_'I - 2(1Elde_K)€JKR5NR A e_SNI,

1 1
ol = QTrn(*n{e A e} A dw) = §€IJKL6K A el A dat,

|
0\ = ETrn(*n{e' A&} A{N AdN}) = e 88 A e AN A N,

F{/J\) = FlV —%e’ el = (F—%{e A e})”.
|
1
E. Step 3: Space of solutions Ql(,) = 5[2 Trn(*nd]{e A e} A dw)
The solutions derived from Sg\t,) are nondegenerate 1
tetrads e € .7-"56) satisfying Ef,’)(e) =0 and the - 5/02 Tr,(x,d{e A e} A {N A dN}
“Neumann” boundary condition Egt)(e) = 0. The solutions +x,{¢ A &} A {dN A dN}).

obtained from S(L;) are tetrads e € F E? satisfying

Egl)(e) =0 and no additional condition at the boundary

(the Dirichlet BC are part of the definition of F'). G. Step 5: Charges

A direct computation using the definition of the &-current
F. Step 4: Symplectic form Jé’ ) leads to

Given a Cauchy embedding i: X < M, we have |
Jif) = ETrn(z[*nF(A) Ae] A1ze—%,D{e A e}

2, =a( [ren- [ rov).
() (/z : azl N1z + *,{e A e} A (Lg— Lx,)w)

Using the results of the previous section, we immediately 1
obtain —dTr, 5*"{6 A e} Ao

044048-8



COVARIANT PHASE SPACE FOR GRAVITY WITH ...

PHYS. REV. D 104, 044048 (2021)

where we have used 1:F = (L: — Diz)w, which follows

from Cartan’s magic formula. The second term of Jét)

vanishes as the torsion De is zero, while the third one is
also zero as a consequence of (2.4) and the fact that the only
background object is 77, which is “constant.” Thus we obtain

1
Jé)fTr (1ze A EV) — dTr< {eAe}/\tgo)

1
- Qg) = _ETrn(*n{e Ae} Aizw).

Jif) is then exact over the space of solutions with &-

potential Qg). Similarly, we have for the boundary

50— o = —%Tr({N A (L = Lx IN) A {2 A 8}
—2x,({N ANdN} — @) A {1z8 A €})
=Tr(0 + [*,({N A AN} — @) Ae] A 1z€)
= Tr,(1z2 A B).

In the last equality, a term may seem to be missing
according to the definition of 5(*) but, in fact, such term
vanishes as a consequence of &/ N; = 0. We then conclude
that the & charges are given by

Q.= Ll*Trfl(lge A EW) — [92 Tr, (17 A W), (4.8)

This expression, when pulled back to SOI(SS\I,)) cF 5\;),
vanishes as expected because the theory is diffeomorphism

invariant [15]. However, over Sol(Sg)) cF g> the boun-
dary integral will not be zero in general, as b} does not
necessarily vanish (fixing the tetrad on the boundary breaks
the invariance under diffeomorphisms).

H. Step 6: Comparing with
the Hamiltonian formulation

From step 6 of the CPS algorithm in the metric
formalism and the following section, the equivalence is
assured when no boundaries are present. The case with
boundaries is again not as straightforward and it will be
studied elsewhere.

V. METRIC VERSUS TETRAD FORMULATION

We have obtained in the previous sections the presym-
plectic structure over the space of solutions for both the
metric and tetrad formulations together with their £ charges.
In this section, we prove that the spaces can be naturally
mapped, that their symplectic structures are equivalent
(without considering the internal gauge freedom), and that
the & charges are equal.

A. Space of solutions

Let us first show the correspondence between the
solution spaces of metric and tetrad gravity. To this end,
we define the maps

Oy FY - Fy, @y ) - Fy
both obtained by assigning the following metric to a given
tetrad

(I)(e) = Trn<e ® 6) = ( )(1/)’
Of course, in the Dirichlet case the compatibility condition
9ap =M jete i 7 must hold for ®,, to be well defined. On one

ﬂljeaeﬂ

hand, it is well known that @ is surjective but not injective.
For instance, ®(—¢) = ®(e). In fact, it can be proved that

®(e) =d(¢’) if and only if =Y, e, for
some ¥ € SO(1,3).
On the other hand, we have that SO = s od so

d,Six = d, (St 0 @) = dye) St o d, .

