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We study the optical properties of the solar gravitational lens (SGL) while treating the Sun as an
extended, axisymmetric and rotating body. The gravitational field of the Sun is represented using a set of
zonal harmonics. We develop an analytical description of the intensity of light that is observed in the image
plane in the strong interference region of a realistic SGL. This formalism makes it possible to model not
only the point-spread function of point sources, but also actual observables, images that form in the focal
plane of an imaging telescope positioned in the image plane. Perturbations of the monopole gravitational
field of the Sun are dominated by the solar quadrupole moment, which results in forming an astroid caustic
on the image plane. Consequently, an imaging telescope placed inside the astroid caustic observes four
bright spots, forming the well-known pattern of an Einstein cross. The relative intensities and positions of
these spots change as the telescope is moved in the image plane, with spots merging into bright arcs when
the telescope approaches the caustic boundary. Outside the astroid caustic, only two spots remain and the
observed pattern eventually becomes indistinguishable from the imaging pattern of a monopole lens at
greater distances from the optical axis. We present results from extensive numerical simulations, forming
the basis of our ongoing study of prospective exoplanet imaging with the SGL. These results are also
applicable to describe a large class of gravitational lensing scenarios involving axisymmetric lenses that can
be represented using zonal harmonics.
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I. INTRODUCTION

Direct imaging of exoplanets is a challenging task. These
objects are not self-luminous, they are small and they are
very far from us. In addition, light from these sources
arrives in the presence of many unwanted signals that
represent various observational noises (i.e., light contami-
nation from the host star, zodiacal light in the parent stellar
system, background stars, etc.) As it is often the case in
astronomy, detection sensitivity improves with the size of
the telescope. However, there are practical limits when it
comes to the size of optical instruments. For instance, direct
observation of our own Earth from the distance of 100 light
years, resolving it as just a single pixel, a telescope aperture
of ∼90 km would be required. Higher resolution requires
even larger apertures, which are obviously impractical.
Very long baseline optical interferometry may offer sol-
utions when it comes to angular resolution but does not
resolve the problem of faintness: to achieve the desired light
amplification, a very large light collecting area is necessary.
These challenges motivate us to consider other physically

permissible ways to construct an imaging instrument with
superior sensitivity and resolving power. We study the solar
gravitational lens (SGL) as the means to achieve this
objective [1]. The SGL results from the gravitational bending

of light by the gravitational field of the Sun. The angle by
which a ray of light is deflected gravitationally is α¼2rg=b,
where rg¼2GM⊙=c2 is the Schwarzschild radius of the Sun
and b is the ray’s impact parameter. Obviously, b cannot be
smaller than the solar radius R⊙, as rays with impact
parameters b≲ R⊙ are obscured by the solar disk.
Consequently, the bending-of-light effect of the Sun is
rather weak, placing the focal region of the SGL (where,
depending on the impact parameter, light rays from a
distant source intersect) beyond z ¼ R2

⊙=ð2rgÞ ¼ 547.8
astronomical units (AU) from the Sun. Positioning a space-
craft with a modest telescope in that region, we benefit
from the very large light amplification of the SGL, given as
μ0 ¼ 2πkrg ¼ 1.17 × 1011 ð1 μm=λÞ, where k ¼ 2π=λ is
the wave number of an electromagnetic (EM) wave corre-
sponding to its wavelength λ.
Modeling the SGL requires knowledge of its point-

spread function (PSF). The PSF characterizes the impulse
response of the optical system: it maps light from a point
source into the image plane. Our investigations began with
treating the Sun as a point source of a monopole gravita-
tional field, leading to a PSF that is known very well (see
[1,2] and references therein). We also studied image
formation by the monopole gravitational lens [3,4].
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However, the actual, physical Sun is not a perfectly
structureless object with unbroken spherical symmetry. It
rotates and consequently, it is slightly oblate [5]. Thus, light
rays propagating from different directions along the solar
limb are affected slightly differently by solar gravity and thus
they are deflected by slightly different angles. As a result, as
the rays continue to travel along their paths along these
slightly different directions, they reach the focal region of the
SGL at different points. Instead of converging on the optical
axis, some rays of light miss the optical axis altogether,
intersecting the image plane elsewhere. In certain regions of
the image plane, this can yield strong constructive interfer-
ence resulting in the formation of caustics in the image plane
[5,6]. Elsewhere, destructive interference may produce new
patterns of alternating bright and dark regions, overlapping
with, and altering, the concentric pattern that is characteristic
of the monopole lens. Correct representation of this behavior
requires a wave-optical treatment of the gravitational lensing
phenomena.
Recently, we developed such a wave-theoretical treat-

