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While the Kerr-Schild double copy of the Coulomb solution in dimensions higher than three is the
Schwarzschild black hole, it is known that it should be a nonvacuum solution in three dimensions. We show
that the static black hole solution of Einstein-Maxwell theory (with one ghost sign in the action) is the
double copy with the correct Newtonian limit, which provides an improvement over the previous
construction with a free scalar field that does not vanish at infinity. By considering a negative cosmological
constant, we also study the charged Bañados-Teitelboim-Zanelli black hole and find that the single copy
gauge field is the Coulomb solution modified by a term which describes an electric field linearly increasing
with the radial coordinate, which is the usual behavior of the Schwarzschild-AdS black hole in higher
dimensions when written around a flat background metric.
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I. INTRODUCTION

After its discovery in the context of scattering amplitudes
[1,2], the double copy idea has found applications in the
classical domain as perturbative and exact relations
between gravity and gauge theories. While perturbative
spacetimes can be obtained by squaring the numerator of
some diagrams in Yang-Mills theory [3–39], it is possible
to establish a map between exact solutions that take a much
simpler form, where certain classical solutions of general
relativity (GR) are in correspondence with solutions of
Maxwell’s theory [40–61]. Among different versions of the
classical double copy that have been discovered so far,
the Kerr-Schild (KS) double copy [39] has the advantage
of admitting a formulation in arbitrary dimensions. For
metrics of the KS form [62], the Ricci tensor with mixed
indices is linear in the perturbation for a flat [63] and curved
[64–66] background metric. Due to this crucial property, a
map to solutions of Maxwell’s theory defined on the
background spacetime, which has a linear nature, can be
established. Alternatively, by writing the tensorial equa-
tions of GR and Maxwell’s theory in d ¼ 4 in terms of

2-component spinors, one can construct a Weyl spinor
characterizing the spacetime from two electromagnetic
field strength spinors up to a scalar field, leading to the
Weyl double copy [55]. Also, a class of solutions of GR and
self-dual solutions of Maxwell’s theory can be related
through Newman-Penrose formalism [67], giving rise to
the Newman-Penrose map [57]. Although the last two are
limited to d ¼ 4 in their present formulations, the fact that
they were shown to originate from twistor theory [68–70] is
a sign of a much richer structure than previously thought,
which already found a practical utility by providing a way
to fix the scalar field in the Weyl double copy.
Having a new theoretical tool to investigate the relation

between two seemingly different theories, it is important
to consider situations where it might break in order to
understand limitations if there are any. A possible route in
this direction is to work in three dimensions (3d), for which
the KS formulation is available, and this was pursued in
[60,61]. Due to the lack of degrees of freedom and a
Newtonian limit in 3d GR, it is not obvious, at first sight,
how the procedure works.1 For the Coulomb solution,
which is the simplest nontrivial solution in the gauge theory
side, the gauge boson degrees of freedom is mapped to the
graviton and the KS scalar characterizing the spacetime
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1See [71,72] for the study of 3d amplitudes where a degree
of freedom is introduced in the gravity side by adding a Chern-
Simons term in the action. As a result, one obtains the amplitudes
in topologically massive gravity as the double copy of the
amplitudes of topologically massive electrodynamics.
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metric is directly linked to the Newtonian potential as
given in (2.13). However, without matter coupling, this
cannot be realized since the Newtonian potential vanishes
identically. When the problem was tackled by coupling a
free scalar field, a hairy black hole with the desired
properties can be obtained if the scalar is a ghost, which is
equivalent to coupling a spacelike fluid [60]. In order to
support the black hole solution, the scalar should be linear
in the azimuthal angle, and therefore, does not vanish at
infinity as suggested by the no-hair theorem. In the
linearized theory, the ghost sign can be removed by a
certain generalized gauge transformation; however, it is
still somewhat unsatisfactory to not have a reasonable
behavior of the matter field at infinity. When investigated
further in [61], it was proposed to take the Einstein-
Hilbert term with a ghost sign, which does not introduce a
dynamical ghost in the theory and removes the need for a
generalized gauge transformation to get rid of the ghost in
the linearized theory.
In this paper, we aim to present an alternative for the