Itiseasy tocheck thatd,® is surjective. Hence, the relation
between the spaces of solutionsisclear:ife € SOI(S&), then
D(e) € Sol(S(G"Q) and if g€ Sol(S&) then every e €
®~!({g}) belongs to SOI(S&). This is equivalent to
ISol(Si).

Sol(SU)) = @~ (5.1)

B. Presymplectic structures

Let us now compare 2! ) and @2 by looking at their
symplectic potentials. For that purpose we perform the
“change of variable” g = ®(e):=ee; in (O, 0().

First, we notice that instead of working with ®(m>, it is
more convenient to work with its g dual
(*g®pm) ) = (x g1y Vol ) = W (5.2)

where W, := VPdg,; — ¢’V ,dg,; was obtained in step 1
of Sec. III. Using the variation
daoft = (deX)V, EL + EXV dek

— (eqdey; + epdel,) BV EPL — EPK el (dV)!

which follows from the definition of @}/, and the definition

of W#, we obtain on one hand

WH =2Ef1p dot! + (SUY, U™ = (PES — B} )del

(5.3)
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where (8U)H :== =V, U* is the codifferential. On the
other hand, a standard computation using the definition
of the g-Hodge star operator leads to

(%, @) = 2E1; do®. (5.4)
Taking the Hodge dual of (5.3), using (5.2) and (5.4), and
the fact that for k-forms we have %, = (—1)"=0+1d
and *,6 = (—1)d,, we finally obtain

Oy = *gW = >, %, @O0 + 5 U = O + dx .

Once we have taken care of the bulk terms, we focus on
the boundary ones. If we use &;;¢; = Volaﬁ},(;E?E/;E;(E‘Z,
N; = v,EY, and AN’ = —N jizzdé’, we can obtain on one
hand

(é(t))a/? = gleL(e_K A e_L)dﬁNId]NJ
= —(Volg)“ﬁﬁeéelijyKE‘z(Egé[%
- e_ge_g)uﬁE7Nngjd]éR

= —ZNR(J*lDVOIg)(}&/}g d _,Ize = (lFJVOlg)&/}

where UF := —2N 3 *deR. On the other hand, using (A8),
we compute the following expression:

9(,”) -0l — T (xU) = 1vol; —15vol; — 57 ;U
= (V-0 - J*U)vol,
where V; = —j%(1;dg), was obtained in the step 2 of
Sec. I1I. Notice that we have made a small abuse of notation
because j*1;U{ is a 1-form so an index must be raised with

the help of g. Finally, we show that this last expression is in
fact zero

VE— 0% = g g, vl

= —g‘j/}]gyamj(eéd]e; + eéd]ef,) + 2NR§”_‘Bd]ég
— 7 1 gupvel S ES — o7 E7 )del

= =N,/ de} — 5 nyejpde; + 2N g def

- gﬁﬁNL@uélg + g@"ﬁuf’nmég del =0

which proves that

Oy = 00U + J* (% U). (5.5)

Putting everything together, we finally obtain the main
result of the paper

(O Oy) = (O, 00) +d(x,.0).  (5.6)

Hence, the symplectic potentials are equal up to a relative
exact form. Notice that the fact that the left-hand side comes
from the metric formalism while the right-hand side comes
from the tetrad formalism is not a problem because the
left-hand side is implicitly evaluated at the e-dependent
metric ®(e) = n ele’.

Taking now the d exterior derivative of (5.6), integrating
over a Cauchy slice (X, 9%), and using the relative Stokes’s
theorem (A2), we obtain the desired equality of the two
presymplectic forms €2,y and €,,,) (see Appendix A 1 for a
brief account of the relative framework). More specifically,
we have
A final comment is in order now: the previous formula says
that both presymplectic structures are equivalent modulo
the gauge freedom given by the kernel of ®,. This gauge
freedom is present in the tetrad formalism and originates in
the SO(1, 3) invariance of @ but it has no metric counter-
part. In particular, this means that €2, has more degenerate
directions than €2(,,). This can be neatly understood by
noticing that if we consider a curve ¥, € SO(1, 3) and its
associated vector V) := 4 |\ -e € T,F", we have

d
=— De) =0— 1y
dr 0

= l\/(t) (D*Q(m) = q)*(lcb*\/(,)@(m)) =0.

