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The graphical calculus method is generalized to study the relation between covariant and canonical
dynamics of loop quantum gravity. On one hand, a graphical derivation of the partition function of the
generalized Euclidean Engle-Pereira-Rovelli-Livine (EPRL) spin-foam model is presented. On the other
hand, the action of a Euclidean Hamiltonian constraint operator on certain spin network states is calculated
by graphical method. It turns out that the EPRL model can provide a rigging map such that the Hamiltonian
constraint operator is weakly satisfied on certain physical states for the Immirzi parameter β ¼ 1. In this
sense, the quantum dynamics between the covariant and canonical formulations are consistent to each
other.
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I. INTRODUCTION

Loop quantum gravity (LQG) provides a nonperturbative
and background-independent approach to the quantization
of general relativity (GR). In the past thirty years, remark-
able achievements have been made in the field of LQG (see
[1–4] for books, and [5–11] for review articles). Both the
canonical and the covariant (path integral) formulations of
LQG have been developed.
Canonical LQG is based on the Hamiltonian formulation

of GR in the Ashtekar-Barbero variables [12–14]. The
spacetime manifold has the structure M ≅ R × Σ with Σ
being a 3-dimensional manifold of arbitrary topology. The
canonical variables defined on Σ are the suð2Þ-valued
connection Ai

aðxÞ and the densitized triad Ẽa
i ðxÞ, where

i; j; k; � � � ¼ 1, 2, 3 are the suð2Þ indices while a, b, c are
the spatial indices. The only nontrivial Poisson bracket
between these variables reads

fAi
aðxÞ; Ẽb

j ðyÞg ¼ κβδbaδ
i
jδ

3ðx; yÞ; ð1:1Þ

where κ≡ 8πG with G being the Newtonian constant, and
β denotes the Immirzi parameter [14,15]. The elementary
algebra, which can be directly promoted to that of the
fundamental operators, consists of the holonomies geðAÞ of
Ai
a along one-dimensional edges e and fluxes ẼjðSÞ of Ẽa

i

through two-dimensional surfaces S. It turns out that there
is a unique gauge and diffeomorphism invariant cyclic

representation of the holonomy-flux C�-algebra [16]. The
resulting representation space is the gauge and diffeo-
morphism invariant version of the kinematical Hilbert
space Hkin ≔ L2ðĀ; dμoÞ, where Ā is the space of dis-
tributional connections, and dμo is the Ashtekar-
Lewandowski measure [17,18]. The basis of Hkin consists
of the spin network states Tγ;j⃗;⃗iðAÞ defined on arbitrary
finite graphs γ in Σ with a spin je and an intertwiner iv
coloring each edge e and each vertex v of γ. The classical
spatial geometric functions, such as the length, area, and
volume have been successfully quantized as the corre-
sponding operators in Hkin, and they all have discrete
spectra [19–24]. In the connection formulation, GR is cast
into a constrained system with three first-class constraints,
the Gaussian, diffeomorphism, and Hamiltonian con-
straints. The Gaussian and diffeomorphism constraints
have been successfully implemented at quantum level.
Thus the quantum dynamics is encoded in the
Hamiltonian constraint. How to suitably quantize the
Hamiltonian constraint and how to construct the physical
Hilbert space are still under debate. Thus the quantum
dynamics in canonical LQG remains obscure up to now.
Nevertheless, some well-defined Hamiltonian constraint
operators for pure gravity as well as gravity coupled to
matter were constructed in different ways [25–32]. Some
properties of certain Hamiltonian operators were studied
analytically as well as numerically [33–36].
As a kind of path-integral formalism for GR, covariant

LQG is well known as certain spin-foam model (SFM). A
spin-foam is a dual 2-cell complex Δ� with faces f labeled
by spins jf and edges e labeled by intertwiners ie. A slice of
a spin-foam at “fixed time” gives a spin network state.
Hence a spin-foam can be interpreted as an evolutional
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history of a spin network state, and can be understood as a
formulation describing the quantum geometry of space-
time. A SFM is defined by assigning transition amplitudes
Af, Ae and Av to the faces f ∈ Δ�, the edges e ∈ Δ� and the
vertices v ∈ Δ�, respectively. The key observation of
current SFMs is that 4-dimensional GR can be written
as a BF theory with the so-called simplicity constraint
forcing the B field to be obtained from the tetrad field.
Hence the strategy is first to derive the BF partition
function ZBFðΔ�Þ by discretizing the BF action on Δ�
and its dual Δ, and then to impose a quantum version of the
discretized simplicity constraint on ZBFðΔ�Þ, leading to the
resulting partition function

ZSFMðΔ�Þ ¼
X
jf;ie

Y
f

Af

Y
e

Ae

Y
v

Av: ð1:2Þ

Different implementing schemes of the simplicity con-
straint lead to different SFMs, for examples, the
Barrett-Crane (BC) model [37,38], the Engle-Pereira-
Rovelli-Livine (EPRL) model [39], and the Freidel-
Krasnov (FK) model [40]. The advantage of EPRL model
and FK model is that they have correct classical limit to
certain sense. The essential difference between the two
models and BC model is that the simplicity constraint
restrains BF action to the Holst action in the formers, but to
the Palatini action in the latter. The simplicity constraint
was implemented differently in EPRL and FK models.
In the former it was imposed at quantum level by the
master-constraint criterion [39] or the Gupta-Bleuler
criterion [41], while in the latter it was imposed as a
semiclassical condition on the coherent state basis pro-
posed by Livine and Speziale [42]. The two models share
the same vertex amplitude for β ≤ 1, but differ for β > 1.
Furthermore, the EPRL model was successfully general-
ized to the Kamiński-Kisielowski-Lewandowski (KKL)
model [43,44], which allows arbitrary boundary graphs.
Whether the dynamics of covariant formulation is

equivalent to that of canonical formulation is still an open
issue in LQG up to now. Fortunately, the EPRL model
generalized by KKL to arbitrary boundary graphs, support-
ing the quantum states of canonical LQG, has opened a
door to set up the relation between the two formulations.
Actually, it was shown in Ref. [33] that the rigging map
defined by the transition amplitude of EPRL SFM can give
certain physical states of the quantum Euclidean
Hamiltonian constraint ĤE

TðNÞ of canonical LQG proposed
by Thiemann in [25] for β ¼ 1 in the sense that the matrix
elements of ĤE

TðNÞ vanish. This implies a consistency of
the quantum dynamics between covariant and canonical
formulations for these states. The aim of this paper is to
check whether such a consistency exists also between the
EPRL SFM and the Hamiltonian constraint operator
proposed in [27] for canonical LQG. We will consider
only the Euclidean part of the Hamiltonian constraint

in [27] and generalize the graphical calculus presented
in [45], which is based on the original Brink’s graphical
method, to deal with the explicit computations including
the SFM. The graphical calculus has been systematically
applied to canonical LQG with the virtues of concise and
visual formulas, providing a powerful technique for sim-
plifying the complicated calculations [22,45–47]. Our
results show that the rigging map of the Euclidean
EPRL model with β ¼ 1 generalized to arbitrary boundary
graphs does give certain physical states for the Euclidean
Hamiltonian constraint operator defined in [27] with a
special factor ordering, in the same sense as in Ref. [33].
The rest of this paper is organized as follows. In Sec. II,

we give a detailed and concise derivation of the partition
function of the generalized Euclidean EPRL model using
graphical calculus, in parallel with the algebraic derivation
in [44]. In Sec. III, we graphically calculate the action of the
Euclidean Hamiltonian constraint operator defined in [27]
with a special factor ordering on the spin network states ψ i
with a 4-valent vertex v, and obtain its matrix elements. In
Sec. IV, we show for β ¼ 1 that the rigging map of
generalized Euclidean EPRL model can provide certain
physical states of the Euclidean Hamiltonian constraint
operator in [27] such that its matrix elements vanish. In this
sense, the quantum dynamics between covariant and
canonical LQG are again consistent for these states. Our
results are summarized and discussed in Sec. V.

