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We investigate the presence of a black hole black string phase transition in Einstein-Gauss-Bonnet
(EGB) gravity in the large dimension limit. The merger point is the static spacetime connecting the black
string phase with the black hole phase. We consider several ranges of the Gauss-Bonnet parameter. We find
that there is a range when the Gauss-Bonnet corrections are subordinate to the Einstein gravity terms in the
large dimension limit, and yet the merger point geometry does not approach a black hole away from the
neck. We cannot rule out a topology changing phase transition as argued by Kol. However as the merger
point geometry does not approach the black hole geometry asymptotically it is not obvious that the
transition is directly to a black hole phase. We also demonstrate that for another range of the Gauss-Bonnet
parameter, the merger point geometry approaches the black hole geometry asymptotically when a certain
parameter depending on the Gauss-Bonnet parameter α and on the parameters in the Einstein-Gauss-
Bonnet black hole metric is small enough.
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I. INTRODUCTION

The discovery of a long-wavelength instability in uni-
form black strings and flat p-branes by Gregory and
Laflamme [1] has led to a huge body of work with the
aim of finding the endpoint of the instability. There is a
static nonuniform perturbation—a threshold mode such
that the string is unstable for wavelengths more than this
critical wavelength. This suggests that there could be a
static nonuniform black string, which has a horizon that is
nonuniform in the extra compact dimension along the
string. The expectation is that one could increase the
nonuniformity parameter to generate new nonuniform
black string solutions. These solutions emanate from the
branch of static uniform black strings solutions in Einstein
Gravity. It was proposed that as one increases the non-
uniformity, eventually the horizon pinches off, and the
black string transitions into a black hole. This is a phase
transition in the space of static solutions to Einstein gravity
on geometries with a horizon which also asymptote to
Minkowski spacetime times a circle at infinity. The
transition involves a topology change in the horizon of
the spacetime, and the intermediate spacetime between
these two phases is known as the merger point [2–5].
A review of these developments can be found in [3,6].
These arguments were backed up by several numerical
studies on the space of static solutions to Einstein Gravity
[7–9]. Kol [2,3] studied this horizon topology change in the
Euclidean version of the spacetime. He argued that the

merger point in the near neck region is a conical geometry.
Emparan and Suzuki successfully demonstrated the exist-
ence of such a merger point in Einstein gravity, in the large
dimension limit [10]. The large dimension limit of Einstein
gravity was developed as an analytical tool by Emparan
et al. [11–13] to study various aspects of black holes. The
black hole-black string transition was shown to be mediated
through the Ricci flow equation [10] (studied in the
mathematics literature) in the large dimension limit; this
allowed for well-known solutions to Ricci flow in two
dimensions to be used in the study of the black hole-black
string phase transition.
Our paper deals with this phase space of static solutions.

We will not be addressing the issue of the dynamical
endpoint of the Gregory-Laflamme instability. However,
we summarize the interesting work in this direction in
Einstein gravity. An attempt was made to guess the
potential end state by using entropic arguments and study-
ing the space of all possible static solutions in Einstein
gravity [4–6]. The dynamical evolution to the end state is
expected and seen numerically to happen through a
pinching off of the horizon [2,3]. Numerical studies have
demonstrated a fractal structure for the horizon with
curvature which blows up [14,15]. The above mentioned
behavior under dynamical evolution is very similar to the
Plateau–Rayleigh instability in fluid dynamics [15].
Emparan, Suzuki, and Tanabe have also analytically
demonstrated the expected behavior in their work using
the large dimension limit of general relativity [16].
We focus in this paper on the static merger point in

the phase space of solutions, not in Einstein gravity but
in Einstein-Gauss-Bonnet (EGB) gravity. EGB gravity
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appears naturally for example, in string theory as higher
curvature corrections to Einstein gravity [17,18]. Since the
merger point has a conical singularity, it is important to
consider higher curvature corrections. Recall that in EGB
gravity the Lagrangian is

LEGB ¼ Rþ αðR2 − 4RμνRμν þ RμνρσRμνρσÞ ð1:1Þ
where α is the EGB parameter.
Black strings and branes in EGB gravity were discussed

in [19]. Recently, the instability of uniform black strings
was also seen in EGB gravity [20–22]. The presence of a
phase of nonuniform black strings is also discussed in [20].
Upon increasing the nonuniformity in the nonuniform
black string emanating at the critical wavelength, will this
eventually lead to a topology changing phase transition to a
black hole? This is the question we address in this paper.
We would also like to add that generalized black string
solutions have been found in other theories of gravity like
scalar-tensor gravity, see for example [23–25].
We use the methodology developed by Emparan and