ment for light propagation in a gravitational field of an
extended, axisymmetric and rotating body with its gravity
field characterized by a complete set of zonal harmonics [5]
perturbing the monopole gravitational field. Based on that
approach, we were able to describe gravitational lensing in
the presence of an extended axisymmetric gravitational lens
such as our Sun. Here, we continue to study the optical
properties of the SGL using this new, much improved
treatment of gravitational lensing. Our current objective is
to study the images formed by point sources of light in the
presence of the extended Sun, especially as it may be
applicable for prospective use of the SGL for direct
imaging and spectroscopy of exoplanets.
This paper is organized as follows: In Sec. II we discuss

our new angular eikonal method, which yields a new
diffraction integral that describes the light diffraction in
the strong interference region of an extended gravitational
lens. The external gravitational field is characterized by
using a gravitational monopole that is perturbed by an
infinite set of zonal harmonics. We discuss imaging of point
sources with such an SGL by convolving the PSF of the
extended Sun with that of an imaging telescope, modeled in
our case as a simple thin lens. In Sec. III, we numerically
evaluate diffraction integrals involved in characterizing the
optical properties of the extended axisymmetric lens. We
discuss the resulting views seen by the imaging telescope at
various locations in the image plane using a set of images
that are also assembled in the form of short animations,
presented as Supplemental Material. Lastly, in Sec. IV we
discuss results and outline the next steps in our investigation.

II. IMAGING WITH THE SGL

We characterize the SGL using its PSF. On its own, the
PSF of a gravitational lens characterizes the distribution of
light in an image plane. For practical imaging scenarios,

this is not sufficient. Light intensity in the image plane is
sampled by an optical instrument, such as a telescope, that
“looks back” at the lens (see relevant geometry in Fig. 4
of [3]). Such an instrument observes the lens (i.e., the solar
disk) surrounded by a full Einstein ring or partial spots and
arcs, as determined by the multipole moments character-
izing the lens and the shape and extent of the distant light
source. This combination of the SGL with an optical
instrument is achieved by convolving the SGL PSF with
that of the instrument.

A. Optical properties of the SGL

The presence of gravitational multipole moments
changes the conditions for the diffraction of light in the
gravitational field [5]. We characterize an EM wave with its
wave number k, and the SGL by the Sun’s Schwarzschild
radius rg. For a high-frequency plane EM wave (i.e.,
neglecting terms ∝ ðkrÞ−1) and for r ≫ rg, we derive the
field near the optical axis at heliocentric distance z, up to
terms of Oðρ2=z2Þ, in the form

�
Eρ

Hρ

�
¼
�

Hϕ

−Eϕ

�
¼E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0BðxÞeiðkz−ωtÞ

�
cosϕ

sinϕ

�
;

ð1Þ

with the remaining components being small, ðEz;HzÞ ¼
Oðρ=zÞ, or constant, σ0 ¼ −krg ln krg=e − π

4
[7]. In this

formulation, we use the following notations for the vector
of the impact parameter, b, coordinates on the image
plane, x, and the unit vector in the direction of the solar
axis of rotation, s:

b ¼ bðcosϕξ; sinϕξ; 0Þ; ð2Þ

x ¼ ρðcosϕ; sinϕ; 0Þ; ð3Þ

s ¼ðsin βs cosϕs; sin βs sinϕs; cos βsÞ: ð4Þ

The quantity BðxÞ≡ Bðρ;ϕÞ, is the complex amplitude
of the EM field in the image plane,

BðxÞ ¼ 1

2π

Z
2π

0

dϕξ exp

�
−ik

� ffiffiffiffiffiffiffi
2rg
r

r
ρ cosðϕξ − ϕÞ

þ 2rg
X∞
n¼2

Jn
n

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p
�

n
sinnβs cos½nðϕξ − ϕsÞ�

��
;

ð5Þ

after it scatters on the gravitational field of an extended lens
that is characterized by zonal harmonics.
Equation (5) is a new diffraction integral formula that

extends previous wave-theoretical descriptions of gravita-
tional lensing to a lens with an arbitrary axisymmetric
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gravitational field. This new result, obtained through what
we call the angular eikonal method [5], offers a powerful
tool to study gravitational lensing in the limit of weak
gravitational fields in the first post-Newtonian approxima-
tion of the general theory of relativity.
Using (1), we can compute the energy flux in the image

region of the lens. With overline and brackets denoting time
averaging and ensemble averaging, the relevant compo-
nents of the time-averaged Poynting vector for the EM field
in the image volume may be given in the following form
(see [1,3,7] for details): SzðxÞ ¼ ðc=4πÞh½ReE × ReH�zi ¼
ðc=4πÞE2

02πkrghðRe½BðxÞeiðkz−ωtÞ�Þ2i, with S̄ρ ¼ S̄ϕ ¼ 0

for all practical purposes.
Defining light amplification as usual [1,3,7], μzðxÞ ¼

SzðxÞ=jS0ðxÞj, where where S0ðxÞ ¼ ðc=8πÞE2
0k is the

Poynting vector carried by a plane wave in a vacuum in flat
spacetime, we have the light amplification factor of the lens
that, for short wavelengths (i.e., krg ≫ 1) is given by