II. THE PARTITION FUNCTION IN SFM

In this section, we will give a concise graphical deriva-
tion of the partition function for the Euclidean EPRL model
gener alized by KKL. The starting point of SFMs is the fact
that classical GR can be cast as a constrained BF theory.
Thus the strategy is to first derive the partition function of
BF theory, and then to impose the simplicity constraint in a
satisfactory manner. The partition function of BF theory
with gauge group SOð4Þ or Spinð4Þ for the Euclidean case
in 4-dimensions reads [1,2,11]

ZBFðMÞ ¼
Z

dAdBei
R
M
Tr½B∧FðAÞ� ¼

Z
dA

Y
x∈M

δ½FðAÞ�;

ð2:1Þ

where B is a soð4Þ-valued 2-form field on the spacetime
manifold M, F is the curvature of the soð4Þ connection A
on M, the trace Tr is with respect to the Cartan-Killing
metric on soð4Þ, and in the second step a formal integration
over B field leads to a Dirac delta function. To give a
precise meaning to the formal expression (2.1), one needs
to discretize M and employ its discrete structure.
Suppose M can be discretized by an arbitrary oriented

2-cell complex Δ. We refer to Refs. [9,43,44,48] for the
definition of 2-cell complex. The dual 2-cell complex Δ� of
Δ consists of 2-dimensional faces f ∈ Δ�, 1-dimensional
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edges e ∈ Δ� and 0-dimensional vertices v ∈ Δ�. Denote
by ∂f the cyclically ordered set of edges bounding the face
f and the set of vertices bounding the boundary edges of f,
by ∂e the set of faces bounded by e, and by ∂v the set of
edges bounded by v and the set of faces containing v in
their boundaries. For Δ� with a boundary ∂Δ�, we mean
that ∂Δ� is a 1-cell complex, called the global boundary
graph γ ≡ ∂Δ�, such that it is closed and does not contain
any vertex of Δ�. An edge e ∈ ∂Δ� is called an external
edge (link) and it is contained in only one face. A vertex
v ∈ ∂Δ� is called an external vertex (node) and it is
contained in exactly one internal edge of Δ�. Given an
internal vertex v ∈ Δ�, the local boundary graph γv of v is
the intersection between Δ� and a small sphere surrounding
v. The edges (links) of γv are the intersections of f ∈ ∂v
with the sphere, denoted by fv, and the orientations of the
edges are induced by those of f. The vertices (nodes) of γv
are the intersections of e ∈ ∂vwith the sphere. A spin-foam
F is a triple ðΔ�; ρ⃗; ⃗iÞ consisting of Δ�, a collection ρ⃗ of
irreducible representations ρf of Spinð4Þ assigned for each

face f ∈ Δ�, and a collection ⃗i of intertwiners ie associated
to each edge e ∈ Δ�. A SFM based on a spin-foam is
defined by an assignment of the amplitudes Af, Ae and Av

associated to the internal faces f ∈ Δ�, edges e ∈ Δ� and
vertices v ∈ Δ�. In the case that Δ� has a boundary γ ∪ γ0, a
SFM contains also the boundary transition amplitude from
the spin network state on γ to the one on γ0.
The partition function ZBF on Δ� can be discretized.

Given a Δ� of M, approximating the curvatures FðAÞ by
holonomies g∂f ¼

Q
e∈∂f ge around the loops ∂f composed

by the cyclically ordered sets of edges bounding the faces
f, and replacing dA by the Haar measure dge on Spin(4),
the discretized BF partition function corresponding to
Eq. (2.1) is defined by [33,34,44]

ZBFðΔ�Þ≔
Z

dge
Y
f∈Δ�

δ

�Y
e∈∂f

gegl

�

¼
Z
dgve

Z
dgfv

Y
f∈Δ�

δ

�Y
v∈∂f

gfvgl

�Y
fv

δðge0vgveg−1fv Þ

¼
Z

dgþfv

Z
dgþve

Y
f∈Δ�

X
jþf

djþf Trjþf

�Y
v∈∂f

gþfvg
þ
l

�

×
Y
fv

X
jþ
fv−1

djþ
fv−1

Trjþ
fv−1

ðgþe0vgþvegþfv−1Þ

×
Z

dg−fv

Z
dg−ve

Y
f∈Δ�

X
j−f

dj−fTrj−f

�Y
v∈∂f

g−fvg
−
l

�

×
Y
fv

X
j−
fv−1

dj−
fv−1

Trj−
fv−1

ðg−e0vg−veg−fv−1Þ; ð2:2Þ

where ge denotes holononmies along internal edges e ∈ ∂f
with orientations induced by f, gl denotes holonomies

along boundary edges l ¼ f ∩ ∂Δ� with orientations
induced by f in the case that Δ� has a boundary and we
set gl ¼ ISpinð4Þ in the case that Δ� has no boundary, in the
second step, we split each internal edge e bounded by v and
v0 into two segments ve and ev0 with the same orientation
as that of e, and regrouped the groups on segments of
internal edges associated to v, and the auxiliary group
elements gfv are constrained by including the additional
delta functions, in the third step, we used the fact of
Spinð4Þ ≅ SUð2Þ × SUð2Þ which allows us to expand the
delta functions on g ∈ Spinð4Þ in terms of irreducible
representations ðjþ; j−Þ of ðgþ; g−Þ ∈ SUð2Þ × SUð2Þ as

δðgÞ ¼ δðgþÞδðg−Þ
¼

X
jþ

djþTrjþðgþÞ
X
j−

dj−Trj−ðg−Þ; ð2:3Þ

with dj ≔ 2jþ 1 being the dimension of the representation
space Hj of SUð2Þ and the trace Trj being taken in the
irreducible representation πj of SUð2Þ, and fv−1 denotes
the edge obtained from fv by flipping its orientation. (See
Fig. 1 for a visual explanation of the notations.)
To further derive the partition function ZSFMðΔ�Þ of a

SFM for GR from ZBFðΔ�Þ, one uses the following
procedure [44]. First, integrating out the group elements
g�ve associated to the internal edges of Δ� reduces the
integrand in ZBFðΔ�Þ into a function

Q
f A

BF
f ðfgþfv; g−fv;

gþl ; g
−
l gÞ. Second, the quantum simplicity constraint is

imposed in a suitable way on the Hilbert spaces Hγv
associated to all (local) vertex-boundary graphs γv. This
will further restrict ABF

f ðfgþfv; g−fv; gþl ; g−l gÞ to ASFM
f ðfgþfv;

g−fv; g
þ
l ; g

−
l Þ. Implementing the simplicity constraint in

different manners results in different SFMs. Finally, for
each internal vertex v ∈ Δ�, one performs the integration
over the group elements g�fv associated to γv. Then the
resulting partition function ZSFMðΔ�Þ will be expressed as
a sum over representations and intertwiners. Note that a
derivation of the partition function by a procedure alter-
native to the above one was presented in [11].

