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Autoparallel curves along with geodesic curves can arise as trajectories of physical test bodies. We
explicitly derive autoparallels as effective post-Riemannian geometric constructs, and at the same time we
argue against postulating autoparallels as fundamental equations of motion for test bodies in alternative
gravity theories.
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I. INTRODUCTION

The equations ofmotion of test bodies in relativistic gravity
are tightly linked to the conservation laws of the theory [1–3].
The explicit derivation of these equations has been inter-
twined with the development of approximation schemes
within relativistic gravity [4–6]. As it is well known, geodesic
curves arise as trajectories of structureless test bodies in
Riemannian spacetimeswith themetric gij as thegravitational
field potential, which determines the metric-compatible
Christoffel connection Γ̃ij

k ¼ 1
2
gklð∂igjl þ ∂jgil − ∂lgijÞ.

In alternative gravity theories the set of the gravitational
field variables is extended to (gij, Γij

k) where the con-
nection and the metric are no longer compatible, so that
the torsion Tij

k ≔ Γij
k − Γji

k and the nonmetricity Qkij ≔
−∇kgij ¼ −∂kgij þ Γki

lglj þ Γkj
lgil are nontrivial, in gen-

eral. Autoparallel curves have been postulated on several
occasions in the literature as candidates for the equations
of motion of test bodies in alternative gravity theories.
Such ad hoc postulates, unsubstantiated by the conserva-
tion laws, usually lead to inconsistencies with the field
equations. Consequently one should abstain from the
practice of postulating equations of motion instead of
deriving them [7,8]. With this warning in mind, we here
report on two special cases, in which autoparallel curves
actually do emerge in theories with post-Riemannian
spacetime structure.
Let us consider the dynamics of massive particles under

the action of the gravitational gij and a scalar ϕ field. We
demonstrate that it is possible to recast the latter into a
geometric property of the underlying spacetime, and

construct an effective torsion Tij
k and nonmetricity Qkij

from this scalar field. As a preliminary step, we recall that the
deviation of the spacetime geometry from the Riemannian
[9] one is described by the distortion tensor which measures
the difference of connections,Nij

k ≔ Γ̃ij
k − Γij

k. Explicitly:

Nij
k ¼ −

1

2
ðTij

k − Tj
k
i þ Tk

ijÞ þ
1

2
ðQk

ij −Qij
k −Qji

kÞ:
ð1Þ

II. EFFECTIVE TORSION FROM THE
SCALAR FIELD

At first, we set the nonmetricity equal zeroQkij ¼ 0, and
introduce the torsion tensor of the form

Tij
k ¼ δki Vj − δkjVi; ð2Þ

where the vector field

Vi ¼ ξ∂iϕ ð3Þ

is the gradient of the scalar field ϕ with some arbitrary
parameter ξ. By construction, the torsion (2) has only one
irreducible part, namely, the trace Tki

k ¼ 3Vi.
Accordingly, we derive from (2) and (1) the distortion

(which is equal to the contortion tensor in this case):

Nij
k ¼ gijVk − δki Vj: ð4Þ

Now we write down the autoparallel equation for a point
particle with the velocity ui ¼ dxi

ds :
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Duk

ds
¼ d2xk

ds2
þ Γij

kuiuj ¼ 0: ð5Þ

Substituting Γij
k ¼ Γ̃ij

k − Nij
k and using (4), we recast (5)

into

d2xk

ds2
þ Γ̃ij

kuiuj − ðVk − ukuiViÞ ¼ 0: ð6Þ

With the help of (3), we finally rewrite (6) as

d2xk

ds2
þ Γ̃ij

kuiuj ¼ ξðgik − ukuiÞ∂iϕ: ð7Þ

III. EFFECTIVE NONMETRICITY
FROM THE SCALAR FIELD

Another non-Riemannian interpretation of the equation
of motion (7) can be achieved by setting the torsion equal
zero Tij

k ¼ 0, and by using the nonmetricity of the form

Qkij ¼ −gijVk þ gkðiVjÞ: ð8Þ

As becomes clear from (8), such nonmetricity has two
nontrivial irreducible parts: the 3rd and the 4th (Weyl
vector). Substituting this into (1), we find the distortion
tensor

Nij
k ¼ gijVk − δkðiVjÞ: ð9Þ

As a result, we discover that the autoparallel equation (5)
again reads

d2xk

ds2
þ Γ̃ij

kuiuj − ðVk − ukuiViÞ ¼ 0: ð10Þ

Then, by identifying, as before, the vector field with the
gradient of the scalar field (3), we finally obtain the same
equation of motion (7).

IV. MORE ON AUTOPARALLELS

The possible role of autoparallels in alternative gravity
has been the subject to several works [10–13]. As becomes
clear from (1), the most general autoparallel equation may
be written in terms of the metric, the nonmetricity, and the
torsion and the well-known decompositions [9,14] of these
geometrical quantities may be used to study subcases.