μzðxÞ ¼ 2πkrg PSFðxÞ where PSFðxÞ ¼ jBðxÞj2; ð6Þ

with jBðxÞj2 ¼ BðxÞB�ðxÞ, with B�ðxÞ being the complex
conjugate of BðxÞ from (5), is the PSF of the SGL.
As we see from (6), light amplification by the lens is

driven by the factor μ0 ¼ 2πkrg. However, its overall
behavior is modified. The PSF of the lens is extended
from J20ðk

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
ρÞ, the form established for the monopole

lens (as discussed in [1]) and takes the form of jBðxÞj2
that now provides a complete description of the intensity
distribution in the image plane and accounts for gravita-
tional lensing by an arbitrary axisymmetric gravitational
potential.
PSFðxÞ determines the density of the EM field in the

image plane in the strong interference region of the SGL.
This function governs the optical properties of the SGL as
far as imaging is concerned, as it describes light received
in the image plane from a point source at infinity. Fig. 1
shows that jBðxÞj2 reaches its maximum value on the
caustic that is formed in the image plane. For lenses
dominated by the contribution of a single multipole
moment, these caustics acquire the shapes of hypocy-
cloids [6] (e.g., the astroid, characterizing the J2 quadru-
pole). However, when several multipole moments are
present, their interaction results in more complex shapes
(see [5,6] for discussion.)
As we apply these results to the SGL, we recognize the

fact that the Sun is an axisymmetric rotating body and as
such, it will have only even multipole moments, namely J2,
J4, J6, J8, etc. determined as J2 ¼ ð2.25� 0.09Þ × 10−7

[8], and J4 ¼ −4.44 × 10−9, J6 ¼ −2.79 × 10−10, J8 ¼
1.48 × 10−11 [9]. The J10 and higher multipole moments
have negligible effect on the SGL’s diffraction pattern, thus
may be omitted. With these values, we obtain the most
comprehensive form of the complex amplitude of the EM
field in the strong interference region of the SGL.

FIG. 1. Caustics representing individual contributions of the zonal harmonics of a gravitational field to the PSF (adapted from [5]).
Depicted are images of a point source, formed by a lens with a specific zonal harmonic, with other harmonics suppressed. The images
were obtained via numerical integration of PSF ¼ jBðxÞj2 with BðxÞ from (5). From top left, clockwise: (a) J2, J4, J6, J8; (b) monopole,
J3, J5, J7. For the odd-numbered caustics, a change in sign flips the image in the north-south direction.
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B. Image formation by an optical telescope
in the SGL image plane

Describing the caustic that is produced by the SGL in the
image plane is important, but it is just as important to realize
that the caustic is not a practical observable. The caustic
pattern is projected onto the image plane, where it would be
visible if its light was captured by a very large surface, i.e., a
projection screen. This is obviously not practical.
Instead, we expect that the SGL will be used in

conjunction with an imaging telescope that looks back at
the Sun. This telescope would see the Sun (likely blocked
by a suitable coronagraph), surrounded by the solar corona,
through which a distant source that is lined up with the
telescope would appear in the form of an Einstein ring. This
Einstein ring, or parts thereof, as it appears on the tele-
scope’s imaging sensor, is our primary observable.
To model this view, we represent the imaging telescope by

a convex lens with aperture d and focal distance f (again, see
Fig. 4 of [3]). The relevant geometry is described by several
parameters, such as x being the current position of an optical
telescope in the SGL’s image plane, x0, being any point on
the same plane within the telescope aperture positioned at x,
and xi, being a point on the focal plane of the optical
telescope. These positions are given as

fxg≡ ðx; y; 0Þ ¼ ρðcosϕ; sinϕ; 0Þ ¼ ρn; ð7Þ

fx0g≡ðx0; y0; 0Þ ¼ ρ0ðcosϕ0; sinϕ�; 0Þ ¼ ρ0n0; ð8Þ

fxig≡ðxi; yiÞ ¼ ρiðcosϕi; sinϕiÞ ¼ ρini: ð9Þ

As x is the position of the telescope in the image plane,
we present x as x ⇒ xþ x0, where x0 varies only with the
aperture, while x covers the entire image area. Therefore,
we may present the monopole term in (5) as

ρ cosðϕξ − ϕÞ ¼ ðnξ · xÞ → ðnξ · ðxþ x0ÞÞ
¼ ρ cosðϕξ − ϕÞ þ ρ0 cosðϕξ − ϕ0Þ: ð10Þ

As a result, the complex amplitude (5) takes the form [5]

Bðx;x0Þ¼ 1

2π

Z
2π

0

dϕξexp

�
−ik

� ffiffiffiffiffiffiffi
2rg
r

r
ðnξ ·ðxþx0ÞÞ

þ2rg
X∞
n¼2

Jn
n

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p
�

n
sinnβs cos½nðϕξ−ϕsÞ�

��
:

ð11Þ

The presence of a convex lens is equivalent to a Fourier
transform of the wave amplitude. We position the telescope
at a point with coordinates x0 in the image plane in the
strong interference region of the lens [10,11]. To stay
within the image, x0 is within the range: jx0j þ d=2 ≤ r⊕.
The amplitude of the EM wave just in front of the telescope
aperture, from (1), is given as Bðx;x0Þ.
The focal plane of the optical telescope is located at the

focal distance f of the lens, centered on x0. Using the
Fresnel–Kirchhoff diffraction formula, the amplitude of
the image field in the optical telescope’s focal plane at a
location xi ¼ ðxi; yiÞ is given by [12–14]:

Bðx;xiÞ ¼
i
λ

Z Z
jx0j2≤ðd=2Þ2

Bðx;x0Þe−i k2fjx0j2 eiks
0

s0
d2x0: ð12Þ

The function exp½−i k
2f jx0j2� ¼ exp½−i k

2f ðx02 þ y02Þ� repre-
sents the action of the convex lens that transforms incident
plane waves to spherical waves, focusing at the focal point.
Assuming that the focal length is sufficiently greater than
the radius of the lens, we may approximate the optical path
s0 as s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 − xiÞ2 þ ðy0 − yiÞ2 þ f2

p
∼ fþ ððx0 − xiÞ2þ

ðy0 − yiÞ2Þ=2f. Furthermore, Eq. (11) allows us to consider
imaging of point sources with the SGL, now treated as that
produced by a gravitating body that is axisymmetric and
rotating, thus admitting characterization of its external
gravitational field by zonal harmonics. To accomplish
this, following [3,11], we use the expression for Bðx;x0Þ
from (11) and present the Fresnel–Kirchhoff diffraction
formula (12) as

Bðx;xiÞ ¼ −
eikfð1þx2i =2f

2Þ

iλf
1

2π

Z
2π

0

dϕξ

Z
d=2

0

ρ0dρ0
Z

2π

0

dϕ0 exp
�
−ik

� ffiffiffiffiffiffiffi
2rg
r

r
ρ0 cosðϕξ − ϕ0Þ þ ρi

f
ρ0 cosðϕi − ϕ0Þ

�

− ik

� ffiffiffiffiffiffiffi
2rg
r

r
ρ cosðϕξ − ϕÞ þ 2rg

X∞
n¼2

Jn
n

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p
�

n
sinnβs cos½nðϕξ − ϕsÞ�

��
: ð13Þ

Following [3], we define the spatial frequencies

α ¼ k

ffiffiffiffiffiffiffi
2rg
r

r
; ηi ¼ k

ρi
f
; ð14Þ

and transform the ρ0-dependent part of the phase in (13) as

αρ0 cosðϕξ − ϕ0Þ þ ηiρ
0 cosðϕi − ϕ0Þ

¼ ρ0uðϕξ;ϕiÞ cosðϕ0 − ϵÞ; ð15Þ
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with the quantities u and ϵ are given by the following
relationships:

uðϕξ;ϕiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2αηi cosðϕξ − ϕiÞ þ η2i

q
;

cos ϵ ¼ α cosϕξ þ ηi cosϕi

u
;

sin ϵ ¼ α sinϕξ þ ηi sinϕi

u
: ð16Þ

This transforms expression (13) into

Bðx;xiÞ ¼ ieikfð1þx2i =2f
2Þ
�
kd2

8f

�
Aðx;xiÞ; ð17Þ

where Aðx;xiÞ is given by

Aðx;xiÞ¼
1

2π

Z
2π

0

dϕξ

�
2J1ðuðϕξ;ϕiÞ12dÞ

uðϕξ;ϕiÞ12d
�

×exp

�
−ik

� ffiffiffiffiffiffiffi
2rg
r

r
ρcosðϕξ−ϕÞ

þ2rg
X∞
n¼2

Jn
n

�
Rffiffiffiffiffiffiffiffiffi
2rgr

p
�

n
sinnβs cos½nðϕξ−ϕsÞ�

��
:

ð18Þ

Similarly to (6), we obtain the light amplification factor,
μðx;xiÞ ¼ Szðx;xiÞ=jS0ðx;xiÞj of the optical system con-
sisting of the SGL and an imaging telescope (i.e., the
convolution of the PSF of the SGL with that of an optical
telescope), that in the case of the extended SGL takes
the form

μðx;xiÞ ¼ 2πkrgIðx;xiÞ; ð19Þ

where Iðx;xiÞ ¼ jAðx;xiÞj2 is the intensity distribution
corresponding to the image of a point source as seen by the
imaging telescope.
As a result, to compute the power received by a detector

in the focal plane of an imaging telescope positioned at the
SGL image plane, we need to first compute the Fourier
transform of the complex amplitude of the EM field and
then follow the process that is outlined above and is
captured by (19) with Aðx;xiÞ from (19). This approach
makes it possible to employ the powerful tools of Fourier
optics (e.g., [15]) to develop practical applications of
the SGL.