A. The graphical calculus

In this subsection, we briefly recall the elements of the
Brink’s graphical calculus applied in canonical LQG (see
[45,46] for details), and then extend it to compute the
integral over the product of irreducible representations of
SUð2Þ in order to derive ZSFMðΔ�Þ. We will focus on the
graphical representations of the matrix elements of holon-
omies ge associated to edges e, the intertwiners iv asso-
ciated to vertices v, and the graphical transformation rules.
The intertwiner is closely related to the 3j-symbol,

which is graphically represented by an oriented node with
three black lines labeled by three angular momenta and a
sign factor as
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ð2:4Þ

where the sign − (or þ) denotes the clockwise (or counter-
clockwise) orientation of the node with the cyclic order of
the lines. A rotated diagram represents the same 3j-symbol
as the initial diagram, and the angles between two lines as
well as the lengths of lines have no significance. A special
3j-symbol with one zero-valued angular momentum is

related to the “metric” tensor CðjÞ
mm0 graphically by

ð2:5Þ

where a black line with an arrow on it graphically represents
the “metric” tensor

ð2:6Þ

Themetric tensorCðjÞ
mm0 onHj often occurs in the contraction

of two 3j-symbols with the same j values. The inverseCm0m
ðjÞ

can be expressed by

ð2:7Þ

A black line denoted by j without arrow on it represents the
Kronecker delta in Hj, i.e.,

ð2:8Þ

The contraction of a 3j-symbol with a metric represents the
Clebsch-Gordan coefficient multiplied by a factor. In
graphical representation, summation over the magnetic
quantum numbersm is represented by joining the free ends
of the corresponding lines. Hence graphically the contrac-
tion of a 3j-symbol with a metric is represented by a node
with one arrow as

ð2:9Þ

which is the building block in the construction of an
intertwiner. Notice that the intertwiner is defined up to a
factor with norm 1. The normalized intertwiner iv associated
to a vertex v, fromwhichn edgeswith n spins j1;…; jn start,
is defined by [45]

FIG. 1. (a) A part of an oriented face f of Δ� for the case of Δ� without boundary: The orientations of boundary edges e ∈ ∂f,
represented by the arrows, are induced by that of f. The (internal) vertices (endpoints) v of the (internal) edges e are denoted by the solid
points, while the midpoints of e are represented by hollow circles, by which each edge e is broken into two segments ve and ev0 with
orientations agreeing with that of e, and the oriented red curves lying in f represent the edges fv of the vertex-boundary graphs γv based
at v. (b) A part of Δ� consisting of an oriented face f bounded by a global boundary edge l for the case of Δ� with a boundary: The red
curves denote again the edges fv of the vertex boundary graph γv lying in f based at internal vertices v, and the blue curve represents the
global boundary edge (link) l with two vertices (nodes) v0 and v0000.
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ð2:10Þ

which describes the coupling of n angular momenta
j1;…; jn to a total angular momentum J in the standard
coupling scheme such that j1 is first coupled to j2 to
give a resultant a2, and then a2 is coupled to j3 to yield
a3, and so on. Here a⃗≡ fa2;…; an−1g denotes the set of
the angular momenta appeared in the intermediate
coupling. The normalized gauge-invariant (or gauge-
variant) intertwiner corresponds to the resulting angular
momentum J ¼ 0 (or J ≠ 0). For the convenience of
graphical calculus considered in this paper, we specify
the normalized gauge-invariant intertwiner associated to
a vertex v as

ð2:11Þ

where in the second step the identities (2.5) and (2.20)
(see below) were used. Hence the 3j-symbol (2.4) is
indeed the normalized gauge-invariant intertwiner
associated to a trivalent vertex v from which three
edges start. The metric tensor (2.6), as the special
3j-symbol, is the gauge-invariant intertwiner associated
to a divalent vertex v from which two edges start. It can
be normalized by multiplying a factor 1=

ffiffiffiffiffi
dj

p
. The

Kronecker delta (2.8) in Hj is the gauge-invariant
intertwiner associated to a divalent (trivial) vertex v
such that v ¼ bðeÞ ¼ fðe0Þ is the intersection of two
edges e and e0, which can be normalized by multiplying
a factor 1=

ffiffiffiffiffi
dj

p
.

Now we turn to the graphical transformation rules
reflecting the properties of the 3j-symbol. The 3j-symbol
has the following cyclic symmetries. An even permutation
of the columns of the 3j-symbol keeps its value unchanged,
while an odd permutation leads to a multiplication by a
factor ð−1Þj1þj2þj3, i.e.,

ð2:12Þ

The two orthogonality relations for 3j-symbols are repre-
sented by the graphical rules

ð2:13Þ

ð2:14Þ

From Eqs. (2.8) and (2.14), one can easily obtain the
following two graphical rules

ð2:15Þ

ð2:16Þ

The rules of reversing, removing and adding arrows in a
graph read

ð2:17Þ

ð2:18Þ

ð2:19Þ

ð2:20Þ
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These and the following rules are also useful to simplify
graphs. A graph is regarded as a block diagram with n
external lines if, by rules (2.17)–(2.20), it can be trans-
formed into the form such that every internal line has
exactly one arrow and every external line has no arrow.
Then the block diagram can be decomposed for different n
as follows.
(a) n ¼ 1

ð2:21Þ

(b) n ¼ 2

ð2:22Þ

(c) n ¼ 3

ð2:23Þ

(d) n > 3

ð2:24Þ

A direct application of Eq. (2.23) yields

ð2:25Þ

where the first graph on the right-hand side represents a
6j-symbol, i.e.,

ð2:26Þ

which is obtained by contracting four 3j-symbols. The
6j-symbol is invariant by any permutation of columns and
exchange of an upper and a lower arguments in each of
column, e.g.,

�
j1 j2 j3
j4 j5 j6

�
¼

�
j2 j1 j3
j5 j4 j6

�
¼

�
j3 j2 j1
j6 j5 j4

�
¼ � � �

¼
�
j4 j5 j3
j1 j2 j6

�
¼

�
j4 j2 j6
j1 j5 j3

�
¼ � � � :

ð2:27Þ
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The matrix representation ½πjðgeÞ�mn of holonomy ge ≡
geðAÞ ∈ SUð2Þ of a suð2Þ-valued connection A along an
edge e on Σ is denoted by a colored line (not a black line)
with an arrow on it as [45]