matter coupling with a better behavior at infinity, which, as
we will see, also provides a beautiful connection to a well-
known solution of 3d black hole physics. In Sec. II, we will
make a review of the construction of [60] by emphasizing
the points that will be relevant to our later discussion. In
Sec. III, considering the on-shell duality of a scalar and a
gauge vector together with the KS ansatz for the metric, we
will find that the same type of solution can be obtained in
Einstein-Maxwell theory. In Sec. IV, we will obtain the
most general static solution of the KS form by introducing a
cosmological constant. When the cosmological constant is
zero, we will show that a charged black hole solution with
the correct Newtonian limit, which also gives rise to the
Coulomb solution as its single copy, can be obtained when
a ghost sign is used in the action. The electric field
corresponding to the gauge field in the gravity side vanishes
at infinity, and therefore, provides the promised improve-
ment. For a negative cosmological constant, the charged
Bañados-Teitelboim-Zanelli black hole [73] follows from
the most general solution without taking any ghost sign in
the action. We end this section by studying the gauge theory
single copy of the solution. Finally, we present our
conclusions in Sec. V.

II. THE COULOMB SOLUTION
FROM THE FREE SCALAR

A. Solution with the correct Newtonian potential

In [60], the Coulomb solution was obtained as the single
copy of the static black hole solution of GR coupled to a
free scalar with the following action:

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
ζ1
κ2

R −
ζ2
2
ð∂φÞ2

�
; κ2 ¼ 8πG ð2:1Þ

where ζi ¼ �1 (i ¼ 1, 2) control the sign of the kinetic
terms and take a negative value for a ghost graviton or a
dilaton [61]. The field equations which follow from the
action (2.1) are

Rμν ¼ ζ
κ2

2
∂μφ∂νφ; ð2:2Þ

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νφÞ ¼ 0; ð2:3Þ

where ζ ¼ ζ1ζ2. Let us consider the following static KS
metric around the Minkowski space

gμν ¼ ημν þ ϕðrÞkμkν; ð2:4Þ

where the vector kμ is null and geodesic with respect to
both the background metric ημν and the full metric gμν (see
chap. 32 of [74] for a detailed discussion of important
properties). Writing the background line element in polar
coordinates

ημνdxμdxν ¼ −dt2 þ dr2 þ r2dθ2; ð2:5Þ

the vector kμ can be written as follows:

−kμdxμ ¼ dtþ dr; ð2:6Þ

and the line element in the KS coordinates becomes

ds2 ¼ ημνdxμdxν þ ϕðrÞðkμdxμÞ2
¼ −½1 − ϕðrÞ�dt2 þ ½1þ ϕðrÞ�dr2
þ 2ϕðrÞdtdrþ r2dθ2: ð2:7Þ

If one assumes2

∂μφ ¼ ð0; 0; cÞ; c ¼ constant; ð2:8Þ

the equation for the scalar field (2.3) is satisfied indepen-
dent of the KS scalar ϕ as follows:

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νφÞ ¼ ∂μð

ffiffiffiffiffiffi
−η

p
ημν∂νφÞ ¼ 0; ð2:9Þ

wherewehave useddet g ¼ det η, gθθ¼ηθθ andgtθ¼grθ¼0.
With this at hand, one can now check the gravity

equations (2.2). The independent nonzero components of
the Ricci tensor read

2In [60], the authors directly use the KS scalar yielding the
correct Newtonian potential and conclude that the solution should
be sourced by a free scalar. Here, we give the derivation in a way
that will be useful in our later discussion.
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Rtt ¼
½ϕðrÞ − 1�½rϕ00ðrÞ þ ϕ0ðrÞ�

2r
;

Rtr ¼
ϕðrÞ½rϕ00ðrÞ þ ϕ0ðrÞ�

2r
;

Rrr ¼
½ϕðrÞ þ 1�½rϕ00ðrÞ þ ϕ0ðrÞ�

2r
;

Rθθ ¼ rϕ0ðrÞ; ð2:10Þ

and the only nonzero component of the right-hand-side of
the equations is

ðRHSÞθθ ¼ 4πζGc2; ð2:11Þ

From the θθ component, one finds the solution for the KS
scalar as

ϕ ¼ bþ 4πζGc2 logðrÞ; b ¼ constant; ð2:12Þ

which also satisfies the remaining components. The con-
stant c and the parameter ζ can be fixed by considering the
Newtonian limit. The Newtonian potential is given by

Φ ¼ −
1

2
ð1þ g00Þ ¼ −

ϕ

2
; ð2:13Þ

and in order to mimic the Newtonian gravity

g⃗ ¼ −∇⃗Φ ¼ −
GM
r

r̂; ð2:14Þ

the KS scalar should be in the following form:

