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We consider k-essence, a scalar-tensor theory with first-order derivative self-interactions that can screen
local scales from scalar fifth forces, while allowing for sizeable deviations from general relativity on
cosmological scales. We construct fully nonlinear static stellar solutions that show the presence of this
screening mechanism, and we use them as initial data for simulations of stellar oscillations and gravitational
collapse in spherical symmetry. We find that for k-essence theories of relevance for cosmology, the screening
mechanism works in the case of stellar oscillation and suppresses the monopole scalar emission to
undetectable levels. In collapsing stars, we find that the Cauchy problem, although locally well posed, can
lead to diverging characteristic speeds for the scalar field. By introducing a “fixing equation” in the spirit of
J. Cayuso et al. [Phys. Rev. D 96, 084043 (2017)], inspired in turn by dissipative relativistic hydrodynamics,
we manage to evolve collapsing neutron stars past the divergence of the characteristic speeds. We show that,
in these systems, the screening mechanism is less efficient than for oscillating and static stars, because the
collapsing star must shed away all of its scalar hair before forming a black hole. For k-essence theories of
relevance for cosmology, the characteristic frequency of the resulting scalar monopole signal is too low for
terrestrial detectors, but we conjecture that space-borne interferometers such as the Laser Interferometer
Space Antenna might detect it if a supernova explodes in the Galaxy.
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I. INTRODUCTION

General relativity (GR) has been tested extensively on
local scales, e.g., in the Solar System [1,2], in binary
pulsars [3–5], and with the Advanced LIGO/Virgo obser-
vations of black-hole and neutron-star binaries [6–9].
However, on larger (cosmological) scales, the putative
existence of a dark sector may hint at a breakdown of
GR in the infrared (see, e.g., [10] for a review). The obvious
difficulty of explaining (at least partially) the dark sector as
a modification of GR lies precisely in the excellent agree-
ment between GR and local observables. Therefore, the-
ories that attempt to produce sizable modifications of the
GR phenomenology on cosmological scales must possess a
built-in mechanism screening local scales from large non-
GR effects [10].
Among the simplest and most popular theories extending

GR are scalar-tensor (ST) theories, where the gravitational
interaction is mediated not only by a massless spin-2 field,
but also by an additional gravitational scalar. ST theories
were first introduced by Fierz [11], Jordan [12], and

Brans and Dicke [13] (henceforth FJBD), who proposed
the action

S ¼
Z

d4x̃
M2

Pl

ffiffiffiffiffiffi
−g̃

p
2

�
ΦR̃ −

ω

Φ
∂̃μΦ∂̃μΦ

�
þ Sm½g̃μν;Ψm�;

ð1Þ

whereMPl ¼ ð8πGÞ−1=2 is the Planck mass, R̃ and g̃ are the
Ricci scalar and metric determinant, Φ is the gravitational
scalar field, Ψm collectively describes the matter degrees of
freedom, and where we have set ℏ ¼ c ¼ 1. The dimen-
sionless coupling constant ω regulates the deviations away
from GR, to which FJBD theory reduces for ω → ∞. This
can be seen more clearly by performing the conformal
transformation g̃μν ¼ Φ−1gμν, where the metric gμν is often
referred to as the Einstein-frame metric (as opposed to the
Jordan-frame metric g̃μν). This transformation, together
with the redefinition
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allows for writing the Einstein-frame action [14]
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with R as the Ricci scalar built from gμν. From this action,
it is clear that for ω → ∞ one simply obtains GR with a
minimally coupled scalar field.
The problem with FJBD theory is that it is strongly

constrained by Solar System experiments and, in particular,
by the Cassini measurement of the Shapiro time delay,
which boundsω > 40000 at 2σ level [2,15]. This constraint
renders the viable FJBD theories very fine-tuned and close
to GR, limiting their interest for cosmology. FJBD theory,
however, is not the most general ST theory that one can
conceive. Besides adding a potential and making the
coupling constant ω a function of Φ [or, equivalently,
considering a more general conformal factor than Eq. (2)],
which can already give rise to nontrivial phenomenology
[16–22], one can also generalize the action (3) to include
the Horndeski [23], beyond-Horndeski [24], and degener-
ate higher-order ST (DHOST) terms [25,26]. This results in
the cubic DHOST action derived in [27], which describes
the most general ST theory with no Ostrogradski ghosts.
When these additional terms are included, the phenom-
enology of ST theories becomes richer and more complex.
In particular, several theories in the DHOST class possess a
nonlinear screening mechanism, whereby the local dynam-
ics matches GR (thus evading the Cassini bound), while on
large (cosmological) scales the scalar field dynamics is left
relatively unconstrained, thus possibly playing a role in the
phenomenology of dark energy.
Several screening mechanisms have been proposed in the

literature, ranging from chameleon/symmetron screening
[21,22], to the Vainshtein mechanism [28,29], to kinetic
screening (also known as k mouflage) [30]. Among these,
the latter is the only one evading constrains from the speed
of gravitational waves (GWs) measured by GW170817
[31,32], the decay of GWs into the scalar mode [33,34],
and instabilities of the scalar field induced by GWs [35];
see also, e.g., [36] for bounds on chameleon/symmetron
screening. Remarkably, the action giving rise to kinetic
screening is also a very simple generalization of the FJBD
action (3), which is modified by making the kinetic term
nonlinear. In more detail, the resulting action (often referred
to as k-essence action) is given by [37,38]

