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The event horizon of a black hole in general relativity absorbs all infalling radiation. Any observation of
the contrary would immediately challenge the expectation that astrophysical black holes are described by
the vacuum Kerr geometry. If a putative black hole does reflect part of the ingoing radiation, its quasinormal
mode structure is drastically altered. Low frequency modes can be introduced that are resonantly excited
during the inspiral of a binary system. We study the resulting phase shift of the gravitational wave signal.
Building on neutron star results, we obtain a model-independent expression for the phase shift that depends
only on quasinormal modes and Love numbers of the compact object. We find that the phase shift might be
detectable with Einstein Telescope for asymmetric binaries in high signal-to-noise events (∼103), but by far
cannot explore the Planck scale.
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I. INTRODUCTION AND SUMMARY

A fundamental question of present-day research con-
cerns the nature of astrophysical black holes: are they truly
described by the Kerr family of general relativity? The ever-
increasing precision of gravitational wave experiments is a
sensitive probe that offers insight into this question. A rich
phenomenology has sprouted in recent years on horizonless
compact objects, which have some structure close to the
would-be event horizon, and can serve as testable alter-
natives to the Kerr paradigm. Many of the models for such
exotic compact objects (ECO) are directly inspired or even
predicted by fundamental physics models that describe new
physics near black holes, ranging from dark matter to
quantum gravity [1–14]. Exploring their gravitational wave
signatures transforms compact merger events into funda-
mental physics laboratories.
A main theme in this exploration is to find model-

independent gravitational wave (GW) observables that can
distinguish an exotic compact object from a black hole.
Two key sets of observable that have been studied recently
are GW echoes following the merger and tidal effects
during inspiral. GW echoes [15–25] arise when the ECO
reflects part of the incoming gravitational radiation: the
interaction between the ECO and its light ring behaves
as a resonant cavity inducing a particular set of trapped

quasinormal modes (QNM) of significantly lower fre-
quency than the standard black hole QNMs. Potentially
observable with LIGO/Virgo, the data analysis hunt is on,
with no conclusive evidence up to date [24,26–33].
Adiabatic tidal interactions on the other hand can lead to
deformability and heating effects which typically appear in
the GW signal as highly suppressed corrections during
most of the inspiral. Those effects are in principle detect-
able with 3G detectors [34–51].
The same physical mechanism underlying GW echoes

offers the possibility for another effect in the inspiral phase:
low frequency QNMs can be excited by the driving of the
companion. At resonance, tidal effects suddenly become
more dominant. This gives two potentially observable
effects. First, sharp peaks in the emitted gravitational wave
power are to be expected when the orbital frequency
matches the resonant frequency of an internal oscillation
mode of the object. This effectively leads to a high
frequency “glitch” in the observed signal which is most
likely inaccessible to current or planned detectors [41].
Second, the significant enhancement of energy in an
internal mode causes a phase difference in the GW signal.
This kind of resonance phenomenon has already been
discussed at length in the context of neutron stars (NS)
[42,52–54] and white dwarfs [55], and numerically for
particular ECO models such as gravastars and boson stars
[16,17,34,40,56]. A recent model-independent data analy-
sis for the phase shift due to inspiral resonances showed no
deviation from GR in second-generation GW observations
yet [57]. However, a detailed treatment for the form and
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expected size of the phase shift for generic compact objects
is currently not available.
In this paper, we investigate specifically the perspectives

for detection of the phase shift induced by a resonant
excitation of the heaviest object in a comparable mass
binary merger. The companion could be a black hole, a
neutron star or even another ECO although tidal effects in
the companion will not be taken into account. By extrapo-
lating known results for neutron stars, we write down the
phase shift in terms of QNMs and Love numbers of the
ECO. We determine the prospects for detection of those
modes using ground-based GW detectors using a Fisher
analysis. Although our setup is more generally valid, we
do this analysis for the simplest model of a reflecting
surface at coordinate radius r0 ¼ 2M1ð1þ ϵÞ where M1 is
the ECO mass, M2 will be the companion mass, and ϵ is a
dimensionless parameter controlling the compactness of
the ECO or alternatively a “closeness” parameter that
indicates how close the reflective surface is to the
would-be horizon [11]. In particular, ϵ is chosen such that
the surface lies well within the photonsphere but is, in
proper distance, more than a Planck length away from the
putative horizon. For a hundred solar mass object, this
implies ϵ lies roughly between 10−2 and 10−80. We find that
with current detector capacity observation of the phase shift
of our model is ruled out. With third generation GW
observatories, things look better but might still be out of
reach. We focus on Einstein telescope and find that only at
high signal-to-noise ratios of ∼103 the phase shift becomes
detectable for mass ratios of roughly M2=M1 ≲ 10−2 and a
wide range of ϵ, but nevertheless corresponding to a proper
distance away from the horizon of many orders of magni-
tude above Planck scale. The phase shift at leading order in
ϵ scales with the inverse of the mass ratio, suggesting better
prospects for extreme mass ratio inspirals (EMRI) with
LISA. However, our approximations do not extend to that
setup and we defer a proper EMRI study to future work.
Along the way, we also discuss how the resonance can
be written in an effective theory as is done for GW echoes.
We explore the post-Newtonian structure of this approach
and, thereby, clarify how the dynamic tidal deforma-
bility induces a difference in gravitational wave emission
between an ECO and a black hole at resonance.
The rest of the paper discusses our main points as

follows. In Sec. II, we discuss the inspiral of a featureless
point particle into a compact object. After a quick review of
the linear response to the tidal field of the companion, we
model the ECO as a point particle dressed with multipolar
deformation degrees of freedom. Such a description is
applicable irrespective of the details of the object and has
been developed and applied previously for stellar objects
[58]. Following this previous literature we derive the phase
shift as consequence of a resonance in the GW signal by
estimating the orbital energy that leaks into a specific mode
of oscillation. For neutron stars, this driving is known to be

related to the overlap integrals that describe the internal
structure of the object [44,59]. By assuming only the
fundamental mode contributes, we express the overlap
integrals in terms of the Love numbers to arrive at a
largely model-independent estimate of the phase shift, see
Eq. (2.19) below.
In Sec. III, we discuss the essential difference with stellar

objects in the form of the tidal response function. This
requires input depending on the nature of the object itself.
We give a near-zone analysis of the object, closely
following the discussion in [19] developed for GW echoes,
and characterize an ECO by its boundary conditions that
replace the purely absorbing black hole horizon. We show
how, in a low frequency limit, the transfer functionKðωÞ of
[19] is proportional to the linear response function FðωÞ of
the effective theory of quadrupole deformations, elucidat-
ing the relation to the high-frequency glitch described in
[41] and tidal effects in the post-Newtonian expansion. For
calculational reasons, we focus on the EMRI limit in this
section.
In Sec. IV, we first discuss the basic conditions that have

to be satisfied for a resonance to be seen in a gravitational
wave signal, including relation to mass and details of
central object and ECO. We restrict to a simple model and
qualitatively observe that such a detection is possible in
principle. However, we then perform a Fisher analysis and
find that the resulting phase shift is unlikely to be seen by
the Einstein Telescope.
We conclude in Sec. V that, even though our results are

only a first order of magnitude estimate, they serve as an
indication that a more detailed analysis of the extreme-mass
ratio limit is worthwhile. Appendix B and A contain
technical details relevant to Secs. II and III respectively.

II. HARMONIC OSCILLATOR MODEL OF A
COMPACT OBJECT

We first give a quick recap of the phase shift derived
using the Newtonian approximation [44,53,54] and the
harmonic oscillator model used to describe the linear res-
ponse of stellar objects subject to a tidal field [59–61]. We
end by expressing the phase shift in terms of the GR Love
numbers and mode frequencies.
The reader interested in the results can jump to Sec. II C.