ϕ ¼ −2GM logðrÞ þ constant: ð2:15Þ

Therefore, we need to fix the parameters as follows:

c ¼
ffiffiffiffiffiffi
M
2π

r
; ζ ¼ −1; ð2:16Þ

with which, the KS scalar becomes

ϕ ¼ −2GM logðrÞ þ b: ð2:17Þ

Since ζ ¼ −1, one should choose the “wrong sign” for one
of the kinetic terms in the action (2.1). While the scalar
was chosen to be a ghost in [60], introducing the
Einstein-Hilbert (EH) term with the negative sign has
the advantage that it does not propagate any physical
degree of freedom [61].
In order to fix the integration constant b, we write the

metric (2.4) in the Boyer-Lindsquit (BL) coordinates by the
following coordinate transformation:

dt → dtþ ϕðrÞ
1 − ϕðrÞ dr; ð2:18Þ

which leads to the line element

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dθ2; fðrÞ ¼ 1 − ϕðrÞ;

ð2:19Þ

for a generic KS scalar. In our case, the metric function
becomes

fðrÞ ¼ 1 − bþ 2GM logðrÞ: ð2:20Þ

In order to recover the Minkowski spacetime when the
black hole mass vanishes (M ¼ 0), one should take b ¼ 0.
Therefore, the KS scalar and the metric function are
given by

ϕðrÞ ¼ −2GM logðrÞ; ð2:21Þ

fðrÞ ¼ 1þ 2GM logðrÞ: ð2:22Þ

We refer the reader to [60] for an analysis of the motion
of massive particles where the authors show that stable
orbits exist for a certain range of parameters. In Sec. IV, we
will show that it is true for the solution of Einstein-Maxwell
theory.

B. Gauge theory single copy

The gauge theory single copy for a generic matter
coupling can be obtained by considering the trace-reversed
gravity equations

Rμ
ν ¼

κ2

2
½Tμ

ν − δμνT�; T ¼ Tμ
μ; ð2:23Þ

where Tμν is the energy-momentum tensor. For a KS metric
(2.4), the Ricci tensor with mixed indices reads

Rμ
ν ¼

1

2
½∂α∂μðϕkνkαÞ þ ∂α∂νðϕkμkαÞ − ∂α∂αðϕkμkνÞ�;

ð2:24Þ

which is linear in the perturbation. If k0 ¼ þ1 and one
identifies Aμ ¼ ϕkμ, the μ0 component can be written as

Rμ
0 ¼

1

2
∂νFνμ; ð2:25Þ

where Fμν ¼ 2∂ ½μAν� is the field strength tensor of the
gauge field Aμ. Therefore, the μ0 component of the gravity
equations can be mapped to Maxwell’s equations as follows:

∂νFνμ ¼ gJμ; ð2:26Þ

where the source is given by
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Jμ ¼ 2½Tμ
0 − δμ0T�; ð2:27Þ

and the gauge coupling is obtained by κ2

2
→ g [39].

Application of this procedure to our solution gives the
single copy gauge field as3

Aμdxμ ¼ ϕkμdxμ ¼ Q log rðdtþ drÞ; ð2:28Þ

where we have made the replacement 2GM → Q. This is
just the Coulomb solution in a gauge where AμAμ ¼ 0,
and the source is

Jμ∂μ ¼ Qδ2ðr⃗Þ∂t; ð2:29Þ

which corresponds to a charged particle in the flat
spacetime.
Although we achieved the Coulomb solution as the

single copy, the construction has the undesired feature that
the scalar field in the gravity side is linear in the azimuthal
angle. This is not unexpected due to the existence of the
scalar hair (see Appendix of [61] for a detailed discussion
of no-hair theorem for free scalar fields). One way to obtain
a matter configuration which is well behaved at infinity is
to consider the coupling of a gauge vector since it will yield
a global charge, i.e., the electric charge, and therefore,
produces no hair. In d ≥ 4, this is just the Reissner-
Nordström black hole solution of Einstein-Maxwell theory,
whose metric can be also written in the KS form around
Minkowski background.