S ¼
Z

d4x
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where X ≡ gμν∂μφ∂νφ and where we consider only the
lowest-order terms

KðXÞ ¼ −
1

2
X þ β

4Λ4
X2 −

γ

8Λ8
X3 þ…: ð5Þ

Here, Λ is the strong-coupling scale of the effective field
theory, β and γ are dimensionless coefficients of Oð1Þ,
and the conformal coupling α [cf. Eq. (2)] can be ∼Oð1Þ,
because the kinetic screening allows for escaping the
Cassini bound [39].
The validity of screening mechanisms, including kinetic

screening, has only been studied in static and weak field
regimes (e.g., [21,22,30,40–42]) or in quasistatic ones (e.g.,
[43–47]), and it has never been proven in the highly
dynamical and nonlinear regimes characterizing systems
of compact objects, which can only be described by full-
fledged numerical relativity simulations. In fact, even in the
simple case of k-essence, for which the Cauchy problem is
locally well posed, pathologies arise in dynamical evolu-
tions, with the field equations potentially changing char-
acter from hyperbolic to parabolic [48,49]. This change of
character renders initial-value evolutions unstable (i.e., ill
posed), but can be avoided in specific subclasses of
k-essence theories, including ones giving kinetic screening
[39,49]. Nevertheless, we showed in Ref. [39] that when
evolving neutron stars in these theories with kinetic screen-
ing, even though the equations always remain hyperbolic,
the characteristic speeds of the scalar field may diverge
when gravitational collapse is triggered. This happens also
in vacuum close to critical collapse [49] and is at the very
least a practical problem, as it makes the theory unpre-
dictive [because simulations cannot be evolved past this
divergence as a result of the Courant-Friedrichs-Lewy
(CFL) condition]. Moreover, it might also constitute a
conceptual pathology, since the characteristic speeds gen-
eralize the background scalar speed to nonlinear orders,
albeit in a gauge-dependent way [49].
In this paper, we build on the framework of Refs. [39,49]

and show that this divergence of the characteristic speeds
can be resolved by slightly modifying the dynamics by
adding a fixing equation in the spirit of the proposal by
Cayuso et al. [50] (see also [51,52]), which was in turn
inspired by the work of Israel and Stewart on relativistic
dissipative hydrodynamics [53]. The addition of this
equation modifies the dynamics of the theory, but the true
evolution of k-essence is recovered in the limit when a free
timescale τ, appearing in the fixing equation, vanishes.
In this work, we show that by taking a small τ ≠ 0, the
evolution of collapsing neutron stars (in spherical sym-
metry) matches the results of pure k-essence before the
divergence of the characteristic speeds, but also proceeds
unobstructed past it. We then use this framework to confirm
the validity of kinetic screening in these dynamical settings
and to study gravitational collapse in k-essence (in addition
to nonlinear stellar oscillations, for which a fixing equation
is not needed).
Remarkably, we find that kinetic screening remains valid

in oscillating stars (whose monopole scalar emission is
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suppressed to undetectable level for theories of interest for
cosmology), while it seems to break in collapsing systems.
In fact, our results suggest that collapsing stars must shed
away all their scalar hair before forming black holes, thus
producing bursts of scalar radiation. These bursts are
characterized by frequencies too low to be targeted by
ground-based interferometers (at least for theories of
interest for cosmology), but we conjecture that they may
be detected by space-borne detectors such as Laser
Interferometer Space Antenna (LISA), if a supernova
explodes in the Galaxy.
In more detail, the paper is organized as follows. In

Sec. II we present the field equations of k-essence. In
Sec. III we present details on the static spherically
symmetric stars of Ref. [39] and use them to review the
kinetic screening mechanism. The numerical setup for our
simulations, including the fixing equation, is described in
Sec. IV, where we also present results for the dynamical
evolution of oscillating and collapsing neutron stars. In
Sec. V we draw our conclusions. Throughout this paper we
assume a metric signature ð−þþþÞ and units where
ℏ ¼ c ¼ 1. In the Appendix, we review the relation
between these units and the units G ¼ c ¼ M⊙ ¼ 1 that
need to be used to simulate the dynamics of neutron stars
and explain why numerically studying stars in k-essence
theories of relevance for cosmology is challenging as a
result of the hierarchy of scales involved.

