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Using concomitantly the generalized second law of black hole thermodynamics and the holographic
Bekenstein entropy bound embellished by loop quantum gravity corrections to quantum black hole
entropy, we show that the boundary cross sectional area of the postmerger remnant formed from the
compact binary merger in gravitational wave detection experiments like GW150914 et seq., by the LIGO-
VIRGO collaboration, is bounded from below. This lower bound is more general than the bound obtained
from application of Hawking’s classical area theorem for black holes, since it does not depend on whether
the inspiralling compact binary pair or the postmerger remnant consists of black holes or other exotic
compact objects. The derivation of the bound entails an estimate of the entropy of the gravitational waves
emitted during the binary merger, which adapts to gravitational waves an extant formalism proposed
originally for particle ensembles. The results for the minimal cross sectional area of the merger remnant due
to binary compact mergers observed recently by the LIGO-VIRGO collaboration are discussed. While
accurate measurement of the mass of the remnant for the binary neutron star merger GW170817 remains a
challenge, we provide a proof of principle that for binary neutron star mergers our lower bound on the cross
sectional area of the remnant provides an alternative approach to probe the validity of neutron star equations
of state, independent of the tidal deformabilities of the components.
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I. INTRODUCTION

Gravitational wave signals have so far been observed by
the LIGO and the LIGO-VIRGO collaborations, from
inspiralling coalescence of compact binaries [1–5], with
a recent report of a possible black hole-neutron star
merger [6,7]. A consensus view regarding the earliest
observation—GW150914—of gravitational wave radiation
is that it is a consequence of a coalescence of an inspiralling
black hole binary system, with the black holes being Kerr
black holes with their mass in the 30 M⊙ range, and Kerr
parameter in the 0.6–0.8 range. There is debate in the
literature that the inspiralling binary system as well as the
postmerger remnant may not consist of black holes, since
accretion disc observations of x-ray emission from binary
black hole systems with normal stars have never revealed
any stellar black hole as massive as the ones reported in
GW150914. Boson stars, gravastars, and wormholes have
been cited as possible alternatives, categorized collectively
as exotic compact objects [8,9]. If such compact gravitating
objects accrete material from stellar matter and interstellar
dust in their vicinity, then, as has been argued in Ref. [10]

using Thorne’s hoop conjecture [11], such exotic compact
configurations become gravitationally unstable, collapsing
to a black hole. This conclusion apparently depends on
certain assumed details of the accretion process.
Now, for GW150914, it is not known if the inspiralling

binary system actually accretes at all, so that the gravita-
tional instability argument cited above, even if eminently
reasonable, may not apply immediately. Nevertheless, if we
do assume that the inspiralling system consists of binary
black holes, then their merger to a black hole is of course
subject to Hawking’s area theorem: the sum of the horizon
areas of the inspiralling black holes must be less than the
horizon area of the postmerger black hole remnant. The
prediction of the theorem has been shown [12,13] to be
borne out by the published data on GW150914. However,
this classical general relativistic law has been superceded
by Bekenstein’s generalized second law [14] for a universe
with black holes, namely that the entropy of the remnant
and that of the gravitational waves radiated by the inspir-
alling binary, must together exceed the sum of the entropies
of the two merging black holes. This law is not restricted to
classical general relativity, and is valid within any quantum
gravity framework which permits one to compute ab initio
the entropy of macroscopic black holes. The question that
comes to mind is this: does the generalized second law
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make a stronger statement on the horizon area of the
remnant than the assertion of Hawking’s theorem? The
answer is in the affirmative for a quantum gravity frame-
work like loop quantum gravity (LQG) [15], which indeed
permits an ab initio computation of the entropy of isolated
black holes [16–18]. Such a computation has been shown to
yield not only the Bekenstein-Hawking area law for black
hole entropy but also an entire slew of quantum geometry
corrections starting with a term logarithmic in the
Bekenstein-Hawking entropy [19–27] whose coefficient
has been argued to be of a “universal” nature [25]. Even
though this correction is small, its effect on the minimal
cross sectional area of the remnant is of interest in this case.
A somewhat more general situation ensues, if the

postmerger remnant of the inspiralling black hole pair is
not necessarily a black hole. If no assumption is made on
the precise astrophysical nature of the remnant, with simply
the information that it must be a compact astrophysical
object, then we demonstrate in this paper that a constraint
may still be derived on the cross sectional area of the
boundary of the remnant. This constraint follows from the
Bekenstein entropy bound [28] embellished or tightened by
quantum spacetime corrections alluded to above [29].
According to the original version of the bound, the entropy
of the compact remnant is bounded from above by the
entropy of a black hole whose horizon area is identical with
the boundary cross sectional area of the remnant. This
bound, in its turn, has been established by Bekenstein [28]
on the basis of arguments somewhat analogous to those
used by Thorne to establish the Hoop conjecture [11]. The
basic idea is that a black hole carries the maximum entropy
for all compact astrophysical objects of the same cross
sectional area. Any compact object that does not satisfy the
bound to begin with can adiabatically accrete material from
its environment without changing its area, so as to increase
its energy/mass to the point where its size starts to fall
below its Schwarzschild radius, causing the compact object
to be on the verge of gravitational collapse to a black hole.
The entropy at this point has also risen adiabatically to the
entropy of a black hole, being only a function of its horizon
area that is given by the cross sectional area of the compact
object. Thus, so long as a compact gravitational object has
the ability to accrete material from its environment, its
entropy is bounded from above by the entropy of a black
hole determined by the cross sectional area of the object.
This boundary area of the star prospectively turns into the
horizon area of the black hole, once collapse actually
occurs. The validity of the bound clearly does not need the
actual occurrence of accretion leading to gravitational
collapse to a black hole as a prerequisite. It is adequate
that there is a strong possibility of adiabatic accretion of
material of the compact star from its environment, without a
significant increase in its size.
Going beyond Bekenstein’s hypothesis of the entropy

