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For a type of nonminimally coupled vector-tensor theories with Abelian gauge symmetry breaking in
four-dimensional spacetime and correspondingly asymptotic non-AdS black hole solutions including a
cosmological constant, we construct the appropriate boundary terms and derive the associated junction
condition. In order to remove the divergences in the stress tensor which is localized on the spacetime
boundary, we also involve the suitable surface counterterms into the total action. Using the counterterm
method, we calculate the black hole mass. An implicit relation between the black hole carge Q and other
parameters is implied by combining the expression of the black hole mass with the first law of black hole
thermodynamics. With this implicit relation, we can prove the inequality Q ≤ M which is a general bound
for most of charged black holes. Besides, the phase structure of black holes is also investigated in the grand
canonical ensemble.
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I. INTRODUCTION

In recent decades, the studies about hairy black holes have
become a hot topic. One motivation is the anti–de Sitter
space/conformal field theory correspondence [1–3], i.e.,
AdS=CFT. This correspondence suggests that the physics of
strongly coupled gauge field living on boundary of AdS
spacetime could be reproduced by classical or semiclassical
gravitational theory in the bulk. In application of AdS=CFT,
the hairy black holes are used to understand quantum
chromodynamics (QCD) at finite temperature [4–6], super-
conductor’s behavior [7,8], and other interesting phase
transitions [9–14]. Besides, another motivation comes from
the reexamination to the black hole no-hair theorems.
According to them, in four-dimensional spacetime with
gravity, black holes are characterized only by three physical
parameters, namely the mass, electric charge, and angular
momentum. And the existence of black holes characterized
by other parameters are excluded. However, some interest-
ing counterexamples have been constructed in recent years
see e.g., [15–27]. Moreover, recently the phenomenon of
black hole spontaneous scalarization has been the focus of
considerable attention—see, e.g., [28–36]. Specifically,

these models consider a nonminimal coupling between
the scalar field ϕ and some source therm I, which could
produce a repulsive gravitational effect. In this way, the
black hole solution with no hair, from Einstein’s gravity, is
unstable against scalar perturbations due to the source, and
the scalar (or more general vector or tensor) hair will grow
dynamically during this process.
Most hairy black hole solutions have been considered

in scalar-tensor theories or scalar-vector-tensor theories.
Solutions from vector-tensor theories have been less
investigated. Actually, many interesting cosmological phe-
nomenology have been found in vector-tensor theories,
especially for those with Abelian symmetry breaking
[37–47]. Recently, a class of interesting black hole solutions
in four-dimensional spacetimewere obtained by [48] from a
type of vector-tensor theory in which the Abelian gauge
symmetry is broken by coupling the vector with gravity in a
nonminimal way [49,50].
In this paper, our purpose is to find the appropriate

boundary terms and construct the effective holographic
surface counterterms for a type of nonminimally coupled
vector-tensor theory and correspondingly asymptotic non-
AdS black hole solutions including a cosmological constant
[48]. After obtaining the black hole mass via a surface
counterterms method, we also intend to investigate the
relevant thermodynamics. Our motivation comes from the
following aspects, both in physics and in techniques. As we
know, for the Reissner-Nordström black hole, the value of
the chargeQ should be less than the value of the black hole
massM; otherwise no event horizon exists. More generally
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speaking, the extremality bound Q ≤ M holds for most of
charged black hole solutions, of course, there also exists
some interesting counterexamples [51,52]). However, for
black hole solutions including a cosmological constant in
[48], the value of Q is arbitrary and has no effect on the
existence of horizon. It seems that there is no direct
evidence to show Q ≤ M or Q > M or both are allowed.
Thus, after the consideration of thermodynamics for these
black hole solutions, we expect to find a constraint relation
between Q and other physical parameters. In this way, we
can compare Q and M at other fixed physical parameters.
Furthermore, the thermodynamics for black hole solutions
derived from some typical vector-tensor theories with
broken Abelian gauge symmetry has been investigated
by works [53,54], via the Wald formalism. These works
derive the general first laws of black hole thermodynamics
in either minimally or nonminimally coupled case. But the
physics behind these formulas have not been thoroughly
investigated. In this work, we expect to gain some intuition
about the black holes in vector-tensor theory without
Abelian gauge symmetry [48] by analyzing the phase
structures in the grand canonical ensemble.
From the viewpoint of techniques, due to the presence of