II. THE FIELD EQUATIONS OF k-ESSENCE
THEORIES

By varying the k-essence action (4), one obtains the
equations of motion for the metric and scalar field

Gμν ¼ 8πGðTφ
μν þ TμνÞ; ð6Þ

∇μ½K0ðXÞ∇μφ� ¼ 1

2
AT; ð7Þ

where Gμν is the Einstein tensor constructed from the
Einstein-frame metric gμν, we define A≡ −Φ0ðφÞ=
½2ΦðφÞ�, and the scalar field and matter energy-momentum
tensors are defined as

Tφ
μν ¼ KðXÞgμν − 2K0ðXÞ∂μφ∂νφ; ð8Þ

Tμν ¼
2ffiffiffiffiffiffi−gp δSm

δgμν
; ð9Þ

with T ¼ Tμνgμν. Although the Einstein frame is conven-
ient when solving these equations numerically, we convert
back to the Jordan frame (e.g., the frame in which matter
follows geodesics) to present and interpret our results.
To solve this system of coupled equations, we make a

few assumptions. First, we model matter by a perfect fluid
in the Jordan frame, with rest-mass density ρ̃0, specific

internal energy ϵ̃, pressure P̃, and four-velocity ũμ. From
the definition (9), the stress energy tensor in the Einstein
frame Tμν is related to the one in the Jordan frame T̃μν by
Tμν ¼ T̃μνΦ−3, Tμν ¼ T̃μνΦ−1 [17,18]. We can then write
the Einstein-frame stress energy tensor as

Tμν ¼ ½ρ0ð1þ ϵÞ þ P�uμuν þ Pgμν; ð10Þ

with ρ0, ϵ, P, and uμ related to their Einstein-frame
counterparts by [17,18] uμ ¼ ũμΦ−1=2 (which ensures that
the four velocity has unit norm in both frames), P ¼ P̃Φ−2,
and ρ0 ¼ ρ̃0Φ−2. These relations imply that, if one con-
siders an equation of state relating ρ̃0, ϵ̃, and P̃ in the Jordan
frame, the corresponding equation of state in the Einstein
frame will also (in general) involve the scalar field via the
conformal factor [17,18].
Since in the Jordan frame matter is not directly coupled

to the scalar field but only to the metric, the usual
conservation laws of the matter stress-energy tensor and
baryon number apply in that frame. Transforming those
conservation laws to the Einstein frame, one obtains

∇μTμν ¼ A∇νφT; ð11Þ

∇μðρ0uμÞ ¼ ρ0Auμ∇μφ: ð12Þ

Therefore, unlike in the Jordan frame, the stress-energy
tensor and the baryon number are not conserved in the
Einstein frame.

III. STATIC SOLUTIONS

In this section, we assume a spherically symmetric
and static ansatz for both the metric and the fluid, with
the goal of finding solutions representing isolated stars and
probing the validity of the kinetic screening mechanism.
We use areal coordinates for the metric, for which we adopt
the ansatz

ds2 ¼ gttðrÞdt2 þ grrðrÞdr2 þ r2dΩ2; ð13Þ

with dΩ as the solid angle element. (Note that this gauge
differs from the one we will adopt in Sec. IV to study the
time evolution of these objects, although transforming
between the two is straightforward.)
Although screening solutions exist in k-essence for any

β < 0 and γ > 0 in equation (5),1 in the following we set
β ¼ 0 and γ ¼ 1. This ensures that the theory satisfies the
condition 1þ 2XK00ðXÞ=K0ðXÞ > 0 for all X [49,54,55],

1Unfortunately, for this choice of the parameter signs,
k-essence does not admit a standard (Wilsonian) UV completion.
For this reason, an alternative approach, such as the fixing
equation method that we utilize in this paper, is necessary when
the characteristic scalar speeds diverge.
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which in turn implies that the field equations remain always
strongly hyperbolic (thus allowing us to study the Cauchy
problem in Sec. IV). The results presented in this work,
however, hold (qualitatively) for more general β and γ,
provided that the above condition is satisfied.
We wrote a Tolman-Oppenheimer-Volkoff solver in

Mathematica [56] to find these static spherical stars,
imposing regularity at the origin by solving the field
equations perturbatively at small radii. These perturbative
results are then used as initial data for an outbound
integration (in the radial coordinate) starting at small but
nonzero r. The initial data also depend on the central
density ρc and on the central value of the scalar field, which
is fixed through a shooting procedure by requiring φ → φ∞
(with jφ∞j=Λ≲ 10−3) as r → ∞.
To close the system, we consider a polytropic equation

of state P̃ ¼ Kρ̃Γ0 , P̃ ¼ ðΓ − 1Þρ̃0ϵ̃ in the Jordan frame.
We will mainly be studying neutron stars and use
K ¼ 123G3M2

⊙=c6 and Γ ¼ 2. Instead, when studying
weakly gravitating stars such as the Sun, we consider
K ¼ 5.9 × 10−5G1=3R2=3

⊙ =c2=3 and Γ ¼ 4=3.