bound, LQG corrections to black hole entropy, inherently

holographic in character, provide a tightening of the
entropy bound [29] for any merger remnant of binary
compact coalescence. Thus, even though the entropy bound
is hypothetical, albeit one that follows from very general
assumptions, its strengthening due to LQG has more solid
foundations, where the holographic aspect is embedded
within the formalism. The very fact that LQG corrections
lead to a stronger entropy bound, rather than invalidating or
weakening it, implies that this bound would very likely
result from the full-fledged quantum gravity theory, which
formally completes LQG in the future. Because, if the full
quantum gravity theory invalidates the entropy bound, then
it would most likely contradict basic tenets of LQG. These
tenets are well founded and lead, via a systematic analytic
procedure, to an ab initio computation of the quantum-
corrected black hole entropy fully consistent with the
generalized second law [19–27]. To reiterate, the hypo-
thetical nature of the bound may invoke questions about the
reliability of predictions made from using it. However, the
very fact that LQG corrections endow the bound with
added precision should partly allay suspicions about its
applicability in principle. The final arbiter on the correct-
ness or otherwise of the quantum-improved bound is of
course observational data.
Our derivation of the bound on the area of the compact

remnant follows from concomitant application of the
generalized second law and the quantum-corrected entropy
bound. As such this will entail an estimate of the entropy of
the radiated gravitational waves. This estimate is made
based on the assumption that the detected gravitational
waves do not scatter substantively enroute to LIGO from
the merger source.
The lower bound on the cross-sectional area of the

remnant in any binary compact coalescence has an inter-
esting implication in case of BNS mergers, namely con-
straining neutron star equations of state (EOS). The
standard approach to this problem entails the measurement
of tidal deformations of the component neutron stars in
addition to their mass, so that every EOS then relates the
mass to the cross sectional size or radius of the neutron star.
By providing a minimal cross sectional area of the remnant
in terms of the areas of the components, our formulae
permits a direct use of every proposed EOS to relate the
component masses to their radii. Comparison of our
minimal remnant area with the observed remnant area in
a BNS merger could then probe the EOS employed. Data
on tidal deformations of the neutron star, which is always
nontrivial to garner from observations, is not needed in this
approach.
The paper is organized as follows: in the next section the

LQG analysis of the entropy of isolated horizons—as
nonstationary generalizations of black holes—is briefly
reviewed and the appearance of LQG corrections to the
Bekenstein-Hawking area law pointed out. This is followed
by a short recap of the holographic nature of LQG
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corrections which strengthen the entropy bound. We
present our first results on the minimal area of the merger
remnant of black hole coalescence in Sec. III, where the
generalized second law and the LQG corrected entropy
bound are used simultaneously. The fact that black hole
entropy caps the maximum possible entropy of compact
stars with areas equal to the horizon area of the black hole,
is then used to generalize to the situation where the binary
coalescence is not just of black holes but any pair of
compact objects, including exotic compact objects. This
leads to our main result for the minimal area of the merger
remnant in compact binary coalescence in general, irre-
spective of their astrophysical nature. This is followed by a
section (IV) on the estimate of the entropy of gravitational
waves radiated by the binary inspiral on their way to
merger. The next section (Sec. V) uses data from LIGO-
VIRGO observations to probe the validity of our lower
bound on the the remnant cross sectional area. Binary black
hole (BBH) mergers and BNS mergers are taken as
illustrative examples where the theoretical minimum area
is cross-checked against the observed area of the remnant
wherever permitted by the data. In the particular case of
BNS merger, the existence of a minimal area of the remnant
black hole leads to possible upper bounds on the mass of
the coalescing neutron stars. This maximum mass, in its
turn, further constrains possible equations of state of
neutron stars. As already noted above, this method obviates
the necessity to measure tidal deformabilities of coalescing
neutron stars, to lead to the EOS. We end in Sec. VI with a
few concluding remarks. An Appendix presents a details of
the approach followed to determine the EOS constraints
and a table of most known EOSs with our computed results
for each EOS.

II. QUANTUM SPACETIME CORRECTIONS TO
BEKENSTEIN-HAWKING ENTROPY

These corrections have been computed within the LQG
formulation of quantum isolated horizons [16] as gener-
alization of event horizons. In this formulation, the classical
isolated horizon is treated as a null inner boundary defined
by boundary conditions consistent with the Einstein equa-
tion. A Hamiltonian formulation of general relativity with
such isolated horizons yields, when the local Lorentz
boosts are gauge fixed, a boundary symplectic structure
on the isolated horizon which coincides with that of an
SUð2Þ Chern-Simons theory, of the connection degrees of
freedom on the horizon. Now, in the LQG formulation of
bulk general relativity, the kinematical description on a
spatial slice is given in terms of a spin network [15] whose
edges are the holonomies of the SUð2Þ connection on the
slice, and intertwinners at the vertices are represented by
invariant SUð2Þ tensors. When the bulk spacetime has an
isolated horizon as an inner boundary, the edges of the bulk
carrying spin puncture the horizon, depositing their spin at
those punctures. So the Chern-Simons degrees of freedom

on the horizon interact with these bulk spins as SUð2Þ point
charges. The (kinematical) LQG description of the horizon
is then just this: an SU(2) Chern-Simons theory coupled to
pointlike SUð2Þ charges as sources. The Chern-Simons
coupling constant k ¼ A=APl, where APl is the Planck area.
Thus, large, macroscopic horizon areas correspond to weak
coupling of the Chern-Simons theory, permitting an exact
counting of the size of the Hilbert space of the theory in this
limit [17]. This is necessary for an ab initio computation of
the microcanonical entropy of the quantum isolated
horizon.
The dimensionality of the Hilbert space of the Chern-