a nonminimal coupling between the vector field and gravity
in the action given in [48], the Gibbons-Hawking term [55]
is not the appropriate boundary term here. The effective
boundary term needs to be obtained. Besides, for obtaining
a finite quasilocal stress tensor on spacetime boundary,
some suitable surface counterterms should be added to the
total action. This process is the so called holographic
renormalization [56–62]. However, in [48], there exists
nonminimal coupling between vector field and gravity,
while the black hole solution is not an exactly asymptotic
AdS geometry. Thus, the surface counterterms will be more
complicated than [60]. At present, there are few research
works about resolving these technical problems. Thus, to
enrich the studies about the vector-tensor theories with
Abelian symmetry breaking, we shall consider these
technical problems for [48] in this work.
Our work is structured as follows. In Sec. II, we briefly

review a type of vector-tensor theory with broken Abelian
gauge symmetry in four-dimensional spacetime and cor-
respondingly asymptotic non-AdS black hole solutions
including a cosmological constant. In Sec. III, we con-
struct the appropriate boundary terms and derive the
corresponding generalized Israel junction conditions on
the spacetime boundary. Besides, we also give a well-
defined quasilocal stress tensor and calculate the black
hole mass by adding the suitable surface counterterms to
the total action. After obtaining the black hole mass, the
relevant thermodynamics, including the first law of black
hole thermodynamics and the phase structure analysis in
the grand canonical ensemble, have been considered in
Sec. IV. Finally, we will summarize our results and give a
discussion in Sec. V.

II. BLACK HOLES SOLUTION INCLUDING
A COSMOLOGICAL CONSTANT IN
VECTOR-TENSOR THEORY WITH
ABELIAN SYMMETRY BREAKING

An analytical black hole solution in 4-dimensional
spacetime has been found in a type of vector-tensor theory
[48]. The action is set as

S ¼ 1

2κ2

Z ffiffiffiffiffiffi
−g

p
d4x

�
R − 2Λ −

1

4
F2 þ βGμνAμAν

�
ð1Þ

in which the Gμν is the standard Einstein tensor, while the β
is the physical constant which measures the strength of
nonminimal coupling between the vector field and Einstein
tensor. It is easy to see that the Uð1Þ symmetry is broken in
presence of this nonminimal coupling term. The Einstein
field equation is given by

Rμν−
1

2
gμνR¼−ΛgμνþβZμνþ

1

2

�
FμσFσ

ν −
1

4
gμνF2

�

Zμν¼
1

2
A2Rμνþ

1

2
RAμAν−2AαRαðμAνÞ−

1

2
∇μ∇νA2

þ∇α∇ðμðAνÞAαÞ−1

2
∇α∇αðAμAνÞ

þ1

2
gμνðGαβAαAβþ∇α∇αA2−∇α∇βðAαAβÞÞ

ð2Þ

the equation of motion for the vector field, namely the
extended Maxwell equations, reads

∇μFμν þ 2βAμGμν ¼ 0 ð3Þ

The metric ansatz is set up as

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ ð4Þ

Meanwhile, Aμ has the following ansatz

Aμdxμ ¼ aðrÞdtþ χðrÞdr ð5Þ

After substituting ansatz (4) and (5) into Einstein field
equations (2) and extend Maxwell equations (3), the
following four independent differential equations are
given [48]

f2

r
−
f
r
þ h0f2

h
¼ 0 ð6Þ

4βað1−f− rf0Þþa0ðr−5rf− r2f0Þ−2r2a00f¼ 0 ð7Þ

4βða2ðf−1Þþfðhχ2þ2raa0ÞÞþr2ð4Λhþa02fÞ¼0 ð8Þ
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2βða2ð1−fÞþχ2fhð1þfÞÞþ4hðfþr2Λ−1Þ