ð2:28Þ

All the information about ½πjðgeÞ�mn have been encoded
in the graph in the right hand side of Eq. (2.28). The
corresponding irreducible representation πj of ge is
denoted by e and j labeling the line. The orientation
of e with respect to the vertices is reflected by the
orientation of the arrow on the line. The row (former or
up) index and the column (latter or down) index are
denoted by the two indices m and n labeling the starting
and the ending points of the line, respectively, and the
orientation of the arrow is from its row index m to its
column index n. The graphical transformations for the
holonomy consist of the following two rules. First, a
transformation from the irreducible representation of g−1e
to that of ge is given by

ð2:29Þ

Second, coupling two representations of the same hol-
onomy ge, corresponding to the Clebsch-Gordan series, is
expressed as

ð2:30Þ

which can be easily generalized to

ð2:31Þ

Now we extend the above graphical calculus to compute
the integral over the product of irreducible representations of
ge. ByEq. (2.31), the integral can be evaluated graphically by

ð2:32Þ
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where we used
R
dge½πJðgeÞ�MN ¼ δJ;0δ

M;0δN;0, the iden-
tities (2.5), (2.20) and ð−1Þ4jn ¼ 1 in the third step. Thus the
integration over all group elements associated to e gives two
normalized gauge-invariant intertwiners iv1 and iv2 to the two
vertices (endpoints) v1 and v2 of e. Similarly, one has the
following useful formulas.
(a) n ¼ 2

ð2:33Þ

ð2:34Þ

(b) n ¼ 3

ð2:35Þ

In SFMs, one usually needs also to evaluate the integration
over the product of irreducible representations of ge and its
inverse g−1e ¼ ge−1 . This can be accomplished by combining
Eq. (2.32) with Eq. (2.29). For example, the integration over
the product of n − 1 irreducible representations of ge and one
representation of g−1e is given graphically by

ð2:36Þ

Thus the integration leads to a summation of products of
(normalized) two intertwiners iv1 and iv2 associated to two

endpoints v1 and v2 of e. Each of the intertwiners has an
arrow on the external line associated to g−1e while the other
external lines have no arrows. By the transformation rules
(2.17)–(2.20), the above result can be transformed to an
equivalent form such that each external lines associated to ge
has an arrow while the external line associated to g−1e has no
arrow. In the case that the orientations of edges are irrelevant
to the question considered, the corresponding integration can
be roughly expressed as

ð2:37Þ

Wewill adopt the rough formula (2.37) to derive the partition
function in the following two subsections. Certain explicit
formula with orientations of edges similar to (2.36) will be
considered in Sec. IV.

B. The partition function in nonboundary cases

Let us consider the underlying dual 2-cell Δ� without
boundary, and derive the partition function on Δ� from
Eq. (2.2) by the graphical calculus presented in the previous
subsection. In nonboundary cases, the partition function
(2.2) reduces to

ZBFðΔ�Þ ¼
Z

dgþfv
Y
f∈Δ�

X
jþf

djþf Trjþf

�Y
v∈∂f

gþfv

�

×
Y
fv

Z
dgþve

X
jþ
fv−1

djþ
fv−1

Trjþ
fv−1

ðgþe0vgþvegþfv−1Þ

×
Z

dg−fv
Y
f∈Δ�

X
j−f

dj−fTrj−f

�Y
v∈∂f

g−fv

�

×
Y
fv

Z
dg−ve

X
j−
fv−1

dj−
fv−1

Trj−
fv−1

ðg−e0vg−veg−fv−1Þ

≡
Z

dgþfvdg
−
fv

Y
f∈Δ�

ABF
f ðfgþfv; g−fvgÞ: ð2:38Þ

To derive a partition function ZSFMðΔ�Þ from (2.38), one
can follow the three steps introduced below Eq. (2.3).
First, we need to perform the dgþvedg−ve integration in the

first equality in Eq. (2.38) to obtain the expression of ABF
f .

Notice that a segment ve bounded by n faces contributes
the partition function (2.38) n pairs (gþve; g−ve) of matrix
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elements to be integrated out. To perform the integration,
we first transform the algebraic formula (2.38) into its
graphical formula. Thanks to the graphical calculus pre-
sented in Eq. (2.37), the dgþvedg−ve integration can be
straightforwardly evaluated to yield

ð2:39Þ

where the oriented red and dark green curved lines denote
respectively the matrix elements of gþ attached to edges fv
of γv and their inverses fv−1, while those of g− are omitted
for simplicity. It should be noted that the pairs ði0þe ; iþe Þ of
intertwiners, as well as ði0−e ; i−e Þ, associated to the endpoint
pair ðv0; vÞ have certain arrows (the metrics) with uniform
orientations on their external lines, while the intertwiners
associated to the midpoints of e have no arrows on their
external lines. The origin of these arrows is the following.
For a given internal edge e bounded by faces f ∈ ∂e, each
f induces an orientation on e and contributes a holonomy
with representation jf. If the induced orientations on e from
different faces are not the same, the induced holonomies
with spins jf will involve ge as well as ge−1 associated to e.
However, the representations of ge−1 can be uniformly
transformed to those of ge by adding two arrows to the
graphical representation of the corresponding hononomy
associated to the endpoints v and v0 of e by the graphical
rule (2.29).
Second, we need to impose the simplicity constraint. In

the Euclidean EPRL model as well as its generalized
model, the simplicity constraint was first expressed as
the corresponding linear formulation and then imposed at

quantum level by the master-constraint criterion [39,49] or
the Gupta-Bleuler criterion [41]. The result restricts the
relation between j� and their coupling j associated to f,
depending on the values of the Immirzi parameter β, as
[11,39,43,44]

�
j� ¼ ð1� βÞj=2; for β < 1

j� ¼ ðβ � 1Þj=2; for β > 1
; ð2:40Þ

and thus

�
j ¼ jþ þ j−; for β < 1

j ¼ jþ − j−; for β > 1
: ð2:41Þ

For the turning point β ¼ 1, one has

jþ ¼ j; j− ¼ 0: ð2:42Þ

Hence the quantum simplicity constraint can be imposed as
a projection by the so-called Y map

Y∶Hjþ ⊗ Hj− ¼⊕jþþj−

j0¼jjþ−j−j Hj0 → Hj: ð2:43Þ

It naturally induces a Y map with actions on intertwiners
graphically as

ð2:44Þ

By imposing the Y map (2.44) on the intertwiners asso-
ciated to the vertices of γv, the partition function ZBFðΔ�Þ
in Eq. (2.38) can be promoted to the (Euclidean) gener-
alized EPRL partition function

ZEPRLðΔ�Þ ≔
Z

dgþfvdg
−
fv

Y
f∈Δ�

AEPRL
f ðfgþfv; g−fvgÞ ð2:45Þ

with
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ð2:46Þ

where Eqs. (2.44) and (2.24) were used in the second and
third steps respectively.
Third, we need to perform the integration over the group

elements g�fv associated to each vertex v. In the current
case, Eq. (2.34) becomes

ð2:47Þ

By integration, Eq. (2.45) reduces to

ð2:48Þ

where in the second step we used
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ð2:49Þ

in the light of Eq. (2.14). The resulting partition function
ZEPRLðΔ�Þ in Eq. (2.48) assigns to each internal vertex v a
contraction of intertwiners iþe ⊗ i−e associated to edges
e ∈ ∂v, as a vertex amplitude Av, to each internal edge e a
fusion coefficient

ð2:50Þ

as an edge amplitude Ae, and to each face f a factor djþf dj−f
as a face amplitude Af. The graphical formula of
ZEPRLðΔ�Þ presented in Eq. (2.48) can be uniquely trans-
formed into its algebraic formula

ZEPRLðΔ�Þ

¼
X
jþf ;j

−
f

Y
f∈Δ�

djþf dj−f
Y
v∈Δ�

X
iþe ;i−e ;ie

Trv

�
⊗

e∈∂v
ðiþe ⊗i−e Þ

�Y
e∈∂v

fieiþe i−e ;

ð2:51Þ
which coincides with the one appeared in Refs. [33,44].