A. Phase shift in the Newtonian approximation

We consider two masses M1 and M2 with mass ratio
q ¼ M2=M1. In the early inspiral, the motion is dominated
by the point-particle motion at the leading (post-)
Newtonion order. On the additional assumption of quasi-
circular orbits, it is described by the relative separation of
the masses, rðtÞ, and the orbital phase, ϕðtÞ:

rðtÞ ¼ 4

53=2
ð5McÞ5=4

μ1=2
jtc − tj1=4; ð2:1aÞ
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ϕðtÞ ¼ ϕc −
�
tc − t
5Mc

�
5=8

; ð2:1bÞ

in which tc and ϕc are the time and phase of coalescence
respectively, Mc is the chirp mass and μ the reduced mass
given by

Mc ¼
ðM1M2Þ35

ðM1 þM2Þ15
; μ ¼ M1M2

M1 þM2

: ð2:2Þ

Now consider M1 to be an ECO that can be equipped
with additional internal degrees of freedom,M2 will still be
modeled as a featureless point particle. A resonant exci-
tation of an internal degree of freedom during the inspiral
effectively causes a phase shift in the gravitational wave
signal; the GW phaseΦðtÞ away from the resonance regime
is given by [44]

ΦðtÞ ¼
(ΦppðtÞ if t − t0 ≪ −Δt

ΦppðtÞ þ
�

_ϕðtÞ
_ϕR

− 1
�
ΔΦ if t − t0 ≫ Δt;

ð2:3Þ
where Δt estimates the duration of resonance, _ϕR is the
angular velocity of the binary evaluated at resonance t ¼ t0
and ΦppðtÞ is the GW phase as predicted for a point-
particle. Our order-of-magnitude estimate for the phase
shift ΔΦ is

ΔΦ ≈ 2 _ϕ
ΔEnlm

_EGW

����
t¼t0

; ð2:4Þ

in which _EGW ¼ 32=5 ðMc
_ϕÞ10=3 is the “Newtonian”

gravitational wave luminosity and ΔEnlm denotes the
orbital energy loss in a particular, resonantly excited,
ðn;l; mÞ-multipole mode. The second factor is the time
scale associated to the energy loss ΔEnlm during normal
GW emission hence ΔΦ estimates the shift in GW phase
when passing through a resonance epoch. We will obtain
the energy loss ΔEnlm from a linearized harmonic oscil-
lation model put forward in [59] on assuming the no
backreaction approximation (the orbital motion of the
companion is a constant supply of energy without the
mode oscillations influencing the orbit).

B. Oscillating stars

Chakrabarti et al. [59] have shown how to incorporate
multipolar degrees of freedom on the worldline of a point
particle to describe a generically deformed object in the
Newtonian regime (this will naturally restrict us to tidal
effects of electric type). Fundamental quantities are the
deformation amplitudes cnlmðtÞ of a specific normal mode
of oscillation and the (quasi) normal modes of the central
object ωnl. Note that the QNMs do not carry an m-index

because of assumed spherical symmetry of the ECO. In the
regime of linear response, these amplitudes are described
by a driven, damped harmonic oscillator

c̈nlm þ 2γnl _cnlm þ ω2
nlcnlm ¼ fnlm; ð2:5Þ

where a dot denotes a time derivative and with ωnl the
frequency of oscillation γnl and damping coefficients; they
are related to the quasinormal frequencies ωQNM

nl of the
central object as

γnl ≡ −ImωQNM
nl ; ð2:6aÞ

ω2
nl ≡ ðReωQNM

nl Þ2 þ ðImωQNM
nl Þ2: ð2:6bÞ

The driving term fnlm describes how the internal degrees
of freedom of the central object couple to the external tidal
field of the companion [59]. The precise relation is most
easily written in a symmetric trace-free (STF) tensor basis
fnlm → f̂nKl

where Kl is a multi-index Kl ¼ k1k2…kl
and the hat denotes STF projection, see Sec. IV and/or
Appendix A of [59] for a more detailed description. The
driving term is given by

f̂nKl
¼ −

Inl
l!

∂̂Kl
ΦðrÞ: ð2:7Þ

In this expression, Inl is the overlap integral encoding
equation of state information of the central object, the
hatted ∂Kl

refers to the STF projection of a multi-index
partial derivative1 and ΦðrÞ is the Newtonian gravita-
tional potential of the companion evaluated at its position
r ¼ rðtÞ, in particular

ΦðrÞ ¼ −
M2

jrðtÞj : ð2:8Þ

We will focus only on quasicircular orbits in the equatorial
plane. This simplifies the driving term to the split form

fnlm ¼ FnlmðtÞe−imϕðtÞ; ð2:9aÞ

where the amplitude is given by

FnlmðtÞ ¼ N lm
M2jInlj
½rðtÞ�lþ1

; ð2:9bÞ

where rðtÞ and ϕðtÞ are given in (2.1) and N lm is a
numerical prefactor

1For instance, applying this notation to a partial differential
∂̂K2

¼ 1
2
ð ∂
∂rk1

∂
∂rk2 þ ∂

∂rk2
∂

∂rk1Þ −
δk1k2
3

∂
∂ri

∂
∂ri, with ki taking values in

1,2, 3 and rk1 the Cartesian coordinates of r. This is, however,
simply equal to ∂

∂rk1
∂

∂rk2 when acting on a Newtonian potential in
vacuum.
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N lm ¼ ð−1Þl2m−1

Γð−l−mþ1
2

ÞΓðl−m
2

þ 1Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πð2l − 1Þ!!

2l!
Γðl −mþ 1Þ
Γðlþmþ 1Þ

s
: ð2:9cÞ

Note that we take the modulus of the overlap integral
when compared to (2.7). Any phase corresponding
to Inl can be absorbed in the definition of the orbital
phase (2.1b).
When a solution to the oscillator equation (2.5) is

obtained, the energy stored in the ðn;l; mÞ-mode can be
obtained in the standard fashion from the solution of (2.5)
as follows

EnlmðtÞ ¼
1

2
ðRe _cnlmðtÞÞ2 þ

ω2
nl

2
ðRe cnlmðtÞÞ2: ð2:10Þ

The energy in the modes after passing through a resonance
can be approximated by [53,55]

EnlmðtÞ ≈ ΔEnlme−2γnlðt−t0Þθðt − ðt0 þ ΔtÞÞ; ð2:11Þ

where θ is the Heaviside step function given by

θðtÞ ¼
�
1 if t ≥ 0

0 if t < 0
; ð2:12Þ

and

ΔEnlm ¼ πF2
nlm;R

4jmjϕ̈R
: ð2:13Þ

Here, Fnlm;R and ϕ̈R are respectively the driving amplitude,
see (2.9a), and change in angular velocity of the binary
evaluated at resonance. Note that ΔEnlm gives the total
amount of energy transferred from the orbit to the mode
while EnlmðtÞ is the present amount of energy in the mode
(that is, the total amount minus the amount which is
dissipated by internal friction or gravitational wave emis-
sion). Using this result (2.13) for the phase shift estimate
(2.4) yields

ΔΦ ¼ 25πN 2
lm

6144jmj13ð4l−11Þ M
−2
3
l−11

3

1 ω
4
3
l−14

3

nl jInlj2: ð2:14Þ

This expression depends on the overlap integrals and hence
on the internal structure and mass distribution of the central
object M1.