þr2f

�
a02þ4hf0

rf

�
þ2rβf2χ2

�
3hf0

f
−
a2f0

χ2f2
þ4hχ0

χ

�
¼ 0

ð9Þ

When β ¼ 1
4
, an analytical solution of spherically symmet-

ric black hole is given as

hðrÞ ¼ 1 −
2m
r

þ 4r2Λeff

3
þ 4

5
r4Λ2

eff ð10Þ

fðrÞ ¼ ð1þ 2r2ΛeffÞ−2hðrÞ ð11Þ

aðrÞ ¼ Q
r
þQ2

�
1þ 2

3
r2Λeff

�
ð12Þ

χðrÞ ¼ 1þ 2r2Λeffffiffiffi
h

p
�ð3Qþ rQ2ð3þ 2r2ΛeffÞÞ2

9r2h

−Q2
2ð1þ 2r2ΛeffÞ þ 16r2Λeff

�1
2 ð13Þ

where

Λeff ¼
2Λ

Q2
2 − 8

: ð14Þ

From (10), we see that the effective cosmological constant
in the black hole solutions is (14). Thus, for obtaining an
effective negative cosmological constant, we will only
consider the case Q2

2 > 8 in Sec. III and Sec. IV.
Actually, one could also consider the case Λ>0 & Q2

2<8
as an alternative way. And the same results will be
observed. Besides, note that the asymptotic behavior of
black hole solutions at large r is

ds2 ∼ −
4Λ2

eff

5
r4dt2 þ 1

5
dr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð15Þ

It is easy to see that this black hole solutions including a
cosmological constant in [48] are not asymptotic AdS
geometry.
We plot hðrÞ in Fig. 1 at some fixed physical parameters

Λ,m with varyingQ2. It is easy to see that there only exists

one horizon rh for this black hole solution whatever the
value of Λ, m, Q2. Besides, from (10)–(13), it is not
difficult to observe that the value of Q is arbitrary with
respect to other parameters and has no effect on the
existence of a horizon rh.

III. JUNCTION CONDITION, COUNTERTERM
METHOD AND HOLOGRAPHIC ENERGY

In this part, we need to construct some physical
quantities on the spacetime boundary r ¼ ∞. Before that,
some notation should be introduced. We use xμ ¼
ðt; r; θ;ϕÞ and ds2 ¼ gμνdxμdxν to denote the coordinates
and metric in the bulk spacetime. In the spacetime
boundary, namely r ¼ ∞, the coordinates are denoted as
xa ¼ ðt; θ;ϕÞ. Thus, the 4-velocity of the boundary hyper-
surface is easily obtained as uμ ¼ ð1; 0; 0; 0Þ, and the
unit normal pointing into the boundary hypersurface is
nν ¼ ð0; 1ffiffi

f
p ; 0; 0Þ. Then the induced metric of the boun-

dary spacetime could be obtained as

ds2 ¼ γabdxadxb ¼ −hðrÞdt2 þ r2ðdθ2 þ sin2θdϕ2Þ
γab ¼ eμaeνbγμν ð16Þ

where the vielbein eμa is defined as eμa ¼ ∂xμ
∂xa, which is

tangent to the boundary and satisfies nμe
μ
a ¼ 0. Besides, the

projection tensor γμν is defined as γμν ¼ gμν − nμnν, whose
tangential components γab correspond to the induced
metric on spacetime the boundary. For calculating the
quasilocal stress tensor on spacetime the boundary, we
need to add the boundary terms to the action (1). As it is
known, when varying the Einstein-Hilbert action with
respect to the metric tensor gμν, besides a bulk term which
yields the standard Einstein field equation, we also obtain
the following boundary term

1

2κ2

Z ffiffiffiffiffiffi
−γ

p
d3xfgαβnρ∇ρðδgαβÞ − nρ∇λðδgρλÞg ð17Þ

in which the nρ is the unit normal vector pointing into the
spacetime boundary. Note that in expression of (17), the
derivative of the metric variation in the normal direction is
discontinuous across the boundary hypersurface. For can-
celling the ∇ρðδgαβÞ-like terms and making the metric
variation well defined on the spacetime boundary, a
Gibbons-Hawking boundary term [55] is involved

SGH ¼ 1

κ2

Z
d3x

ffiffiffiffiffiffi
−γ

p
K ð18Þ

where K ¼ γμνKμν is the trace of the extrinsic curvature
tensor Kμν ¼ 1

2
ð∇μnν þ∇νnμÞ. Adding the (17) with the

variation of the Gibbons-Hawking term together, we will
obtain the following Israel junction term [63–65]

FIG. 1. Plot the horizon function hðrÞ (10) at fixed Λ, m with
different Q2.
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1