III. NUMERICAL STUDIES

To analyze the imaging of point sources using extended
gravitational lenses, we conducted numerical investi-
gations of PSFðxÞ ¼ jBðxÞj2 from (6) and the intensity
distribution in the focal plane of an imaging telescope,

Iðx;xiÞ ¼ jAðx;xiÞj2, given by (19). Both expressions
allow us to study these quantities as the telescope moves
in the image plane. If no zonal harmonics are present,
both expressions reduce to their monopole forms studied
in [1,11], correspondingly.

A. Software

In anticipation of reuse, we developed a simple modular
software framework that consists of three main components:
(1) code that calculates the SGL PSF;
(2) code that calculates, e.g., the imaging telescope PSF

to be convolved with the SGL PSF;
(3) a code framework that calls these subroutines as

required, implements a standardized set of param-
eters, and outputs results.

Each of these components, written in the C++ language, is a
modular component that can be replaced with functional
equivalents.
The primary method of computing the PSF amounts to

numerically evaluating the integral (5). The phase that
appears under the integral sign can vary rapidly for large
values of ρ or for large values of the Jn coefficients.
Therefore, even in a naively implemented integrator, an
adaptive integration step is necessary to ensure that the
result remains accurate. In particular, numerical integration
of this expression becomes computationally expensive
when ρ is large, kρ

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
≫ Oð100Þ. For these cases,

we have also considered alternative integration methods;
this research will be published separately.
Equation (5) or, equivalently, Eq. (6), represents the

“raw” PSF of the SGL, i.e., it can be used to model images
that are projected onto the image plane by the Sun. In
contrast, Eq. (19) represents a convolution of the SGL PSF
with the recognizable PSF of the thin lens telescope, in the
form of the J1 Bessel function [16]. The simple appearance
of (19) in comparison with (6) represents a specific
application of the Fourier convolution theorem: indeed,
the PSF of any other optical system could be convolved
with the SGL PSF in a similar manner. In the software
implementation, we took advantage of this and imple-
mented the thin lens telescope PSF as a separate module,
anticipating the possibility that this PSF may be replaced
with one that characterizes a more complex imaging
system, which may also incorporate coronagraph instru-
ment which is needed to block the light from the solar disk
and that from the inner regions of the solar corona [17,18].
The software framework in which these modules are

implemented provides a set of standardized parameters that
can be used to control the computation. These include the
origin and size of the image plane area of interest, the focal
line of the optical telescope and the size of its sensors, as
well as physical parameters such as the image plane
distance from the Sun or the wavelength of light.
The result is a scriptable set of programs that produce

binary output in the form of an array of floating point
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numbers, representing the intensity of light either in the
image plane or on the sensor of the imaging telescope. The
implementation, though not yet optimized, is nonetheless
efficient enough to generate images in the matter of
minutes, making it possible to produce short animations,
“movies” using desktop-class computer hardware.
In the remainder of this section, we present some results

from this simulation and offer our interpretation and insight.

B. The monopole PSF

As we observed in the monopole case [11], if the
telescope is positioned on the primary optical axis of the
lens, it sees a perfect Einstein ring (Fig. 2). As the telescope
begins to move away from that position, increasing the

separation from the optical axis, ρ, the ring will break into
two arcs of even brightness. As ρ increases, the arcs
transform into two spots with even brightness (Fig. 3).
The telescope must move a large distance (comparable to
the solar radius) away from the optical axis before the
two spots begin to shift noticeably, and their brightness
becomes uneven. For large ρ, eventually one spot becomes
hidden behind the Sun, while the other appears at an ever
greater distance from the Sun. Eventually, a very large
distance away from the optical axis this spot becomes the
unamplified, direct view of the point source. This behavior
is axisymmetric, representing the inherent symmetries of
the monopole case where the PSF is axisymmetric.
Our region of interest in the present investigation

remains the immediate vicinity of the optical axis. It is

FIG. 2. The monopole PSF of the SGL and the resulting Einstein-ring as seen through an imaging telescope. The PSF (left) at
λ ¼ 1 μm is shown in a 4 × 4 m2 area at 650 AU from the Sun.The PSF consists of a concentric wave pattern. The resulting telescopic
image, shown right, is as seen by a thin lens telescope with a 1 m aperture. Thin yellow circle represents the outline of the solar disk.

FIG. 3. View of a point source (same as in Fig. 2) by an optical telescope with a 1 m aperture, from various vantage points in an image
plane 650 AU from the Sun (indicated by the yellow circle, always centered in the image). Left: the telescope is located at
ρ ¼ 20; 000 km to the right of the optical axis; the image is still apparently symmetric, with significant light amplification evident.
Middle: by ρ ¼ 100; 000 km, significant asymmetry develops, with the “minor” image about to be obscured by the Sun. Right: at
ρ ¼ 300; 000 km, the “minor” image (which would now be substantially fainter) is fully obscured by the Sun, while the “major” image,
no longer substantially amplified by lensing, is transitioning into the stand-along image of the point source unaffected by solar gravity.
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in this region that the effect of deviations from the
monopole gravitational potential can be profound, with
direct impact the SGL’s image forming capability.