C. From stars to compact objects

To make contact to ECOs, we express the overlap
integrals in (2.14) in terms of the Love numbers using
the effective theory of tidal deformations. To this end, we

will restrict to fundamental n ¼ 1 modes2 and omit the
subscript n henceforth.
For quadrupolar deformations in GR, one can construct

an effective action for a dynamical quadrupole degree of
freedom Qab on the wordline of a point particle (in our
case: the ECO). The linear response to an external tidal
field is given through the following coupling with the
electric component of the Weyl tensor Eab, in the frequency
domain

Q̃ab ¼ −
1

2
F̃ðωÞẼab; ð2:15Þ

where we have used Q̃ab, Ẽab to indicate the Fourier
transforms of Qab, Eab, and F̃ðωÞ is the linear response
function, in the frequency domain, that determines the
strength of the tidal interaction and depends on the proper-
ties of the compact object, such as its equation of state.
In the low-frequency regime, the Taylor expansion of

F̃ðωÞ gives the tidal constants:

F̃ðωÞ ¼ μ2 þ iλωþ 2μ02ω
2 þ…; ð2:16Þ

with μ2 ¼ 2M5
1

3
k2 for the relativistic quadrupolar dimension-

less electric tidal Love number k2, λ related to absorption
and μ02 parametrizing tidal response beyond the adiabatic
limit [60]. Note that the relativistic tidal Love numbers of
nonspinning objects can be split in to two classes based on
parity: electric (even-parity) and magnetic (odd-parity). We
only consider the electric type as they also exist in the
Newtonian theory, in contrast to the magnetic-type Love
numbers [62]. Furthermore, we use the convention for k2 of
[34], where it is shown explicitly how this convention
differs, for example, from the conventions of [46,63]. Near
resonance, the response function has a pole structure,

F̃ðωÞ ≈
X
n

I2nl
ω2
nl − ω2

; ð2:17Þ

with ωnl the resonant frequencies. As indicated, the resi-
dues are related to the overlap integrals. By Eqs. (2.16) and
(2.17), we can then immediately relate Love number and
overlap integral.
For generic multipoles, we use the Newtonian limit of

[59]. In Appendix B, we list those results and repeat the
above reasoning. The main assumption made is that overlap
integrals for fundamental modes dominate above their
overtones; hence we truncate to n ¼ 1. The overlap integral
is given as:

2We choose the convention n ¼ 1 for the fundamental mode as
it is convenient to describe the trapped QNM’s in (4.2). However,
this means a shift is required in the comparison with the
traditional n ¼ 0 choice for stellar oscillations.
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I21l ¼ 2l!
ð2l − 1Þ!!ω

2
1lM

2lþ1
1 kl; ð2:18Þ

with kl the electric multipolar Love numbers. The phase
shift (2.14) becomes

ΔΦ ¼ ClmðM1ωlÞ43ðl−2Þ
jklj

qð1þ qÞ13ð2l−1Þ ; ð2:19aÞ

where the numerical prefactor Clm is given by

Clm ¼ 25π

6144jmj13ð4l−11Þ
2l!

ð2l − 1Þ!!N
2
lm: ð2:19bÞ

The numerical factor N lm is given in Eq. (2.9c).
We have made the assumption that the same relations as

for Newtonian stars holds for ECO’s. However, the tidal
behavior of ECOs is counterintuitive compared to normal
Newtonian fluid objects, in particular the Love numbers for
very compact objects can actually become negative (see
Eq. (4.3) below). Therefore we work with the square of
the overlap integral and take the modulus in (2.19a) to have
the correct physical sign of the phase shift. It would be
interesting to perform an independent check of the complex
nature of the overlap integrals for ECOs by evaluating the
residues in the response function F̃ðωÞ explicitly (2.17).

III. RESONANCES OF EXOTIC
COMPACT OBJECTS

For simplicity, we keep the discussion focused on a
nonrotating ECO. Section III A reviews relevant elements
of previous work, mainly [19], while introducing our
notation. It also stresses the natural relation between echoes
and low frequency resonances. Subsequently, in Sec. III B,
we make a connection between that approach and the
effective harmonic oscillator model presented in Sec. II.
That relation is elegantly summarized, in the low frequency
limit, by (3.23). Finally, in Sec. III C, we exhibit the
enhanced gravitational wave flux that was also discussed
in [41] as well as indicate how it suggests a resummation of
the post-Newtonian expansion with dynamical tides.

A. Perturbing an ECO

Gravitational perturbations around a nonrotating black
hole background are governed by the Regge-Wheeler (RW)
equation [64],

d2Xlmðr;ωÞ
dr2�

þ ðω2 − VðrÞÞXlmðr;ωÞ ¼ Tlmðr;ωÞ; ð3:1Þ

with

VðrÞ ¼ rðr − 2M1Þ
r4

�
lðlþ 1Þ − 6M1

r

�
; ð3:2Þ

and the tortoise coordinate r� ¼ rþ 2M1 log ð r
2M1

− 1Þ.
We will denote the radial coordinate of the horizon as
rþ ¼ 2M1. The frequency domain Regge-Wheeler func-
tion Xlm can be straightforwardly connected to linea-
rized metric perturbations hμν around a Schwarzschild
background for the odd-parity sector in Regge-Wheeler
gauge [65]

Xlmðr;ωÞ ¼
r − 2M1

r2lðlþ 1Þ ffiffiffiffiffiffi
2π

p
Z

dtdΩe−iωtP̄A
lmhrA; ð3:3Þ

with dΩ, the area form on the unit two-sphere, the index A
running over the angular coordinates ϕ; θ, and P̄A

lm
the complex conjugate of the parity-odd vector spherical
harmonics, which can be constructed from the ordinary
spherical harmonics Ylm by

PA
lm ¼ −ϵABDBYlm; ð3:4Þ

with DA, ϵAB respectively the covariant derivative and the
Levi-Civita tensor on the unit two-sphere. For the even-
parity sector, the relation is more complicated but can
nevertheless be found through the Chandrasekhar trans-
formation [66]. The source term Tlmðr;ωÞ can similarly be
connected to the stress-energy tensor but consider, for the
moment, the homogeneous equation (3.1) with Tlm ¼ 0.
Two independent solutions are given asymptotically by

Xin
lm ∼

�
e−iωr� ; r → rþ
Aouteiωr� þ Aine−iωr� ; r → ∞

ð3:5aÞ

Xup
lm ∼

�
Bine−iωr� þ Bouteiωr� ; r → rþ
eiωr� ; r → ∞:

ð3:5bÞ

Here, the asymptotically outgoing and ingoing ampli-
tudes, Aout, Ain of Xin

lm as well as the horizon outgoing and
ingoing amplitudes Bout, Bin of Xup

lm also depend on ω;l; m
although this is left implicit for notational simplicity. The
solutions introduced in (3.5) have the right boundary
conditions for a black hole respectively at the horizon
and asymptotically. However, for a compact object distinct
from a black hole, (3.1) is only valid up until a particular
r0 > 2M1 and one must impose an alternative boundary
condition. We will denote the homogeneous solution
satisfying this boundary condition Xreg

lm. To go from the
black hole to the exotic compact object then essentially
amounts to replacing Xin

lm with Xreg
lm. Since for generic

frequencies Xin
lm and Xup

lm are independent, one can gen-
erally express Xreg

lm as a linear combination of both. As by
assumption r0 is close to rþ, we will follow the notation of
[19] and characterize this homogeneous solution with the
correct boundary conditions at the ECO as

Xreg
lm ∝ e−iωðr�−r�0Þ þRðωÞeiωðr�−r�0Þ; ð3:6Þ

MODELING AND DETECTING RESONANT TIDES OF EXOTIC … PHYS. REV. D 104, 044044 (2021)

044044-5



with RðωÞ an arbitrary function of the frequency and the
mode numbers ðl; mÞ. For instance, the specific reflectivity
of R ¼ −1 was discussed in [41]. Note that, despite the
apparent remaining freedom, this is a strong reduction of
the possible boundary conditions as in general they could
be nonlinear functions of all other modes Xlm.
Given an understanding of the compact object, one can

exactly determine what the boundary condition expressed
through (3.6) should be by imposing appropriate regularity
conditions inside the object and matching this to our
exterior description as in the examples of neutron stars
[43], gravastars [40], or boson stars [56]. Alternatively, one
could encode this information by continuing r beyond r0
but with an alternative potential which effectively captures
certain interesting features as in [67]. We will keep the
discussion general on the level of this boundary condition
following [19].
Consider (3.1) in the presence of a source Tlm. Given

such a source term, one can solve (3.1) with variation of
parameters using the homogeneous solutions with the
appropriate boundary conditions. For a black hole this
gives

XBH
lm ¼ 1

Wlmω

�
Xup
lm

Z
r�

rþ
dr0�Xin

lmTlm

þ Xin
lm

Z
∞

r�
dr0�X

up
lmTlm

�
; ð3:7aÞ

with the Wronskian

WBH
lmω ¼

�
Xin
lm

dXup
lm

dr�
− Xup

lm
dXin

lm

dr�

�
: ð3:7bÞ

Instead, for the ECO, using the same procedure in combi-
nation with (3.6) one finds