Simons theory coupled to spins at punctures is itself related
to the number of conformal blocks of the conformally
invariant SUð2Þk Wess-Zumino-Witten model that exists on
a spatial foliation of the isolated horizon with punctures at
the location of the sources. For large k, this number can be
computed in terms of the spins [17] and gives the following
result for a spin configuration j1;…jP:

N ðj1;…jPÞ ¼
YP
i¼1

Xji
mi¼−ji

�
δPP

n¼1
mn;0

−
1

2
δPP

n¼1
mn;−1

−
1

2
δPP

n¼1
mn;1

�
: ð1Þ

The total number of states is given by

N ¼
X
P

YP
i¼1

X
ji

N ðj1;…jPÞ: ð2Þ

Using the standard formula for Boltzmann entropy
S ¼ logN , in the limit of large k ¼ A=APl the following
result is obtained for the microcanonical entropy of
quantum isolated horizons [19–27]

Sbh ¼ SBH −
3

2
log SBH þOðS−1BHÞ; ð3Þ

where, SBH ≡ A=4APl is the semiclassical Bekenstein-
Hawking area law. The holographic nature of the result
depicted in (3) is quite apparent from the fact that the
entropy of the isolated horizon which generalizes the
event horizon of a four dimensional black hole, is even-
tually computed from the number of conformal blocks of
the two-dimensional conformal field theory “living” on the
two sphere obtained as a spatial foliation of the isolated
horizon.

III. HOLOGRAPHIC ENTROPY BOUND

A. Generalized second law

According to the generalized second law, if two black
holes bh1 and bh2, with horizon cross sectional areas A1

and A2, respectively, merge into a exotic compact object
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(ECO) with emission of gravitational waves (GW), the
entropies of these configurations must obey the inequality

SECO þ SGW > Sbh1ðA1Þ þ Sbh2ðA2Þ: ð4Þ

The entropies of the two black holes obey the augmented
version of the Bekenstein-Hawking area law, with aug-
mentation due to corrections derived from quantum space-
time fluctuations.

B. Binary black hole coalescence

As already mentioned, the original Bekenstein entropy
bound was founded by analogy with the hoop conjecture.
Since addition of energy invariably increases the entropy
from a microcanonical standpoint for an isolated horizon,
the entropy of a compact star is bounded from above by the
entropy of a black hole whose horizon area coincides with
the area of the boundary of the compact star. In other words,
SECO < SbhðAEÞ, where AE is the area of the boundary of
the exotic compact object. Since the entropy of a black hole
(isolated horizon) is now not just the Bekenstein-Hawking
area expression, but the full quantum-corrected entropy (3)
for large macroscopic areas, computed holographically as
explained earlier, we obtain the holographic Bekenstein
bound [29]

SECO < SBHðAEÞ −
n
2
log SBHðAEÞ þ � � � ; ð5Þ

where, n is an integer; n ¼ 3 for nonrotating quantum
isolated horizons. For rotating isolated horizons, there is
some debate as to what precisely the correct coefficient of
the logarithmic correction is, although there are arguments
to the effect that it should be the same as nonrotating case.
The inequality (5) turns the inequality (4) into

SbhðAEÞ þ SGW > Sbh1ðA1Þ þ Sbh2ðA2Þ: ð6Þ

This can be alternatively expressed as, using the quantum-
corrected black hole entropy, as

exp ĀE

ĀE
n=2 >

expðĀ1 þ Ā2 − SGWÞ
ðĀ1Ā2Þn=2

; ð7Þ

where Ā≡ SBHðAÞ ¼ A=4APl, with APl being the
Planck area.
The entropy bound (7), which holds for the compact

remnant in binary black hole mergers, regardless of its
actual astrophysical structure, can be solved to yield a
minimal cross sectional area of the compact merger
remnant, given the measured horizon areas of the two
inspiralling black holes and the entropy of the emitted
gravitational waves.

C. Generalization to exotic compact objects

Does a bound like that in (6) generalize to the situation
where not only the postmerger remnant but the inspiralling
binary is also constituted by exotic compact objects which
are not necessarily black holes? We demonstrate that
the answer is in the affirmative. Let us suppose that the
inspiralling stars have entropies SE1 and SE2. If they merge
into a compact object as considered above, the generalized
second law and the holographic entropy bound together
then predict that

SbhðAEÞ þ SGW > SE1 þ SE2: ð8Þ

On the other hand the holographic bound by itself asserts
that SE1 < SbhðAE1Þ; SE2 < SbhðAE2Þ, so that

SE1 þ SE2 < SbhðAE1Þ þ SbhðAE2Þ: ð9Þ

The inequality (9) is a sufficient condition for the validity of
the bound [similar to (6)],

