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We propose that the only possible realization of a magnetic pole is emergent, it being an artifact of a
torsion defect in a curved spacetime. This special phase is built upon a class of degenerate metric spacetime
solutions of first-order gravity in vacuum. The (apparent) magnetic charge is shown to have a topological
origin, given by a lower-dimensional counterpart of the Nieh-Yan invariant. At the invertible metric phase
at a distance, this topological charge gets reflected as the (magnetic) Reissner-Nordström charge to an
asymptotic observer, even though the monopole defect itself remains hidden.
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I. INTRODUCTION

Dirac’s formulation of singular magnetic monopoles
stands out as a remarkably elegant yet unconfirmed
explanation of the quantization of electric charge [1,2].
As ’t Hooft and Polyakov showed later, monopole fields
without string singularities can emerge naturally in non-
Abelian gauge theories as solitonic solutions of finite
energy and size and a definite magnetic charge [3–6].
Their presence also appears to be fundamental in the
formulation of grand unified theories. However, the lack
of any experimental encouragement until now makes one
wonder whether monopoles really do exist in nature, at
least in the forms they have been theorized thus far.
Here we work up the slightly more radical idea that the

magnetic charge in a curved spacetime could be a purely
gravitational (emergent) effect. The apparent charge is
sourced by a solution of first-order field equations of
vacuum gravity theory, associated with a noninvertible
tetrad [7,8]. To emphasize, this description does not involve
any matter coupling such as non-Abelian gauge fields.
Based on the field equations of first-order vacuum gravity,

we provide an emergent definition for the magnetic field and
the associated magnetic charge. The noninvertible solution
necessarily exhibits a nontrivial spatial contortion, whose
form is constrained by eliminating the Dirac-string singular-
ities in the spacetime geometry. The emergent three-geometry
where the apparent charge lives is regular, as the evaluation of
the characteristic curvature scalars explicitly shows.
The degenerate core of the apparent monopole cannot be

observed directly. This is because it cannot be reached
along any timelike radial trajectory (geodesic) by an
observer outside, living in a standard Einsteinian geometry.
Locally, this part of the spacetime is equivalent to the

(extremal) magnetic Reissner-Nordström solution almost
everywhere. The full spacetime is spherically symmetric
and smooth.
Since there is no genuine matter source, the apparent

magnetic charge must be a reflection of a topological
charge of the noninvertible metric solution in vacuum. We
demonstrate that this is indeed the case, the relevant
topological invariant being a lower dimensional counterpart
of the Nieh-Yan number. In other words, what is manifested
as a magnetic Reissner-Nordstrom charge in curved space-
time away from the vacuum phase has a purely topological
interpretation within this formulation. The implications of
such a connection could be radical.
This construction of an emergent monopole as a space-

time defect in gravity theory provides a potential theoretical
justification as to why a free magnetic pole is not observed
in nature. In this sense, this configuration supersedes the
nonsingular ’t Hooft–Polyakov monopole built upon a
genuine matter source, which should in principle be
detected experimentally.

II. MAGNETIC CHARGE IN FIRST-ORDER
GRAVITY

In order to define a “static” solution in gravity theory, an
appropriate setting is to consider a spacetime configuration
where the metric has a degenerate eigenvalue along the
timelike direction, which naturally precludes any tempo-
ral dynamics. In general, such three-geometries could
emerge as solutions to the field equations of first-order
gravity [7–13], where the invertibility of tetrads is not
assumed or required a priori.1

Let us consider a spacetime geometry given by the
following four-metric:
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1The tetrad compatibility condition would be assumed
throughout.
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ds2 ¼ 0þF2ðuÞdu2 þ R2ðuÞðdθ2 þ sin2θdϕ2Þ at u < u0

¼ −
�
1−

Qm

RðuÞ
�
2

dt2 þ R02ðuÞdu2
½1− Qm

RðuÞ�2

þR2ðuÞ½dθ2 þ sin2θdϕ2� at u > u0: ð1Þ

The smooth and monotonic functions FðuÞ, RðuÞ and their
nth derivatives satisfy the following boundary conditions:

FðuÞ → 0; FðnÞðuÞ → 0 as u → u0;

RðuÞ → Qm; RðnÞðuÞ → 0 as u → u0;

RðuÞ → ∞; R0ðuÞ ¼ const as u → ∞: ð2Þ
The function RðuÞ may be interpreted as the common
radius of the two-sphere almost everywhere.
We shall now show that the spacetime defined above

reflects the presence of a (apparent) magnetic charge.