A. Screening in isolated stars

As clear from the k-essence action (5), nonlinearities in
X are suppressed by the physical scale Λ. If we assume that
the scalar field is responsible for dark energy (DE), Λ needs
to be of the order of ΛDE ∼ ðH0MPlÞ1=2 ∼ 2 × 10−3 eV,
where H0 is the present-day Hubble expansion rate. At
spatial infinity, the theory is in the perturbative regime and
behaves as FJBD theory. However, at a “screening radius”
rk ∼ Λ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=MPl

p
, with M the mass of the star, the

nonlinear terms start dominating, suppressing (or screen-
ing) scalar effects at r≲ rk. Within this screening radius,
k-essence is equivalent to GR. In this section, we show
explicitly how the screening mechanism in k-essence
affects the gravitational force. We evaluate the latter as a
function of the Einstein-frame radius, and we will be

especially interested in the regimes r̃⋆ < r̃ < r̃k (where
screening is at work; r̃⋆ being the radius of the star) and
r̃ > r̃k (where k-essence starts deviating from GR).
The screening mechanism aims to suppress the scalar

fifth force on local scales and thus tends to make the
gravitational force inside the screening radius equal to the
one in GR. Since the Newtonian potential Ũ is encoded
in the falloff of the Jordan-frame metric component g̃tt
far from the star, Ũ ≈ −ðg̃tt þ 1Þ=2, we can quantify
the difference between the “Newtonian acceleration”
jdŨ=dr̃j in GR and k-essence. In Fig. 1, we show the ratio
of these two accelerations for six different solutions: three
neutron stars (left panel) and three Sun-like stars (right
panel). To generate these solutions, we have considered
three different values for the strong-coupling scale
Λ ¼ f4.47 × 104 eV; 4.47 eV;ΛDEg and considered two
different values for the conformal coupling constant α.
For neutron stars, the central density is fixed to
ρc ¼ 9.3 × 1014 g=cm3, whereas for Sun-like stars the
central density is fixed to ρc ¼ 77 g=cm3. With fixed ρc,
α, and φ∞, we expect the central value of the scalar field
(which has dimensions of an energy) to go as

φc ∝ Λ; ð14Þ

a relation that is indeed satisfied by our static solutions (at
least for sufficiently small Λ giving rise to kinetic screen-
ing), as we have explicitly verified. We stress that produc-
ing stellar solutions with Λ ≈ ΛDE is far from trivial. In
order to resolve the interior of the star, which is crucial to
impose regularity at the center (cf. also [39]), one needs
to use internal code units adapted to the problem (e.g.,
G ¼ c ¼ M⊙ ¼ 1 or G ¼ c ¼ R⊙ ¼ 1). Converting ΛDE

to these units yields very small values ΛDE ∼ 10−12 (see the
Appendix), which are difficult to handle. We also stress
that this is an issue due to the hierarchy of scales in the
problem (which involves both local stellar scales and the

FIG. 1. Deviations of the Newtonian acceleration from GR for neutron stars (left) and Sun-like stars (right) and for different values of
Λ in k-essence. We consider both α ≈ 0.14 (solid lines) and α ≈ 0.35 (dashed lines).
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cosmological scale ΛDE) and which is therefore indepen-
dent of the choice of units.
As can be seen from Fig. 1, the screening works in a

similar way in Sun-like and neutron stars. At radii larger
than r̃k, the k-essence Newtonian acceleration deviates
from the one in GR, with the magnitude of the deviation
depending on the value of α (in Fig. 1 the solid lines
correspond to α ≈ 0.14 and the dashed lines to α ≈ 0.35).
However, when the radius reaches r̃k, the fifth force starts
being suppressed, and jdŨk=dr̃j × jdŨGR=dr̃j−1 gets very
close to unity. As expected, the smaller the strong-coupling
scale Λ, the larger the screening radius r̃k within which the
fifth force is suppressed. Finally, deep inside the star, the
fifth force reappears as well. This is expected because at
the center of the star the kinetic energy of the scalar field X̃
vanishes because of regularity, and thus k-essence reduces
to FJBD theory (cf. also [39]).
To check whether these results hold also beyond

Newtonian order and, more specifically, at the first post-
Newtonian order that is tested in the Solar System, we
compare the exterior of our numerical solutions to the
parametrized post-Newtonian (PPN) expansion [1,2] and
extract the PPN parameters βPPN and γPPN (which are unity in
GR). The latter are defined in our areal coordinates as [57]

g̃ttðr̃Þ ¼ −1þ 2GM̃
r̃

− 2ðβPPN − γPPNÞ
�
GM̃
r̃

�
2

þOðr̃−3Þ; ð15Þ

g̃r̃ r̃ðr̃Þ ¼ 1þ 2γPPN
GM̃
r̃

þOðr̃−2Þ: ð16Þ

For this analysis, we consider only k-essence theories of
cosmological relevance and thus takeΛ ¼ ΛDE (while fixing
α ≈ 0.14). We extract the PPN parameters from solutions for
a Sun-like star in the regimewhere r̃⋆ < r̃ < r̃k and compare
their values to the constraints fromSolar System tests. This is
justified because Solar System experiments are performed
well within the screening radius of the Sun, but it also poses a
practical problem. Inside the screening radius, the nonlinear
terms in the action are important, and one cannot simply
performanaive perturbative post-Newtonian (PN) expansion
of the metric and scalar field [58]. This is evident from the
fact that only outside the screening radius does the scalar field
decay as 1=r̃ (in orders of which the PN expansion would be
performed). Equivalently, one can observe that a naive PN
expansionwould lead to thewrong conclusion that at leading
(i.e., Newtonian) order k-essence should reduce to FJBD
theory (which is clearly not the case inside r̃k). We therefore
use our numerical solutions and simply fit them with the
ansatz (15) and (16) to extract γPPN and βPPN, obtaining