C. The PSF of the extended Sun

In the case of the Sun, deviations from the monopole
gravitational potential, especially at high solar latitudes,
sin βs ≪ 1, are dominated by the gravitational field’s
quadrupole moment, which yields the well-known astroid
caustic [6]. An example of this is shown in Fig. 4 (left).
As we discussed in [6], based on the diffraction

integral (5), and defining

α ¼ k

ffiffiffiffiffiffiffi
2rg
r

r
; β2 ¼ krgJ2

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p
�

2

sin2βs; ð20Þ

the astroid caustic may be given in a parametric form as

x ¼ 4β2
α

cos3ϕ;

y ¼ 4β2
α

sin3ϕ ⇒ ρc ¼
4β2
α

ð1 − 3sin2ϕcos2ϕÞ12; ð21Þ

where ρc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the radius vector of the caustic in

the polar coordinate system ðρ;ϕÞ.
For a given target, the size of the quadrupole caustic

of the SGL is set by the angle βs and the heliocentric
distance to the observer’s location in the image plane. For
βs ¼ 8.13° used in our simulations, at r ¼ 650 AU and
λ ¼ 1000 nm, the parameters α and β2 are determined to
be α ∼ 48.97 m−1, β ∼ 70.37. The cusps of the caustic
appear at four locations ϕ ¼ f0; π

2
; π; 3π

2
g being placed

at the distance of ρcuspc ¼ 4β2=α ∼ 5.75 m. Similarly,
the folds are at ϕ ¼ fπ

4
; 3π
4
; 5π
4
; 7π
4
g, at the distance of

ρfoldc ¼ 2β2=α ¼ 2.87 m.
These parameters yield an astroid caustic that is approx-

imately 11.5 meters along a cusp-to-cusp direction and is
5.75 meters along a fold-to-fold diagonal. The images
shown in this section are all simulations of a 20 × 20 meter
region in the image plane, which comfortably fits this
astroid and the region immediately outside.
A telescope positioned at the center of the astroid caustic,

ρ ¼ 0, of a point source of light “sees” a well-known
pattern: four symmetrically positioned spots of light, the
famous Einstein-cross, shown in Fig. 4 (right). A telescope
that is positioned away from the optical axis, ρ ≠ 0,
associated with a point source no longer sees such a
symmetric pattern. Instead, a rich behavior emerges involv-
ing multiple spots and arcs of light, markedly different
when the telescope is positioned inside vs outside the
astroid caustic. This is the behavior that we study in the
present section, using a point source emitting monochro-
matic light at λ ¼ 1 μm. Our model telescope is a thin lens
telescope with a f ¼ 10 m focal distance, projecting light
onto an image sensor that is 200 × 200 μm in size.
In the subsections below, we offer details and insight

using key reference frames, which are taken from more
lengthy animations, mini-“movies” that show images that a
telescope in motion might see. The full videos that
correspond to these reference frames are available at
Supplemental Material [19] to the present paper.

D. Inside the astroid caustic

Displacing the telescope from the center of the astroid
caustic, we now study the resulting behavior. Figure 5,

FIG. 4. Left: the SGL PSF, as projected onto a 20 × 20 m2 area in an image plane 650 AU from the Sun, at a high solar latitude, 8.13°
from the solar axis of rotation, which produces an astroid caustic that is approximately 2ρcuspc ¼ 2ð4α=β2Þ ∼ 11.5 m diagonally, cusp-
to-cusp. A distant point source emitting monochromatic light at λ ¼ 1 μm is used. Right: view from a telescope, located at the center of
the PSF and aimed at the Sun. The outline of the Sun is indicated by the yellow circle.
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top left shows what happens to the view of the telescope if it
is displaced by ρ ¼ 2 m from the optical axis in the image
plane (i.e., away from the center of the caustics, but not yet
at the fold ρ < ρfoldc ), as shown by the thin crosshairs in
the image. The corresponding view in the telescope is a
distorted version of the Einstein cross. In the image frames
that are presented in the first two vertical columns of Fig. 5,

the telescope then begins to move in a circular pattern,
completing a 90° arc around the optical axis while main-
taining a 2 m radial distance. As we can observe, the four
spots of light that constitute the Einstein cross move about,
their relative positions changing, but they radial distance
from the center of the image sensor is unchanged. This
corresponds to the fact that the impact parameter b is