\P*\/(t) q)(“I"T . 6) =

0 T

(r)Q(f)

V(; is a nonzero vector which belongs to the kernel of €,
(as a consequence of being in the kernel of W,) so it is a
gauge vector field. However, the metric counterpart V) :=
Y.V = 0 is not gauge because by definition the zero vector
is not gauge. Finally, the equivalence of the charges (3.4)
and (4.8) is obvious as both theories are equivalent,
implying that B(m) and b are equivalent as well.

VI. CONCLUSIONS

In this paper, we have studied the metric and tetrad
formulations for general relativity on a manifold with
boundary. By considering the appropriate bulk and boun-
dary Lagrangians, we have shown that both theories are
equivalent and hence, as one would expect, they are
symplectically equivalent in the covariant phase space.
Here we have focused on Dirichlet and Neumann BC, but
any other BC will give the same results as long as the metric
and tetrad actions are in a suitable correspondence.

It has been known for some time that, in the absence of
boundaries, the metric symplectic current €2,y := d@,,) is
equal to the tetrad symplectic current Q) := d®® up to an
exact form dA (and thus cohomologically equal).
Therefore, their presymplectic forms over the space of
solutions are equivalent since the integral of dA over a
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Cauchy slice X is zero according to Stokes’s theorem. On
the other hand, if one considers a space-time with boun-
daries, the boundary-free covariant phase space procedure
fails. This is due to some ambiguities that arise in the
construction of the presymplectic form that hinder the
direct comparison between metric and tetrad formulations.
This has caused some discrepancies in previous works
[20,22,23], but as we have shown, these difficulties arise
because the traditional covariant phase space methods are
only suited for the boundary-free case.

When boundaries are present, it is necessary to use more
sophisticated techniques, like the relative bicomplex frame-
work [15]. Following the ideas of that formalism, we obtain
the main result of the paper: the metric symplectic currents
Q) D(m)) = (d]®(m>,d]§(m)) and the tetrad symplectic
currents (Q®,®") := (dO®,dA")) are equal up to a
relative exact form d(A, a). This implies, in particular,
that they are equal in the relative cohomology (see
Appendix A1 for the relevant definitions) and that their
presymplectic forms over the space of solutions are
equivalent. Indeed, the relative Stokes’s theorem tells us
that the integral of d(A, a) over a relative Cauchy slice
(%,0%) is zero. Furthermore, we have proved that the
Noether charges are equivalent as expected. Finally, we
have applied the covariant phase space methods to the
asymptotically flat case to recover the well-known formula
for the ADM energy.
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APPENDIX: ANCILLARY MATERIAL
1. Mathematical background

a. Relative bicomplex framework

In this section we include a summary of the definitions
and results of [15]. Consider an n-dimensional manifold M
with boundary OM (possibly empty) and a space of fields F
defined on it (sections of a bundle £ — M). The geometric
structure of 7 may be understood by studying the infinite
jet space of E. However, it is also possible to deal with F as
is customary in the physics literature: by considering it as
an infinite dimensional manifold endowed with standard
operations such as the exterior derivative d, the interior
product 1, or the Lie derivative £. Physical field theories are
described in terms of locally constructed fields over the
space M x JF, a space consisting of points of M and fields
over M.