γPPN − 1 ¼ ð−5.54� 1.68Þ × 10−10; ð17Þ

βPPN − 1 ¼ ð1.27� 0.733Þ × 10−3; ð18Þ

where the error bars are at 1σ. The PPN parameters are
constrained close to unity by Solar System observations
[2,15],with bounds jγPPN − 1j and jβPPN − 1j ≲ 10−5. As can
be seen, our results are therefore compatible with these
bounds at 2σ level, but our statistical error on βPPN − 1 is
much larger than the experimental bounds. This is because it
is challenging to extract βPPN from our numerical solutions,
since it appears at higher order than γPPN in Eqs. (15) and
(16). This problem is also exacerbated by the low compact-
ness of the Sun, which limits the range of radii on which we
can perform our fit. Repeating indeed the procedure for more
compact stars (e.g., for neutron stars), we find the more
precise result

γPPN − 1 ¼ ð−2.98� 1.38Þ × 10−12; ð19Þ

βPPN − 1 ¼ ð1.10� 0.764Þ × 10−10; ð20Þ

which is again in perfect agreement with the experimental
bounds.

B. Mass-radius curves

To study the screening mechanism in a dynamical
setting, in Sec. IV we will evolve screened neutron stars
in k-essence. In order to have a better understanding of the
characteristics of these stars, we first take a closer look at
their mass M̃ and radius r̃⋆. When screening is at play,
however, the definition of mass is subtle. Although the
gravitational mass is formally defined at spatial infinity, in
practice the masses of stars are measured by the observation
of orbital motion of bodies/gas well inside the screening
radius. Therefore, we can define two different masses, one at
spatial infinity (M̃∞) and one “felt” by bodies surrounding
the star, but located well inside its screening radius
(M̃screened). In practice, one can extract the former from
the metric component g̃tt ≈ −1þ 2GM̃=r̃ at spatial infinity,
and the latter by fitting it in the range r̃=ðGM⊙Þ ∼ 105 − 107,
which is the typical separation, e.g., of binary pulsar systems.
Let us start by considering the mass at spatial infinity.

First, we fix the central density to ρc ¼ 9.3 × 1014 g=cm3,
and consider three different values for the conformal
coupling constant α. The corresponding neutron-star
masses and radii in GR, k-essence, and FJBD theory are
listed in Table I. Then, we consider a range of central
densities to generate different stars in the same three
theories, while fixing α ≈ 0.35 and α ≈ 0.71, and show
the mass-radius curves in Fig. 2.
In Table I, we show that both k-mouflage and FJBD stars

become heavier when α increases. Their masses also
deviate from the masses of the GR solutions, as expected.
Indeed, the gravitational mass is extracted at spatial infinity,
where no screening is present and scalar effects can be
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significant. Conversely, the radius of the star r̃⋆ [defined by
P̃ðr̃⋆Þ ¼ 0] is within the screening radius, and we therefore
find that in k-essence it matches the GR stellar radius. As
the fifth force is not screened in FJBD theory, stellar radii in
the latter do show differences from k-essence and GR. In
Fig. 2, we show the mass-radius curves for the three
theories and find that deviations from the GR mass-radius
curve are more pronounced for larger α in both k-essence
and FJBD theory.
Let us now consider the screened mass M̃screened. The

resulting mass-radius curves can be found in Fig. 3. One
can see that there is a perfect overlap between the GR and
k-essence curves. This makes sense since we are fitting the
mass within the screening radius r̃k, where the two theories
are equivalent. We do instead find deviations for the FJBD
curve, since there is no screening in that theory.

C. Scalar charges and scalar field energy

In gravitational theories that modify/extend GR, the
universality of free fall (which in GR is satisfied as the

theory obeys the equivalence principle) is typically vio-
lated, at least for strongly gravitating objects such as
neutron stars [16–20,59–65] and black holes [58,66,67].
This amounts to a violation of the strong-equivalence
principle and is ripe with consequences for gravitational-
wave generation, as it gives rise to dipole gravitational
emission from binary systems (and even monopole emis-
sion, for noncircular binaries and collapsing stars), as
well as to modifications in the conservative dynamics of
binaries [59–62,64].
Violations of the strong-equivalence principle in modi-

fied gravitational theories are usually parametrized by
“sensitivities” or “charges,” i.e., additional “hair parame-
ters” describing compact objects and their effective cou-
pling to the nontensor gravitons that are generally present in
these theories. These charges vanish in the low-compactness
limit if the matter fields couple minimally to the metric [as is
the case for the ST theories that we consider, cf. the Jordan-
frame action (1)], i.e., if the weak-equivalence principle is
satisfied. However, they can be significant for neutron stars
or black holes, especially if nonlinear phenomena (e.g.,
“scalarization”) are at play [16–20,68–70].
In ST theories, one can indeed define a dimensionless

scalar charge ᾱ describing the effective coupling between
the scalar field and compact objects. From the decay of the
scalar field near spatial infinity,

φ ¼ φ∞ þ φ1

r
þO

�
1

r2

�
; ð21Þ

we can extract the scalar charge as [18,61]

ᾱ ¼
ffiffiffiffiffiffi
4π

G

r
φ1

M∞
; ð22Þ

with M∞ as the gravitational mass in the Einstein
frame, extracted from the asymptotic expansion gtt ¼ −1þ
2GM∞=rþ � � � at spatial infinity. As mentioned above, the

TABLE I. Neutron-star solutions for a central density of
ρc ¼ 9.3 × 1014 g=cm3 in GR, k-essence (Λ ¼ ΛDE), and FJBD
theory.