FIG. 5. Left: the optical telescope moves around inside the caustic boundary, at a distance of ρ ¼ 2 m from the optical axis. First
column: crosshairs mark the telescope position with respect to the caustic background; Second column: the view of the Einstein cross as
seen by the telescope from the marked position. Right: as on the left, still mostly inside but closer to the boundary, at ρ ¼ 3 m. As the
telescope approaches the caustic boundary, the two spots of lights that it sees merge into a partial arc. Note that the telescopic view is
inverted with respect to the projected caustic: The caustic is viewed from the direction of the Sun, the telescope looks toward the
direction of the Sun.
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determined by the solar monopole, so any light hitting the
telescope aperture at a given distance from the Sun will
always arrive from the same apparent distance from the
solar limb.
The rightmost two columns of Fig. 5 show the same

view, except that in this case, the imaging telescope is now
located at ρ ¼ 3 m from the center, which is ρ ≃ ρfoldc .
This distance is sufficient for the telescope to reach the
position of the caustic boundary in the “fold” region of the

astroid caustic, halfway between cusps. This has a pro-
found impact on the image produced by the imaging
telescope. When the telescope is in this region near the
fold, two of the light spots from the Einstein cross merge,
form an elongated, brightened arc of light. The arc is at
its brightest when the telescope is closest to the caustic
boundary. We can also see (middle row) that the arc begins
to diminish rapidly as soon as the telescope is positioned
outside the caustic boundary.

FIG. 6. Left: the optical telescope is now mostly outside the caustic boundary, only encountering it briefly at the cusps, at a distance of
ρ ¼ 5 m from the optical axis. First column: the telescope position with respect to the caustic, second column: the view of the Einstein
cross as seen by the telescope. Right: as on the left, still further outside at ρ ¼ 7 m. No Einstein-cross is visible in these images; even as
the telescope moves through the cusp region and sees a considerably widened arc, the arc does not split into multiple spots of light.
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E. Outside the astroid caustic

Positioning the imaging telescope at a radial distance of
ρ ¼ 5 m changes its view dramatically, as now we are in
the vicinity of the cusp, ρ ≃ ρcuspc . At this radial distance
and in the direction of one of the cusps, the telescope
intersects the brightest region of the cusp of the caustic
boundary, but elsewhere, it is now positioned firmly outside
the boundary. At the cusp, as we can see in Fig. 6 (top left),
three of the spots from the Einstein cross now merge into a

bright, significantly elongated partial arc; only one stand-
alone spot remains on the opposite side. As the telescope
begins its angular motion, however, the arc rapidly collapse
to a single spot of light; the other two spots are absent when
the telescope is outside the caustic boundary. The bright arc
reappears as the telescope completes a 90° arc along its
path, approaching the next cusp of the caustic boundary.
Finally, when we place the telescope even further outside

the caustic boundary, ρ ¼ 7 m > ρcuspc , the resulting image

FIG. 7. The intensity of light that is seen by an imaging telescope, corresponding to Figs. 5 and 6. The four columns correspond to
telescope locations at 2, 3, 5 and 7 m from the optical axis, respectively. The five rows show five phases of the telescope’s path as it
traverses 90° in the image plane while maintaining a constant distance from the optical axis.
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reduces to two spots, one of which brightens and elongates
but only a little when the telescope is near the cusp regions.
We can already discern in this behavior the emergence of
the monopole pattern: a little further out, we recover the
behavior seen in Fig. 3 (left), two identical spots of light at
at the same distance from the Sun, on opposite sides. Thus
we can see that outside the caustic boundary, the influence
of the quadrupole moment diminishes rapidly.

F. Light amplification

Images such as Figs. 5 and 6 offer a visual representation
of the view seen by an imaging telescope, but cannot be
readily used to judge the amount of light collected by such
a telescope. For this reason, we prepared another series of
plots that show the intensity of light on the telescope sensor
in a three-dimensional form, on a third axis (Fig. 7). The
vertical scale is, of course, arbitrary (hence unlabeled) since
it is determined by the intensity of the point source. In this
figure, all four cases are shown (2 m through 7 m, in four
columns) along with the phases of telescope motion that
were presented in Figs. 5 and 6. As we can observe, the
peak brightness between the images varies relatively little.
However, when the telescope is positioned on the caustic
boundary, especially near the cusps, it collects substantially
more light due to the widening of the arcs that appear on its
sensor. This is especially evident in the top and bottom
images of the third column, corresponding to the telescope
located at 5 m from the optical axis, corresponding to the
approximate distance of the peak cusp region.