Xlm ¼ XBH
lm þ K

WBH Xup
lm

Z
∞

−∞
dr0�X

up
lmTlm; ð3:8Þ

with

K≡ T BHRe−2iωr
�
0

1 −RBHRe−2iωr
�
0

; ð3:9Þ

and with the black hole reflection and transmission
amplitudes

RBH ¼ Bin

Bout
; T BH ¼ 1

Bout
: ð3:10Þ

An observer measuring gravitational waves at r → ∞
would see the black hole as

XBH
lmðr → ∞Þ ∼ Z∞

BHe
iωr� ; ð3:11Þ

with

Z∞
BH ¼ 1

WBH

Z
∞

−∞
dr0�Xin

lmTlm: ð3:12Þ

On the other hand, for the exotic compact object we have

Xlmðr → ∞Þ ∼ ðZ∞
BH þKZH

BHÞeiωr� ; ð3:13Þ

with

ZH
BH ¼ 1

WBH

Z
∞

−∞
dr0�X

up
lmTlm: ð3:14Þ

Two crucial remarks can be made using the structure of
(3.9) [19]. The first is that from the expansion

K ¼ T BHRe−2iωr
�
0

X∞
n¼0

ðRBHRÞn−1e−2iðn−1Þωr�0 ; ð3:15Þ

an observer sees an initial perturbation of the ECO
decaying as a black hole ringdown followed by a series
of echoes spaced by a time interval 2jr�0j. Second, there are
a set of QNMs associated to this characteristic timescales
arising from the poles in K, particularly from

0 ¼ 1 −RBHRe−2iωr
�
0 : ð3:16Þ

Therefore, one easily relates a specific set of resonant
modes in ECO and the phenomenology of echoes. Echoes
only truly emerge if r0 is sufficiently close to the horizon or
more precisely r�0 ≪ 3M1. This implies that the character-
istic frequency 1

2jr�
0
j is relatively low and this is for our

purpose the crucial difference with black hole QNMs.
Indeed, BH QNMs are in principle equally susceptible to
resonant excitation but this is of less interest in a generic
inspiral because the frequencies are too high to be reso-
nantly excited in that stage of the binary evolution (see
however the observation of [68,69] for highly eccentric
inspirals). For the ECO discussed here, on the other hand,
the QNM frequencies can be significantly lower such that
the resonant frequencies can occur during the inspiral.

B. Transfer to tidal response

The proper way to include the companion massM2 to the
previous description, would be to consider it as a near-zone
description of M1 and to impose boundary conditions
found by a matched asymptotic expansion with an outer-
zone3 containing M2. This outer-zone in turn could for
instance be described by a post-Newtonian expansion [70].
Such a procedure carried out in full, however, becomes

3Sometimes the outer-zone is called the near-zone (also
orbital-zone) while our near-zone is called the inner-zone (also
body-zone).
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cumbersome very quickly and it is more convenient to
instead use the near-zone to match to an “intermediary”
effective action [61]. The near-zone features of the ECO in
this approach are encoded in the effective (linearized)
dynamical tidal response F̃ðωÞ as in (2.15). This tidal
response was related explicitly to the asymptotic form of
Xreg
lmω in a 2M1ω ≪ 1 expansion by [60]. These authors

used the black hole perturbation equations with an effective
source to describe the near-zone perturbation equations
of neutron stars, but the approach is applicable to more
general compact objects. The effective source is determined
based on the intermediary effective action by matching the
two descriptions in the asymptotic region of the near-zone.
This gives the desired relation between Xreg

lmω and F̃ðωÞ.
Concretely, consider the particular basis Xν

N , X−ν−1
N of

solutions to the homogeneous RW equation (3.1) with
asymptotic behavior

Xν
N → cos ðωr� þ ανÞ; r� → ∞; ð3:17aÞ

X−ν−1
N → cos ðωr� þ α−ν−1Þ; r� → ∞; ð3:17bÞ

for some constants αν, α−ν−1, described explicitly in (A9).
Here, ν indicates the renormalized angular momentum,
which reduces to l in the low frequency limit [71]. Naively,
one could therefore try to regard Xν

N , X
−ν−1
N respectively as

the ∝ rl tidal field and the ∝ r−l−1 multipolar response
but it is not straightforward to connect that point of view
to the actual radiation zone asymptotic behavior (3.17).
Nevertheless, it was shown in [60] that, defining aðωÞ
through

Xreg
lmω ∝ Xν

N þ ð2M1ωÞ4aðωÞX−ν−1
N ; ð3:18Þ

F̃ðωÞ can be written in a 2M1ω ≪ 1 expansion as

3G
4M5

1

F̃ðωÞ ¼ −
428

7
aðωÞ − 56

107
þOððM1ωÞ2Þ: ð3:19Þ

This is the leading order of Eq. (15) in [60]. Comparing
(3.18) with our previous expressions (3.5), (3.6), and (3.9)
we find that a is related to K by

K ¼ ðeiαν −RBHe−iανÞ
ðe−iαν þ ð2M1ωÞ4ae−iα−ν−1ÞT BH

þ ð2M1ωÞ4aðeiα−ν−1 −RBHe−iα−ν−1Þ
ðe−iαν þ ð2M1ωÞ4ae−iα−ν−1ÞT BH

: ð3:20Þ

It is important that we are assuming a hierarchy of scales
in which, even though M1ω ≪ 1, the orbital frequency
is potentially of similar order as the resonant mode
ω ∼ ωQNM

nl . In particular, it would not be appropriate to
expand F̃ðωÞ, as in the adiabatic limit, where it could be
essentially replaced by the (quadrupolar) tidal Love number

(B4) as this would be the lowest order in the expansion
with respect to the internal fundamental frequency scale
ω=ωQNM

nl as opposed to M1ω. For a black hole

ð2M1ωÞ4aBH ¼ −
eiαν −RBHe−iαν

eiα−ν−1 −RBHe−iα−ν−1
; ð3:21Þ

such that we can write

K ¼ ð2M1ωÞ4ða − aBHÞðeiα−ν−1 −RBHe−iα−ν−1Þ
ðe−iαν þ ð2M1ωÞ4ae−iα−ν−1ÞT BH

; ð3:22Þ

and finally, for M1ω ≪ 1, using (3.19) and low frequency
expansions for black hole quantities such as RBH, T BH,

4

derived for instance in [72], and reviewed for convenience
in Appendix A

K ¼ C1ð2M1ωÞ2
3GF̃ðωÞ
4M5

1

þOðM3
1ω

3Þ; ð3:23Þ

with C1 a numerical factor. We make the derivation of
(3.23) more explicit in Appendix A and explain there why
we cannot determine the constant C1 a priori. Essentially, it
is due to a regularization dependence in (3.19). We instead
fix the coefficient to be C1 ¼ −1=12 by matching the
energy flux to the post-Newtonian expansion. In conclu-
sion, at least in the limit M1ω ≪ 1, the near-zone charac-
terization of the object through K is straightforwardly
related to the effective field theory description using F̃ðωÞ.

C. Enhanced GW flux at resonance

We will now describe how there is also an increase in
gravitational wave flux at resonance. This is in particular
what was studied in [41] and found there to give rise to an
“unobservable high-frequency glitch”. We stress that this is
not the same as looking for a phase shift like (2.19), which
does not try to directly measure the variation in gravita-
tional waves. Rather it considers the impact on the orbit and
the indirect change in GW phasing associated to this. The
same authors also consider the impact of a phase shift in the
gravitational wave signal, but only due to the additional
energy lost through this enhanced gravitational wave flux
during resonance. However, this is not the same as the total
energy lost from the orbit at resonance. Even in the simple
example of [41] where no energy is absorbed by the ECO
itself, such that eventually all energy in the excitation must
be dissipated through gravitational waves. The reason is
that this dissipation does not happen instantly at resonance.