α M̃∞=M⊙ r̃⋆=km

GR Absent 1.719 14.47

k-essence 0.14 1.741 14.47
0.35 1.855 14.47
0.71 2.262 14.47

FJBD 0.14 1.752 14.42
0.35 1.929 14.16
0.71 2.572 13.51

FIG. 2. Mass-radius curves for M̃ ¼ M̃∞ in k-essence (with
Λ ¼ ΛDE), FJBD theory, and GR. We have fixed α ≈ 0.35 and
α ≈ 0.71 and vary the central density to generate different stars
(following the curves from right to left corresponds to increasing
ρc). We have differentiated between stable (solid lines) and
unstable branches (dashed lines).

FIG. 3. Mass-radius curves for M̃ ¼ M̃screened in k-essence
(with Λ ¼ ΛDE), FJBD theory, and GR. We have fixed α ≈
0.35 and vary the central density to generate different stars.
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importance of these scalar charges lies in the modifications
that they induce on gravitational-wave generation. Nonzero
charges can produce monopole and dipole radiation (the
former only in eccentric binaries), as opposed to the
quadrupole emission of GR (which also gets modified
by the scalar charges) [60,61,64]. Scalar charges may
also modify the conservative dynamics of binary systems
with respect to GR [60,61,64]. As a result, nonzero
scalar charges can provide a way to test the theory
experimentally, a program that was indeed pursued in
FJBD-like theories [5].
Results for the scalar charges in k-essence and FJBD

theory for two values of the conformal coupling (α ≈ 0.71
and α ≈ 0.35) are shown in Fig. 4, as functions of the
baryon mass in the Jordan frame,

M̃b ¼
Z

d3x̃
ffiffiffiffiffiffi
−g̃

p
ρ̃0ũ0: ð23Þ

We find that the scalar charge is of the same order of
magnitude in k-essence and FJBD theory, with a larger α
corresponding to larger ᾱ in both theories (for a fixed
central density). Another similarity between the theories is
that, by increasing ρc, the scalar charge decreases (i.e., as
expected, the scalar charges decreases with compactness).
Differences can be found in both the baryon mass and

scalar charge shown in Fig. 4. While the baryon mass was
expected to behave differently in k-essence and FJBD
theory (since it is defined inside the screening radius), the
behavior of the scalar charge is at first sight surprising. Just
like the gravitational mass M∞, the scalar charge ᾱ is a
quantity that is extracted near spatial infinity. In this regime
there is no screening, and the linear terms of the scalar
action (e.g., the FJBD terms) will dominate over the

nonlinear (k-essence) ones. Therefore, in the scalar sector,
k-essence is equivalent to FJBD theory near spatial infinity,
and one would expect the scalar charges to be the same in
the two theories. In fact, for fixed central density, the
coefficient φ1 that regulates the decay of the scalar field and
which enters the definition (22) is the same in the two
theories, but the Einstein-frame mass [which also enters
Eq. (22)] is not. As a result, the scalar charges are different.
An important caveat is that the scalar charge, being

extracted from the falloff of the scalar field near spatial
infinity, describes the solution in a region where no
screening is present and k-essence behaves perturbatively.
It should be stressed, however, that the formalism to
compute the impact of the scalar charges on gravita-
tional-wave emission and on the conservative dynamics
also uses PN theory, which is only valid outside the
screening radius. As pointed out by [58], this limits the
physical meaningfulness of the scalar charges, which are
only relevant for the conservative and dissipative dynamics
of binary systems with separations larger than the sum of
their screening radii. Since for Λ ≈ ΛDE a neutron star’s
screening radius is ∼1011 km, this excludes known binary
pulsars, whose separation is typically ≲106 km.
Therefore, testing k-essence with binary pulsar timing

data would require solving for the nonlinear dynamics
inside the screening radius and cannot rely on PN theory.
While some work in this direction has been done by using a
Wentzel-Kramers-Brillouin approximation [43–45], results
are still inconclusive because full-fledged nonlinear sim-
ulations of the dynamics of k-essence within the screening
radius are still missing. We will contribute to solving this
problem in a forthcoming publication. For the moment, let
us stress two points.
First, it should be noted that the Square Kilometre Array

is expected to discover several new millisecond pulsars,
especially near the Galactic Center [71]. Based on the
distribution of semimajor axes of known S stars (which are
≳1000 au ≈ 1011 km [72]), it is not to be excluded that the
conservative dynamics of millisecond pulsars around
SgrA⋆ may be used, in the near future, to test k-essence
in the perturbative regime where scalar charges are relevant.
Second, even though a complete formalism to describe the
scalar charges and the dynamics of a binary at separations
smaller than the screening radii of its components is
currently missing, we expect scalar effects to be suppressed
inside the screening radius. This is evident from the
discussion of Secs. III A and III B, but we can also see
it explicitly by calculating the contribution of the scalar
field to the energy of the star.
The energy of the scalar field can be defined as the

spatial integral of the time component of the current
J̃μ ¼ T̃μν

φ nν, where nμ ¼ δμt =
ffiffiffiffiffiffiffiffi
−g̃tt

p
is the unit norm vector

orthogonal to the foliation. The scalar field energy (in the
Jordan frame) within a radius r̃ is then