A. Magnetic phase in Einstein gravity

At u > u0, the metric (1) is invertible (det gμν ≠ 0) and
becomes flat at the asymptotic boundary u → ∞. Under a
local reparametrization of the coordinate u → RðuÞ, this
becomes equivalent to the extremal Reissner-Nordström
metric at u > u0. However, such an identification cannot
hold everywhere, in particular, at the phase boundary u ¼
u0 where the metric smoothly degenerates.
The tetrad fields associated with this metric (the internal

metric being ηIJ ¼ ½−1; 1; 1; 1�) completely determine the
torsionless spin-connection fields ωIJ

μ ðeÞ, which in turn
lead to the following field-strength components:

R01 ¼ Qm

R3

�
2 −

3Qm

R

�
R0dt ∧ du;

R02 ¼ −
Qm

R2

�
1 −

Qm

R

�
2

dt ∧ dθ;

R03 ¼ −
Qm

R2

�
1 −

Qm

R

�
2

sin θdt ∧ dϕ;

R12 ¼ −
Qm

R2
R0du ∧ dθ;

R23 ¼ Qm

R

�
2 −

Qm

R

�
sin θdθ ∧ dϕ;

R31 ¼ −
Qm

R2
R0 sin θdϕ ∧ du: ð3Þ

In the matter sector, the only nonvanishing component is
the magnetic field:

Fθϕ ¼ Qm sin θ: ð4Þ

This is characteristic of a magnetic pole of charge “Qm.”

The complete specification of the field content at the
invertible phase as given above still does not tell us what
exactly seeds the charge or, namely, whether it is genuine
matter or geometry. The real origin of this monopole field
depends on its continuation at u ≤ u0. This is what
concerns us in the subsequent analysis.

B. Spacetime solution in noninvertible phase

At u ≤ u0, the tetrad (metric) fields in Eq. (1) have no
inverse. These, along with an appropriate set of connection
fields, define a degenerate spacetime solution of the first-
order Lagrangian density:

L ¼ ϵμναβϵIJKLeIμeJνRαβ
KLðωÞ:

The associated field equations in vacuum read [7]

ϵμναβϵIJKLeKν DαðωÞeLβ ¼ 0;

ϵμναβϵIJKLeJνRαβ
KLðωÞ ¼ 0; ð5Þ

where the covariant derivative DμðωÞ is defined with
respect to the connection ωIJ

μ , as implied by its argument.
In general, any degenerate metric solution to the field

equations (5) could exhibit nontrivial contortion. More
precisely, the general solution for the nonvanishing com-
ponents of the connection fields is given by [8]

ωa
ij ¼ ω̄a

ijðeÞ þ ϵijkelaNkl; ωa
0i ¼ Mileal; ð6Þ

where the symmetric rank-three matrices Nkl and Mkl
encode contortion. Here, however, it is sufficient to assume
Mkl ¼ 0, as these components play no role in the physics
that concerns us here. The resulting expressions for the
connection fields (with contortion) become

ω12 ¼ Fη2duþ
�
Rη1 −

R0

F

�
dθ þ γH sin θdϕ;

ω23 ¼ Fαduþ η3Rdθ þ ðη2R sin θ − cos θÞdϕ;

ω31 ¼ η3Fduþ βRdθ þ
�
Rη1 þ

R0

F

�
sin θdϕ;

ω0i ¼ 0; ð7Þ
where we use an explicit parametrization for theNkl field as

Nij ¼

0
B@

α η3 η2

η3 β η1

η2 η1 γ

1
CA:

Let us now analyze the structure of the field strength based
on these connection fields:
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R0i ¼ 0;

R12 ¼
�
1

FR

�
η1R −

R0

F

�0
þ ðη23 − αβÞ

�
e1 ∧ e2 þ

�ðγ − βÞ
R

cot θ þ
�
βη2 − η3

�
η1Rþ R0

FR

���
e2 ∧ e3

þ
�
1

FR
½−ðγRÞ0 þ αR0� þ ðαη1 − η2η3Þ þ

η3
R
cot θ

�
e3 ∧ e1;