4Note that a − aBH can be replaced by F̃ − F̃BH in a low
frequency expansion according to (3.19) and, in the same
expansion, F̃BH could be replaced by the associated adiabatic
tidal deformability since there for the black hole ωQNM

nl M1 ∼ 1.
Now the tidal Love number of the black hole vanishes leaving a
proportionality with F̃.
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In fact, the more sharply peaked the resonant frequency,
the longer it will take for all this absorbed energy to be
radiated. It is therefore more appropriate to consider how
much energy goes into the excited mode at resonance, as
was done in Sec. II, as opposed to how much of this is
immediately radiated at resonance. Nevertheless, the pre-
sent formalism allows for a perspicuous description of the
peak in gravitational wave flux such that we shall take a
moment to describe it.
In an extreme mass ratio limit q ≪ 1, the source

Tlmðω; rÞ in (3.1) can be constructed from the stress-
energy tensor of an orbiting point-particle M2. If this
companion is on a circular orbit with angular frequency
_ϕ, the total gravitational wave luminosity is given by5

_E∞ ¼
X
lm

4ðm _ϕÞ2
π

jZ∞
BHj2

����1þK
ZH
BH

Z∞
BH

����2: ð3:24Þ

Consider the normalized difference of _E∞ with respect to
the expression for a black hole around a particular QNM
frequency ωQNM

nl for a certain ðl; mÞ mode

δ _E∞

_E∞
BH

¼
���� A

m _ϕ − ωQNM
nl

����2 þ 2Re

�
A

m _ϕ − ωQNM
nl

�
; ð3:25aÞ

with

A ¼
	
ðω − ωQNM

nl ÞKZH
BH

Z∞
BH



ω¼ωQNM

nl

: ð3:25bÞ

The form of (3.25a) consists of a typical Breit-Wigner peak
with an additional interference term. A representative
example of this form is shown in Fig. 1. The result is
not surprising and it has been observed in particular cases
[40,42,56]. The given example highlights that often in these
resonances there seems to be a large contribution from the
asymmetric interference term in (3.25a). It should be noted
that although we have discussed a resonance in the radiated
energy, there is also an interesting conservative resonant
response in the backreaction on the orbit [75]. Moreover,
once the full self-force, including the conservative piece, is
known for the black hole, it is evident that one can simply
add to this the force associated to the (homogeneous) last
term in (3.8), which requires no additional regularization
[76]. We shall not pursue this point further here.
To intuitively understand this enhanced gravitational

wave flux better, let us connect this general extreme-mass

ratio formula to its post-Newtonian limit. From the standard
low frequency _ϕM1 ≪ 1 expansions for the black hole
quantities, as can be found for instance in [72], in addition
to (3.19), one finds that the energy flux (3.24) can be
expressed in this limit as

_E∞ ¼
X
l¼2
m¼�2

4ðm _ϕÞ2
π

jZ∞
BHj2

����1þ ðM1
_ϕÞ10=3 3GF̃ðm

_ϕÞ
2M5

1

����2:
ð3:26Þ

Expanding this result further, assuming one is not too close
to resonance as to avoid subleading terms including F̃ðm _ϕÞ
to become significant, one finds

_E∞ ¼ −
32

5

�
M2

M1

�
2

ðM1
_ϕÞ10=3

×

	
_E∞
BH

_EN

þ 3
ReðF̃ð2 _ϕÞÞ

M5
1

ðM1
_ϕÞ10=3



; ð3:27Þ

0.035 0.045 0.055

−0.0004

−0.0002

0.

0.0002

0.0004
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2. 10−7

3. 10−7

FIG. 1. At resonant orbital frequencies there is an enhanced
gravitational wave flux δ _E∞ ¼ _E∞ − _E∞

BH associated to an ECO
with respect to a black hole _E∞

BH, as found from (3.24) (top, blue,
full) and compared to the approximation at resonance (3.25a)
(top, black, dashed). However, the cross term from (3.25a) or
“interference term,” which does not lead to a net enhancement of
flux, can, as in the illustrated example, dominate strongly over the
Breit-Wigner peak associated to that same resonance (bottom,
black, dashed).

5This is normally expressed in terms of the analogues of (3.12)
and (3.14) starting from the Bardeen-Press-Teukolsky equation
[73,74] which is more convenient in this setup. Nevertheless,
treating Tlm carefully, one should also be able to find them from
(3.12) and (3.14) using the Chandrasekhar transformation [66]
and we do so to avoid introducing unnecessary new notation.
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where we have made explicit only the leading order F̃
contribution, despite the existence of many additional
terms leading with respect this. These, denoted by _E∞

BH

where _E∞
BHðωM1 → 0Þ → _EN , would however, simply be

the black hole result which are known to very high order,
see [71], for a review. Equation (3.27) can be readily
compared to the post-Newtonian expression of GW lumi-
nosity for a binary including effects of tidal deformability
by using (2.16) in the adiabatic limit

_E∞ ¼ −
32

5

�
M2

M1

�
2

ðM1
_ϕÞ10=3

×

	
_E∞
BH

_EN

þ 3
μ2
M5

1

ðM1
_ϕÞ10=3



: ð3:28Þ

For instance, with ν ¼ M1M2

ðM1þM2Þ2 and M ¼ M1 þM2 [47]

_E ¼ −
32

5
ν2ðM _ϕÞ10=3

×

	
_E∞
BH

_EN

þ 3
M1 þ 3M2

M1

μ2
M5

ðM _ϕÞ10=3 þ 1 ↔ 2



:

ð3:29Þ

Aside from the fact that (3.27) is valid only as q ≪ 1, the
difference is that (3.27) still captures some of the dynamic
aspects of the tidal deformability. It suggests a way of
resumming dynamic tidal interactions in a post-Newtonian
expansion and resonates well with the introduction of an
effective tidal Love number in [61]. In that paper, μ2 was
replaced by an effective-Love number function in order to
efficiently capture dynamic tidal effects in an effective-one-
body approach

μ2 → μeff ¼ −
EabQab

EcdEcd ; ð3:30Þ

similar to the response function in (2.15). It would be
interesting to investigate how this works out precisely but
we shall not pursue this further here.
We can again observe from (3.27) that the enhanced

gravitational wave flux at resonance, as expected, is simply
because the deformed object has a varying quadrupole
moment itself which also contributes to the emitted
gravitational waves. This result was derived for a fixed
circular orbit. It does not allow us to conclude that, with an
evolving orbit, this deformation would simply disappear as
the resonance is past. Therefore, it would be incorrect to
conclude that all the energy lost to the orbit was simply the
additional flux during resonance. Instead, off-resonance,
the excited mode will continue to ring down. In itself, this
will be too weak to observe directly but in the total energy
that was lost to the orbit when the associated energy was
transferred to the mode, a measurable phase shift might

have been induced into the waveform. This is what we will
investigate now.

IV. DETECTABILITY

To at least get an order of magnitude estimate on the
detectability, we will perform a Fisher analysis pinned
down to a particular ECO model. The ECO model is the
simplest reflecting shell model [11] which serves our
illustrative purposes although a similar analysis on different
models might also be performed.