FIG. 4. The scalar charge ᾱ as a function of the baryon mass M̃b
for k-essence (with Λ ¼ ΛDE) and FJBD theory for conformal
coupling constants α ≈ 0.71 and α ≈ 0.35. Again, the stable
branches are presented by solid lines, and the unstable branches
by dashed lines.
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Ẽφðr̃Þ ¼ −
Z
jxj<r̃

d3x̃
ffiffiffiffiffiffi
−g̃

p
J̃t

¼ 4π

Z
r̃

0

dr̃½−r̃2
ffiffiffiffiffiffi
g̃r̃ r̃

p
Φ2KðXÞ�; ð24Þ

where the minus sign ensures that Ẽφ > 0.
In Table II, we present seven different solutions for

varying Λ and report their total scalar field energy Ẽφ
∞.

Besides the value of Ẽφ
∞, normalized by both ΛDE andMGR

(equal to 1.719 M⊙, see Table I), we also show the
gravitational mass M̃∞, the baryon mass M̃b, the radius
of the star r̃⋆, and the screening radius r̃k of the solutions.
All these quantities are evaluated in the Jordan frame. Note
that Λ ¼ ∞ corresponds to FJBD theory. In Fig. 5, we plot
Ẽφðr̃Þ for the solutions presented in Table II.
There are a few things to notice in Table II. First, as

expected, we see that the gravitational mass of the stars
decreases with decreasing Λ (and thus more suppression of
the scalar field in the screened regime). At the same time,
the radius of the stars increases, resulting in less compact

stars for smallerΛ. We also confirm again that the screening
radius increases for decreasing Λ. The scalar field energy at
infinity is always small compared to the gravitational mass
in GR (i.e., Ẽφ

∞=MGR ≲ 10−3), and forΛ ∼ 10−1 eV it starts
being Ẽφ

∞=ΛDE ≲Oð1Þ. In Fig. 5, we can see the scalar
energy as a function of r̃. It starts being suppressed when
screening kicks in (deep within the star, not included in the
figure) and even more so once we go outside the surface of
the star (indicated with a light gray line in the figure). When
r̃ ∼ r̃k, the profile flattens and the scalar field energy
asymptotes to its value at infinity.

IV. NONLINEAR EVOLUTION IN SPHERICAL
SYMMETRY

In this section, we describe the formalism that we
employ to perform fully nonlinear numerical evolutions
in k-essence theory. We use as initial data the static
solutions presented in Sec. III, subject to suitable initial
perturbations that trigger stellar oscillations or spherical
collapse. We present results for the evolution and show
that gravitational collapse generically leads to diverging

FIG. 5. Left: the scalar energy as a function of the Einstein-frame radius for a neutron star in FJBD theory and in two k-essence
theories (with two distinct strong-coupling scales Λ). Right: the scalar energy of the solutions presented in Table II. The radius of the star
r̃⋆ is indicated by a light gray line and the screening radii r̃k by small vertical lines on top of the solutions.

TABLE II. In this table, we are showing the mass at spatial infinity M̃∞, the baryon mass M̃b, the stellar radius r̃�,
and the screening radius r̃k of seven different solutions for varying Λ. We also show the scalar field energy at spatial
infinity normalized by either ΛDE or MGR, in the Jordan frame (Ẽφ

∞). The central density of the stars is fixed to
ρc ¼ 9.3 × 1014 g=cm3 and the conformal coupling constant to α ≈ 0.14.

Λ M̃∞=M⊙ M̃b=M⊙ r̃⋆=km r̃k=km Ẽφ
∞=ΛDE Ẽφ

∞=MGR

∞ 1.752 1.889 14.42 Absent 1.592 × 109 1.619 × 10−3

4.47 × 106 eV 1.745 1.877 14.47 67.73 1.982 × 108 2.016 × 10−4

4.47 × 104 eV 1.741 1.872 14.47 6.639 × 103 1.966 × 106 2.000 × 10−6

4.47 × 102 eV 1.741 1.872 14.47 6.637 × 105 1.965 × 104 1.999 × 10−8

4.47 eV 1.741 1.872 14.47 6.637 × 107 1.965 × 102 1.999 × 10−12

4.47 × 10−2 eV 1.741 1.872 14.47 6.637 × 109 1.965 1.999 × 10−12

ΛDE 1.741 1.872 14.47 1.327 × 1011 9.825 × 10−2 9.994 × 10−14
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characteristic velocities, which can be avoided by adding a
fixing equation in the spirit of the approach of
Refs. [50,51].