III. SCALAR-VECTOR DUALITY AND ITS
CONSEQUENCES

In this section, we will present the duality between a free
scalar and a gauge vector in three dimensions by following
Sec. 7.8 of [75], and then, discuss its consequences for
the classical double copy. In d-dimensions, the number
of on-shell degrees of freedom of a p-form gauge field

is Cðd − 2; pÞ ¼ ðd−2Þ!
p!ðd−p−2Þ!. Due to the identity

Cðd − 2; pÞ ¼ Cðd − 2; d − p − 2Þ, a p-form and a
ðd − p − 2Þ-form in d-dimensions have the same number
of degrees of freedom. In d ¼ 3, this implies that a scalar
(p ¼ 0) and a vector gauge field (p ¼ 1) have the same
number of degrees of freedom, which is one. Indeed, one
can also show that the free field equations are equivalent
and the solutions are in one-to-one correspondence.
In order to see that, let us consider the following flat
space action

S ¼
Z

d3x
ffiffiffiffiffiffi
−η

p �
1

8π
fμνfμν þ

1

2
ffiffiffiffiffiffi
2π

p ϵμνρfμν∂ρφ

�
; ð3:1Þ

where ϵμνρ ¼ 1ffiffiffiffi−ηp εμνρ is the Levi-Civita tensor and we take

the Minkowski spacetime in polar coordinates (2.5) for
later convenience. The equation for φ gives

ϵμνρ∂μfνρ ¼ 0; ð3:2Þ

which implies fμν ¼ 2∂ ½μaν�, i.e., fμν is the field strength
tensor of a gauge field aμ. Checking the equation for fμν
gives how it is related to the scalar φ as follows:

fμν ¼ −
ffiffiffiffiffiffi
2π

p
ϵμνρ∂ρφ ⇒ ∂μφ ¼ 1

2
ffiffiffiffiffiffi
2π

p ϵμνρfνρ: ð3:3Þ

Inserting the expression for fμν into the action (3.1) yields
the action for a free scalar

Sscalar ¼
Z

d3x
ffiffiffiffiffiffi
−η

p �
1

2
ð∂φÞ2

�
; ð3:4Þ

with the field equation

∂μð
ffiffiffiffiffiffi
−η

p
ημν∂νφÞ ¼ 0: ð3:5Þ

In the same way, one can also eliminate φ from the action
(3.1) by using the expression in (3.3), which yields the
action for a free gauge field

Svector ¼
Z

d3x
ffiffiffiffiffiffi
−η

p �
−

1

8π
fμνfμν

�
; ð3:6Þ

where the field equation is given by

∂νð
ffiffiffiffiffiffi
−η

p
ηναημβfαβÞ ¼ 0: ð3:7Þ

We are now in a position to discuss the implications
of the duality. As we have seen in (2.9), the scalar field
configuration given in (2.8) is a solution when the space-
time is curved and endowed with the metric (2.4), or
equivalently, flat and endowed with the Minkowski metric
in polar coordinates (2.5). Our analysis shows that the
actions for the free scalar (3.4) and the free vector (3.6) are
equivalent and the solutions to free field equations (3.4),
(3.6) are in one-to-one correspondence where the relation
between the solutions is given in (3.3). For the solution of
the scalar field given in (2.8), this implies that, for the
corresponding vector solution, the only nonzero component
of the field strength tensor is

ftr ∝
1

r
; ð3:8Þ

3We write the solution with a different normalization than
[60,61] to simplify the solution of Einstein-Maxwell theory that
we will give in Sec. IV. The Maxwell action is taken as (3.6) and
we formulate the scalar-vector duality in Sec. III accordingly.
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which is the electric part. Introducing the electric charge as
the proportionality constant, the gauge field and the field
strength tensor can be written as

aμdxμ ¼ q logðrÞdt;
1

2
fμνdxμ ∧ dxν ¼ q

r
dr ∧ dt: ð3:9Þ

Similar to the scalar case, this field configuration is also a
solution when the spacetime is curved and endowed with
the metric (2.4) as follows:

∂νð
ffiffiffiffiffiffi
−η

p
ηναημβfαβÞ ¼ ∂νð

ffiffiffiffiffiffi
−g

p
gναgμβfαβÞ ¼ 0: ð3:10Þ

As emphasized in [75], although the equivalence is true for
the simplest kinetic actions, it is not guaranteed to hold in a
more general setup. We have proved that the scalar solution
in curved spacetime with a KS metric implies that the
electric field configuration (3.9) is also a solution in such a
spacetime. However, one should keep in mind that this
statement is independent of the KS scalar ϕðrÞ. Therefore,
when coupled to gravity, the matter equations will defi-
nitely be satisfied if the metric can be put in the KS
form (2.4); however, the KS scalars in these two cases
might differ. Indeed, one immediately sees that the static
black hole solution obtained by coupling the vector field to
gravity should be a charged black hole solution. In the next
section, we will study the black hole solution with this new
matter coupling.