SbhðAEÞ þ SGW > SbhðAE1Þ þ SbhðAE2Þ: ð10Þ

It may be considered as a necessary condition as well, from
a physical standpoint, if one notices that its invalidation
would rule out binary black hole merger to a black hole.
We have argued therefore that the entropy bound (7)

holds, both for all possible compact binary mergers
including but not restricted to black holes, as also for all
possible compact postmerger remnants including but not
restricted to black holes. Thus, the bound is independent
of whether or not either the inspiralling binary system or
the postmerger remnant consist of black holes.
Since the gravitational wave entropy is a maximum for

the equilibrium thermodynamic situation, we shall replace
SGW in (7) by its equilibrium value SEQGW, so that the final
formula reads

exp ĀE

ĀE
n=2 >

expðĀE1 þ ĀE2 − SEQGWÞ
ðĀE1ĀE2Þn=2

; ð11Þ

Observe that the area lower bound (11) is of maximal
generality for compact binary inspiral coalescing into a
compact remnant. It is valid irrespective of whether these
are black holes, neutron stars, white dwarfs, or exotic
compact objects like gravastars or boson stars.
If RE characterizes the average linear size of such an

object, and rSE its Schwarzschild radius, then one can
define a compactness ratio CE ≡ RE=rSE. This ratio is
close to unity for a black hole, which is about Oð10Þ for a
neutron star, Oð103Þ for a white dwarf, and so on. It then
follows that

AEðREÞ ¼ AðCErSEÞ ¼ C2
EAEðrSEÞ ¼ C2

EM
2
E; ð12Þ
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where ME is the mass of the compact object, and the last
equality holds for very slowly spinning compact objects.
This enables us to reexpress the inequality (11) as a lower
bound for the cross sectional area of a compact remnant,
expressed in terms of the scaled areas (functions only of the
Schwarzschild radii) and compactness ratios of the inspir-
alling binary as well as the postmerger remnant,

exp½C2
EĀE�

ðC2
EĀEÞn=2

>
exp½C2

E1ĀE1 þ C2
E2ĀE2 − SEQGW�

ðC2
E1ĀE1C2

E2ĀE2Þn=2
: ð13Þ

In case the binary inspiral and the remnant are all spinning
very slowly, a simplified inequality emerges

exp½C2
EM̄

2
E�

ðCEM̄EÞn
>

exp½C2
E1M

2
E1 þ C2

E2M
2
E2 − SEQGW�

ðCE1ME1CE2ME2Þn
: ð14Þ

For the case of GW150914, the minimal area inequality is
given by the lhs of (14) and the rhs of (13), since the data
point to a rather slowly spinning postmerger remnant.
Another reason why this approximation may be applicable
is that in our considerations, the “merger black box” is not
at all relevant, since we deal with the coalescing binary
when the components are far apart, and the remnant after
stabilization long after the merger has taken place. There
are no other sources of strong gravity in either of these
situations to cause any appreciable tidal deformation
(which has the potential to render this approximation
invalid).

IV. ESTMATING GRAVITATIONAL
WAVE ENTROPY

To estimate the entropy of a gravitational wave signal
as observed for instance at aLIGO for GW150914 or
subsequent observations of binary compact mergers, we
follow the statistical method proposed by Ma [30]. In this
approach, the entropy of a dynamical system is determined
from the trajectory of motion, i.e., certain general properties
of the space of solution configurations of the system. This
solution space is divided into groups Ωλ, where λ is a real
positive number. Each such group of the configuration
space has a volume Γλ. pλ is defined as the probability of
occurrence of a trajectory belonging to the group λ, given
by the fraction of the total time the system spends in this
group. Given a configuration belonging to the group, the
probability of finding a coincident configuration in the
group λ is given by Γ−1

λ . The coincidence probability of
occurrence of two identical configurations in the same
group is then given by the ratio pλ=Γλ. The entropy is then
defined [30] by the average S ¼ P

λ pλ logðΓλ=pλÞ over all
groups λ.
To transcribe this to the case of gravitational waves, we

can label gravitational wave configuration groups by their
Fourier modes characterized by the frequency ω. We shall

then define pðωÞ as the probability of occurrence of a
gravitational wave mode with frequency ω. In terms of the
intensities of the gravitational wave signal, we can identify
pðωÞ with the ratio IðωÞ=I0, where IðωÞ is the spectral
intensity of gravitational waves with frequency ω, and I0 is
the total integrated intensity. Let NtðωÞ be the total number
of gravitational wave modes with frequency ω. One can
then adapt the definition of entropy given in Ref. [30] for
gravitational waves

SEQGW ¼
Z

ω2

ω1

dω
2π

pðωÞ log
�
ΓðωÞ
pðωÞ

�
: ð15Þ

Since the spectral distribution is continuous, the tran-
scription of “coincident configurations” is not easy, as it
is in the discrete case. Instead, here we adopt the feature of
coherence to enable that aspect. Thus, we consider gravi-
tational wave mode pairs with the same frequency ω, which
are coherent in the sense of wave optics. If NcðωÞ is the
number of such coherent gravitational wave mode pairs,
then the fractionNcðωÞ=NtðωÞmust be the probability that,
given a mode with the frequency ω, there is another mode
with the same frequency that is coherent with it. We can
then identify Γ−1ðωÞ≡ NcðωÞ=NtðωÞ, so that the gravita-
tional wave analog of the coincidence probability is the
quantity pðωÞΓ−1ðωÞ ¼ NcðωÞ=N0. The number N0 is pro-
portional to the total integrated intensity. Equation (15) can
then be rewritten