d2xk

ds2
þ ðΓ̃ij

k − Nij
kÞuiuj ¼ 0: ð11Þ

In view of the symmetry of the factor uiuj, all four
irreducible parts of the nonmetricity tensor Qijk ¼
ð1ÞQijk þ ð2ÞQijk þ ð3ÞQijk þ ð4ÞQijk and two irreducible

pieces of the torsion tensor Tijk ¼ ð1ÞTijk þ ð2ÞTijk (the
traceless tensor part, and the vector trace of the torsion)
can contribute to (11), excluding the axial trace of the
torsion. It is possible to develop a corresponding classi-
fication of the autoparallel curves, thereby generalizing the
earlier findings of [15] from Riemann-Cartan spaces to
metric-affine geometries. Here we have demonstrated the
distinguished role of the vector parts of the torsion and the
nonmetricity.
However, it should be stressed, as it has been shown

for a very large class of gravitational theories [16], that
the autoparallel equation does not emerge as the equation
of motion.
One should carefully distinguish the physical and the

mathematical aspects when analyzing the motion of test
particles. From the mathematical point of view, it is possible
to postulate any trajectories in the post-Riemannian space-
times, and autoparallel curves may look indeed like a
reasonable choice which describes the “straightest” curve
between any two points on a manifold. However, from the
point of view of physics, we should explain the physical
reason which forces a test particle to move along such a
trajectory. In this sense, the following analogy could be
helpful. Let us consider an electrically neutral but massive
point particle on a Riemannian manifold, which moves, as
one knows, along the Riemannian geodesic curves. This
motion is a result of an action of the gravitational field on
particle’s mass. Suppose, however, that in addition we switch
an electric or magnetic (or, in general, an electromagnetic)
field on. Does this change the motion of a neutral test
particle? The answer is crystal clear: no. Such a particle will
still move along the Riemannian geodesic trajectory, without
feeling the presence of electric and magnetic fields, no
matter how strong they are, because it does not carry an
electric charge. The situation with the motion of a massive
point particle in post-Riemannian geometries is completely
analogous. Since the mass is the only physical property
(¼ “gravitational charge”) of a particle, the latter plainly
cannot feel any additional post-Riemannian geometrical
fields, such as the torsion and the nonmetricity. Just like
one needs to attach an electric charge to a test particle in order
to force it to deviate from thegeodeticmotion under the action
of an electromagnetic field, in order to force a particle tomove
along an autoparallel instead of a geodesic curve, one should
attach to it an additional “charge” that interacts with the
torsion and/or nonmetricity. Indeed, the corresponding analy-
sis [7,16] of the equations of motion in metric-affine gravity
(MAG) reveals that one needs matter with microstructure
(i.e., with spin, dilation, and/or shear charge) to feel post-
Riemannian parts of the gravitational field.

V. CONCLUSION

In order to demonstrate the physical relevance of the
equation of motion above, let us consider the modified
action of a structureless point particle

YURI N. OBUKHOV and DIRK PUETZFELD PHYS. REV. D 104, 044031 (2021)

044031-2



I ¼
Z

φds ¼
Z

φðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijðxÞ

dxi

dλ
dxj

dλ

r
dλ: ð12Þ

Such a nonminimal coupling, where the function φ can
depend arbitrary on the spacetime coordinates (either
directly, or via the geometric invariants), can be viewed
as a description of the motion of a body with a variable
mass [17].
The variation with respect to the coordinates xkðsÞ of the

particle is straightforwardly computed

δI ¼
Z

ds

�
φ

�
1

2
δgij

dxi

ds
dxj

ds
þ gij

dxi

ds
dδxj

ds

�
þ δφ

�
;

¼
Z

dsδxk
�
1

2
φð∂kgijÞuiuj −

d
ds

ðφgkiÞui

− φgki
dui

ds
þ ∂kφ

�
;

¼ −
Z

dsgikδxk
�
φ

�
dui

ds
þ Γ̃mn

iumun
�
− ∂iφþ dφ

ds
ui
�
:

ð13Þ

Accordingly, the minimal action principle δI ¼ 0 yields
the equation of motion

d2xi

ds2
þ Γ̃mn

iumun ¼ ðgij − uiujÞ∂j logφ: ð14Þ

By setting φ ¼ eξϕ, we thus conclude that formally there
exist two possibilities to recast the equation of motion (14)
into an autoparallel in a non-Riemannian spacetime: with
the effective torsion (2) or with the effective nonmetricity
(8). In principle, one could even think of a combination of
the two cases into a more general spacetime geometry with
both torsion and nonmetricity.
It is instructive to compare the above results to the

equations of motion of a spinless particle nonminimally
coupled to the gravitational field, derived from first princi-
ples on the basis of the conservation laws [18–20]. Therein,
by means of multipolar techniques it was shown, for a very
large class of gravitational theories, that test bodies perform a
non-geodesic motion with a “pressure”-like force. At the first

sight, the resulting equations are equivalent to the autopar-
allel curve (5) found above. However, one should be clear
about the fact that this similarity is purely formal. In contrast
to the derivation given in [18–20], the effective torsion (2)
and the nonmetricity (8) are not linked to any kind of
gravitational field equations.
Alternative theories of gravity can be studied in the

unified framework of metric-affine gravity [14]. The latter
is based on gauge-theoretic principles, and it takes into
account microstructural properties of matter (spin, dilation
current, proper hypercharge) as possible physical sources of
the gravitational field on an equal footing with macroscopic
properties (energy and momentum) of matter. The corre-
sponding spacetime landscape includes as special cases
the geometries of Riemann, Riemann-Cartan, Weyl, and
Weitzenböck. In the standard formulation of MAG as a
gauge theory [14], the gravitational gauge potentials are
identified with the metric, coframe, and the linear connec-
tion. The corresponding gravitational field strengths are then
the nonmetricity, the torsion, and the curvature, respectively.
A unified covariant framework for the test body equations of
motion in MAG can be found in [16].
As long as no dynamics of the genuine spacetime torsion

and nonmetricity is assumed in a particular alternative
gravity model, it makes no sense to postulate the equation
of motion of a test body in the form of an autoparallel. Such
a postulate may even be at odds with the actual equations of
motion of a theory—which should be derived from its
conservation laws, and for the minimal coupling of the
structureless matter the resulting trajectory is a Riemannian
geodesic curve [7,16].
It would be a deep delusion to overestimate the two

curious examples with artificial torsion and nonmetricity
above, and interpret them as an evidence of the physical
significance of the autoparallel prescription.
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