Suzuki in their work [10] and consider EGB corrections to
their results. They showed that in a neck of radial extent
rh=

ffiffiffi
n

p
and rh=n along the extra dimension, one can have a

local conical geometry [2,3], which can be correctly
extended to the geometry of a large black hole on a cylinder.
Here rh is the horizon radius of the black hole and n is the
(large) dimension. The problem of finding the merger point
geometry reduces to finding solutions to the well-known
logarithmic diffusion equation obtained from the Ricci flow.
Emparan and Suzuki demonstrated that the King-Rosenau
solution [26–28] to the logarithmic diffusion equation has the
desired behavior of a merger point. This solution produces
the near horizon limit of a black hole asymptotically, and a
local conical geometry at the neck. Thus it suggests a
topology changing phase transition, and further that the
transition is to a black hole. This shows the existence of a
merger point in the large dimension limit of Einstein gravity.
We extend the analysis in [10] to EGB gravity. We obtain

a modification to the flow equation [10] for various ranges
of α. We demonstrate that the merger point has the expected
behavior for α ¼ Oð1=n2Þ or smaller, where n is the
dimension and is taken to be large. More precisely, this
happens when a parameter constructed from α and rh,
namely ϵ ¼ αn2=r2h is small. At α ≫ Oð1=n2Þ, we obtain a
“modified” logarithmic diffusion equation in the place of
logarithmic diffusion equation. This equation does not
seem to allow for an obvious phase transition to the black
hole phase. We cannot rule out a topology changing phase
transition, but it is not obvious that the transition is to a
black hole geometry. We demonstrate this by showing that

the near neck solutions’ asymptotic behavior will not match
the near horizon limit of a black hole when α is large
enough. The analysis proceeds in the following steps:

(i) First (Sec. II), we will study the near horizon
behavior of a black hole in EGB gravity at various
orders of α.

(ii) Second (Sec. III A and III B), we will work in an
N þ 1 formulation of EGB gravity. We will derive
the evolution equation for extrinsic curvature in
EGB gravity for various orders of α and show that
there is a modification to the flow equation obtained
in Einstein gravity (the Ricci flow) for the range
Oð1=nÞ ≫ α ≫ Oð1=n2Þ, even when the correc-
tions from the Gauss-Bonnet terms are subordinate
to the Einstein term. This is a new range for which
we see modifications from the Einstein gravity
calculation. For α ¼ Oð1=n2Þ, there is no modifi-
cation to the Ricci flow at leading order in 1=n.
In previous work, especially on EGB black holes,

α ¼ ϵ
r2h
n2 where ϵ is small was required in order for

the EGB black hole to approach the Einstein gravity
result as α → 0.

(iii) Third (Secs. III C and IVA), we will demonstrate
that a solution of the logarithmic diffusion equation
can be perturbed to obtain another solution, which,
for α in an appropriate range matches approximately
with the near-horizon limit of the EGB black hole
when ϵ is small enough.

(iv) Fourth (Sec. IV B), we will demonstrate for other
ranges of α that the solution to the modified flow
equation cannot match to the near horizon limit of
the EGB black hole. In these cases, one could still
have a topology changing phase transition, but it is
not obvious that the transition is from a black string
to the black hole.

(v) In Sec. V we discuss the near-neck geometry in EGB
gravity.

II. NEAR HORIZON LIMIT OF EGB
BLACK HOLE

In this section, we look at the near-horizon limit of the
black hole that was found in EGB gravity [18]. We focus on
the asymptotically flat solution with α > 0 (as this is the
one that arises in string theory) the “minus branch.” This is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
d−2 ð2:1Þ

with fðrÞ being of the following form [18,20];

fðrÞ ¼ 1þ 2r2

αðd − 3Þðd − 4Þ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α

r2h
ðd − 3Þðd − 4Þ

�
1þ α

4r2h
ðd − 3Þðd − 4Þ

��
rh
r

�
d−1

s �
: ð2:2Þ

SREEJITH NAIR and VARDARAJAN SUNEETA PHYS. REV. D 104, 044042 (2021)

044042-2



Let us attempt to find the near horizon limit of this metric
in the large n limit, where n ¼ d − 2 by going to the
coordinates where R ¼ ð rrhÞn, Now for different orders of α

we get different results in the large n limit, if α ¼ Oð1=n2Þ
we have;

fðRÞ ¼ ðR − 1Þ
R

�
1 −

αn2

4r2hR

�
þ � � � :: ð2:3Þ

Here we performed a binomial expansion of the expression
inside the square root and that requires αn2

4r2h
small. Now the

metric will take the following form;

ds2 ¼ −fðRÞdt2 þ r2hR
2
ð1−nÞ
n dR2

n2fðRÞ þ r2hR
2
ndΩ2

n: ð2:4Þ

Next, going to the near horizon limit [12,13] by setting
lnðRÞ ≪ n, followed by R ¼ cosh2ðx=2Þ; t ¼ t̃

rh
, we get the

following;

ds2 ¼ r2h

�
− tanh2ðx=2Þ

�
1 −

αn2

4r2h cosh
2ðx=2Þ

�
dt̃2

þ dx2

n2
þ dΩ2

d−2

�
ð2:5Þ

when αn2

4r2h
is small and we assume its higher powers

and products with powers of 1=n are negligible. But, if
α ≫ Oð1=n2Þ we get

fðRÞ ¼ R1=2 − 1

R1=2 ð2:6Þ

The metric (2.5) reduces to the Einstein gravity
Schwarzschild-Tangherlini black hole in the limit of
α → 0 but (2.6) produces a metric that does not have the
Einstein gravity black hole result as a limiting case. This
means that the black hole with α ≫ Oð1=n2Þ has a near
horizon behavior which is very different from the near
horizon behavior in Einstein gravity. Note that the constant
α disappears from the leading near-horizon behavior in
(2.6). This observation will be significant later.