SEQGW ¼
Z

ω2

ω1

dω
2π

IðωÞ
I0

log

�
N0

NcðωÞ
�
: ð16Þ

How do we estimate NcðωÞ? As for electromag-
netic fields, the entropy is maximized when the coherence
is a minimum [31]. This implies that equilibrium
ensues when NcðωÞ ≪ NtðωÞ ≪ N0, i.e., ΓðωÞ=pðωÞ ≫
1 ∀ω ∈ ½ω1;ω2�. An estimate of N0 is the ratio of
the total energy radiated EGW to the energy ℏω of a
graviton. If, as per the GW150914 datasheet, E is taken
to be about 3M⊙c2 ≃ 9× 1053 ergs, and ω ≈ 150 Hz, then
N0 ≃ 2.7 × 1077. Since the entropy is maximized for the
maximally incoherent gravitational wave signal, we
can take NcðωÞ ∼ 1 ∀ ω. With these approximations, an
approximate estimate of the gravitational wave entropy can
be derived. A more detailed numerical estimate, using
Fourier transforms of the GW150914 signal, changes the
result only marginally.
This estimate of the maximum entropy of gravitational

waves emitted during a compact binary coalescence is
admittedly heuristic in absence of a more rigorous
approach. One may argue that the gravitational wave
entropy actually vanishes classically, where a two-body
inspiral should lead to a monochromatic signal with
vanishing entropy. Likewise, quantum mechanically, where
the gravitational wave emitted corresponds to a coherent
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state peaked around the classical solution, it is a pure state
with vanishing entropy. However, this argument misses out
on the possible complexity involved during the merger
process of an inspiralling binary of compact stars, perhaps
even black holes. So long as the inspiralling compact stars
are sufficiently far apart long before merger, indeed all one
receives is a two-body monochromatic GW signal involv-
ing lower orders of a gravitational multipole expansion of
slowly moving gravitating sources. Such a signal will
indeed have a very low entropy. But that changes close
to merger, when the inspiralling sources move rapidly,
resulting in a violently dynamical spacetime with the
emitted gravitational waves exhibiting extra features
beyond the simplistic description in terms of either a
two-body signal or a coherent quantum state. It is well
known that in such a dynamical spacetime, particle creation
must occur [32] with uncertainties in the particle number in
the initial vacuum state. Thus, creation of gravitons is very
likely towards the end stage of merger, leading to entropy
production. This is where the waves are not benignly
coherent any more, and hence not a pure state quantum
mechanically, and detailed analyses, beyond our consid-
erations here, are warranted for a more precise computation
of the entropy carried by the emitted gravitational waves.
The major part of the GW entropy arises from this very
dynamical situation, from our standpoint. Since our interest
is in the lower bound on the remnant area, we have taken
the maximum possible entropy of the GW signal, treated as
a wave with minimal coherence.

V. RESULTS

In this section, we consider data from the observations of
compact binary mergers from the LIGO-VIRGO collabo-
ration, to demonstrate the scope and applicability of our
main theoretical contentions. The approach in this section
is more towards illustrative proofs of principle rather than
elaborate analyses of the merger data, much of which is
currently in the process of being garnered. The novelty in
our approach is that one does not need data on tidal
deformations of the coalescing neutron stars which is used
in standard approaches to constrain NS EOSs. Instead, our
lower bound on the remnant area is adequate to determine
the validity of specific EOSs.

A. Holographic area bound for binary
black hole mergers

The minimal area AE, which saturates the bound (11),
can be computed in terms of the Lambert W function [33].
Numerical values of the W function can be used for illus-
trative visualization of the minimal area profile as a func-
tion of masses, for BBH mergers (where CE1 ¼ CE2 ¼ 1),
or binary neutron star mergers (BNS, CE1 ¼ CE2 ¼ 5) to a
remnant black hole (CE ¼ 1), as exhibited in Figs. 1 and 2,
respectively. The estimate of the gravitational wave entropy

is based on the LIGO GW150914 data sheet showing a
signal with a peak frequency of 150 Hz. This leads to an
estimated entropy of Oð50Þ in units of the Boltzmann
constant.
Figures 1 and 2 show a similar increasing behavior of the

minimal remnant area as a function of the masses of the
components in the binary merger. Thus, these plots verify
our contention that irrespective of the astrophysical nature
of the coalescing compact binary or the compact remnant,
the minimal remnant area has a robust behavior as a
function of the merging masses. For BBH merger to a
black hole or even an ECO, accurate measurement of the
radius or cross-sectional area remains a huge observational
challenge, so at this stage of development, the plot in
Fig. 1 is a prediction for the future. If, for masses in the
given ranges, a BBH merger produces a remnant with a
smaller measured area than that predicted by the plot in
Fig. 1, then our estimated bound on minimal remnant area
would be clearly invalidated. In other words, a more

FIG. 1. Minimal remnant area vs coalescing masses for BBH
merger.

FIG. 2. Minimal remnant area vs coalescing masses for BNS
merger.
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compact remnant has a greater likelihood of challenging
our bound.
For masses of the inspiral as well as the postcoalescence

remnant close to the LIGO-VIRGO O2 data for BNS
merger, one can plot the minimal value of the compactness
ratio CE of the remnant, as a function of those of the binary
inspiral. This is shown in Fig. 3.

B. Using the holographic area bound to constrain
neutron star equations of state

One important application of the holographic lower
bound on compact binary merger remnants is the ability
to constrain neutron star equations of state, based solely on
the observed masses of the components and the remnant.
Unlike other constraints on neutron star EOS based on only
GW data (see for example [34]) our constraint is indepen-
dent of whether or not we can measure the individual tidal
deformabilities of the components and the remnant. To
compute this constraint, we can use the holographic bound
in two different ways.
First, given the masses of the BNS merger and an