We define the relative pair (M, N) with N C M being a

submanifold N <i>M of codimension 1 of M. In this paper,
we will always assume N C OM. Then, we have that the
relative boundary of the pair is defined as

(M, N) := (OM\N, ON)
which satisfies 9> = 0 and (M, M) = @. The space of

relative forms and the generalizations of some familiar
operators to the present case are defined as

d(A, a) :== (dA, j*A — da),

*,(A,a) = (%A, x;0),
d(A,a) = (dA, da),

|
We have the relative Stokes’s theorem given by

/ d(B.b) = / J*(B.b)
(M.N) AMN)

which in turn implies that (A1) for N = OM is well defined
on relative cohomology because (M, OM) = @. We in-
troduce now the space of forms Q%) (M x F) of degree r
in M (horizontal part) and s in JF (vertical part). Endowed
with the wedge product A, this space becomes a bigraded
algebra with two exterior derivatives: the horizontal d,

(A2)
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which increases r in one unit, and the vertical d, increasing
s in one unit. The wedge product A restricted to (k,0)-
forms coincides with A. We will often abuse notation and
use the latter. If we replace (M,d) by the relative pair
((M,N),d), we can define the relative bicomplex

o (M.N) x F) = 050 (M x F) @ 0 (N x F)
(A3)
where the loc subscript indicates that we only consider

(r,s)-forms which are locally constructed i.e., a form «
|

(Ly.2))] = [(La. £5)] = (Ly. &) = (Ly. £1) + d(Y. )

Definition A.4 A local actionisamap S: F — R of the

form
s = [ (o) (A3)
(M.OM)

for some local Lagrangian pair (L,7) € Lag(M).

Definition A.6 (L; ¢;) € Lag(M) are [-equivalent,
which we denote as (L, fl)f(Lz, Z,), if for every
¢ € F, we have

/ (Ln ) = / (LanB)@). (A6)
(M.0M) (M.oM)

In this work, we have only considered contractible
bundles, for which the [ equivalence is the same as the
cohomological equivalence (a proof was given in [15]).
Nevertheless, if the bundles are not contractible, it is still
possible to keep track of the ambiguities that arise from the
fact that there exist nonzero Lagrangians [(L,#)]# 0
whose Euler-Lagrange equations and BC are zero.

c. Variations

We assume that the action is defined in such a way thatitis
possible to find Euler-Lagrange equations and boundary
equations (E, b), and symplectic potentials (®, 8), such that
dL=E, Ad¢"+dO, df—;@=b.Adp"—dd (A7)
where r labels the fields of the theory ¢ = (@', ..., $%) € F.
If this is not possible, the theory is ill posed and we have to
change the space of fields F and/or the action S. The
symplectic potentials (®, 6) are defined up to a relative exact
form. The space of solutions is

Sol(S) = {¢ € F|(E.b)($) = 0}.

evaluated at p only depends on p, ¢(p), and finitely many
of the derivatives of ¢ at p.

b. Lagrangians and actions

Definition A.3 We define a Lagrangian pair as an
element of

Lag(M) = Q" (M, M) x F).

— *Ploc

Remember that

_ L2:L1+dY
=4+ Y -dy

d. Symplectic structure

We define the symplectic currents as (Q, @) := d(©, ).
The relevant object is the relative integral of the sym-
plectic currents over a Cauchy embedding i: (%, 0X) &
(M ’ aL]W )

mzlS ==/ dr'(@,9) € 02(F).
(£.0%)

It can be proved that the pullback of {2 to the space of
solutions is independent of the Cauchy embedding, endow-
ing Sol(S) with a presymplectic structure canonically
associated with S.

e. Currents and charges

Given some vector field £* tangent to the lateral
boundary, we define the £ currents and the & charges as

(JeJe) =1:(L. ) — 1x. (O, 0),

Q; ==/ (e Je) € °(F).
(£.0%)

The £ charges in general depend on the chosen Lagrangians
and on the embedding. If we compare the & charges
associated with two embeddings we obtain the following
flux law:

-0y = [ (E5)@)L
(N,OLN)

+ / (L:— L)(L.7)
(N,OLN)

where N is the manifold bounded by the Cauchy slices
11(Z) and 1(X). In general, the charge Q% is not the

Hamiltonian of the vector field X, because
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dR = —Ric?dg,; + V*VPdg,; — V*V,dg,