III. THE EGB GRAVITY EQUATIONS

Before going ahead with the calculations, let us briefly
discuss the work that was done in Einstein Gravity by
Emparan and Suzuki [10]. They explored the geometry of
the merger point in the black hole black string phase
transition, which was conjectured by Kol to be locally a
double cone geometry near the neck [2,3]. They considered
a metric of the form1;

ds2 ¼ N2ðρ; yÞdρ2 þ 1

n
gabðρ; yÞdyadyb

þH2ðρ; yÞe2Cðρ;yÞ=ndΩ2
n ð3:1Þ

which is a generalization in the large dimension limit of the
double cone geometry proposed by Kol. Then they showed
that this form of the metric is valid locally in a small
neighborhood near the neck of the nonuniform string with
an extension of rh=n along the string direction and rh=

ffiffiffi
n

p
in the radial direction. For a metric of the form (3.1), they
studied the Einstein equations in a Hamiltonian formu-
lation. At leading order in n in the large n limit, it was
shown that the solutions obey the Ricci flow equation,
which is well-studied by mathematicians. This equation
has as a solution, the King-Rosenau geometry [26–28].
Emparan and Suzuki showed that this geometry in a limit
reduces to a smoothed cone on either side of the merger
point. At the merger point, Emparan and Suzuki showed
that the double cone geometry conjectured by Kol is
recovered locally in the neighborhood of the neck.
The form of the metric (3.1) and the associated scaling of

metric coefficients with n in Einstein gravity was motivated
by the double cone geometry. It is reasonable to expect the
same behavior (with GB corrections) as long as the GB
terms are subordinate to the Einstein terms. This means that
the ansatz and associated methodology can be adapted to
EGB gravity as long as the GB corrections are subordinate
to the Einstein terms. However, for completeness, we will
be presenting the flow equations for all ranges of α.

A. N + 1 formulation of EGB gravity

Let us begin by considering the ansatz of the form (3.1).
Now we use the N þ 1 formulation of EGB gravity [29] for
the metric (3.1) and study its evolution with ρ according
to the EGB equations. Now if we foliate the spacetime
along the ρ direction, the hypersurface has the following
extrinsic curvatures and its trace2;

KAB ¼ −
1

2N
∂0γAB; K ¼ KA

A: ð3:2Þ

Here, A,B,C,… are coordinates that run over the
entire foliated hypersurface and γAB are the components
of the metric restricted to the hypersurface. For this type
of a foliation we have, in the large n limit, Kab ¼
Oð1=nÞ and Kij ¼ Oð1Þ which would make K ¼ OðnÞ.
Now upon making it satisfy the vacuum scalar and vector
constraints of EGB gravity [29];

M þ αðM2 − 4MABMAB þMABCDMABCDÞ ¼ 0 ð3:3Þ

1It should be noted that the n in this metric is different from
the n used in the large d limit of (2.1), but both converge in the
large d limit.

2Please notice that the convention we are using is not the
same as [10], instead we have adopted the standard convention
from [29].
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NA þ 2αðMNA − 2MA
BNB þ 2MCDNACD

−MA
DBCNBCDÞ ¼ 0 ð3:4Þ

such that;

MABCD ¼ RABCD − KACKBD þ KADKBC ð3:5Þ

MAB ¼ γCDMACBD ¼ RAB − KKAB þ KACKC
B ð3:6Þ

M ¼ γCDMCD ¼ R − K2 þ KCDKCD ð3:7Þ

NABC ¼ DAKBC −DBKAC ð3:8Þ

NA ¼ γCDNCAD ¼ DBKB
A −DAK: ð3:9Þ

Next, we shall attempt to gauge fix the metric (3.1), up to
leading order in n.
For the metric (3.1),M will contain anOðn3Þ term of the

form ð∇aHÞ2. It can be seen that for all orders of α, this
term will appear at the leading order in the scalar constraint.
Upon setting this term to zero, we haveH to be independent
of y. The next term inM is of the form, H

02
N2 − 1 [this term is

at Oðn2Þ]. For all α this will then be the leading order term
in the scalar constraint, therefore (3.3) will imply;

H02

N2
− 1 ¼ 0 ð3:10Þ

which can be solved by

H ¼ ρ; N ¼ 1þ N1ðρ; yÞ
n

: ð3:11Þ

We note that we have introduced the subleading termN1, as
it is required for consistency with the evolution equation for
Kij. The Kij flow equation will give a differential equation
for N1 in terms of the gab and its derivatives.
Now we can further do the coordinate transformations;

ρ → ρ

�
1þ βðρ; yÞ

n

�
; ya → ya þ ζaðρ; yÞ: ð3:12Þ

to set Cðρ; yÞ ¼ 0. This coordinate transformation is
identical to the one used in Einstein gravity[10] and we
assume ζa has already been chosen appropriately to cancel
out potential gρa terms. Now the metric takes the form3

ds2 ¼
�
1þ 2N1ðρ; yÞ

n

�
dρ2 þ 1

n
gabðρ; yÞdyadyb

þ ρ2dΩ2
n: ð3:13Þ

Thus the above gauge fixed metric is identical to the one
obtained in Einstein gravity [10]. Next, we shall evaluate
the evolution equation for KAB of the gauge fixed metric
and see what we obtain. The evolution equation for KAB
reads [29];

MAB −
1

2
MγAB þ KACKC

B − γABKCDKCD

þ LnKAB − γABγ
CDLnKCD þ 2α½HAB þMLnKAB

− 2MA
CLnKCB − 2MB

CLnKCA −WAB
CDLnKCD� ¼ 0

ð3:14Þ

where HAB &WAB
CD are defined as follows;