EOS, we can compute the radii of the coalescing com-
ponents and the remnant and hence the corresponding cross
sectional areas, under the spherical symmetry assumption
(AEi ¼ 4πr2ðmiÞ, say, for simplicity. If the remnant area
thus obtained falls below the minimal remnant area
according to Eq. (11), then we would infer that the
particular EOS is untenable. Thus, the component and
remnant radii have been obtained using it from the mass,
expressed as ri ¼ riðmiÞ, it must satisfy the inequality (all
masses and radii in the formulae are in Planckian units in
this subsection):

exp 4πr̃2

ð4πr̃2Þn=2 >
exp f4πr̃21 þ 4πr̃22 − SGWg

f4πr̃1r̃2gn
: ð17Þ

We use the LIGOArithmetic Library Simulations [35] to
compute the radii of merging neutron stars, given an EOS,

and construct a table exhibiting the radii of the components
and the remnant. This table may serve as a proof of
principle of our proposition: use the holographic bound
and measurement of compact binary merger component
and remnant masses to rule out EOSs. We choose our
fiducial component masses to be that of GW170817 [5]. A
detailed statistical analysis that rigorously converts mass
posteriors into lower-bound posteriors is beyond the scope
of of this paper wherein we wish to communicate just the
derivation of our holographic bound and a proof of
principle of its application in ruling out EOSs. Keeping
this in mind we do a simple-minded analysis using
GW170817 data (posterior samples of the component
masses) [36] to add uncertainties to our proof of principle
table. We simply compute the component radii and lower
bound remnant radius for every available posterior sample
of ðm1; m2Þ obtained from a parameter estimation run of
GW170817 [36], given a fiducial EOS. We then histogram
them and compute 90% confidence intervals by subtracting
0.05 and 0.95 quantiles. The results are plotted in Table I.
Observe that the table misses the column corresponding to
the measured radius of the remnant for any EOS. Had the
remnant mass of GW170817 been explicitly measurable,
the table would have sufficed to rule out EOSs that yield an
observed remnant radius lower than that predicted by our
lower bound by an amount larger than that covered by the
uncertainties of rrem;min and rrem;measured. While it is true that
GW data on 170817 is insufficient to verify the remnant’s
existence, let alone constrain its mass [5], there are neutron
star merger scenarios that predict a neutron star merger
remnant, even if short lived (see for example [37,38]).
Table I is illustrative of our approach and not exhaustive.
The parameters have been computed for the entire list of
neutron star EOSs, and are included in Table II in the
Appendix. A detailed statistical analysis of using our
method of ruling out EOSs comprise a future work
currently in preparation. However we provide a scheme
in the Appendix that serves as a brief summary of the
methods that can be employed to perform this aforemen-
tioned analysis.

FIG. 3. Compactness ratio CE vs CE1; CE2.

TABLE I. We compute lower bounds on the remnant radius
given the component radii. LIGOArithmetic Library Simulations
Neutron Star Mass-Radius Functions are used to get the radii of
the components given their masses for each EOS. For details see
the Appendix especially Table II.

EOS r1 (km) r2 (km) Min rrem (km)

ALF1 8.96þ0.69
−0.75 8.2þ1.65

−0.54 12.28þ1.26
−0.7

AP3 12.1þ0.0
−0.0 12.07þ0.01

−0.02 17.09þ0.0
−0.02

BSK20 11.72þ0.02
−0.07 11.77þ0.0

−0.01 16.62þ0.01
−0.05

FPS 7.55þ2.74
−0.54 9.37þ1.7

−2.43 12.36þ2.5
−2.47

GNH3 14.34þ0.16
−0.37 14.63þ0.12

−0.1 20.49þ0.03
−0.17

H5 13.03þ0.16
−0.54 13.28þ0.02

−0.06 18.61þ0.06
−0.35
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Another approach involves the masses and an EOS, from
which we can compute the dimensionless compactness rato
(CE) of the components and the remnant. This can be
substituted into the inequality Eq. (13); the EOSs for which
(13) is not satisfied may be ruled out. For an EOS to satisfy
our constraint based on our holographic bound, where the
radius has been obtained using it from the mass, expressed
as ri ¼ riðmiÞ, it must satisfy the inequality:

exp fC2
EM̃

2
Eg

ðCEM̃EÞn
>

exp fC2
E1M̃

2
E1 þ C2

E2M̃
2
E2 − SGWg

½CE1M̃E1CE1M̃E1�n
: ð18Þ

In case the merging binary components are slowly spin-
ning, the results of the two approaches overlap, giving a
lower bound on the remnant properties that is independent
of the measurement of tidal deformabilities of the remnants
and components. A measurement of the component masses
(which is extremely viable as per [5]) and the remnant mass
is enough to rule out EOSs based on Eqs. (A1) and (A2).
Hence future detection of a BNS event with a remnant of
measurable mass remains a strong possibility. We conclude
that given such a possibility, our framework provides an
elegant method to constrain the EOS of matter in neutron
stars based on only mass measurements and theoretical
considerations.

VI. CONCLUDING REMARKS

The possibility of constraining neutron star EOSs on the
basis of the lower bound on the remnant area, without
reference to data on tidal deformations of the coalescing
components, is an interesting development in its own right.
While at this stage only a proof of principle could be
provided, future, more accurate observations on remnant
masses in BNS mergers may provide the opportunity for
detailed numerical analyses towards ruling out proposed
neutron star EOSs of neutron star matter.
One of the key issues is the significance of the

LQG quantum corrections incorporated into our formulas
Eqs. (7)–(11). These corrections have become related to
measurable quantities through our illustrative plots and
tables. These corrections may not have a lot of significance
at the current precision of measurements in gravitational
wave interference experiments, but as observational accu-
racy increases with time, it is conceivable that their role can
be subject to measurement.
We have already remarked on the allegedly “heuristic”

nature of the Bekenstein entropy bound, quintessentially
used in this paper. In a later paper [39] following his
incipient 1974 proposal [28] of the entropy bound,
Bekenstein had proposed a universal bound on the entropy
of all bounded objects in flat spacetime, once again based
on thermodynamic considerations. In 2008, Casini [40] has
formulated the notion of relative entropy, whose positivity
has been shown to lead to a more rigorous derivation of the

bound in flat spacetime. A generalization of such ideas to
loop quantum gravity would be a key project for the future.
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APPENDIX: PROPOSED DATA ANALYSIS
SCHEME