C. The partition function in cases with boundaries

Now let us consider the underlying dual 2-cell Δ� with a
boundary. The derivation of the resulting partition function
is quite similar to that in the nonboundary cases. Now
Eq. (2.2) can be denoted by

ZBFðΔ�Þ¼
Z

dgþfvdg
−
fv

Y
f∈Δ�

ABF
f ðfgþfv;g−fv;gþl ;g−l gÞ: ð2:52Þ

Integrating over the group elements g�ve associated to the
internal edges of Δ� yields

ð2:53Þ

Here the notations are the same as those for the non-
boundary case.
Imposing the Y map on the intertwiners associated to the

vertices of γv by Eq. (2.44), the partition function ZBFðΔ�Þ

in Eq. (2.52) can be promoted to the (Euclidean) gener-
alized EPRL partition function

ZEPRLðΔ�Þ ≔
Z

dgþfvdg
−
fv

Y
f∈Δ�

AEPRL
f ðfgþfv; g−fv; gþl ; g−l gÞ

ð2:54Þ

with

ð2:55Þ

where we used Eq. (2.44) in the second step, and Eq. (2.24)
in the third step.
Using Eqs. (2.47) and (2.49), the integration over

dgþfvdg
þ
fv in Eq. (2.54) yields
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ð2:56Þ

Notice that the partition function (2.56) is a SOð4Þ spin
network function induced on the boundaries. In order to
match the SUð2Þ spin network states of canonical LQG on
the boundaries, one can restrict (or project) the SOð4Þ group
elements ðgþl ; g−l Þ into ðgl; glÞ. After restricting the boundary
elements and using Eqs. (2.30) and (2.14), we have

ð2:57Þ

It is worth noting that the intertwiners ie associated to the
boundary vertices v0 ∈ ∂Δ� contracting with the represen-
tations πjlðglÞ (the blue curved lines) of the boundary edges
l ∈ ∂Δ�, multiplied by factors

ffiffiffiffiffiffi
djl

p
, form the normalized

gauge-invariant spin network states on the boundary ∂Δ�.
The resulting partition functionZEPRLðΔ�Þ expressed in the
graphical formula (2.57) can be uniquely transformed into
the algebraic formula

ZEPRLðΔ�Þ ¼
X
jþf ;j

−
f

Y
f∈Δ�

djþf dj−f
Y
v∈Δ�

X
iþe ;i−e ;ie

Trv

�
⊗

e∈∂v
ðiþe ⊗ i−e Þ

�

×
Y
e∈∂v

fieiþe i−e

X
jl;iv

� Y
l∈∂Δ�

1ffiffiffiffiffiffi
djl

p �
T∂Δ�;j⃗l ;⃗iv

ðfglgÞ;

ð2:58Þ

where jl ≔ jf, iv ≔ ie denote the normalized gauge-
invariant intertwiners associated to the boundary vertices
v ∈ ∂Δ�, and T∂Δ�;j⃗l ;⃗iv

ðfglgÞ denote the normalized gauge-
invariant spin network states on ∂Δ�. Given the “in” and
“out” kinematical states ψ s and ψ s0 on ∂Δ�, the transition
amplitude between them is defined byX
∂Δ�¼ψs∪ψs0

hψ s0 jZEPRLðΔ�Þjψ si

≔
X

∂Δ�¼ψs∪ψ s0

X
jþf ;j

−
f

Y
f∈Δ�

djþf dj−f
Y
v∈Δ�

×
X

iþe ;i−e ;ie

Trv

�
⊗

e∈∂v
ðiþe ⊗ i−e Þ

�Y
e∈∂v

fieiþe i−e

� Y
l∈∂Δ�

1ffiffiffiffiffiffi
djl

p �
;

ð2:59Þ
where the summation

P
∂Δ�¼ψ s∪ψs0

is taken over all possible
Δ� whose boundary states consist of ψ s and ψ s0 .

III. MATRIX ELEMENTS OF A HAMILTONIAN
CONSTRAINT OPERATOR

In the Hamiltonian formulation of GR, the Hamiltonian
constraint for pure gravity in the Ashtekar-Barbero varia-
bles smeared with an arbitrary function N on the spatial
manifold Σ reads [2,14]

HðNÞ ¼
Z
Σ
d3x

NẼa
i Ẽ

b
j

2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ½ϵijkFk

ab − 2ð−ζ þ β2ÞKi
½aK

j
b��;

ð3:1Þ
where detðqÞ is the determinant of the spatial metric qab on
Σ, ζ denotes the spacetime signature such that ζ ¼ −1 and
ζ ¼ þ1 represent the Lorentzian and Euclidean cases
respectively, Fi

ab is the curvature of connection, Ai
a, and

Ki
a represents the extrinsic curvature of Σ. In the Euclidean

case of ζ ¼ þ1, by taking the Immirzi parameter β ¼ 1,
Eq. (3.1) is reduced to the so-called Euclidean term

HEðNÞ ≔
Z
Σ
d3xN

Ẽa
i Ẽ

b
j

2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ϵijkFk

ab: ð3:2Þ

Different candidate Hamiltonian constraint operators cor-
responding to HEðNÞ have been proposed for canonical
LQG. Here we consider the Hamiltonian constraint oper-
ator ĤEðNÞ defined in [27], which is well defined in certain
partially diffeomorphism-invariant Hilbert space Hnp4 and
can be promoted as a symmetric operator. To simplify the
discussion, we choose a corresponding regulated operator
ĤE

δ ðNÞ in the kinematical Hilbert space Hkin in following
calculations. Since the operators ĤE

δ ðNÞ for different δ
belong to the same diffeomorphism equivalent class [27],
all our calculations are also valid for the operator ĤEðNÞ in
Hnp4. By a special operator ordering, the action of ĤE

δ ðNÞ
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on a cylindrical function fγ over a graph γ with edges
outgoing from its vertices v reads