HAB ¼ MMAB − 2ðMACMC
B þMCDMACBDÞ þMACDEMB

CDE

− 2

�
−KCDKCDMAB −

1

2
MKACKC

B þ KACKC
DMD

B þ KBCKC
DMD

A þ KDCKC
EMADBE

þ NANB − NCðNCAB þ NCBAÞ −
1

2
NCDANCD

B − NACDWB
CD

�
−
1

4
γAB½M2 − 4MCDMCD þMCDEFMCDEF�

− γAB½KCDKCDM − 2MCDKCEKE
D − 2NCNC þ NCDENCDE� ð3:15Þ

WAB
CD ¼ MγABγ

CD − 2MABγ
CD − 2γABMCD þ 2MAEBFγ

ECγFD ð3:16Þ

Now upon subtracting the trace of (3.14) from half of the scalar constraint (3.3) we get the following equation:

ðd − 2Þ
�
1

2
M þ KABKAB þ γABLnKAB

�
þ 2ðd − 4Þα

�
1

4
ðM2 − 4MABMAB þMABCDMABCDÞ þMKABKAB

− 2KA
BKA

CMC
B − 2NANA þ NABCNABC þMγABLnKAB − 2MABLnKAB

�
¼ 0: ð3:17Þ

3It can also be checked that this form of the metric satisfies all the vector constraints up to leading order.
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Note that the above equation in the large d limit can be written in the following form:

KABKAB þ γABLnKAB þ 2α½MKABKAB − 2MABKACKC
B − 2NANA þ NABCNABC�

¼ 2α½ð2MABLnKAB −MγABLnKAB�: ð3:18Þ
Using the above equation and the scalar constraint (3.3) on the evolution equation for the extrinsic curvature (3.14), we

can reduce the evolution equation to the following form:

MAB − ð−KACKC
B − LnKABÞ þ 2α½ H́AB þMLnKAB − 2MA

CLnKCB − 2MB
CLnKCA −WAB

CDLnKCD� ¼ 0 ð3:19Þ

where,

H́AB ¼ MMAB − 2ðMACMC
B þMCDMACBDÞ þMACDEMB

CDE

− 2½−KCDKCDMAB −
1

2
MKACKC

B þ KACKC
DMD

B þ KBCKC
DMD

A þ KDCKC
EMADBE

þ NANB − NCðNCAB þ NCBAÞ −
1

2
NCDANCD

B − NACDNB
CD� − γABð2MCDLnKCD −MγCDLnKCDÞ ð3:20Þ

Now, for the gauge fixed metric (3.13) we have the following (at leading order in n in the large n limit);

Kab ¼ −
∂ρgab
2n

; Kij ¼ −ρgij
�
1 −

N1

n

�
; K ¼ −

n
ρ

�
1 −

1

n

�
N1 −

ρ∂ρðln gÞ
2

��

Mab ¼ Rab −
∂ρgab
2ρ

; Mij ¼
�
2N1 −

ρ∂ρ ln g

2

�
gij; M ¼ n

�
gabRab −

∂ρ ln g

ρ
þ 2N1

ρ2

�

Naij ¼ ρ
∂aN1

n
gij; Nabc ¼ −

1

2n
ðDa∂ρgbc −Db∂ρgacÞ; Na ¼ −

gcd

2
ðDc∂ρgad −Da∂ρgcdÞ −

∂aN1

ρ

Mabcd ¼
Rabcd

n
; Mijkl ¼ ð1 − ρ2Þðgikgjl − gilgjkÞ; Maibj ¼ −

ρ∂ρgab
2n

gij:

Now the leading order analysis of the evolution equa-
tion (3.19) using the gauge fixed metric (3.13) will result in
the following for various orders of α (Table I), where we
have the following definitions ( _A ¼ ∂ρA);

Ḿ1 ¼ gabRab −
∂ρ lnðgÞ

ρ
þ 2N1

ρ2
ð3:21Þ

Rab ¼ RacRc
b þ RcdRacbd −

1

2
RacdeRb

cde ð3:22Þ

Gab ¼
∂ρgcd

2ρ
Racbd −

1

2ρ
ðRa

c∂ρgcb þ Rb
c∂ρgcaÞ ð3:23Þ

It should also be noted that at α≫Oð1=nÞ&α¼Oð1=nÞ,
the Gauss-Bonnet terms either dominate the Einstein
gravity terms or are comparable to them—this is not a
physically significant regime. Further, as discussed earlier
in this range of α, we do not know if the ansatz (3.1) is
valid. We want the Gauss-Bonnet terms to only provide
corrections to the Einstein gravity result. So the relevant
solutions are only at orders of α ≪ Oð1=nÞ. In this regime,
for the range Oð1=nÞ ≫ α ≫ Oð1=n2Þ the Gauss-Bonnet
corrections are significant and change the flow equation
from Ricci flow to the more complicated evolution equation
listed in the table.4

TABLE I. Table of evolution equations.