G. Dependence on wavelength

Finally, we must again emphasize that this analysis and
the modeling tools that we developed take the wave-optical

nature of light fully into consideration. As such, they offer
the capability to model light at any wavelength, thus
modeling observations using visible colors or other, multi-
spectral observation.
By way of example, we present a snapshot view by the

optical telescope at a distance of 3 m from the optical axis,
but this time viewing light in the three wavelengths that
characterize human vision: red (700 nm), green (530 nm)
and blue (470 nm). Studying the color caustic in Fig. 8
(left), we note that the overall geometry of the caustic
boundary is unchanged. Moreover, the boundary itself is
achromatic: light in the boundary region is predominantly
white, indicating that the effect of the SGL PSF in these
regions is independent of wavelength. Inside the caustic
boundary, however, the interference pattern shows strong
wavelength dependence: as a result, the colors of the
rainbow appear. Similarly, outside the caustic boundary,
the concentric pattern of the monopole PSF begins to
emerge, but its spatial wavelength, too, depends on the
wavelength of light; therefore, colors are separated and the
colors of the rainbow emerge.
The telescopic view of the Einstein cross reflects these

observations. The bulk of the light is white, albeit with a
reddish tint: this tint emerges because of the dependence
of the J1 Bessel-function term in Eq. (19), representing the
thin lens telescope, on the wave number k. Only near the
fringes of the spots or arcs of light seen by the telescope do
we note the appearance of the colors of the rainbow, in the
form of rapidly diminishing diffraction artifacts.
In this section, we presented a qualitative description of

numerical results from modeling the PSF of the extended
Sun and its convolution with a thin lens imaging telescope.
These results will be used subsequently for numerical
modeling of the imaging of extended objects such as an

FIG. 8. The formalism that we introduced is entirely wave-optical in nature, and as such, makes it possible to model accurately color,
including multispectral imagery. This is a representative image showing the SGL PSF and the view through an imaging telescope in the
three RGB color channels that correspond to human color vision. Note that the caustic boundary is achromatic.
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exoplanet, image convolution and deconvolution, and
estimates of light amplification and noise. These efforts
are presently ongoing.

IV. DISCUSSION AND CONCLUSIONS

We continue to investigate the gravitational deflection of
light by extended gravitational lenses. Based on the wave-
optical method developed in [5], we treat the lens as an
extended axisymmetric gravitating body that possesses an
infinite set of zonal harmonics. Light propagation on such a
background results in the formation of various caustics [6].
Each multipole introduces a caustic of a particular shape
(see Fig. 1) and, in the case when several multipoles are
present, an effective caustic is formed whose structure is
now determined by the combined action of the multipoles.
In this paper, we investigated how the imaging of point

sources by the SGL is affected by the presence of the
multipole caustics. For that, we used the known measured
values of the leading zonal gravitational harmonics of the
Sun. We have shown that the presence of the caustics
affects the imaging by modifying the structure of the
imaging content projected on the Einstein ring. The ring
is broken on several individual bright spots where the
number of the spots is determined by the largest multipole,
representing the symmetries relevant to that multipole.
In the case of the Sun, the astroid caustic caused by its

quadrupole moment, J2, dominates. The presence of other
solar multipoles contribute only small perturbations to the
astroid caustic of the quadrupole.
When viewed by an imaging telescope, the main conse-

quence of the presence of the quadrupole moment is that the
Einstein ring, which characterizes a monopole lens, is
broken up into several spots and arcs. When the imaging
telescope is located within the astroid caustic, the ring is
broken in four bright spots, which are moving within the
circumference of the ring on the focal plane of the imaging
telescope as the telescope changes its position in the image
plane. If the telescope is positioned exactly on the principal
optical axis of the SGL, the spots of equal brightness are
positioned exactly in the direction of the cusps of the caustic.
However, as the telescope changes its position, both the
relative brightness of the spots and their position in the ring
change in a fashion prescribed by (5) and (18).
When the telescope approaches one of the caustic cusps,

a remarkable transformation takes place: three of the spots
of light converge to form a partial arc. This arc eventually

collapses into a single spot as the telescopic image trans-
forms into the same image we see when viewing a point
source through a monopole gravitational lens farther from
the optical axis: two symmetrical spots of light (note that
eventually these spots become asymmetric, but only at
distances from the optical axis that are many orders of
magnitude greater than what is being investigated here.)
When the telescope approaches one of the caustic folds,

a different transformation can be seen: two of the spots
merge into a single arc, which then rapidly disappears as
the telescope moves outside the caustic region. The
remaining two spots eventually transform into the image
that is projected by a monopole SGL.
The image transformations discussed above are captured

by the wave-optical treatment of the gravitational lensing
phenomena [5]. They relate the caustics formed on the
image plane [6], as given by (5), to the images formed on
the image sensor of an imaging telescope, as given by (18).
Understanding of these transformations is important for the
on-going development of the deconvolution algorithms [4]
that may be needed to recover high-resolution images of the
faint sources.
These results and our investigation pave the way toward

the imaging of extended, resolved objects by extended
axisymmetric lenses, such as the SGL. Extended objects
can, of course, be modeled as ensembles of point sources.
The SGL PSF can be convolved with the source image to
model light projected by the SGL in the image plane, or
light seen by an imaging telescope. Inverting the process,
that is, deconvolution, can be used to recover the original
image from observational data.
Although our present focus is gravitational lensing by

the Sun, our results are directly applicable to other
astrophysical lenses that are characterized by axisymmetric
gravitational fields and can be modeled using zonal
harmonics.
These studies are ongoing. Results, when available, will

be reported elsewhere.
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