- \%
40, =i @+ [ r((E,B) 1 dp) ®

(£.0%)

s(p 7] , dg

+ /( z.m:)l (Le = Lx,)(©,0). (vi) dvol, = 7V019’
The & charge is the Hamiltonian of X over (Sol(S), Q)
if and only if the last integral vanishes. . _ l _a, B a bro.
(Vll) d]K(iﬁ - 2 (Kﬁtﬁl/ v d]gaﬂ + J&Jl}(vudgaﬁ

2. Some computations in the metric case — UV odgus — V'Vdg,q)).
Let us start off with a list of some of the well-known
variations of the relevant objects used in the metric 1 )
formalism (Vi) d(Tr;K) = 3 (Vadg — v*VPdg,; — K¥dg, ;
: 1 —VP(£(1-d
M (dV)7y, = Ega”(v/)‘dgw + V,dgpu = Vudgp,), (]ﬂ(l” 9)p)):
where dg := g% dgqp stands for the g trace of dg, (not to be
confused with the variation of the determinant of g, which
we do not use in this paper). Besides, we use the

(11) d(g—l){lﬂ — _gflﬂgﬂl/d]gﬂy’ .
notation (1;dg), = v*dgg.
(i) dRicy, = va(d]v)aﬂy _ vﬂ(dv)aaw a. Variations
With  those variations and the Lagrangians
(Lé";i), I’Z(GWIL-I)Y) = ((R = 2A)vol,, —2Kvol;), we have
: 1
@iv) —— Y m) (m - —
d]ya 2V g d]gﬂyyaﬂ d(L](EH)’ fé};Y) = (E(m)7 b(m)) A d]g + Q(G)(m)’ 9(,,1))
where

(m) = 1yVOly.

20
Il
—
>
Sl
S
|
>
QQ|I
=
S—
<
]
=
<
@
2
\
=
<
]
=
<
Y|

R _
aff s 0
E? = ((5 - A) ¢ —Ric ﬂ) vol,, B/

We = (g%g" = g“ g )\Vodgy,. VT ==g"g"J50,dg..

b. Symplectic form

The symplectic currents are given by

> = d
Q) = 46, = 145 v0l, — ydvol, = z(d]W —W A g) vol,,
_ . 5o 49
@ () = dO,) = 14pV0lg —1pdvoly = dV =V A 5 volg.

To ease the notation, here we are using the parenthesis for the interior product instead of a subscript. These terms can then be

rewritten as follows:
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dg\ 1 1 1 1
Gap <d]Wﬁ — WP A 7) = Edlgaﬂ A Vidg + —g"/’g"’ldgw AV, dgg, + Ed]g A VPdg,; — Edg A Vo dg — g*dgg, n Vidg,,

= i’g}gﬁ g dgyy, A Vidgay +3 Ly (¢ dgap M dgy),
R 1
Ve ViR = F7P? 55,5 W (1dg), + 1,777 {g‘w(ladg)y A dgas — E%dlg A (15d9)5 + 5 (15dg) s A dg}
1. 1 _
=59 ﬂ]g(lﬂdg)ﬂ A (g7 = v"7)dg;, = 59 7y (lﬂd]g)ﬂ A dg.

Consider a Cauchy embedding :: ¥ < M, where we have the g-normal n* to ((X£) C M, the g—normal m® to

1(0X) C O, M, the y-normal u” to X C X, and the induced metric y = 1*g. We denote also m® := ;j%m® and ,ub

B b
AT
Integrating the symplectic current over (X, 0X) we obtain the presymplectic form

_ (1L.2)
Q= / Qi) D)) =
(m) (2’62)-( (m)» @( ))(11.3)

d _ __ da
= —Lna<dwa — We A%)voly _ /azmd<d]va —_ya A?g)volf
1 . 1
- EL a iﬁggﬁ ¢“?dg,, A V,dg,,vol, — El)z(nagﬁw + ma,,ﬁgw]z]j)qﬂgaﬂ A dg,vol;.