κ2

Z ffiffiffiffiffiffi
−γ

p
d3xfDνðγανnβδgαβÞ þ ðKμν − hμνKÞδgμνg ð19Þ

in which Dν is the covariant differentiation with respect to
γμν. Thus, the first term in (19) is a total derivative and
could be thrown away. In the case of Einstein-Proca theory
(1), besides the Einstein-Hilbert action, the nonminimal
coupling 1

2κ2

R ffiffiffiffiffiffi−gp
d4xβGμνAμAν will also lead to a patho-

logical boundary term when calculating the variation with
respect to gμν. Thus we also need to introduce an appro-
priate boundary term to make the nonminimal coupling
term have a well-defined behavior on the spacetime
boundary.

A. An appropriate boundary term which corresponds
to the nonminimal coupling terms

Varying the term 1
2κ2

R ffiffiffiffiffiffi−gp
d4xfβGμνAμAνg with respect

to the metric gμν, besides a bulk term Zμν in (2), gives the
following boundary term

β

2κ2

Z
d3x

ffiffiffiffiffiffi
−γ

p �
1

2
nρ∇ρðδgαβÞAαAβ − Aμ∇μðδgλρÞAλnρ

þ 1

2
nνAνAμ∇μðδgλρÞgλρ þ

1

2
A2∇λðδgλρÞnρ

−
1

2
A2nα∇αðδgλρÞgλρ þ δgλρ∇ρðAλAνÞnν

−
1

2
δgαβnρ∇ρðAαAβÞ −

1

2
gλρδgλρnμ∇νðAμAνÞ

−
1

2
nλδgλρ∇ρA2 þ 1

2
δgλρgλρnα∇αA2

�
: ð20Þ

Note that there also exists the ∇μðδgαβÞ-like terms in (20),
which are discontinuous across the boundary hypersurface.
For obtaining the well-defined junction condition on the
spacetime boundary, we involve the following boundary
term

Sβsur ¼ β

2κ2

Z
d3x

ffiffiffiffiffiffi
−γ

p f−Aνð∇νAρÞnρ
þ nνAνð∇ρAρÞ − A2gαβð∇βnαÞg: ð21Þ

Thus the total boundary term is given as,

Ssur ¼ SGH þ Sβsur: ð22Þ

The variation of Sβsur with respect to gμν is

β

2κ2

Z
d3x

ffiffiffiffiffiffi
−γ

p �
−AνnρδΓ

ρ
ναAα þ nνAνðδΓρ

ρσAσÞ

−
1

2
A2ðδΓα

αβn
βÞ þ 1

2
A2gαβðδΓρ

βαnρÞ þ nνAνδgρσð∇ρAσÞ

þ 1

2
γμνδgμνAαð∇αAρÞnρ −

1

2
γαβδgαβnνAνð∇ρAρÞ

þ 1

2
γμνδgμνA2gαβð∇βnαÞ − δgμνAμAνgαβð∇βnαÞ

− A2δgαβð∇βnαÞ − δgμνAμð∇νAρÞnρ
�

ð23Þ

in which the δΓρ
μν is defined as

δΓρ
μν ¼−

1

2
ðgλμ∇νðδgλρÞþgλν∇μðδgλρÞ−gμαgνβ∇ρðδgαβÞÞ:

Adding the (19) with (20), (23) together, the quasilocal
stress tensor on spacetime boundary could be given by the
following junction condition

Tab ¼ Kab − Kγab þ β

�
1

2
γabA2K þ 1

2
γabnρ∇ρA2

− A2Kab − γabnαAα∇βAβ þ 2eμaeνbnαA
α∇μAν

− eμaeνbn
ρ∇ρAμAν − eμaeνbAμAνK

�
ð24Þ

where Kab ¼ eμaeνbKμν and γab ¼ eμaeνbγμν ¼ eμaeνbgμν.
Meanwhile, the Tab is the stress tensor of the matter
field which lives on the spacetime boundary, i.e.,
Tab ¼ − 2ffiffiffiffi−γp δSCFT

δγab
. Note that only the tangential components

of the junction condition are nontrival, thus we multiply the
vielbein eμa in above equation. Actually, (24) could be
viewed as the generalized Israel junction condition for this
type of vector-tensor theory (1). The right-hand side (rhs)
of (24) is derived from the geometry of bulk spacetime,
while the Tab in l.h.s corresponds to the stress tensor of the
matter field living on the spacetime boundary.