ĤE
δ ðNÞ · fγ ¼ −

3ðβl2
pÞ2

κχðmÞ2
X

v∈VðγÞ
NvĤ

E
v · fγ; ð3:3Þ

where

χðxÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþ 1Þð2xþ 1Þ

p
; ð3:4Þ

and

ĤE
v ≔

X
ei∩ej¼v

ĤE
v;ei;ej ð3:5Þ

with

ĤE
v;ei;ej ≔ ϵklsTrmðτkgαijÞJliJsjdV−1

v

¼ −iϵμνρTrmðτμgαijÞJνi JρjdV−1
v

¼ −iϵμνρ½πmðτμÞ�AB½πmðgαijÞ�BAJνi J
ρ
j
dV−1

v: ð3:6Þ

Here gαij represents the hononomies along loops αij ¼
e1i ∘aij∘ðe1jÞ−1 based at the vertices v consisting of two
segments e1i and e1j of ei and ej, such that ei ¼ e1i ∘e2i and
ej ¼ e1j∘e2j , the arc aij connects the two endpoints of e1i and
e1j , the orientation of αij has been specially chosen such that
it agrees with the one induced by Σ, Jli ≡ Jlei is the self-
adjoint right-invariant vector field on a copy of SUð2Þ
associated to ei,

dV−1
v denotes the inverse volume operator

dV−1 ≔ lim
λ→0

V̂

V̂2 þ ðλl3
pÞ2

ð3:7Þ

acting at vertices v, ϵμνρ (μ; ν; ρ ¼ 0;þ1;−1) is the Levi-
Civita symbol defined by ϵ−10þ1 ¼ 1, and τμ ðμ ¼ 0;�1Þ is
the spherical tensor, which is related to the basis τi ≔
−iσi=2 (i ¼ 1, 2, 3) of suð2Þ with σi being the Pauli
matrices by

τ0 ≔ τ3; τ� ≔∓ 1ffiffiffi
2

p ðτ1 � iτ2Þ: ð3:8Þ

Intuitively, the operator ĤE
v acts on γ by attaching an arc aij

to each pair ðei; ejÞ of edges such that the resulting loop αij
has a positive orientation. Notice that the operator dV−1

v in
Eq. (3.7) vanishes at a gauge-invariant vertex v with
valence less than four by the property of the volume
operator V̂ [21]. Consider a simply graph γ with a non-
coplanar vertex v and four edges e1;…; e4 starting from v.
To specify a spin network state to γ, one needs to specify
spins j1;…; j4 to its edges e1;…; e4 and a gauge-invariant
intertwiner to v. To specify the intertwiner, one needs to

choose a coupling scheme for j1;…; j4 and an intermediate
coupling spin. Different coupling schemes are related by
the 6j-symbol. For example, the following formula relates
the two different coupling schemes for the intertwiners
associated to v [45,46]

ð3:9Þ

Given a gauge-invariant spin network state ψ s on γ with a
specified intertwiner at v, the action of ĤE

v on ψ s is given by

ð3:10Þ

where fis are the expanding factors involving 6j-symbols.
Hence, one only needs to evaluate the action of ĤE

v;ei;ej on
the normalized spin network state

ð3:11Þ

Notice that the Levi-Civita symbol ϵμνρ is related to the
3j-symbols by [45]

ð3:12Þ

the spherical tensors τμ can be represented by [45]

ð3:13Þ

and the action of Jμi on a spin network state is determined
by its action on the corresponding intertwiner as [45]
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ð3:14Þ

Thus, the action of ĤE
v;ei;ej on ψ i can be calculated as

ð3:15Þ

where ðdV−1
vÞki ≡ hikvjdV−1

vjiivi denote the matrix elements

of dV−1
v between intertwiners iiv and ikv associated to v and

labeled by the intermediate angular momenta i and k, and in
the last step we used

ð3:16Þ

Note that to derive Eq. (3.16), we used Eqs. (2.13), (2.17),
and (2.19) in the first step, the identities

ð3:17Þ
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ð3:18Þ

ð3:19Þ

in the second step, Eq. (2.13) in the third step, and
Eqs. (2.12), (2.17)–(2.20), and (2.26) in the last step.

Equation (3.15) shows that the action of ĤE
v;ei;ej on ψ i

can be linearly expanded in terms of the normalized spin
network states

ð3:20Þ

In the definition of ĤE
δ ðNÞ in [27], the spinm of arc aij was

chosen in such a way that neither the spin a of e1i nor the
spin b of e1j vanishes. Then the matrix elements

hψ tjĤE
v;ei;ej jψ ii can be easily calculated as

hψ tjĤE
v;ei;ej jψ ii ¼ χð1ÞχðmÞχðjiÞχðjjÞ

X
k

ffiffiffiffiffi
dk

p
ðdV−1

vÞki dadb

×
X
c

dcð−1Þbþcþjj−1
�
c jj a

jj m 1

��
c jj b

jj m 1

��
c m 1

1 1 m

�

× dtð−1Þjl−ji−kð−1Þtþb−jk

�
t jl a

jl c k

��
t jk b

jl c k

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dadbdmdt
p : ð3:21Þ

IV. RELATION IN QUANTUM DYNAMICS

The quantum dynamics in covariant LQG is encoded in
the partition function for a given SFM, while the quantum
dynamics in canonical LQG is determined by the
Hamiltonian constraint operator obtained from a suitable
quantization procedure. To check the consistency of the
two formulations of quantum dynamics is a crucial task. On
one hand, in canonical LQG, one expects to construct the
physical inner product in the physical Hilbert space by an
antilinear rigging map [2]

η∶Dkin → D�
phys; ψ s ↦ ηðψ sÞ; ð4:1Þ

where Dkin represents a certain dense domain of Hkin, and
the space D�

phys of solutions to the quantum Hamiltonian
constraint is regarded as a subspace of the algebraic dual
D�

kin of Dkin. Thus, the physical inner product can be
defined as

hηðψ sÞjηðψ s0 Þiphys ≔ ½ηðψ s0 Þ�ðψ sÞ: ð4:2Þ

On the other hand, a SFM can naturally provide a rigging
map by the transition amplitudes as

hηðψ sÞjηðψ s0 Þiphys ≔
X

∂Δ�¼ψs∪ψ s0

hψ s0 jZSFMðΔ�Þjψ si: ð4:3Þ

Hence the rigging map can be defined by

ηðψ sÞ ≔
X

ψ t∈Dkin

X
∂Δ�¼ψs∪ψ t

hψ sjZSFMðΔ�Þjψ tihψ tj; ð4:4Þ

for all ψ s ∈ Dkin. From the viewpoint of canonical LQG,
the physical inner product should satisfy

hĤ0ηðψ sÞjηðψ s0 Þiphys
¼ ½ηðψ s0 Þ�ðĤψ sÞ
¼

X
ψ t∈Dkin

X
∂Δ�¼ψ t∪ψ s0

hψ s0 jZSFMðΔ�Þjψ tihψ tjĤjψ si

¼ 0; ð4:5Þ
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for all ψ s;ψ s0 ∈ Dkin, where Ĥ0 defined on D�
kin is the