A. The model

The reflecting shell model is decisively simple, but it
nevertheless captures the physics of horizon absence.
Phenomenologically, this absence inevitably introduces a
certain amount of reflection of incoming waves within the
light ring. The simplest model that captures this, is a purely
reflecting surface put at a Schwarzschild coordinate r0 ¼
2M1ð1þ ϵÞ where M1 is the mass of the object and ϵ is a
small dimensionless parameter that quantifies the “close-
ness” to a black hole spacetime as introduced in Sec. I. The
proper distance from the Schwarzschild radius r ¼ 2M1 to
the reflective surface at r0 in the small ϵ limit is given by

δ ¼ 4M1ϵ
1=2 þOðϵ3=2Þ: ð4:1Þ

The parameter ϵ ranges from ϵmin ≈ 10−80 where δ is about
one Planck length to ϵmax ≈ 0.0165 where the object has a
clean photonsphere [77]. However, in practice our upper
limit will be ϵmax ≈ 10−5. This will be explained below.
On the level of the wave equation, the surface can be

treated effectively by using reflective boundary conditions
at r0 and the QNMs in the ϵ → 0 limit, valid in our ϵ range,
have been analyzed by Cardoso et al. [41]

M1ω
QNM
nl ¼ nπ

2j log ϵj −
i

j log ϵj2lþ3

×

	ð2nπÞlþ1Γðlþ 1ÞΓðl − 1ÞΓðlþ 3Þ
4Γð2lþ 1ÞΓð2lþ 2Þ



2

:

ð4:2Þ

Furthermore, it is also shown that the Love numbers of
those objects in the ϵ → 0 limit take the following
approximate form [45]

kl ≈
1

al þ bl log ϵ
; ð4:3Þ

where al; bl depend on the multipolar index l. Note that
ϵ ≪ 1, the Love numbers are negative. For instance, for
quadrupolar deformations for our shell model, it has been
found that a2 ¼ 35=8 and b2 ¼ 15=8 [45]. Using this
approximation, the phase shift (2.19a) is fully determined
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by the location of the surface ϵ, the mass ratio q and the
multipolar indices ðl; mÞ. In particular, from (4.2), (4.3)
and (2.19a), the mass dependence scales to leading order in
j log ϵj as

ΔΦ ∝ q−1ð1þ qÞ−1
3
ð2l−1Þj log ϵj−4

3
lþ5

3; ð4:4Þ

where the proportionality constant, which only depends on
ðl; mÞ, is about 0.4 for quadrupolar waves and increases
slightly with l. From (4.4), it immediately follows that for
small mass ratios, the phase shift is inversely proportional
to the mass ratio and the ϵ-dependence is such that higher
order l-modes are at least suppressed by factors of j log ϵj43.
In particular for our upper limit ϵmax ≈ 10−5, it can be
computed that higher order l-modes are generically sup-
pressed by at least two orders of magnitude

ΔΦðlþ 1Þ
ΔΦðlÞ ≲ 10−2: ð4:5Þ

This makes that the largest phase shift comes from
quadrupolar excitations, by (4.4) it can be seen that the
phase shift itself has a very weak ϵ-dependence. In
particular, when ϵ runs from Planck scale (ϵ ∼ 10−80) to
roughly ϵ ∼ 10−5, the phase shift only changes by two
orders of magnitude.

B. Criteria for detectability

In order to detect the phase shift, the following criteria
should be fulfilled:
(a) Resonant excitation should take place at a frequency

lower than that at the moment of merger,
(b) The resonant frequency should lie within the detec-

tor band,
(c) The measurement error on ΔΦ should be smaller than

ΔΦ itself.
The first condition is purely the statement of the resonant

effect happens at all, the others are detector dependent
statements. The first condition puts a restriction on ϵ in
terms of the mass ratio. In particular if one estimates that
the plunge initiates at an orbital separation of roughly r ¼
6ðM1 þM2Þ, then the requirement that the orbital resonant
frequency, associated to (4.2), is smaller than the appro-
ximate merging frequency, ωmax ≈ ðM1 þM2Þ−16−3=2,
translates to

q <
4

π63=2
j log ϵj − 1: ð4:6Þ

This also puts the constraint that ϵ≲ 10−5 corresponding to
q ¼ 0. The second condition requires ϵ to be constrained by

1

4M1fmax
< j log ϵj < 1

4M1fmin
; ð4:7Þ

or reinstating factors of GN; c and plugging in the
detector band ðfmin ¼ 1 Hz; fmax ¼ 104 HzÞ of the
Einstein Telescope:

10−1
�
50 M⊙

M1

�
≲ j log ϵj≲ 103

�
50 M⊙

M1

�
: ð4:8Þ

Using the constraint set by (4.6), we find that the central
mass should fit within 0.4M⊙ ≲M1 ≲ 4000 M⊙. Con-
versely, this means that the full range of current ECO
models, ranging from j log ϵj ∼ 1 with structure near the
light-ring to Planck-scale from horizon for which j log ϵj ≳
2 × 102 can give resonances within band for mass ranges
accessible with current ground-based observatories. Note
that to reach such microscopic scales requires M1 to
be smaller than ∼250 M⊙. The conclusions on the con-
ditions (a)-(b) are summarized in Fig. 2, which depicts the
value of the phase shift ΔΦ as a function of mass ratio q
and ECO radius r0ðϵÞ, as well as the line at which merger
happens.
Finally, the bounds set so far on the mass M1 and on ϵ

can be used to check under what conditions the third
requirement (c) is met. The methodology used is that of
the Fisher matrix formalism, which allows the calculation
of the variance σðθÞ with which the value of a parameter θi
can be determined from a given signal, given the sensitivity
curve ShðfÞ of a detector and the Fourier transform
h̃ðf; θ1;…; θnÞ of the theoretical prediction of the gravi-
tational wave. This formalism is extensively used to make
predictions for how accurate (future) detectors will be able
to measure observables θi;…; θn,[78].
The formalism states that the Fisher matrix Γij,

defined as

FIG. 2. Value of the phase shift ΔΦ, given by (2.19), as a
function of the mass ratio q and the dimensionless parameter ϵ,
which measures how close the ECO surface is to the would-be
horizon via r0 ¼ 2M1ð1þ ϵÞ. The solid line corresponds to the
merger of the binary system, as indicated by (4.6). The resonance
takes place before merger for points to the left of this line and
therefore satisfy criterium (a) of IV B for detectability. The
dashed line corresponds to ΔΦ ¼ 10−3 rad; all points below
this line correspond to a phase shift greater than this value.
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Γij ¼ 4Re
Z �∂h̃ðfÞ

∂θi
��∂h̃ðfÞ

∂θj
�� df

SðfÞ ; ð4:9Þ

where SðfÞ is the power spectral density of the detector
under consideration, leads to the covariance matrix Σij,

Σij ¼ Γ−1
ij ; ð4:10Þ

in which each element is the covariance of two observables
θi, θj. In particular, the square root of the diagonal elements
of the covariance matrix are the standard deviations σðθiÞ
of each of the observables θi, and are therefore a direct
measure of the accuracy with which the detector will be
able to determine their values.
In what follows, we apply the Fisher matrix formalism to

calculate the relative errors σðΔΦÞ
ΔΦ , i.e., the ratio of the

standard deviation of the phase shift and the phase shift
itself, for a range of ECO-models and a range of mass-
ratios of the binary system. The gravitational waveform
h̃ðf; θ1;…; θnÞ used is given by

h̃ ¼ Af−7=6eiΦ; ð4:11Þ

in which the phase Φ is given by (2.3), the phase shift
ΔΦ due to the resonance is given by (2.19), and we have
taken Φpp to be the TaylorF2 approximant to 2.5 PN order,
as given in [79]. This approximant allows for the two com-
ponent masses to have spin (that are taken to be aligned
with the orbital angular momentum), but otherwise models
them as featureless point particles. The resulting spin-orbit
coupling and spin-spin coupling, respectively, are taken
into account to 2.5 PN and 2 PN order. This approximant
excludes nonresonant tidal forces. Those effects have already
been investigated in [34] and excluding them is not expected
to change the order of magnitude estimations provided by
the Fisher matrix formalism. In the Fisher calculations to
follow, the relative error is calculated for the coalescence
time tc, coalescence phase ϕc, chirp mass, dimensionless
mass ratio, and the phase shift. The value for the amplitude A
in (4.11) is fixed by the choice of SNR. The upper cutoff
frequency of the Fisher matrix calculation is taken to be the
frequency corresponding to the ISCO of r ¼ 6ðM1 þM2Þ,
whereas the lower cutoff frequency is dependent on the
gravitational wave detector under consideration.
The calculation is done for Einstein Telescope using the

power spectral density SðfÞ as given in [80]. A similar
Fisher calculation was performed using the power spectral
density of the Advanced LIGO network, but the results
showed that the relative error of the phase shift was much
larger than unity for all phase space considered, leading to
the conclusion that the current generation detectors are not
able to measure the ECO shift. This result is corroborated
by a recent paper [57] in which the binary black hole
systems of GWTC-1 were analyzed for resonances, and

none were found. The results below will therefore focus on
the Einstein Telescope. As such, the lower cut-off fre-
quency in the definition of the Fisher matrix is taken to
be 2 Hz.