Notice that we have used Stokes’s theorem, Gauss’s lemma (to write the covariant derivative V of M in terms of the
covariant derivative D of X and its extrinsic curvature) together with the fact that 7, := gﬁﬂd]ga/,» A dg,, is antisymmetric
(which kills the extrinsic curvature terms) to take n,V,T* to the boundary.

c. Charges
The & currents are given by

(U7 7" = (L 2ity) = 1, (O, Bom) = (L 17 ity) = (1v0l, 1gvoly)
= ((R = 2A)izvoly, 2K1zvoly) — (lgxg,WVOIQ’ z£X5‘7volg)
= ({(R = 2A)& = 15, W}vol . 1{2KE — 15 V }vol,)
= (% {(R=2A)& — 15 W}, % ;{2KE — 15, V}).

Using the definition of the Ricci and Riemann tensor together with (2.4), we obtain

(R - 2/\)5(1 - lX: Wa = (5d€)a + 2(15E)a

where 0 is the codifferential (which is equal to minus the divergence) and E ﬂ E“ 4 / vol, (the prefactor multiplying the
volume form in E,,). Meanwhile, at the boundary

2KE — 1y, V7 = 2KE + 710 0 (V 5 + V) 2

= 2KE" + g (11 (dE) oy — 28K 1)
= 2(K% = FUK)E + 3 /5 (1d8)
= ~2(5) + (" 1dE)°

where b := b/ vol. Thus, using that for 2-forms the equality 6%, = x,d holds, we can write

2KE + G (1(dE) gy — 26V 1)

(L. 7Y = (xg8dE + 2w ypzE. ~2wgizb + J#1;dE)
= 2% 1(E, D) + (d*,dE, J* (v A #dE + #13dE)) = 2x 1(E, b) 4 d(x,dE,0)
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where in the first line we have used the operator #a = (v A ) which satisfies
*x,a=v A#a+Hpa and  JH = x5)" (A8)

3. Some tetrad computations

a. Variations

dL() = %d]Tr,7 (*n{e Ae} A <F —%{e A e}))

1 A
= ETr" (2*,1{d]e Ne} NF+x,de el A d]F—g*”{d]e ANel A{eA e})

1 A :
= ETr,7 (2*,7F A e nde} 4 x,{e A e} A Ddw —;*n{e Ae}l Ade A d]e})(“ﬁ)

1 1
=Tr, (—[*WF(A) Ael A de _E*nD{e Ae} A dlw) +dTr, (5*”{6 Ae}r A cd]a)),

d7) — el = —%d]Tr,?(({N ANdN} — @) A x,{e A e}) — jTr, <% *x,{e Ae} A d]co)
= —%Trn(({d]N AdAN} +{N AddN}) A x,{é A e} +2({N AdN} — @) A x,{de A é})

- —%Trn(Z{d]N AN} A wp{e A &)+ d({N A AN} A % (e A &}) = 2{N A dN} A %,{d A &)
+2x,({N AdN} — @) A {dé A é})
= -Tr,({dN A dN} A x,{é A é} —{N AdN} A x,{de A &} — [x,({N A dN} — @) Aé] A de)
—dTr, (%{N AdN} A x,{e A E}).
Let us prove that the first term vanishes. First notice that e/KENYl € Q%(M) = {0}. Thus
0 = 5eVKENMlge A &p A ANy A (15,dEy)

= (eKLNM 4 KLMNI 4 KLMINT 4 2eLMIINK g, A 2 A AN A (1, déy)

= —¢l/KLleg nep AAN; AdNy = —x,{é A &}y A dN' A dNY

where we have used dN; = —N iz dé’, N'E] = 0, N'dN; = 0, and N'é; = 0. Let us now rework the second term to obtain
the desired expression of Sec. IV D

Tr,({N A dN} A x,{de A &}) = {N A dN}”%s,,KL{dé A e}KE
= 2N'dN’ e} (deX) A et = =2N'Ng(1pdeR)e g (deX) A et
= —2N'Ngepsip (17 (de® A dek A el) + def A (1deX) A el + deR A dek A y'h)
= —2NINgep k(0 + de® A (1p2de®) A el +0) = 2N Nypej i (1z7deX) A ek A deR

= —NREIJKL(IEJde_K){N AN E}IL A d]e_R = —2NR(lEJd€_K)*”{N AN e_}JK AN d]e_R
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