dual of the Hamiltonian constraint operator Ĥ defined
on Dkin. Eq. (4.5) implies the consistency between
the covariant and canonical formulations of quantum
dynamics in the sense that the Hamiltonian constraint
of the latter is weakly satisfied for the physical states of
the former.
We now check whether such a consistency exists

between the covariant dynamics determined by
Eq. (2.57) and the canonical dynamics given by
Eq. (3.3). Let us consider the simple case in which Δ�
has only one internal vertex v, and focus on the
Euclidean sector with the Immirzi parameter β ¼ 1. It
is easy to see that Eq. (4.5) is automatically satisfied
for ψ s on a graph with valence less than four, due to the

property of dV−1 appeared in ĤE. To check the consistency
for the nontrivial cases, we focus on a graph with
vertices of valence more than three. To make thing
simple from which one can find crucial ingredient for
the identity (4.5), we first consider a graph γ with a
4-valent vertex, and assume that ψ s and ψ s0 are tightly
related as shown below. We will go back to the multivalent
cases and relax the restraint on ψ s and ψ s0 at the end of this
section. Let ψ s be a normalized gauge-invariant spin
network state on a graph γ consisting of one vertex v1
and four edges e1;…; e4 starting from v1, and ψ s0 be
another spin network state on a graph γ0 consisting of one
vertex v01 and four edges e

−1
1 ;…; e−14 incoming to v01. Both

of ei and e−1i are labeled by the same spin ji. The
intertwiner iv0

1
associated to v01 can be different from

the intertwiner iv1 associated to v1. By Eqs. (3.10) and
(4.5) can be expressed as

X
i;i0

fisfi
0
s0

X
ei∩ej¼v1

X
∂Δ�¼ψ t∪ψ i0

×
X
ψ t

hψ i0 jZEPRLðΔ�Þjψ tihψ tjĤE
v1;ei;ej jψ ii

¼ 0; ð4:6Þ

where ψ i0 is the normalized gauge-invariant spin network
state with the same coupling scheme as that of ψ i, but
possible different intermediate coupling spins from that of
ψ i. It should be noted that only those ψ t given by
Eq. (3.20) have nontrivial contribution to the matrix
elements of ĤE

v1;ei;ej in (4.6). Note also that the partition
function in Eq. (4.6) is defined on the Δ� with some
boundary states ψ i0 ∪ ψ t and only one internal vertex v.
The quantum dynamics can be presented by a visual
picture as

To see whether Eq. (4.6) is satisfied, it is sufficient to
check whether one has equation

X
ψ t

hψ i0 jZEPRLðΔ�Þjψ tihψ tjĤE
v1;ei;ej jψ ii ¼ 0: ð4:7Þ

Let us first compute the transition amplitude
hψ i0 jZEPRLðΔ�Þjψ ti. By Eq. (2.42), the condition β ¼ 1
implies

jþf ¼ jf ¼ jl; j−f ¼ 0; ∀ l ∈ ∂Δ� ∩ f: ð4:8Þ

This condition simplifies the fusion functions fieiþe i−e as well

as the vertex amplitudes in the transition amplitude (2.59).
For example, the fusion function associated to the internal
edge linking v and v1 reads

ð4:9Þ

where Eqs. (2.5), (2.19), (2.14), and (2.15) were used. The
vertex amplitude Av associated to the internal vertex v is
reduced to
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ð4:10Þ

where we used Eq. (2.23) in the third step, and the identity

ð4:11Þ

in the last step. Thus, the transition amplitude between ψ i0 and ψ t defined in Eq. (2.59) can be calculated as
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ð4:12Þ

Combining Eqs. (4.12) and (3.21) yields

X
ψ t

hψ i0 jZEPRLðΔ�Þjψ tihψ tjĤE
v1;ei;ej jψ ii

¼
ffiffiffiffiffi
di0

p
χð1ÞχðmÞχðjiÞχðjjÞ

X
k

ffiffiffiffiffi
dk

p
ðdV−1

v1Þ
k

i

X
c;t

dtdcð−1Þc−i0−mþ2tþk−ji−jj−jk−jl−1
�
c m 1

1 1 m

�

×
X
a

ð−1ÞRada

�
c ji a

ji m 1

��
ji m a

t jl i0

��
t jl a

ji c k

�X
b

ð−1ÞRbdb

�
c jj b

jj m 1

��
jj m b

t jk i0

��
t jk b

jj c k

�

¼
ffiffiffiffiffi
di0

p
χð1ÞχðmÞχðjiÞχðjjÞð−1Þi0þm−ji−jj−jk−jl

X
k

ffiffiffiffiffi
dk

p
ðdV−1

v1Þ
k

i

�
1 i0 k

jl ji ji

��
1 i0 k

jk jj jj

�

×
X
t

dtð−1Þt
X
c

ð−1ÞRcdc

�
1 m c

t k i0

��
t k c

1 m i0

��
1 m c

m 1 1

�

¼
ffiffiffiffiffi
di0

p
χð1ÞχðmÞχðjiÞχðjjÞð−1Þi0þm−ji−jj−jk−jl

X
k

ffiffiffiffiffi
dk

p
ðdV−1

v1Þ
k

i

�
1 i0 k

jl ji ji

��
1 i0 k

jk jj ji

��
i0 i0 1

1 1 k

�X
t

dtð−1Þt
�
i0 i0 1

m m t

�

¼0; ð4:13Þ

where in the second and third steps we used [50,51]

X
x

ð−1ÞRxdx

�
a b x

c d p

��
c d x

e f q

��
e f x

b a r

�

¼
�
p q r

e a d

��
p q r

f b c

�
ð4:14Þ

with

Rx ≔ aþ bþ cþ dþ eþ f þ pþ qþ rþ x; ð4:15Þ

and in the last step we used [50]

X
x

dxð−1Þx
�
j1 j1 j3
l1 l1 x

�
¼ ð−1Þ−j1−l1

ffiffiffiffiffiffiffiffiffiffiffi
dj1dl1

q
δj3;0:

ð4:16Þ
Hence Eq. (4.7) is satisfied for the graph γ with a 4-valent
vertex. The above calculations can be easily generalized to
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the case that a graph γ has a vertex with valence more that
four. The quantum dynamics can be presented by a visual
picture as

In this general case, the states appeared in Eq. (4.7) can be
graphically expressed by

ð4:17Þ

ð4:18Þ

ð4:19Þ

where fi; ft; fi0 denote the normalized factors. Then the
transition amplitude between ψ i0 and ψ t defined in
Eq. (2.59) can be calculated as

ð4:20Þ

where we used Eqs. (2.14) and (2.19) in the second step,
and Eq. (4.10) in the third step. In this case, the matrix
element hψ tjĤE

v1;ei;ej jψ ii reads
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hψ tjĤE
v1;ei;ej jψ ii ¼ χð1ÞχðmÞχðjiÞχðjjÞ