In Secs. VA and V B, we have shown how the holo-
graphic bound can be used to constrain the EOS of extreme
nuclear matter solely from the measurement of the masses
of compact binary merger components and remnant from
their GW signals. Equation (17) suffices for this purpose
provided we know the aforementioned masses up to infinite
precision. However, we know that these masses, obtained
from parameter estimation based on GW signals can be
constrained only up to a certain degree of precision given
the noise present in LIGO-like detectors. In this section we
demonstrate how to compute the holographic bound for the
observed posterior distribution of component NS masses.
Given GW data d⃗ for an event, we can compute the
posterior distribution of the lower bound on the remnant’s
radius (rlb) by using Bayesian analysis:

pðrlbjd⃗; EÞ

¼
Z

pðr1; r2jd⃗; EÞpðrlbjr1; r2Þdr1dr2;

¼
Z

pðr1; r2jd⃗; EÞδðrlb − fðr1; r2; SGWÞÞdr1dr2; ðA1Þ

where fðr1; r2; SGWÞÞ is the solution to the equality of
Eq. (17) and pðr1; r2jd⃗; EÞ is the posterior distribution of
the component radii given the GW data and the EOS. This
posterior can be evaluated from the posterior distribution of
the masses:

pðr1; r2jd⃗; EÞ

¼
Z

pðm1; m2jd⃗Þpðr1; r2jm1; m2; EÞdm1dm2;

¼
Z

pðm1; m2jd⃗Þδðm1 −mðr1; EÞÞ;

× δðm2 −mðr2; EÞÞdm1dm2; ðA2Þ

where the posterior distribution of the masses pðm1; m2jd⃗Þ
comes from performing a parameter estimation on GW
data. An approximate way to compute pðr1; r2jd⃗; EÞwould
be to do a kernel density estimation (KDE) on the posterior
samples of m1 and m2 obtained from GW posterior
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estimation (PE) and evaluating that posterior probability at
m1ðr1; EÞ andm2ðr2; EÞ. Then that posterior can be used to
compute pðrlbjd⃗; EÞ.
Now, foraBNSevent inwhich theexistenceofa remnant is

confirmed and its mass measured, we can construct a
posterior of the remnant radius in a similar fashion:

pðrremjd⃗; EÞ

¼
Z

pðmremjd⃗Þδðmrem −mðrrem; EÞÞdm; rem: ðA3Þ

EOSsforwhichthere isnosupportbetweenthetwoposteriors
pðrlbjd⃗; EÞ and pðrremjd⃗; EÞ can thus be ruled out.
However, this process is numerically challenging since

there is no analytical expression for fðr1; r2; SGWÞ which
makes the delta function integration of Eq. (2) difficult.
These intricacies are beyond the scope of this paper
wherein we wish to communicate just the derivation of
our holographic bound and a proof of principle of its
application in ruling out EOSs. Keeping this in mind we do
a straightforward analysis using GW170817 data (posterior
samples of the component masses) [41] to add uncertainties
to our proof of principle table. We simply compute the
lower bound for every available posterior sample of
ðm1; m2Þ obtained from a PE run of GW170817. We then
histogram them and compute 90% confidence intervals on
our lower bound by subtracting 0.05 and 0.95 quantiles.
The results are tabulated in the adjoining Table II for the
known equations of state for neutron matter. A detailed
statistical analysis of using our method of ruling out EOSs
comprise a future work currently in preparation.

TABLE II. Computed minimal values of the remnant radius
corresponding to most known neutron star EOSs.