R23 ¼
�ðη3RÞ0

FR
þ
�
η2β − η1η3 þ

η3R0

FR

��
e1 ∧ e2 þ 1

R2

�
η2R cot θ þ

�
1þ ðη21 − βγÞR2 −

�
R0

F

�
2
��

e2 ∧ e3

þ
�
−
ðη2RÞ0
FR

þ
�
η3γ − η2

�
η1 þ

H0

FR

���
e3 ∧ e1;

R31 ¼
�ðβRÞ0
FR

þ
�
α

�
η1 −

R0

FR

�
− η2η3

��
e1 ∧ e2 þ 1

R2

�
2η1R cot θ þ

�
ðη3γ − η1η2ÞR2 þ RR0

F
η2

��
e2 ∧ e3

þ
�
−

1

FR

�
η1Rþ R0

F

�0
þ η22 − αγ −

η2
R
cot θ

�
e3 ∧ e1: ð8Þ

An inspection of these reveals that the geometry exhibits a
Dirac-string singularity along θ ¼ 0 or θ ¼ π, unless some
of the contortion fields vanish:

η1 ¼ η2 ¼ η3 ¼ 0; β − γ ¼ 0: ð9Þ

We shall impose this requirement from here on.
Given the fields above, all of the field equations are

satisfied except the component μ ¼ t, I ¼ 0 in the second
set in Eq. (5). In terms of the metric functions FðuÞ, RðuÞ
introduced in Eq. (1), this reduces to

2R

�
R0

F

�0
þ
��

R0

F

�
2

− 1

�
F þ β½2αþ β�FR2 ¼ 0: ð10Þ

For any function ΩðuÞ≡ βð2αþ βÞðuÞ, this equation has
the general solution

FðuÞ ¼ R0ðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

R

R
duΩðuÞR2ðuÞR0ðuÞ þ k

RðuÞ
q ;

where k ≥ 0 is an integration constant.
For simplicity, we shall consider the case where non-

trivial contortion components α, β, γ are constant. With
this, the solution for the four-metric at the noninvertible
phase finally becomes

ds2 ¼ 0þ R02du2

½1 − 1
3
ΩR2 þ k

R�
þ R2½dθ2 þ sin2 θdϕ2�; ð11Þ

where the constants are given by k¼ 1
3
½2βðα−βÞQ2

m−3�Qm,
Ω ¼ ½βð2αþ βÞ�, and k is fixed by the continuity of fields
across u ¼ u0. Since k > 0, the denominator in guu has (at
least) one positive real root [corresponding to the surface

RðuÞ ¼ R�ðQmÞ for some u ¼ u� > 0], in general. This
defines the inner boundary of the metric.

C. Smoothness of spacetime geometry

The tetrad components defined by the metric (1) are
smooth by construction. Further, let us look at the torsion
components at the zero determinant phase:

T0 ¼ 0;

T1 ¼ −βR2 sin θdθ ∧ dϕ;

T2 ¼ −
1

2
ðαþ βÞFR sin θdϕ ∧ du;

T3 ¼ −
1

2
ðαþ βÞFR sin θdu ∧ dθ; ð12Þ

whereas the invertible phase has no torsion. Evidently, all
components above smoothly go to zero as the phase
boundary is approached, and are also finite at the inner
boundary. Finally, the SOð3; 1Þ field-strength components
in Eq. (8), upon using Eq. (9), read

R0i ¼ 0;

R12 ¼
�
−
�
R0

F

�0
− αβFR

�
du ∧ dθ

þ ½αR0 − ðβRÞ0� sin θdϕ ∧ du;

R23 ¼
�
1 − β2R2 −

�
R0

F

�
2
�
sin θdθ ∧ dϕ;

R31 ¼
�
−
�
R0

F

�0
− αβFR

�
sin θdϕ ∧ du;

þ ½ðβRÞ0 − αR0�du ∧ dθ: ð13Þ
A comparison with Eq. (13) shows that these are smooth as
well. Since these fields (eIμ; Tμν

I ≡ 1
2
D½μeIν�; Rμν

IJ) define

the complete set of gauge-covariant fields in the first-order
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formulation, the full spacetime is manifestly smooth
everywhere.