IV. EINSTEIN-MAXWELL THEORY
IN THREE DIMENSIONS

A. The most general static solution of Kerr-Schild form

Motivated by the results of the previous section, we
consider Einstein-Maxwell theory with a cosmological
constant described by the following action:

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
ζ1
κ2

ðR− 2ΛÞ− ζ2
8π

fμνfμν
�
; κ2 ¼ 8πG;

ð4:1Þ

where, similar to the scalar case, ζi ¼ �1 (i ¼ 1, 2) control
the sign of the kinetic terms and take a negative value for a
ghost graviton or a vector. The field equations arising from
the action (4.1) are given by

Rμν − 2Λgμν ¼ ζ
κ2

8π
ð2fμαfνα − gμνfαβfαβÞ; ð4:2Þ

∂νð
ffiffiffiffiffiffi
−g

p
fνμÞ ¼ 0; ð4:3Þ

where ζ ¼ ζ1ζ2. As discussed in the previous section, for a
static metric in the KS form (2.4), the solution for the vector
field is given in (3.9). With this at hand, one can solve the

gravitational field equations (4.2). Introducing the cosmo-
logical constant modifies the left-hand side as follows:

ðLHSÞtt ¼
½ϕðrÞ − 1�½rϕ00ðrÞ þ ϕ0ðrÞ − 4Λr�

2r
;

ðLHSÞtr ¼
ϕðrÞ½rϕ00ðrÞ þ ϕ0ðrÞ − 4Λr�

2r
;

ðLHSÞrr ¼
½ϕðrÞ þ 1�½rϕ00ðrÞ þ ϕ0ðrÞ − 4Λr�

2r
;

ðLHSÞθθ ¼ rϕ0ðrÞ − 2Λr2; ð4:4Þ

and the only nonzero component of the right-hand-side of
the equations is

ðRHSÞθθ ¼ 2ζGq2; ð4:5Þ

From the θθ component, the KS scalar can be solved as

ϕðrÞ¼CþΛr2þ2ζGq2 logðrÞ; C¼ constant ð4:6Þ

which also solves the other components of the field
equations. In order to give a physical meaning to the
integration constant C, we again write the metric in the
BL coordinates (2.19) via the transformation (2.18), which
leads to the following metric function:

fðrÞ ¼ 1 − C − Λr2 − 2ζGq2 logðrÞ: ð4:7Þ

Having found the most general solution, we are now ready
to investigate physically interesting possibilities.

B. Solutions with the correct Newtonian
potential (Λ= 0)

In order to obtain solutions with the correct Newtonian
potential, we take Λ ¼ 0 since only the logarithmic
term is needed. In the Newtonian limit, the gravitational
field in terms of the KS scalar can be obtained from
Eqs. (2.13)–(2.14), which yield

g⃗ ¼ 1

2
∇⃗ϕ: ð4:8Þ

For the KS scalar given in (4.6) with Λ ¼ 0, we obtain

g⃗ ¼ ζGq2

r
r̂; ð4:9Þ

which shows that in order to preserve the attractive nature
of the gravitational force, one should have ζ ¼ −1, i.e.,
either the EH term or the vector kinetic term in the
action (4.1) should carry a ghost sign (see Appendix for
more details).
Note that our solution should be a charged black hole

and the gravitational attraction is provided by the electric
charge. Therefore, the integration constant should be a
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function of the mass of the black hole C ¼ CðMÞ. In order
to fix the constant, we again need to check the metric
function in the BL coordinates given in (4.7) and demand
that the metric reduces to the Minkowski metric [fðrÞ ¼ 1]
when the mass and the charge are set to zero (M → 0,
q → 0). This constraint can be satisfied by taking the mass
term with different signs as follows:

f�ðrÞ ¼ 1� 8GM þ 2Gq2 logðrÞ; ð4:10Þ

where for both choices fðrÞ has a single zero, and therefore,
admits one event horizon.
Although we have already ensured the correct

Newtonian limit, it is interesting to have a closer look at
the properties of the metric as done in [60] for the scalar
case. For this purpose, we check the geodesic motion of a
timelike particle described by the equation

1

2
E2 ¼ 1

2

�
dr
dt

�
2

þ V�
eff ; V�

eff ¼
1

2

�
L2

r2
þ 1

�
f�ðrÞ;

ð4:11Þ

where E and L are the energy and the angular momentum
of the particle which are defined through the timelike and
the angular Killing vectors ξμðt;θÞ as follows:

E ¼ −gμνξ
μ
ðtÞu

ν; L ¼ gμνξ
μ
ðθÞu

ν; ð4:12Þ

where uμ is the velocity the particle. The Newtonian limit of
the effective potential V�

eff can be obtained by neglecting
the L2G terms as follows4:

V�
N ¼ 1

2
� 4GM þ L2

2r2
þGq2 logðrÞ: ð4:13Þ

The metric function obtained by coupling a free scalar
(2.22) and the ones we obtained by coupling a gauge vector
(4.10) have the same functional form [fðrÞ¼AþB logðrÞ,
A, B: constant]. Therefore, all the physically important
properties of the solution that is discussed in [60] are also
valid for our solutions. They can be summarized as follows:
(1) The Newtonian potential VN has an infinite barrier

at short distances and matches with the effective
potential Veff at long distances.

(2) A timelike particle cannot escape to infinity due to the
logarithmic divergence of the potential as r → ∞.

(3) The effective potential Veff develops a local maxi-
mum (Vmax

eff ) and a local minimum (Vmin
eff ) when the

angular momentum of the particle L is larger than a
certain value (Lmin). A timelike particle moves along

a stable orbit provided that Vmin
eff ≤ E < Vmax

eff . On the
other hand, the Newtonian potential VN always
admit stable orbits.

(4) When E ¼ Vmin
eff and L > Lmin, timelike geodesics

form circular orbits, i.e., one has dr
dt ¼ 0 in (4.11).

(5) Since the central potential is not that of an inverse-
square central force [VðrÞ ¼ − k

r, k: constant] or a
radial harmonic oscillator [VðrÞ ¼ 1

2
kr2, k: con-

stant], Bertrand’s theorem assures that there will
be precession for orbits with E > Vmin

eff .
In Fig. 1, we show that properties 1-4 hold for the metric
functions f�ðrÞ given in (4.10) by tuning the parameters
such that Lmin ¼ 1. Having shown that the qualitative
properties of the metric is the same, we refer the reader
to [60] where the authors present timelike geodesics, and
also, show that more precession is observed in the rela-
tivistic orbits when compared to the Newtonian orbits.
The KS scalars corresponding to the metric functions

(4.10) are given by

ϕ�ðrÞ ¼∓ 8GM − 2Gq2 logðrÞ; ð4:14Þ

and lead to the following single copy gauge field:

Aμdxμ ¼ ϕkμdxμ ¼ ð�8GM þ 2Gq2 log rÞðdtþ drÞ:
ð4:15Þ

The constant factor does not play a role and this is just
the Coulomb solution (2.28) with the identification
2Gq2 → Q, i.e., the electric charge in the gravity side q
yields a positively charged point particle in the gauge
theory. This is a remarkable difference compared to the
higher dimensional cases.5 In dimensions higher than
three (d ≥ 4), the static solution of the Einstein-Maxwell
theory, the Reissner-Nordström black hole, has the follow-
ing KS scalar:

ϕðrÞ ¼ 2GM
rd−3

−
Gq2

r2ðd−3Þ
; ð4:16Þ

where M and q are the mass and the electric charge of the
black hole respectively. The gauge field in the gravity side
and the corresponding field strength tensor are given by

aμdxμ ¼ −
q

rðd−3Þ
dt; ð4:17Þ

1

2
fμνdxμ ∧ dxν ¼ ðd − 3Þ q

rd−2
dr ∧ dt: ð4:18Þ

The gauge theory source for the solution is as follows:

4For a general analysis, one should write the logarithmic term
in both Veff and VN by introducing a length scale as logð rr0Þ. We
set r0 ¼ 1 for simplicity.

5Various aspects of the charged black holes solutions in the
context of the KS double copy are discussed in [42] and the
source terms for d ¼ 4 are given in [43].
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Jμ¼ρδμ0; ρ¼2GMδd−1ðr⃗Þ−2ðd−3Þ2Gq2
r2ðd−2Þ

; ð4:19Þ

where we see that the massM of the black hole shows itself
as the charge of a point particle and the electric charge q
results in a nonlocalized charge distribution which vanishes
as r → ∞. Obtaining the Coulomb solution in d ¼ 3 is a
very peculiar property, which is possible thanks to the fact
that the existence of the electric charge in the gravity side
changes the KS scalar (4.14) such that the modification has
the same functional form [logðrÞ] with the Coulomb solution
in d ¼ 3. In higher dimensions, as can be seen in (4.16), the
mass term carries the functional form of the Coulomb
solution given in (4.17), and therefore, yields a point charge
in the gauge theory. The modification due to the electric
charge has a different functional form and produces a
nonlocalized charge density as described in (4.19).