B. Surface counterterms and holographic energy

As indicated in [66], the total energy of black hole
system, i.e., the black hole mass, is defined as a conserved
charge associated with a timelike killing vector,

M ¼
Z
r→∞

dΩ2fr2ðhðrÞÞ−1
2T00g

¼ −
ffiffiffi
5

p
π
ðQ2

2 − 8Þ
Λ

T00

���
r→∞

ð25Þ

where T00 is the 00-components of stress tensor (24).
However, the rhs of (24) typically diverges as r → ∞.
Specifically, substitute the solutions (10), (11), (12), (13)
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into (24) and then expand the results into power series, we
could observe

T00jr→∞ ¼ c3r3 þ c1rþ c0 þO

�
1

r

�
… ð26Þ

in which the coefficients c3, c1 are constituted byQ2 andΛ,
while the c0 consist of Q, Q2, m, Λ.
From the viewpoint of gauge/gravity duality, the Tab is

interpreted as the expectation value of the stress tensor in
the side of boundary field theory [3,56–59]. And the UV
(ultraviolet) divergences appear naturally in field theory as
the energy scale increases, which is reflected by the
divergences of geometry quantity given by the rhs of
Eq. (24) as the boundary is taken to infinity. In the
renormalization procedure of quantum field theory, all
UV divergences could be removed by adding the counter-
terms to the bare Lagrangian. In the same spirit for gravity
theory, a finite set of boundary terms could be constructed
as the counterterms which only cancel the divergences on
the boundary spacetime and do not change the equations of
motion in the bulk spacetime.
But in our case, the surface counterterms will be more

complicated than in [60], in which a standard expression of
surface counterterms associated with a gravitational system
in asymptotically AdS spacetime have been constructed.

First, besides the gravitational field and negative cosmol-
ogy constant, there also exists the vector field which
couples to the gravitational field in nonminimal ways.
Thus, except the intrinsic geometry quantities on the
spacetime boundary, the surface counterterms should also
include the contributions from the vector field. Second, the
black hole solution (10)–(11) is not asymptotically AdS.
So, the standard results of counterterms for AdS4 given by
[60] are not applicable directly in the current case, and
some nonstandard results have to be developed.
Under r → ∞ limit, for cancelling the divergences in

stress tensor (24), we construct the following counterterms

Sct ¼
−1
κ2

Z
d3x

ffiffiffiffiffiffi
−γ

p �
c0

l
ffiffiffiffiffiffiffiffiffiffiffi
AμAμ

p þ c1lRffiffiffiffiffiffiffiffiffiffiffi
AμAμ

p þ cm1nμFμνAν

þ cm2

nμFμνAν

AαAα
þ cm3l

ðnμFμνAνÞ2ffiffiffiffiffiffiffiffiffiffiffi
AαAα

p
�

ð27Þ

whereR is the Ricci scalar of the induced metric γab and l
is AdS radius related with cosmological constant through
Λ ¼ − 3

l2. Note that the c0; c1; cm1; cm2; cm3 are undeter-
mined coefficients; they will be given later. With the
inclusion of counterterms (27), the stress tensor will be
rewritten as

Teff
ab ¼T0

abþ
c0
l

�
γabffiffiffiffiffiffiffiffiffiffiffi
AμAμ

p þ eαae
β
bAαAβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAμAμÞ3
q

�
þlc1

�
γabRffiffiffiffiffiffiffiffiffiffiffi
AμAμ

p −
2Rabffiffiffiffiffiffiffiffiffiffiffi
AμAμ

p þ2

�
DaDb

1ffiffiffiffiffiffiffiffiffiffiffi
AμAμ

p −γabDcDc
1ffiffiffiffiffiffiffiffiffiffiffi
AμAμ

p
�
þReμaeνbAμAνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAμAμÞ3
q

�

þcm1
fγabnμFμνAν−2eνðae

β
bÞn

μFμνAβgþcm2

�
γab

nμFμνAν

AρAρ
þ2eβae

γ
bAβAγ

nμFμνAν

ðAρAρÞ2
−2eνðae

β
bÞ
nμFμνAβ

AρAρ

�

þcm3
l
�
eρaeσbAρAσ

ðnμFμνAνÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAαAαÞ3

p −nμFμνAβeνðae
β
bÞ
4nρFρσAσffiffiffiffiffiffiffiffiffiffiffi

AαAα
p þγab

ðnμFμνAνÞ2ffiffiffiffiffiffiffiffiffiffiffi
AαAα

p
�

ð28Þ

in which Da is the covariant differentiation with respect to
induced metric γab. Meanwhile, we use T0