Order of α Evolution of Kab

α ¼ Oð1Þ 1
2ρ2

_gac _gbdgcd ¼ Ḿ1ðRab −
_gab
2ρÞ − 2ðRab þ GabÞ

α ¼ Oð1=nÞ Rab −
_gab
2ρ þ 2nαðḾ1ðRab −

_gab
2ρÞ − 2ðRab þ GabÞ

− 1
2ρ2

_gac _gbdgcdÞ ¼ 0

α ¼ Oð1=n2Þ Rab −
_gab
2ρ ¼ 0

4For α ≪ Oð1=nÞ (the physically significant regime), the
subleading corrections to the flow equation come at Oð1=nÞ.
Similar corrections are present at all the orders of α in the table.
These are not considered in the large n limit.
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We have not explicitly written down the evolution
equation for Kij; this is because it just determines N1

(which is a subleading correction) in terms of gab and its
derivatives. Actually, the Kab evolution equation is coupled
with the Kij evolution equation through the N1 in Ḿ1. But
luckily this will not be of concern to the analysis we are
performing, as Ḿ1 multiplies ðRab −

_gab
2ρÞ. This particular

form of the coupling makes the system manageable; else,
we would have had two very complicated coupled partial
differential equations. The coupling of evolution equations
is distinct from Einstein gravity and is a feature of EGB
gravity [29].

B. The black hole-black string transition

If we study the black hole-black string transition,
we have the fa; b; c…g subspace to be two- dimensional.

This means that we can work in coordinates where the
metric is conformal to the flat metric;

1

n
gabdxadxb ¼

1

n
Vðρ; zÞð−dt2 þ dz2Þ: ð3:24Þ

Above, V is independent of t as we are working with a
static spacetime.5 Now if α ¼ Oð1=n2Þ, we get the Einstein
gravity result [10];

∂λV ¼ ∂2
zðlnðVÞÞ ð3:25Þ

while for Oð1=nÞ ≫ α ≫ Oð1=n2Þ from table I we get a
‘modified’ logarithmic diffusion equation;

∂λV ¼ ∂2
zðlnðVÞÞ þ 2nα

�
− Ḿ1ð∂λV − ∂2

zðlnðVÞÞÞ þ
½ð∂λVÞ2 − 3∂λV∂2

zðlnðVÞÞ þ ð∂2
zðlnðVÞÞÞ2�

V

�
ð3:26Þ

where, λ ¼ λ0 −
ρ2

2
.

Now let us consider a solution to the logarithmic diffusion
equation, which is also a solution to the “modified”
logarithmic diffusion equation. Let us call this solution
V 0. Now using the (3.25) we can reduce (3.26) to imply the
following equation:

∂λV 0 ¼ ∂2
zðlnðV0ÞÞ ¼ 0: ð3:27Þ

Observe that the above equation implies that V 0 is not
dependent on ρ. But as we increase ρ, we expect to move
away from the local geometry near the neck and transition
to the black hole geometry.
If V is a solution to (3.26), then it cannot independently

solve the logarithmic diffusion part and the modification
(part of (3.26) inside the square brackets), unless it is
independent of ρ and α. This observation will come in
handy later. The other solutions which have V solving the
modified log diffusion equation (3.26) but not the loga-
rithmic diffusion equation have to be of the form
Vðρ; z; αÞ—i.e., the solutions must depend on α.

C. Perturbed solutions of the logarithmic
diffusion equation

The relevant flow equation in Einstein gravity is the
logarithmic diffusion equation, and we regain the same
flow equation in EGB gravity for a sufficiently small GB

parameter. It is of interest to study the perturbative
corrections to the solutions in Einstein gravity as we expect
corrections from GB terms. Now let us study the solution
with some small correction, V ¼ V0ðρ; zÞ − ϵFðρ; zÞ.
Let us treat ϵ to be some small parameter, and we
work in linearized perturbation theory with perturbation
parameter ϵ.
By demanding that the Einstein gravity flow equation be

satisfied by V0 and V, at linear order in ϵ, we get an
equation, which reads;

∂λF ¼ ∇2

�
F
V0

�
: ð3:28Þ

Now for the near horizon single black hole solution in
Einstein gravity [10];

Vbh
0 ðρ; zÞ ¼ 1

1þ e−2ðρ2þzÞ : ð3:29Þ

It can be checked that this gives a corresponding solution,
Fbh as:

Fbhðρ; zÞ ¼ 1

ð1þ e−2ðρ2þzÞÞð1þ e2ðρ2þzÞÞ : ð3:30Þ

This means that we have (for a small parameter ϵ) a
solution of the form;

5Please note that we might have to rescale these coordinates
appropriately to match with the rest of the geometry away from
the region where (3.1) is valid.
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Vbhðρ; zÞ ¼ 1

1þ e−2ðρ2þzÞ

�
1 −

ϵ

1þ e2ðρ2þzÞ

�
: ð3:31Þ

In Sec. V we consider perturbative corrections to the
Vcone ¼ ðρ2 − μÞ=cosh2ðzÞ, which is the near neck geom-
etry in Einstein gravity [10].

IV. NEAR HORIZON SINGLE BLACK HOLE
SOLUTION IN EGB GRAVITY

We can now attempt to study the conformal factor Vbh

derived in the previous section. It was demonstrated in [10]
that the metric with conformal factor (3.29) V0 reduces to
the near-horizon black hole metric in Einstein gravity after
suitable coordinate transformations.