III. EMERGENT MAGNETIC FIELD

The noninvertible phase given by Eq. (1) at u ≤ u0
naturally defines a set of (invertible) triad fields:

ê1u ¼ FðuÞ; ê2θ ¼ RðuÞ; ê3ϕ ¼ RðuÞ sin θ:

These, along with the unique torsionless connection
ω̂a

ijðêÞ ¼ ω̄a
ij ≡ 1

2
½êbi ∂ ½aê

j
b� − êbj∂ ½aêib� − êal ê

b
i ê

c
j∂ ½bêlc��,

describe an effective Einstein theory in three-space. The
contortion Ka

ij, however, is not a part of this geometry.
Rather, it lives as a (emergent) matter field on it. The
precise nature of such matter must emerge naturally from
the basic equations within this formulation.
In view of the fact that all of the field equations (5) have

already been solved, let us consider the identity involving
torsion and the Hodge dual of the SOð3; 1Þ field strength:

ϵαβρσDβðωÞTρσ
I ¼ 1

2
ϵαβρσRβρ

IJðωÞeσJ: ð14Þ

The α ¼ t, I ¼ i component of the above, upon projection
along a purely spatial unit vector ni in the internal space,
leads to

∂a

�
1

2
ϵabcTbc

ini

�
¼ 1

4
ϵabcRab

ijniecj þ
1

2
ϵabcTbc

iDani:

ð15Þ

Given the even parity of torsion, this equation is precisely
of the form ∂aðêB̂aÞ ¼ êρ̂m in curved space, where the
(static) magnetic field is sourced by a nontrivial magnetic
charge density, defined as

êB̂a ≡ −
1

2
ϵabcTbc

ini ≡ 1

2
ϵabcFbc;

êρ̂m ≡ 1

4
ϵabcRab

ijniecj þ
1

2
ϵabcTbc

iDani: ð16Þ

To emphasize, the vector ni defines the projection from the
SOð3Þ fields to the (emergent) Uð1Þ field strength in this
context.
A radial field may now be obtained by choosing ni to

point radially: ni ¼ ð1; 0; 0Þ. Inserting the solution at the
degenerate phase constructed explicitly earlier, we find

F̂θϕ ¼ βR2 sin θ: ð17Þ

Note that this is independent of α. Remarkably, it
approaches a monopole field (F̂θϕ → Q sin θ) at the outer
boundary, and is nonsingular everywhere all the way up to

the inner boundary. The continuity of the field strength
across u ¼ u0 fixes the free constant above as β ¼ 1

Qm
.

To see if the emergent definition (16) does reproduce the
correct physics in this context, let us consider the integral of
the charge density at the phase boundary,

1

4π

Z
d3xêρ̂m ¼ 1

4π

Z
S2
dudθdϕ∂u½βR2 sin θ� ¼ Qm

¼ 1

4π

Z
S2
dθdϕF̂θϕ; ð18Þ

where in obtaining the first equality above we have used the
following identities:

1

4
ϵabcRab

ijniêcj ¼ ðβ − αÞRR0 sin θ;

1

2
ϵabcTbc

iDani ¼ ðαþ βÞRR0 sin θ:

Thus, the net flux through the (compact) phase boundary is
indeed equal to the magnetic charge of the solution.
This completes the demonstration of how a static non-

singular monopole could emerge as an artifact of the
noninvertible vacuum phase of gravity theory in general.
Even though we have considered the simpler case of
constant contortion, a generalization to the inhomogeneous
case is straightforward. However, that does not add to the
insights gained here, since the essential physics depends on
their value at the phase boundary, which remains unaffected.

IV. A TOPOLOGICAL ORIGIN OF APPARENT
MAGNETIC CHARGE

Now we explore if it is possible to construct a geometric
invariant, which could encode the boundary (topological)
effects induced by torsion at the surface separating the two
phases. The boundary here has the topology of S2. The only
torsional invariant that may be defined on it is given by

N ¼ −
1

8π

Z
S2B

d2xϵabTab
ini; ð19Þ

where a≡ ðθ;ϕÞ. This is simply the two-integral of a unique
gauge-invariant projection of the torsion two-form over a
compact manifold. This, however, may be seen as a lower-
dimensional counterpart of the Nieh-Yan invariant, which is a
four-integral (over a compact manifold) of a gauge-invariant
projection of the appropriate torsional four-form [14].
Next, let us evaluate the reduced Nieh-Yan charge (19)

for the (monopole) geometry constructed earlier:

N ¼ 1

4π

Z
S2B

dθdϕ½Kθ
31e3ϕ þ Kθ

12e2θ� ¼ Qm; ð20Þ

where we have used the expressions Kθ
31 ¼ βR;Kθ

12 ¼
γR sin θ ¼ βR sin θ from Eq. (7). As remarkable as it
seems, the topological Nieh-Yan number at the
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noninvertible phase u < u0 is precisely what gets reflected
as the magnetic charge to an observer at the Einsteinian
phase at u > u0. The magnetic charge thus acquires a
topological interpretation within a first-order formulation
of gravity theory in the absence of matter.
The associated winding number corresponds to a map

from the S2 in the coordinate space to the S2 in the internal
space. This may be defined through a unit vector
miðθ;ϕÞ≡ ðsin θ cosϕ; sin θ sinϕ; cos θÞ:

w ¼ 1

8π

Z
S2B

d2xϵijkϵabmi∂amj∂bmk ¼ 1:

Note that in terms of mi, the emergent three-metric at the
noninvertible phase could be given by the following set of
vielbein fields:

Ei ¼ R∂amidxa½a≡ θ;ϕ�; E4 ¼ ffiffiffi
σ

p
Fdu:

V. CONCLUSIONS

From a modern perspective, the unobservability of free
magnetic poles sourced by matter fields could be turned
into the assertion that such objects do not exist in nature,
and their only manifestation could be emergent. Here we
explicitly proposed such a realization in curved spacetime
with defects2 associated with a vanishing metric determi-
nant. This description of an emergent magnetic pole is
based on a special class of classical solutions to the first-
order field equations of vacuum gravity, where the temporal
direction exhibits a zero eigenvalue. Our construction has
no analogue in standard Einsteinian gravity in vacuum
based on invertible tetrad fields everywhere, since such a
theory does not admit a classical solution with nontrivial
torsion, as is necessarily the case here.
In addition, we provided a topological interpretation of

the (apparent) magnetic charge in gravity theory, given by a
lower-dimensional counterpart of the torsional Nieh-Yan
topological number. The existence of a compact surface at
the phase boundary makes such an identification possible.
The details of how the apparent magnetic charge gets

manifested to the observer necessarily living in an Einstein
(invertible) phase have been elucidated. Based on smooth-
ness requirements, this geometry was found to be the
magnetic Reissner-Nordström solution (extremal). Since

there are no analytic radial geodesics from this outer region
to the noninvertible phase, the monopole defect remains
hidden. However, the detection of the topological charge of
the defect is still possible through the gravitational potential
away from the phase boundary.
The emergent field and the three-geometry seeding the

topological charge are both regular. This may be contrasted
with the point curvature singularity characteristic of a
magnetic Reissner-Nordström black hole. However, any
statement regarding a possible resolution of the curvature
singularity in a four dimensional sense needs to be
formulated in terms of relevant fields superceding the four
dimensional curvature invariants which cease to be well
defined themselves due the noninvertibility of tetrad. It is
an interesting question as to whether this regulating effect
of the noninvertible phase could play any role in the
renormalizability of quantum gravity in a first-order for-
mulation where torsion is expected to introduce a scale.
A relevant criticism of our construction could be that it is

based on spacetimes with noninvertible metric phases,
which have no place in standard Einstein theory.
However, it would not be logical to ignore them based
on this ground only, since these could mediate topology
change in classical theory, a possibility that need not be
excluded in principle. As we have demonstrated here, some
of these are special and could carry an apparent magnetic
charge. It would certainly be important to understand the
significance of these geometries beyond the classical realm.
For instance, the inclusion of such “charged” saddle points
in the functional integral could lead to fresh insights
regarding the role of Nieh-Yan topological charge in
quantum gravity.
Furthermore, when the timelike direction lies along the

zero eigenvalue of the degenerate four-metric, one might as
well be bothered by the apparent loss of causality at this
phase. However, similar scenarios are typical in quantum
field theory, which is known to admit virtual particles.
Momenta of such particles need not lie on the relativistic
mass shell, and these need not respect causality all along
their respective trajectories. In other words, the deeper
implications of the apparent acausality [16] associated with
the noninvertible metric phase, once completely under-
stood, could have their own virtue.
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