C. The charged Bañados-Teitelboim-Zanelli (BTZ)
black hole (Λ < 0)

We have shown that the Coulomb solution can be
obtained as a gauge theory single copy by considering
Einstein-Maxwell theory where either the EH term or the
vector kinetic term carries a ghost sign. One can introduce
the cosmological constant Λ such that solutions with the
correct Newtonian potential are recovered when Λ ¼ 0.
Instead, we will study the charged BTZ black hole whose
metric function reads [73]

fðrÞ ¼ −8GM þ r2

l2
− 2Gq2 logðrÞ: ð4:20Þ

Comparing this with the most general solution (4.7) gives
that the parameters should be chosen as follows:

C ¼ 1þ 8GM; Λ ¼ −
1

l2
; ζ ¼ 1; ð4:21Þ

where the last one equation shows that no ghost field is
needed to obtain the solution.
Gravitational field equations with the cosmological

constant (4.2) can be mapped to Maxwell’s equations by
again checking the μ0 component of the trace-reversed
equations and using (2.25), which yield

∂νFνμ ¼ g½JμðΛ¼0Þ þ J̄μ�: ð4:22Þ

Here, JμðΛ¼0Þ is the source in the absence of the cosmo-

logical constant, whose general form is given in (2.27). J̄μ

represents the effect of the cosmological constant on the
source and takes the following form:

J̄μ ¼ ρcv̄μ; ρc ¼
4Λ
g
; v̄μ ¼ ð1; 0; 0Þ; ð4:23Þ

which is a constant charge density filling all space. The KS
scalar corresponding to the metric function (4.20) is

ϕðrÞ ¼ 1þ 8GM þ Λr2 þ 2Gq2 logðrÞ; ð4:24Þ

with the single copy gauge field

Aμdxμ ¼ ϕkμdxμ

¼ −½1þ 8GM þ Λr2 þ 2Gq2 logðrÞ�ðdtþ drÞ:
ð4:25Þ

The field strength tensor reads

L=0.5 L=1.0 L=1.5

r r r
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FIG. 1. First row shows the effective potential V−
eff and the Newtonian potential V−

N for the metric function f−ðrÞ with GM ¼ 1
16
and

Gq2 ¼ 1
4
. The second row shows the effective potential Vþ

eff and the Newtonian potential V
þ
N for the metric function fþðrÞwithGM ¼ 1

16

and Gq2 ¼ 3
4
. For both cases, timelike geodesics are stable orbits when L > Lmin ¼ 1.

KERR-SCHILD DOUBLE COPY OF THE COULOMB SOLUTION … PHYS. REV. D 104, 044034 (2021)

044034-7



1

2
Fμνdxμ ∧ dxν ¼

�
Q
r
− Λr

�
dr ∧ dt; ð4:26Þ

where we have made the replacement −2Gq2 → Q. We see
that the gauge theory single copy of the charged BTZ
black hole is the Coulomb solution (Q < 0) modified by a
term which describes an electric field linearly increasing
with the radial coordinate r (since Λ < 0) and the source is
a point charge located in a medium of constant charge
density as follows:

Jμ∂μ ¼
�
Qδ2ðr⃗Þ þ 4Λ

g

�
∂t: ð4:27Þ

It is important to note that this is the usual behavior of the
Schwarzschild-AdS black hole in higher dimensions when
written around a flat background metric [43].
As we see, the Coulomb solution (Q < 0) modified

by the cosmological constant can be obtained from the
well-known charged BTZ black hole without any need for
introducing a ghost. From (4.8), one can calculate the
gravitational field in the Newtonian limit as

g⃗ ¼
�
Λr
2

þGq2

r

�
r̂; ð4:28Þ

which shows that a negative cosmological constant (Λ < 0)
is needed for an attractive force, which is possible when

r >
ffiffiffiffiffiffi
2Gq
−Λ

q
. The geodesics of the charged BTZ black hole

exhibit a very rich structure and the details can be found
in [76].