C. Results

Figure 3 shows the results for the relative errors on the
phase shift for binary systems in which only the heavier of
the two compact objects undergoes the resonance and is
given a fixed mass M1, while the companion compact
object’s mass M2 is varied via the mass ratio q ¼ M2=M1

FIG. 3. Contours of relative error σðΔΦÞ=ΔΦ of the phase shift,
induced by a resonance in an exotic compact object, as measured
by ET, calculated by the Fisher matrix formalism, over a range of
the ECO radius r0 ¼ 2M1ð1þ ϵÞ and for mass ratio q of the
binary system at SNR ¼ 400. The relative error is inversely
proportional with SNR such that the contour values scale
accordingly. Top: σðΔΦÞ=ΔΦ ¼ 100 for different values of
the massM1 ¼ 20; 50; 100; 150; 200 M⊙ of the ECO, with lower
relative errors below the contour. Bottom: log10 ðσðΔΦÞ=ΔΦÞ as
indicated on the contours, for an ECO of mass M1 ¼ 100 M⊙.
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of the binary system. This is done for five different fixed
values for the heavier compact object, M1 ¼ 20; 50;
100; 150; 200 M⊙.
We take the regions within the contour line of unit

relative error to be measurable by the detector. For the
different ECOmasses (M1) considered, we find that, for the
phase space considered, the resonance takes place well
before the merger. However, these results show that for the
most likely events for the Einstein Telescope (SNR ∼ 400),
the resonances will be undetectable. Nevertheless, for
unique events (SNR ∼ 4000, or a luminosity distance of
order ∼10 Mpc), the ECO resonance shifts for binaries of
sufficiently asymmetric masses might be detected. In that
case, we find that the relative error of the phase shift ΔΦ is
smaller than unity over many orders of magnitude of ϵ. This
wide range of ϵ is expected based on the weak (logarithmic)
dependence of the phase shift on this parameter. We find
that the width of this range increases for decreasing value of
the ECO mass, and for increasingly asymmetric mass
ratios. We find small relative errors exactly in the parameter
range for which the phase shift (4.4) is large, namely for
small mass ratios q and relatively large values of ϵ.
Moreover, it reaches a minimal value for a binary of a
given mass ratio. This minimal relative error is reached at
larger ϵ for increasing ECO mass. Given these results, most
notably the required small value for the mass ratio q and the
fact that the companion star is expected to have a mass
M2 > 1.4 M⊙, candidates of ECOs that could be detected
by the Einstein Telescope should have a massM1 of several
tens to a hundred solar masses as well as be close enough to
supply the required high SNR.
We have tested the robustness of these results by

changing the values of the dimensionless spins of the
binary system and have found the order of magnitudes
of the relative error to be largely independent of such
changes. We have also tested the robustness to varia-
tions in the cutoff frequency, to account for the fact that
the ISCO-frequency of rotating black holes is not at
6−3=2ðM1 þM2Þ−1, as well as this only being a test-particle
approximation. Over the expected range of such corrections
to the merging frequency, described for instance in [81], we
find that the relative errors change by at most a factor of
order ∼3, with relative errors decreasing for higher cutoffs
and increasing for lower cutoffs. We therefore conclude that
the results presented are representative.

V. OUTLOOK

We derived an expression for the phase shift due to a tidal
resonance in the Newtonian limit for circular orbits and
spinless components and tested it in a Fisher analysis
for the specific model of a reflecting surface. We believe
that the dependence on the distance from the horizon and
mass ranges for which the phase shift is significant are a
robust order of magnitude estimate, that is more generally
applicable:

First, we have also performed Fisher matrix calculations
including aligned component spins as well as varying
cutoff frequencies and the outcomes agree to the same
order of magnitude. We believe this gives a qualitative
indication that a similar phase shift can play a similar role
also when other complications such as eccentric orbits are
taken into account. Nevertheless, based on our results, it
would be interesting to perform a more detailed analysis for
smaller mass ratio systems. In particular, it would be
interesting to perform a study of the effects for EMRI
systems with LISA-targeted wave-forms in the future.
Second, the toy model of purely reflecting boundary

conditions near the horizon allows to have a particular
value of the phase shift depending on a minimum of
parameters, but the method is more generally valid. For
other objects for which the Love numbers and QNMs scale
with redshift z ∼ log ϵ in a similar way as for the surface
k ∼ 1= log ϵ and Mω ≈ log ϵ, we expect a similar outcome.
In general however, the reflection coefficient R of a
compact object will be smaller than unity, and therefore
the phase shift we derived is likely an upper bound on the
effect caused by resonant excitation of the fundamental
QNM in those models. It would be interesting to investigate
more general models of compact objects and run a Fisher
analysis including the QNMs and Love numbers as free
parameters, instead of keeping them fixed by the relation
to log ϵ.
Third, we focused on resonant excitation of the funda-

mental quadrupolar frequency ωnlm ¼ ω022. Other modes
can play a role as well but the value of the phase shift is
maximal for the quadrupole modes l ¼ 2. Higher multi-
poles l give a smaller contribution to the phase shift, as was
indicated in (4.5).
The study of overtone numbers through our method of

replacing the overlap integral would involve going beyond
the low frequency limit, and include besides the Love
numbers also other tidal constants appearing in the low-
frequency expansion of the linear response. To do this
confidently, it should be quantified how strongly the low-
frequency expansion coefficients are dominated by the
lowest lying modes. In first instance, this means scrutiniz-
ing the assumption we have made that the contribution of
higher order modes to the Love number is negligible,
mainly on the argument that this should give the correct
order of magnitude. We leave that to future work.
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APPENDIX A: LOW FREQUENCY EXPANSIONS
FOR BH PERTURBATIONS

In Sec. III, we have given the expression (3.23) which
relates, in the low frequency limit m1ω ≪ 1, a near-zone
characterization of an ECO in terms of K to the EFT
characterization in terms of a tidal response function F̃ðωÞ.
In this Appendix we will elucidate the derivation of this
result. Our starting point is (3.20). To make this more
explicit we first of all use the appropriate expansions for Bin
and Bout from which one can derive,RBH and T BH. We find
these expressions combining

Ain ¼
ð2lÞ!ð2lþ 1Þ!!
2ðl − 2Þ!ðlþ 2Þ!

�
i

2m1ω

�
lþ1

e−i2m1ωðlog 4m1ω−τl−βlÞð1 − πm1ωþOððm1ωÞ2ÞÞ; ðA1Þ

Aout ¼
ð2lÞ!ð2lþ 1Þ!!
2ðl − 2Þ!ðlþ 2Þ!

�
−i

2m1ω

�
lþ1

e−i2m1ωð− log 4m1ω−τlþβlÞð1 − πm1ωþOððm1ωÞ2ÞÞ; ðA2Þ

where

βl ¼ 1

2

�
ψ0ðlþ 1Þ þ ψ0ðlÞ þ

ðl − 1Þðlþ 3Þ
lðlþ 1Þ

�
; ðA3Þ

τl ¼ 2γ þ ψ0ðl − 1Þ þ ψ0ðlþ 3Þ − 1; ðA4Þ

from [72] with

Bin ¼ −Āout; ðA5Þ

Bout ¼ Ain: ðA6Þ

For the reflection and transmission coefficients one then finds

T BH ¼ 2ðl − 2Þ!ðlþ 2Þ!
ð2lÞ!ð2lþ 1Þ!!