EOS R1 R2 Lower bound on Rremnant

ALF1 8.96þ0.69
−0.75 8.2þ1.65

−0.54 12.28þ1.26
−0.7

ALF2 10.43þ2.76
−1.0 13.1þ0.06

−0.1 16.73þ1.89
−0.58

ALF3 9.35þ0.72
−0.77 8.37þ1.93

−0.47 12.62þ1.52
−0.66

ALF4 9.01þ2.23
−0.39 11.66þ0.0

−2.92 14.72þ1.43
−2.45

AP1 9.22þ0.15
−0.42 9.5þ0.08

−0.09 13.24þ0.04
−0.23

AP2 10.05þ0.13
−0.3 10.31þ0.09

−0.09 14.4þ0.03
−0.14

AP3 12.1þ0.0
−0.0 12.07þ0.01

−0.02 17.09þ0.0
−0.02

AP4 11.4þ0.02
−0.06 11.44þ0.0

−0.01 16.16þ0.0
−0.03

APR4-EPP 11.29þ0.02
−0.06 11.33þ0.0

−0.01 16.0þ0.0
−0.03

BBB2 11.17þ0.11
−0.24 11.38þ0.06

−0.07 15.95þ0.02
−0.12

BGN1H1 13.03þ0.13
−2.31 13.22þ0.03

−0.04 18.56þ0.06
−1.51

BPAL12 10.32þ0.38
−0.88 11.06þ0.23

−0.27 15.13þ0.06
−0.4

BSK19 9.16þ1.59
−2.11 10.87þ0.08

−0.08 14.24þ0.99
−1.26

BSK20 11.72þ0.02
−0.07 11.77þ0.0

−0.01 16.62þ0.01
−0.05

BSK21 12.6þ0.0
−0.02 12.58þ0.01

−0.03 17.81þ0.0
−0.04

ENG 12.11þ0.0
−0.03 12.1þ0.0

−0.02 17.12þ0.01
−0.04

FPS 7.55þ2.74
−0.54 9.37þ1.7

−2.43 12.36þ2.5
−2.47

GNH3 14.34þ0.16
−0.37 14.63þ0.12

−0.1 20.49þ0.03
−0.17

GS2 12.64þ0.59
−1.25 13.22þ0.03

−0.09 18.29þ0.44
−0.91

H1 12.66þ0.44
−2.2 13.41þ0.16

−0.24 18.45þ0.13
−1.34

H2 13.42þ0.24
−2.42 13.83þ0.08

−0.12 19.27þ0.08
−1.54

H3 13.86þ0.15
−0.43 14.12þ0.04

−0.07 19.79þ0.05
−0.26

H4 13.66þ0.03
−0.12 13.68þ0.0

−0.02 19.33þ0.02
−0.1

H5 13.03þ0.16
−0.54 13.28þ0.02

−0.06 18.61þ0.06
−0.35

H6 13.11þ0.2
−0.52 13.46þ0.07

−0.11 18.79þ0.06
−0.3

H7 12.63þ0.26
−0.8 13.08þ0.1

−0.14 18.18þ0.08
−0.47

MPA1 12.52þ0.02
−0.02 12.46þ0.03

−0.04 17.66þ0.0
−0.01

MS1B 14.71þ0.04
−0.03 14.62þ0.04

−0.05 20.74þ0.0
−0.0

MS1B-PP 14.56þ0.05
−0.04 14.46þ0.04

−0.05 20.53þ0.0
−0.0

MS1-PP 14.94þ0.01
−0.01 14.89þ0.02

−0.03 21.1þ0.0
−0.01

MS1 15.08þ0.0
−0.01 15.04þ0.01

−0.03 21.3þ0.0
−0.01

MS2 12.31þ0.09
−0.31 12.46þ0.0

−0.03 17.52þ0.04
−0.22

PAL6 10.35þ0.37
−1.08 11.06þ0.21

−0.26 15.15þ0.07
−0.55

PCL2 10.69þ1.39
−1.29 12.45þ0.2

−0.28 16.46þ0.67
−0.9

PS 15.34þ0.23
−1.39 15.67þ0.03

−0.06 21.93þ0.12
−0.92

QMC700 12.14þ0.07
−0.07 11.94þ0.09

−0.14 17.03þ0.01
−0.05

SLY4 11.71þ0.07
−0.15 11.85þ0.04

−0.05 16.66þ0.01
−0.07

SLY 11.71þ0.07
−0.15 11.85þ0.04

−0.05 16.66þ0.01
−0.07

SQM1 8.25þ0.92
−0.82 9.08þ0.11

−1.75 12.22þ0.66
−1.58

SQM2 9.74þ0.57
−1.52 10.03þ0.15

−0.22 13.92þ0.51
−0.97

SQM3 11.53þ0.25
−0.19 11.09þ0.2

−0.27 16.0þ0.0
−0.0

WFF1 10.41þ0.0
−0.03 10.41þ0.0

−0.01 14.72þ0.0
−0.03

WFF2 11.14þ0.02
−0.06 11.17þ0.0

−0.0 15.78þ0.0
−0.04

WFF3 10.85þ0.09
−0.23 11.01þ0.04

−0.05 15.46þ0.02
−0.13

APR 11.32þ0.02
−0.06 11.37þ0.01

−0.01 16.04þ0.0
−0.03

BHF-BBB2 11.07þ0.11
−0.24 11.29þ0.07

−0.07 15.81þ0.02
−0.11

KDE0V 11.31þ0.1
−0.21 11.51þ0.07

−0.07 16.14þ0.02
−0.09

KDE0V1 11.52þ0.11
−0.22 11.73þ0.08

−0.07 16.44þ0.02
−0.09

(Table continued)

TABLE II. (Continued)

EOS R1 R2 Lower bound on Rremnant

RS 12.84þ0.08
−0.17 12.99þ0.04

−0.05 18.27þ0.02
−0.08

SK255 13.04þ0.1
−0.19 13.24þ0.08

−0.07 18.59þ0.01
−0.07

SK272 13.23þ0.07
−0.14 13.38þ0.06

−0.05 18.82þ0.01
−0.05

SKA 12.85þ0.05
−0.12 12.96þ0.03

−0.03 18.25þ0.01
−0.06

SKB 12.19þ0.0
−0.05 12.18þ0.01

−0.03 17.23þ0.01
−0.06

SKI2 13.4þ0.07
−0.17 13.54þ0.03

−0.04 19.05þ0.02
−0.09

SKI3 13.49þ0.05
−0.11 13.58þ0.02

−0.02 19.15þ0.01
−0.06

SKI4 12.34þ0.02
−0.08 12.37þ0.0

−0.0 17.47þ0.01
−0.06

SKI5 14.0þ0.07
−0.16 14.14þ0.03

−0.04 19.9þ0.02
−0.09

SKI6 12.45þ0.02
−0.07 12.49þ0.0

−0.0 17.64þ0.01
−0.05

SKMP 12.42þ0.06
−0.15 12.55þ0.03

−0.04 17.66þ0.01
−0.08

SKOP 12.01þ0.12
−0.24 12.24þ0.08

−0.08 17.15þ0.02
−0.1

SLY2 11.71þ0.07
−0.15 11.84þ0.04

−0.04 16.65þ0.01
−0.07

SLY230A 11.78þ0.04
−0.1 11.86þ0.01

−0.02 16.72þ0.01
−0.06

SLY9 12.41þ0.05
−0.11 12.5þ0.02

−0.03 17.62þ0.01
−0.06

HQC18 11.46þ0.03
−0.06 11.53þ0.03

−0.03 16.26þ0.0
−0.01
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