V. CONCLUSIONS

In this paper, we have studied the KS double copy of the
Coulomb solution in 3d, which is an important consistency
check for the classical double copy due to the lack of
degrees of freedom and a Newtonian limit in GR. The
double copy solution should have the correct Newtonian
limit, and in 3d, this can only be achieved by matter
coupling. In [60], the solution was constructed by coupling
to a scalar but has some undesired features. It is a hairy
black hole which requires that either the EH term or the
scalar kinetic term carry a ghost sign, and the scalar field
does not vanish at infinity. Making use of the on-shell
duality of a free scalar and a gauge vector, we have shown
that a solution with the correct Newtonian limit can also be
obtained as a solution of Einstein-Maxwell theory such that
the single copy is again the Coulomb solution. While at
least one ghost sign is still needed, the electric field in the
gravity side vanishes at infinity, which is an improvement
compared to the scalar case.
When a negative cosmological constant is introduced,

the charged BTZ black hole is a solution without any need
for a ghost field, and we have shown that the single copy

gauge field is the Coulomb solution (Q < 0) modified by a
term describing an electric field whose magnitude
linearly increases with the distance to the point charge.
The source is a point particle sitting in a medium of
constant charge density, which is the usual effect of the
cosmological constant. At the expense of this modification,
this remarkably establishes a connection to the well-known
black hole solutions in 3d gravity, which, we believe, shows
the potential of 3d KS double copy to have many other
interesting features. We hope to report more on this in the
future.

ACKNOWLEDGMENTS

M. K. G. is supported by TÜBİTAK Grant No. 118F091.
G. A. thanks Mehmet Özkan for helpful discussions
regarding the on-shell duality of p-form gauge fields.
We thank Merve Demirtaş Alkaç for her help in creating
high-resolution figures.

APPENDIX: SCALAR-VECTOR DUALITY
AS DESCRIBED IN [77]

Note that in our formulation of the scalar-vector duality
in Sec. III we have shown that free field equations in flat
spacetime are equivalent and a scalar field which is linear
in the azimutal angle (φ ¼ cθ, c ¼ constant) implies the
Coulomb solution for the gauge vector. This can be
generalized to curved spacetime as long as the metric is
in the KS form (2.4). However; our analysis is limited to the
matter equations and the gravity equations have to be
checked independently. The action (3.1) that we use to
establish the duality leads to a free scalar action with a
ghost sign (3.4) and a free Maxwell action with a nonghost
sign (3.6), which is enough to show the equivalence of
the matter equations. When coupling to the gravitation is
considered, in order to obtain a black hole solution with the
same physical properties, one needs to have a ghost scalar
and a ghost vector (we assume ζ1 ¼ 1, i.e., the EH term has
the “right sign,” for simplicity.)
Indeed, as shown in [77] recently, the duality can also be

formulated such that the gravitational action with the
correct sign for the matter coupling is obtained directly.
The authors consider theories described by Lagrangians of
the form Lðgμν; Rμν; ∂μφÞ and study solutions in the
following form:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dθ2;

φ ¼ cθ; c ¼ constant; ðA1Þ

which includes the solution that we studied in Sec. II with
the metric written in the BL coordinates. It is possible to
find theories such that the scalar equations is automatically
satisfied, the equation for the metric function gets a
nontrivial modification and can be solved analytically.
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They also show that the same solution can be obtained from
a dual Lagrangian of the form Ldualðgμν; Rμν; fμνÞ. When
the matter fields are related as6

fμν ¼ −
ffiffiffiffiffiffi
2π

p
ϵμνρ

∂L
∂ð∂ρφÞ

ðA2Þ

the dual Lagrangian is given by

Ldual ¼ L −
1

2
ffiffiffiffiffiffi
2π

p ϵμνρfμν∂ρφ; ðA3Þ

where the original Lagrangian L should also be written in
terms of fμν by using the relation (A2). In [77], nonminimal
matter couplings are used and regular, electrically charged
black hole solutions in three dimensions are obtained. In
this work, we only have the kinetic terms, which are the
simplest possible matter couplings. Starting from the
Lagrangian

L ¼ 1

κ2
Rþ 1

2
ð∂φÞ2; ðA4Þ

leads to the following dual Lagrangian:

Ldual ¼
1

κ2
Rþ 1

8π
fμνfμν: ðA5Þ

Both Lagrangians L and Ldual support the solution with the
correct Newtonian potential as long as the electric charge q
and the constant c are related as

c ¼ qffiffiffiffiffiffi
2π

p ; ðA6Þ

which is a consequence of (A2). Using the relation between
the mass parameterM in the scalar case with the constant c
(2.16), this implies

M ¼ q2; ðA7Þ

which shows the relation between the coefficient of the
logarithmic terms in the metric functions (2.22) and (4.10).
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