X
a⃗00;k

ffiffiffiffiffi
dk

p
ha⃗00; kjdV−1

v1 ja⃗; iidadb
X
c

dcð−1Þbþcþjj−1
�
c jj a

jj m 1

��
c jj b

jj m 1

�

×
�
c m 1

1 1 m

�
dtð−1Þa00l −ji−kð−1Þtþb−a00k

�
t a00l a

jj c k

��
t a00k b

jj c k

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dadbdmdt
p ; ð4:21Þ

where ja⃗; ii denotes the normalized intertwiner of ψ i in Eq. (4.17), a⃗ denotes the set of intermediate coupling
spins other than i, and ja⃗00; ki is the one obtained from ja⃗; ii by replacing a⃗ by a⃗00 and i by k. Combining Eqs. (4.20)
and (4.21), we have

X
ψ t

hψ i0 jZEPRLðΔ�Þjψ tihψ tjĤE
v1;ei;ej jψ ii

¼
ffiffiffiffiffi
di0

p
χð1ÞχðmÞχðjiÞχðjjÞ

X
k

ffiffiffiffiffi
dk

p
ha⃗0;kjdV−1

v1 ja⃗; ii
X
c;t

dtdcð−1Þc−i0−mþ2tþk−ji−jj−a0k−a
0
l−1

�
c m 1

1 1 m

�

×
X
a

ð−1ÞRada

�
c ji a

ji m 1

��
ji m a

t a0l i0

��
t a0l a

ji c k

�X
b

ð−1ÞRbdb

�
c jj b

jj m 1

��
ji m b

t a0k i0

��
t a0k b

jj c k

�

¼ 0: ð4:22Þ

Therefore, in the general case, the quantum dynamics between the covariant and canonical LQG, determined by the
generalized Euclidean EPRL model and by the Hamiltonian constraint operator ĤE

δ ðNÞ respectively, are consistent to each
other on the spin network states with one vertex in the sense of Eq. (4.5) for β ¼ 1. Although the above discussion is
confined to the case that the interior vertex v ∈ Δ� is only 4-valent, and thus is not dual to a 2-cell complex Δ, it is
straightforward to extend it to the case of higher valent internal vertex which does have a geometric interpretation of certain
2-cell Δ�. For instance, a higher valent interior vertex v ∈ Δ� can be obtained by adding some vertices (and edges) to the
boundary graph of Δ� associated to ψ i0 as
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Interestingly, the consistency of the quantum dynamics still
holds for the above generalized ψgeneral

i0 . The key observa-
tion comes from the fact that Eq. (4.22) holds for the vertex
amplitude of Δ� since it contains the same quantities as
Eq. (4.20) determined only by the local information, i.e.,
the intertwiners associated to v1 and to the new created
vertices v2 and v3 by the action of ĤE at v1, while the rest
does not depend on the spins a, b and t. To see this, let us
calculate the transition amplitude for the generalized
ψgeneral
i0 , which is given by

ð4:23Þ

where the block diagram with external lines represents the
contraction of intertwiners in ψgeneral

i0 associated to vertices
related to the interior vertex v ∈ Δ�, in the second step the
graphical rule (2.24) was used, in the third step Eq. (4.20)
was used, and fða0l; i0; a0k; � � �Þ denotes a factor correspond-
ing to the block diagram in second equality, which does not
depend on the spins a, b and t. As a direct consequence,
Eq. (4.23) is proportional to (4.20) with a factor indepen-
dent of the spins a, b, and t. This leads to

X
ψ t

hψgeneral
i0 jZEPRLðΔ�Þjψ tihψ tjĤE

v1;ei;ej jψ ii ¼ 0: ð4:24Þ

It is easy to see that our calculation indicates the consis-
tency for the general dual 2-cell complex Δ� between ψ t

and ψgeneral
i0 (or ψ s0 ) provided that each triple of vertices

(e.g., v1, v2 and v3) associated to ψ t, belonging to a loop αij
produced by ĤE

v1;ei;ej, is related to an internal vertex (e.g., v)
by internal edges of Δ�. Thus the consistency (4.5) is valid
generally, and it indicates that the EPRL model can provide
a rigging map (4.4) for the Hamiltonian constraint operator
ĤE

δ ðNÞ in Eq. (3.3).

V. SUMMARY AND DISCUSSION

A major challenge in LQG is how to relate its covariant
formulation to its canonical formulation in quantum
dynamics. In previous sections, we studied the relation
by taking the viewpoint that SFM provides a rigging map
such that the Hamiltonian constraint in canonical LQG is
weakly satisfied. This idea was first proposed in [33],
where the consistency between the EPRL SFM and the
Euclidean Hamiltonian constraint operator proposed by
Thiemann in [25] was checked. While the same EPRL SFM
is concerned here, the Hamiltonian constraint operator
which we considered is the Euclidean version ĤEðNÞ
proposed in [27]. The virtue of ĤEðNÞ is that it is well
defined in certain partially diffeomorphism invariant
Hilbert space and can be promoted to a symmetric operator.
The graphical calculus was used as a powerful tool to

give direct and concise derivations of the partition function
ZEPRLðΔ�Þ in Eqs. (2.48) [or (2.51)] and (2.57) [or (2.58)]
of the generalized Euclidean EPRL model for Δ� without
and with a boundary respectively, as well as the matrix
elements (3.21) [or Eq. (4.21)] of the Hamiltonian con-
straint operator ĤE

δ ðNÞ on certain spin network states. Our
result of Eq. (4.24) shows that in the Euclidean case the
generalized EPRL model can provide a rigging map such
that the Hamiltonian constraint operator proposed in [27] is
weakly satisfied on the spin network states with one vertex
for the Immirzi parameter β ¼ 1. Hence, in this sense, the
quantum dynamics between covariant LQG and canonical
LQG are consistent to each other for these states. Moreover,
we showed how to generalize the graphical calculus to the
calculations of SFMs. It provides a visual and powerful tool
alternative to the algebraic one.
It should be noted that the Hamiltonian constraint

operator ĤEðNÞ is well defined in the Hilbert space
Hnp4 consisting of the almost diffeomorphism invariant
states obtained by group-averaging the diffeomorphisms of
Σ but leaving fixed sets of nonplanar vertices with valence
higher than three. Though the results of Eqs. (4.13), (4.22),
and (4.24) were derived with the kinematical Hilbert space
Hkin, there is no obstacle to promote them toHnp4 since the
partially diffeomorphism transformations neither change
the relevant vertices nor change the intertwiners and spins
on the graphs. Hence, our results indicate actually the
consistency between the partially diffeomorphism invariant
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generalized EPRL SFM and ĤEðNÞ in Hnp4 of canonical
LQG. The fact that the rigging map given by the EPRL
SFM can weakly satisfy both Thiemann’s Hamiltonian
ĤE

TðNÞ in [25] and the Hamiltonian constraint ĤEðNÞ
in [27] manifests that the physical states provided by the
rigging map on the spin network states with one vertex does
not include all the solutions to ĤE

TðNÞ or ĤEðNÞ. Further
investigation is still desirable to reveal more accurate
relations between the covariant and canonical dynamics
of LQG. Note also that our discussion is confined to the
case of β ¼ 1, it is desirable to generalize the calculations

to the general cases of β ≠ 1 and even to the Lorentzian
signature. Although the generalization would be nontrivial,
it could be handled in principle. We leave these issues for
future study.
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