ab to denote the
bare stress tensor (24).
To remove the Oðr3Þ and OðrÞ divergences in the bare

stress tensor T0
ab, the undetermined coefficients are

chosen as c0 ¼ 32
ffiffi
5

p
5
ffiffi
3

p , c1 ¼ 44

9
ffiffiffiffi
15

p , cm1
¼ − 7

8
, cm2

¼ − 154
15
,

cm3
¼ − 5

ffiffi
5

p
32

ffiffi
3

p . Substitute the above coefficients and (10),

(11), (12), (13), (24) into the (28), we obtain

Teff
00 jr→∞ ¼ ð5mðQ2

2 − 8Þ − 3QQ2ÞΛ
2

ffiffiffi
5

p ðQ2
2 − 8Þ þO

�
1

r

�
þ… ð29Þ

According to the above results and (25), the black hole
mass is given as

M ¼ π

2
ð3QQ2 − 5mðQ2

2 − 8ÞÞ: ð30Þ

IV. THERMODYNAMICS AND
PHASE STRUCTURE

A. The first law of black hole thermodynamics

From the metric ansatz (4), the Hawking temperature
could be calculated as

T ¼
ffiffiffiffiffiffiffiffi
h0f0

p
4π

����
rh

¼ j4Λr2h þQ2
2 − 8j

4πrhðQ2
2 − 8Þ : ð31Þ

As explained in Sec. II, we only consider Q2
2 > 8 in this

paper. For convenience in the following, we define r⋆h as the
zero-point of expression (31). And it is easy to see,
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T ¼

8>>><
>>>:

4Λr2hþQ2
2
−8

4πrhðQ2
2
−8Þ ; rh < r⋆h

0; rh ¼ r⋆h
− 4Λr2hþQ2

2
−8

4πrhðQ2
2
−8Þ ; rh > r⋆h:

ð32Þ

According to the area law, the entropy of black hole is

S ¼ A
4G

ð33Þ

in which A represents the area of event horizon. Note that
the convention κ ¼ 8πG ¼ 1 has been used in this paper,
and the S will be rewritten as

S ¼ 2πA ¼ 8π2r2h: ð34Þ

From the viewpoint of dynamics, the Q is just an integra-
tion constant solved from the Einstein field equation and
the extended Proca equation. In (12), (13), it seems that the
value of Q is free to choose and independent with other
physical parameters like Q2, rh, Λ. However, for making
the first law of black hole thermodynamics to hold,

dM ¼ TdSþΦdQ ð35Þ

a constraint relation between Q and Q2, rh, Λ is implied,

Q ¼ 8r5hΛ2

3Q2ðQ2
2 − 8Þ þ

5ðQ2
2 − 8Þrh
6Q2

þ 20r3hΛ
9Q2

þ
8<
:

8ð4
3
Λr3hþðQ2

2
−8ÞrhÞ

3Q2ðQ2
2
−8Þ ; rh ≤ r⋆h

2C0ðr⋆hÞ
3Q2π

− 8ð4
3
Λr3hþðQ2

2
−8ÞrhÞ

3Q2ðQ2
2
−8Þ ; rh ≥ r⋆h

ð36Þ

in which the function C0ðr⋆hÞ has the following expression,

C0ðr⋆hÞ ¼
8πð4

3
Λr⋆3h þ ðQ2

2 − 8Þr⋆hÞ
ðQ2

2 − 8Þ

With thermodynamic quantities and constraint presented
above, let us check that the (35) is established properly.
Through the definition of horizon radius hðrhÞ ¼ 0, a
constraint relation between m and rh, Q2, Λ is deduced
as follows

m ¼ rh
2
þ 4Λr3h
3ðQ2

2 − 8Þ þ
8Λ2r5h

5ðQ2
2 − 8Þ2 : ð37Þ

Substitute (36) and (37) into (30), we get

M ¼
8<
:

4πð4
3
Λr3hþðQ2

2
−8ÞrhÞ

ðQ2
2
−8Þ ; rh ≤ r⋆h

− 4πð4
3
Λr3hþðQ2

2
−8ÞrhÞ

ðQ2
2
−8Þ þ C0ðr⋆hÞ; rh ≥ r⋆h:

ð38Þ

Combine (38) with (32), (34), it is easy to check

∂M
∂S ¼

�∂M
∂rh

��� ∂S
∂rh

�
¼ T: ð39Þ

Due to the breaking of Uð1Þ symmetry in Einstein-Proca
theory, the electric charge is not the locally conserved
charge anymore. And we could not obtain the electric
charge directly from the Gauss law which does not hold in
current situation. However, from the solution of electric
potential (12), it is not difficult to observe that theQ andQ2

play the roles of charge and chemical potential respectively.
In another way, from black hole mass (30), we could obtain
the following relation directly,

∂M
∂Q ¼ 3π

2
Q2: ð40Þ

It also means that the Q and Q2 are a pair of conjugate
variables in thermodynamics. Exactly, we define the
chemical potential Φ as

Φ ¼ 3π

2
Q2: ð41Þ

Note that the charge is not the conserved quantity in current
situation, thus we consider the thermodynamics in the
grand canonical ensemble.
As we known, for the Reissner-Nordström black hole

solved from Einstein-Maxwell theory, Q ≤ M, or the
horizon does not exist. More generally, this extremality
bound holds for most of charged black holes. From the
black hole solution (10)–(13), it seems that the value ofQ is
arbitrary and has no effect on the existence of horizon.
However, after the consideration of thermodynamics, we
find a constraint relation between Q and other physical
parameters, on which the first law of black hole thermo-
dynamics could be reproduced correctly. Finally, by using
(36) and (38) implied by thermodynamics, we can compare
charge Q and black hole mass M at fixed horizon rh,
chemical potentialΦðQ2Þ and cosmological constant Λ. As
shown by Fig. 2, we observe that the value of Q less than
the value of M indeed.

B. Phase structures analysis

According to the expression of the Hawking temperature
(31), we plot the variation of temperature versus the horizon
radius rh in Fig. 3. For a given temperature T > 0, there
exists two values of horizon rh. We call them “small black
hole” (SBH) and “large black hole” (LBH) phases, as
shown by purple and red curves in Fig. 3 respectively.
Note that the SBH and LBH coexist at the same

temperature, and we need to determine which phase is
thermodynamically preferred. This goal could be achieved
by comparing the Gibbs free energy of SBH and LBH; the
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one which has lower free energy will be favored by the
thermodynamical system. In the grand canonical ensemble,
the Gibbs free energy is defined as

G ¼ M − TS −ΦQ ð42Þ

substitute (32), (34), (36), (38), (41) into (42), we have

G ¼ −
5

4
ðQ2

2 − 8Þπrh −
10

3
πr3hΛ −

4πr5hΛ2

Q2
2 − 8

− 2πrh ×

8<
:

4Λr2hþQ2
2
−8

ðQ2
2
−8Þ ; rh ≤ r⋆h

− 4Λr2hþQ2
2
−8

ðQ2
2
−8Þ ; rh ≥ r⋆h

ð43Þ

In Fig. 4, we show that how Gibbs free energy G varies
with respect to the temperature T. It is easy to observe that
the Gibbs free energy of LBH is lower than the one of SBH,
thus the LBH is thermodynamically preferred. A similar
conclusion could also be supported on comparing the
specific heat of SBH and LBH. In the grand canonical
ensemble, the specific heat is defined as

CΦ ¼ T

�∂S
∂T

�
Φ
¼ T

�∂S=∂rh
∂T=∂rh

�
Φ

ð44Þ

substitute (31), (34) into (44) and expand it explicitly, we
obtain

CΦ ¼ 16π2r2hð8 −Q2
2 − 4r2hΛÞ

Q2
2 − 8 − 4r2hΛ

: ð45Þ

From the CΦ − T diagram, we easily see that the LBH
phase has the positive specific heat, so it is thermodynami-
cally stable. By contrast, the SBH is unstable.
Actually, the unstable SBH phase and stable LBH phase

also imply a self-consistent result for thermodynamic
quantities in extended phase space. In (38), we could
identify that the branch in region rh ≤ r⋆h and rh ≥ r⋆h
correspond to the SBH phase and LBH phase respectively.
If we consider the black hole thermodynamics in
extend phase space [67,68], and define the black hole
pressure P as,

P ¼ −2πΛeff ¼ −
4πΛ

Q2
2 − 8

: ð46Þ

Then, from (38), we can get

FIG. 2. Compare charge and black hole mass in some repre-
sentative parameters.