�
i

2m1ω

�
−l−1

ei2m1ωðlog 4m1ω−τl−βlÞð1þ πm1ωþOððm1ωÞ2ÞÞ; ðA7Þ

RBH ¼ −e−i4m1ωτl þOððm1ωÞ2Þ: ðA8Þ

To find αν, we use from [60]

αν ¼
1

2i
ln
Aν
C;out

Aν
C;in

; ðA9Þ

with

Aν
C;in ¼

1

2
i−νþi2m1ω−1

X∞
−∞

−inð4m1ωÞ−i2m1ωeiπðνþn
2
Þaνn

Γðn − 2im1ωþ ν − 1Þ
Γðnþ 2im1ωþ νþ 3Þ ; ðA10Þ

Aν
C;out ¼

1

2
i−νþi2m1ω−1

X∞
−∞

ð4m1ωÞ−i2m1ωaνn
Γðn − 2im1ωþ ν − 1Þ
Γðnþ 2im1ωþ νþ 3Þ

Γðn − 2im1ωþ νþ 1Þ
Γðnþ 2im1ωþ νþ 1Þ : ðA11Þ
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Here, the coefficients aνn satisfy the recurrence relation

ανnaνnþ1 þ βνnaνn þ γνnaνn−1 ¼ 0; ðA12Þ

with

ανn ¼ −
i2m1ωðνþ n − 2im1ω − 1Þðνþ n − 2im1ωþ 1Þðνþ nþ 2im1ω − 1Þ

ðνþ nþ 1Þð2ðνþ nÞ þ 3Þ ; ðA13Þ

βνn ¼ −lðlþ 1Þ þ ðνþ nÞðνþ nþ 1Þ þ 2ð2m1ωÞ2 þ
ðð2m1ωÞ2 þ 4Þð2m1ωÞ2
ðνþ nÞðνþ nþ 1Þ ; ðA14Þ

γνn ¼
i2m1ωðνþ n − 2im1ωþ 2Þðνþ nþ 2im1ωÞðνþ nþ 2im1ωþ 2Þ

ðνþ nÞð2ðνþ nÞ − 1Þ : ðA15Þ

As is also stressed [60], the limit becomes subtle due
to poles in the Γ-functions. One finds a different limit
keeping l generic and only setting l → 2 after the expansion
compared to starting with l ¼ 2. To get consistent results,
we follow the approach from [60] which is to only let
l → 2 after the expansion. It should be noted however that,
in any case, many of the intermediate results in [60],
including (3.19), are regularization dependent. Therefore, it
is not entirely surprising that we will find a mismatch in

coefficients with the post-Newtonian result by naively
combining these results. It would be interesting to redo
the analysis more consistently and explore how dynamic
tidal effects can be resummed in a post-Newtonian expan-
sion but, as this is not our main goal, we postpone it to
future work.
The renormalized angular momentum ν ensures that the

minimal solutions aνn for n → ∞ and n → −∞ are com-
patible and is given in the low frequency expansion by [60]

ν ¼ lþ
�
−

ðl − 2Þ2ðlþ 2Þ2
2lð2l − 1Þð2lþ 1Þ −

4

lðlþ 1Þ þ
ðl − 1Þ2ðlþ 3Þ2

ð2lþ 1Þð2lþ 2Þð2lþ 3Þ − 2

� ð2ωm1Þ2
2lþ 1

þOððωm1Þ4Þ: ðA16Þ

Now from

aν0 ¼ 1;

aν1 ¼ −
2iωm1ð3þ lÞ2
2ð1þ lÞð1þ 2lÞ þOððm1ωÞ2Þ;

aν−1 ¼ −
2iωm1ð−2þ lÞ2

2lð1þ 2lÞ þOððm1ωÞ2Þ; ðA17Þ

one finds

αν ¼ ð−1 − lÞ π
2
þ 2ωm1 log ð4ωm1Þ − 2m1ωβl −

20m1ω

3ðl − 2Þ þ
m1ωð17þ 10l − 3l2Þ
3ð1þ lÞð1þ 2lÞ þOððm1ωÞ2Þ: ðA18Þ

We can continue, as [60], by simply dropping the
divergent term for l ¼ 2 as a type of “minimal subtrac-
tion.” However, even if we expect this might capture the
right functional form, it will not give the correct prefactor.
In the main text we therefore leave this constant arbitrary, to
be fixed by comparison with a post-Newtonian expansion.
Nevertheless, continuing with the minimal subtraction,
for l ¼ 2

ðeiα−ν−1 −RBHe−iα−ν−1Þ ¼ −4m1ωτl þOððm1ωÞ2Þ;
ðA19Þ

and we finally find (3.23)

K ∼ −
385

1284
ð2m1ωÞ2

3GF̃ðωÞ
4m5

1

: ðA20Þ
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APPENDIX B: FROM OVERLAP INTEGRALS
TO LOVE NUMBERS

We discuss the relation of the tidal constants to the
overlap integrals in the Newtonian limit, adapted from [59].
The multipoles of the mass distribution, now called Q̂Kl

in the STF basis, are no longer independent variables but
are given in terms of the mode amplitudes and overlap
integrals as (cf. Eq. (4.9) in [59])

Q̂Kl ¼
X
n

InlĉnKl
: ðB1Þ

The effective action constructed in [59] leads to the linear
response

Q̃Kl ¼ −
1

l!
F̃lðωÞF ð∂̂Kl

ΦÞðωÞ; ðB2Þ

where F denotes Fourier transform. Equating those last
two expressions for Q̂Kl and using the solution to the
harmonic oscillator equation (2.5) ĉnKl

¼ fnKl
=ðω2

nl þ
2iγnlω − ω2Þ and (2.7), gives the linear response function:

F̃lðωÞ ¼
X
n

I2nl
ω2
nl þ 2iγnlω − ω2

; ðB3Þ

Note that for the quadrupole l ¼ 2 such a pole expansion
also holds beyond Newtonian limit [60].
The tidal deformability parameters are defined by the

low frequency expansion of the response function

F̃lðωÞ ¼ λ0 þ λ1ωþ λ2ω
2 þOðω3Þ; ðB4Þ

where λ0 is the tidal deformability related to the (electric)
dimensionless tidal Love number kl, λ1 relates to the
damping, λ2 to the response beyond the adiabatic approxi-
mation, etc. Note that often the linear response is restricted
to the first coefficient in the above Taylor expansion of the
linear response function. However, this is only valid far
away from resonance, when ω ≪ ωnl.
Equating the two expressions (B3) as a low frequency

expansion and (B4) formally allows to extract the overlap
integrals as functions of the set of Taylor coefficients

λk ¼
X
n

I2nl

2ω2ðkþ1Þ
nl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
nl − γ2nl

q h� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
nl − γ2nl

q
− iγnl

�kþ1
− ð−1Þk

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
nl − γ2nl

q
þ iγnl

�kþ1i
; ðB5Þ

in particular, for the lowest Taylor coefficients, we have

λ0 ¼
X
n

I2nl
ω2
nl
; λ1 ¼ −

X
n

2iI2nlγnl
ω4
nl

; λ2 ¼
X
n

I2nl
ω6
nl

ðω2
nl − 4γ2nlÞ: ðB6Þ

The parameter of our interest is the tidal deformability λ0
which relates to the dimensionless tidal Love number6 kl as

λ0 ¼
2l!

ð2l − 1Þ!! klM
2lþ1
1 : ðB7Þ

As mentioned before, we will restrict to fundamental n ¼ 1
modes on the assumption that the associated overlap
integrals are dominant above the ones with n > 1. This
implies that the sum in (B5) can be truncated to n ¼ 1 only.
Given this assumption, the overlap integrals can be ex-
pressed in terms of the Love numbers

I1l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l!
ð2l − 1Þ!!

s
ωlM

lþ1
2

1 kl: ðB8Þ

and response function to lowest order in ω becomes

F̃ðωÞ ¼ I2
1l

ω2
1l
þOðωÞ ¼ 2l!

ð2l−1Þ!! klM
2lþ1
1 þOðωÞ.

Using the result (B8), allows one to rewrite the phase
shift (2.14) in terms of the Love numbers, quasinormal
frequency and masses involved

ΔΦ¼ 25πN2
lm

6144jmj13ð4l−11Þ ðM1ωlÞ43ðl−2Þ
jklj

qð1þqÞ13ð2l−1Þ ;

ðB9Þ

where Nlm relates to N lm by N2
lm ¼ 2l!N 2

lm=ð2l − 1Þ!!.

6The Love numbers are normalized with respect to the mass of
the object as in [34]. This makes it applicable for objects without
a well-defined radius as for instance a boson star.
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