A. Asymptotic behavior at α=Oð1=n2Þ
Let us attempt a coordinate transformation of the form

used in Einstein gravity [10] on the conformal metric (3.24)
in (3.13), obtained from (3.31) and see what happens;

t ¼ nt̃
2

ð4:1Þ

z ¼ lnðsinhðx=2ÞÞ − n
4
sin2θ ð4:2Þ

ρ ¼
ffiffiffi
n

p
2

sin θ

�
1þ 2

n
lnðcoshðx=2ÞÞ

�
: ð4:3Þ

Now, after these coordinate transformations, for a V of
the form (3.31) we will get a metric of the form
(at θ ¼ Oð1= ffiffiffi

n
p Þ):

ds2 ¼ n
4

��
− tanh2ðx=2Þ

�
1 −

ϵ

cosh2ðx=2Þ
�
þOð1=nÞ þOðϵ=nÞ

�
dt̃2 þ

�
1

n2
þOðϵ=n2Þ þOð1=n2.5Þ

�
dx2

þ ð1þOð1=nÞ þOðϵ=nÞÞdΩ2
d−2 þ ðOð1=n2.5Þ þOðϵ=n1.5ÞÞdxdθ

�
ð4:4Þ

Now the above form of the metric is the near horizon
limit of the EGB black hole (2.5) with additional defor-
mations6 when we identify ϵ ¼ αn2

4r2h
. Just as in the case of

Einstein gravity [10], the deformations can be attributed to
the relevant geometry being that of a caged black hole
instead of a black hole that asymptotically approaches
Minkowski spacetime. As ϵ → 0 the deformations reduce
to the Einstein gravity deformed black hole metric.
As the flow equation in EGB gravity is the same as in

Einstein gravity up to α ¼ Oð1=n2Þ, the EGB black hole
metricmatches the near neck regionasymptotically to leading
order with ϵ ¼ αn2

4r2h
. This suggests that, like in Einstein gravity

[10], the phase transition from the black hole to the black
string and vice versa is allowed. But there is a caveat here,
which is that ϵ should be sufficiently small for the linearized
approximation in the previous section to be valid.

B. Asymptotic behavior at Oð1=nÞ ≫ α ≫ Oð1=n2Þ
We had demonstrated earlier in Sec. III B that if V were a

solution to the modified logarithmic diffusion equation, it
should either be of the form Vðρ; z; αÞ or it should be
independent of ρ and α. Also, from the form of the metric in
the conformal gauge (3.24), it can be seen that V is the term
multiplying dt2 under the coordinate transformation (4.1)–
(4.3). But the term multiplying dt2 in the near horizon limit

of the EGB black hole is (2.6), which is not of the form
Vðρ; z; αÞ. It does not depend on α but depends on ρ. This
means that a V matching the EGB black hole metric
asymptotically away from the near-neck region is not
possible with a GB parameter Oð1=nÞ ≫ α ≫ Oð1=n2Þ.
This would imply that the asymptotic geometry does not
approach the geometry relevant for a black string-black
hole phase transition. So there is a range of α in which the
corrections are subordinate to the Einstein part, but a
merger point like the one present in Einstein gravity where
the geometry approaches a black hole away from the cone
does not seem possible. We cannot rule out a topology
changing phase transition, but we observe that the geom-
etry does not approach that of the black hole. In the large
dimension limit this occurs for Oð1=nÞ ≫ α ≫ Oð1=n2Þ.

C. Some speculations on copying of solutions

Notice that based on the observations made in Secs. IVA
and IV B we can see a range of α,Oð1=nÞ≫ α≫Oð1=n2Þ,
for which while we may have a topology changing
transition, however, the metric does not approach the black
hole metric asymptotically. But for α ¼ Oð1=n2Þ, we can
have a phase transition to the black hole but as demon-
strated in Sec. IVA, the derivation of the asymptotic
geometry requires the parameter ϵ to be small. The
asymptotic geometry then approaches that of a black hole.
An important property related to black holes on cylinders

in Einstein gravity is the copying of spherically symmetric
static solutions to create new static solutions [4,30,31].

6This is up to overall scaling factors that can be absorbed in
rescaling of coordinates.
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This implies that one can copy the Einstein gravity merger
point to create new merger points indexed by a natural
number k. Copying is defined as following process of
generating new solutions from known solutions

ds2 ¼ −fdt2 þ L2

4π2

�
f−1AdR2 þ A

Kd−3 dv
2 þ KR2dΩ2

d−3

�
;

f ¼ 1 −
Rd−4
0

Rd−4 ð4:5Þ

which gets mapped to a new solution by

ÃðR; vÞ ¼ AðkR; kvÞ; K̃ðR; vÞ ¼ KðkR; kvÞ;

R̃0 ¼
R0

k
; ð4:6Þ

for every natural number k,(the corresponding metric is
obtained by substituting Ã; K̃ & R̃ into (4.5) for A;K & R
respectively) under which the mass and tension scales as;

M̃ ¼ M
kd−4

; ñ ¼ n: ð4:7Þ

The k copied merger-point connects a k black hole phase
with a phase of nonuniform black strings through topology
changing phase transitions where the horizon topology of a
nonuniform black string (S1 × Sd−3) changes to that of k
black holes each with a horizon topology of Sðd−2Þ [31].
In Einstein gravity, the existence of a single black hole

merger point implies the existence of a k black hole merger
point through the copying of solutions. But is the same true
if Gauss-Bonnet corrections are considered?
While the copying property has to be rigorously inves-

tigated in EGB gravity, let us assume such copying is
possible. Then we shall attempt to express the condition
that ϵ should be sufficiently small by trying to express it in
terms of the three parameters then associated with the
merger point and EGB gravity, which are the size of S1 − L,
the copy number of the merger point k and α. We can do
this by considering the k copied nonuniform black string
which we expect is connected through the merger point to a
k black holes solution. Since the neck of the merger point is
in a region of extent Oð1=nÞ [10], we have approximately:

L ¼ k

�
2rh þO

�
1

n

��
; ð4:8Þ

where rh is the radius of one of the (identical) black holes
formed just after the merger point. This condition implies
that ϵ can be expressed as k2αn2

L2 in the large n limit. Further,

if we define α ¼ Cn−2, then if k2C
L2 is small, the geometry

approaches the black hole geometry and we have a phase
transition to a black hole. Then if copying of solutions is
true in EGB gravity, we should also expect a merger

geometry mediating a k copied black string to a k black
hole phase transition.
It would be interesting to rigorously see if there is

copying of solutions in EGB gravity and, if so, what would
be the kth copy of such a topology changing transition
where the metric does not approach a black hole metric
asymptotically. Further, how does the size L of the S1 affect
the transition? Our perturbation parameter depending on
k& L may indicate that we can expect novel features in the
phase diagram for EGB gravity, but this must be inves-
tigated not just as a perturbation to the Einstein gravity
solution, but nonperturbatively.

V. LEADING ORDER MODIFICATIONS TO THE
SMOOTH CONE FROM EGB GRAVITY

A. When α=Oð1=n2Þ
Let us attempt to find the leading order perturbative

corrections in ϵcone to the large n smooth cone by using the
corresponding Vcone

0 ¼ ðρ2 − μÞ=cosh2 z, [10]. If we insist
on spherical symmetry, this would require us to use an Fcone

of the form;

Fconeðρ; zÞ ¼ gðρÞ
cosh2 z

: ð5:1Þ

The above form of correction will ensure that the
modifications will not have any angular dependence. We
do not want angular dependence because in the Euclidean
version, we need a double cone over S2 [2,3]. This can be
seen by doing the transformation tanðχÞ ¼ sinhðzÞ, leading
the 2-dimensional subspace to reduce to the corresponding
sphere in the Euclideanized version maintaining the spheri-
cal symmetry.7

Now substituting this form of Fcone into (3.28) with the
corresponding Vcone

0 will result in Fcone being zero, this
means that the perturbation linear in ϵ is such that it is zero
near the neck. This means that the Gauss-Bonnet correction
to the smooth cone is not present at linear order in ϵ
for α ¼ Oð1=n2Þ.

B. When Oð1=nÞ ≫ α ≫ Oð1=n2Þ
As we expect the Wick-rotated geometry of the two

dimensional spacetime to be a sphere [2,3], let us start with
a metric of the form

V ¼ ðS0 þ 2nαGðρÞÞ
cosh2ðzÞ ð5:2Þ

where S0 ¼ ρ2 − μ [10]. Now the evolution equation (3.26)
up to leading order becomes

7The 2D subspace with conformally flat metric has been
argued to have the topology of a sphere in the Euclidean version
of the metric [2,3].
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∂λV ¼ ∂2
zðlnðVÞÞ þ

2nα
Vcone
0

½ð∂λVcone
0 Þ2

− 3∂λVcone
0 ∂2

zðlnðVcone
0 ÞÞ þ ð∂2

zðlnðVcone
0 ÞÞÞ2�; ð5:3Þ

whereVcone
0 ¼ S0

cosh2z [10], Now the above equation reduces to

∂λV ¼ ∂2
zðlnðVÞÞ − 2nα ×

4

ðρ2 − μÞ cosh2ðzÞ : ð5:4Þ

Now upon plugging in V, (up to leading order)we get an
equation of the form:

∂ρG ¼ 4ρ

ðρ2 − μÞ : ð5:5Þ

This gives V as

V ¼ ðS0 þ 4nα lnðρ2 − μÞÞ
cosh2ðzÞ : ð5:6Þ

So, in this range of Oð1=nÞ ≫ α ≫ Oð1=n2Þ, we have
the leading order corrections to the cone to be of the above
form. For ρ close to μ, the cone geometry receives large
corrections due to the logarithmic factor and perturbation
theory is no longer valid.

C. Conifold geometry in EGB gravity

We will now consider solutions in EGB gravity of the
form (5.7) and study the constraints imposed by EGB field
equations on them. This is a cross-check on the compu-
tations in the previous section done with perturbation
parameter ϵ.

ds2 ¼ N2ðρÞdρ2 þ SGBðρÞ
n

dΩ2
2 þ ρ2dΩ2

n ð5:7Þ

For the above form of the metric, we can compute
the following quantities up to leading order8 in a 1=n
expansion:

R00 ¼ n
∂0 lnN

ρ
; R11 ¼

�
1 −

_SGB
2ρN2

�
sin2ðθÞ; R22 ¼ 1 −

_SGB
2ρN2

; Rij ¼ n

�
1 −

1

N2

�
gij

R ¼ n2

ρ2

�
1 −

1

N2

�
; R1

010 ¼ Oð1Þ; R2
020 ¼ Oð1Þ; R2

121 ¼ sin2ðθÞ

R0i0
j ¼ Oð1Þ; R1i1

j ¼ Oð1=nÞ; R2i2
j ¼ Oð1=nÞ; Rijk

l ¼ Oð1Þ:

The EGB field equations are

Gμν þ αQμν ¼ 0 ð5:8Þ

where

Gμν ¼ Rμν −
1

2
gμνR ð5:9Þ

Qμν ¼ 2½RRμν − 2RμαRν
α − 2RαβRμανβ þ Rμ

αβγRναβγ�

−
1

2
gμνLEGB ð5:10Þ

(i) α ¼ Oð1=n2Þ
For (5.7) the leading order term in n in the large n

limit for α ¼ Oð1=n2Þ, is always of the form RRμν,
and at leading order, the leading term for the Ricci
scalar R is zero when N ¼ 1þ :… where the
ellipses refer to possible corrections at higher powers

of 1=n. Simply taking N ¼ 1 satisfies the leading
order EGB field equations. The leading term in SGB
in the large n limit is not fixed at this order. For
α ¼ Oð1=n2Þ, we expect SGB ¼ S0 þOð1=nÞ and
S0 gets fixed by the next to linear order terms in the
EGB field equations.

In this range of α, we get at subleading order
R11 ¼ 0, R22 ¼ 0, which will fix the leading part of
SGB as S0 ¼ ρ2 − μ. There are many nontrivial
contributions at next-to next-to leading order in
1=n, so it is not feasible to obtain the corrections
to N and SGB beyond leading order. We thus see that
in this range of α we get the fused, critical and split
cone geometry (for μ > 0, μ ¼ 0 and μ < 0 respec-
tively) obtained by Emparan and Suzuki [10] for
Einstein gravity.

(ii) Oð1=nÞ ≫ α ≫ Oð1=n2Þ
In this range, we will have the following equation

in the large n limit upon setting N ¼ 1
9;

8We have only mentioned the explicit form of the leading order
terms for quantities that are relevant to our analysis, for other
quantities, we have only mentioned their order.

9Here the GB corrections are strictly speaking at order nα
which is not Oð1Þ, but since nα > 1=n, this is the next to leading
order term and since this term is present because of the GB
correction, we have written them together.
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R11 − 4αðR11R1
1 þ R22R1212 − R1

212R1212Þ ¼ 0

R22 − 4αðR22R2
2 þ R11R2121 − R2

121R2121Þ ¼ 0

ð5:11Þ

which can be written in terms of SGB as:
�
1−

_SGB
2ρ

�
−
4nα
SGB

�ð _SGBÞ2
4ρ2

−
3

2

_SGB
ρ

þ1

�
¼0 ð5:12Þ

Unlike the previous range of α, in this range, we
have as a consequence of studying the order of
various terms in the field equation,

SGB ¼ S0 þ nαS1 þOð1=nÞ ð5:13Þ
where the order of nα in the range of α given by
Oð1=nÞ ≫ α ≫ Oð1=n2Þ is greater than Oð1=nÞ.

Now this equation will set S0 ¼ ρ2 − μ and S1 ¼
4 lnðρ2 − μÞ. But the perturbation expansion in n is not
valid when ρ2 ∼ μ. Thus this metric is not valid in the neck
region. This divergence for ρ2 ∼ μ is similar to the Oð1=nÞ
corrections in Einstein gravity [10] where it is argued that a
finer neck region solution is the relevant geometry suffi-
ciently close to the neck, by doing the large n limit in a
slightly different way. In our case as well, that may be
possible. However even if a topology changing transition
does occur for this range of α, the metric does not approach
the EGB black hole metric asymptotically.

VI. CONCLUSION

In this paper, we have investigated the presence of a
black hole black string phase transition via a merger point
geometry in EGB gravity in the large dimension n limit. We
have performed an analysis of the near-neck geometry. It is
conelike for α ¼ Oð1=n2Þ with the cone geometry being

fused, critical or split cones derived in the context of
Einstein gravity by Emparan and Suzuki [10]. Thus we
certainly expect a topology changing phase transition in
this case consistent with the arguments of Kol [2–4]. For
Oð1=nÞ ≫ α ≫ Oð1=n2Þ, our near-neck conical geometry
receives a correction which become divergent closer to the
neck. It is possible that this could be solved by going to a
finer neck geometry as in [10] for Einstein gravity and a
slightly different large n limit. In the large dimension limit,
we cannot match the asymptotic form of the near neck
geometry to the EGB black hole metric when the Gauss-
Bonnet parameter, Oð1=nÞ ≫ α ≫ Oð1=n2Þ while it is
possible to do so when α ¼ Oð1=n2Þ. This suggests that
for Oð1=nÞ ≫ α ≫ Oð1=n2Þ, while we cannot rule out
a topology changing phase transition as predicted by
Kol [2–4], a transition between the nonuniform black
string geometry and the black hole geometry in EGB
gravity does not seem to occur directly as the geometry
away from the neck does not go over to the black hole
metric. Thus it is an interesting question as to whether we
can have a topology changing transition when the geometry
does not approach the black hole metric and what would be
the significance of such a solution. Is there an intermediate
geometry after the merger point through which the tran-
sition to a black hole happens?
There are several extensions of this work that are

possible. The rich phase space in the black hole black
string phase transition remains to be explored analytically
and numerically to understand the various branches of
solutions in EGB gravity, as has been done in Einstein
gravity. In particular, it would be interesting to see if there is
the copying of solutions as in Einstein gravity. The
dynamical evolution away from the Gregory-Laflamme
instability in EGB gravity also needs to be investigated in
the same manner as it was investigated in Einstein gravity
in [15].
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