FIG. 3. The variation of temperature versus the horizon radius
rh for the four-dimensional black hole solutions with spherical
horizon, in representative parameters Λ ¼ −0.5 and Q2 ¼ 3.

FIG. 4. The variation of Gibbs free energy G versus the
Hawking temperature T for the four-dimensional black hole
solutions with spherical horizon, in representative parameters
Λ ¼ −0.5 and Q2 ¼ 3.
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∂M=∂P ¼
�− 4

3
πr3h; rh ≤ r⋆h

4
3
πr3h; rh ≥ r⋆h

: ð47Þ

In LBH phase, the conjugate variables for pressure P is
exactly the black hole volume. But the result is unphysical
in SBH phase. Thus we naturally expect that the SBH phase
is not allowed by the thermodynamic system, in other
words, this phase is unstable.

V. CONCLUSIONS AND DISCUSSION

For the type of nonminimally coupled vector-tensor
theory given in [48], we computed and added the appro-
priate boundary terms (III A) to the bulk action (1) and
derived the correspondingly well-defined junction condi-
tion (24) on the spacetime boundary. As interpreted by the
gauge/gravity duality, the Tab in (24) represents the stress
tensor of matter fields on the spacetime boundary.
Meanwhile, this stress tensor is a divergent quantity. For
removing the divergences in the stress tensor, surface
counterterms need to be added to the total action. A
standard expression of surface counterterms associated
with a gravitational system in asymptotically AdS space-
time has been constructed by [60,61], in which the surface
counterterms consist of the cosmological constant and
intrinsic geometry quantities of the boundary spacetime
like the Ricci scalar and Ricci tensor for the boundary
metric γab. However, the surface counterterms in our case
are more complicated than the results in [60,61], even

though in four-dimensional spacetime. Our major difficul-
ties come from the following two aspects. On the one hand,
the gauge symmetry is broken due to the existence of
nonminimal coupling between the vector field and Einstein
tensor. On the other hand, the black hole solutions (10)–
(11) are not an asymptotic AdS geometry as shown by (15).
Thus, unlike the expression of surface counterterms given
by [60,61], the mixture of vector field and intrinsic
geometry quantities of boundary spacetime need to be
considered in our case. Finally, after various attempts, we
find the surface counterterms (27). Based on (27), we
obtain the finite stress tensor (29) on boundary spacetime
and calculate the corresponding conserved charge associ-
ated with a timelike killing vector, i.e., the black hole
mass (30).
From (10)–(13), it is easy to see that the value of Q is

independent of other parameters and has no effect on the
existence of a horizon. Thus, both Q > M and Q ≤ M are
allowed according to the expression (30). However, for most
of charged black hole, there exists a general extremality
bound Q

M ≤ 1. Actually, after consideration of the first law of
black hole thermodynamics, an implicit relation ofQ as the
function ofQ2,Λ and horizon rh are found in (36). Then, by
using (36) and (38), we can compare the chargeQwith black
hole mass M directly at fixed Q2, Λ and rh. As shown by
Fig. 2, we indeed observe that the value of Q less than the
value ofM. Besides, after the analysis of phase structure in
grand canonical ensemble, we observe the unstabel SBH
phase and stable LBH as displayed by Fig. 3-Fig. 5. In fact,
as we show in (47), the unstable SBH phase and stable LBH
phase also imply a self-consistent result for well-defined
pressure and volume in extended phase space.
As future research, we suggest the following extended

topics. In [37], inflation is driven by nonminimally coupled
massive vector fields. It would be interesting consider
cosmic inflation by using the vector-tensor theory (1).
Besides, it is also worthwhile to develop the supersym-
metric extension of (1) and investigate the relevant phe-
nomenology in black hole physics and cosmology.
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