A. Evolution formalism: Spherical symmetry

The covariant field equations (6), (7), (11), and (12) can
be written as an evolution system by splitting explicitly the
spacetime into a foliation of spacelike hypersurfaces with a
normal timelike vector. Assuming spherical symmetry,
we can adopt the line element

ds2 ¼ −N2ðt; rÞdt2 þ grrðt; rÞdr2 þ r2gθθðt; rÞdΩ2; ð25Þ

where Nðt; rÞ is the lapse function, while grrðt; rÞ and
gθθðt; rÞ are positive metric functions. These quantities are
defined on each spatial slice with normal nμ ¼ ð−N; 0Þ and
extrinsic curvature Kij ≡ − 1

2
Lnγij, where Ln is the Lie

derivative along nμ and γij is the metric induced on each
spatial slice.
The Einstein equations (6) can be written as a hyperbolic

evolution system by using the Z3 formulation [73], in
which the momentum constraint is included in the evolu-
tion system by considering an additional vector Zi as an
evolution field [74–77]. Equation (6) can be expressed as a
first-order system by introducing the following first deriv-
atives of the fields as independent variables:

Ar ¼
1

N
∂rN; Drr

r ¼ grr

2
∂rgrr; Drθ

θ ¼ gθθ

2
∂rgθθ;

χ ¼ ∂rφ; Π ¼ −
1

N
∂tφ: ð26Þ

A coordinate system for the lapse (i.e., slicing condition)
is required to close the evolution system. We use the
singularity-avoidance 1þ log slicing condition ∂t lnN ¼
−2trK, where trK ¼ Kr

r þ 2Kθ
θ [78]. The final set of

evolution fields for the Z3 formulation in spherical sym-
metry can be found in Ref. [77].
The equation of motion (7) for the scalar field becomes

∂tφ ¼ −NΠ; ð27Þ

∂tχ ¼ −∂rðNΠÞ; ð28Þ

∂tΨ ¼ −∂rFr
Ψ −

2

r
Fr
Ψ þ 1

2
NζAT; ð29Þ

where ζ ¼ ffiffiffiffiffiffi
grr

p
gθθ and

Ψ ¼ ζK0Π; ð30Þ

FΨ ¼ NζK0grrχ: ð31Þ

Note that we have introduced a new conserved field Ψ,
depending implicitly on the primitive fields fΠ; χg

through the nonlinear equation (30). In fact, during the
evolution, this equation has to be solved numerically at
each time step to recover Π (for further discussion,
see Ref. [49]).
Finally, the conservation of the stress-energy tensor and

of the baryon number, Eqs. (11) and (12), can be written
as a (first-order) evolution system by splitting the four-
velocity vector into its components parallel and orthogonal
to the vector nμ, namely uμ ¼ Wðnμ þ vμÞ, being W ¼
−nμuμ the Lorentz factor and vμ the spatial velocity
measured by Eulerian observers. Assuming again spherical
symmetry, the conservation equations (11) and (12)
become

∂tðζDÞ ¼ −∂rðζDNvrÞ þ NAζDð−Πþ vrχÞ − 2

r
ζDNvr;

ð32Þ

∂tðζUÞ ¼ −∂rðζNSrÞ þ NζAΠT

þ ζN

�
SrrKr

r þ 2SθθKθ
θ − Sr

�
Ar þ

2

r

��
; ð33Þ

∂tðζSrÞ¼−∂rðζNSrrÞþNζAχT

þζN

�
Srr

�
Drr

r−
2

r

�
þ2Sθθ

�
Drθ

θþ1

r

�
−UAr

�
:

ð34Þ

The evolved conserved quantities fζD; ζU; ζSrg are,
respectively, proportional to the rest-mass density measured
by Eulerian observers (D), the energy density (U), and the
momentum density (Sr). These quantities, together with the
nontrivial spatial components of the stress-energy tensor,
can be written in terms of the physical (or primitive) fluid
fields as

D ¼ ρ0W; Sr ¼ hW2vr; U ¼ hW2 − P; ð35Þ

Srr ¼ hW2vrvr þ P; Sθθ ¼ P; ð36Þ

where h≡ ρ0ð1þ ϵÞ þ P is the enthalpy, vr is the
radial velocity, and the Lorentz factor is simply
W2 ¼ 1=ð1 − vrvrÞ.
Note that, during the evolution, one needs to recover the

primitive fields fρ0; ϵ; P; vrg in order to calculate the right-
hand side of the evolution equations for the conserved
fields fD;U; Srg. This can only be achieved by including a
closure relation between the pressure and the other thermo-
dynamic fields. Here, we close the system by employing
(both in the Jordan and the Einstein frame) the ideal fluid
equation of state P ¼ ðΓ − 1Þρ0ϵ, where Γ is the same
adiabatic index used for generating the initial data.
Furthermore, as in the case of the scalar field, the
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transformation from conserved to primitive fields requires
one to solve nonlinear equations, which we do numerically
at each time step. For further discussion about the algorithm
to convert from conserved to primitive fields, we refer the
interested reader to Ref. [77].
Finally, the complete evolution system is written in flux-

conservative form

∂tuþ ∂rFðuÞ ¼ SðuÞ; ð37Þ

where u¼fN;grr;gθθ;Kr
r;Kθ

θ;Ar;Drr
r;Drθ

θ;Zr;φ;Π;Ψ;
D;U;Srg is a vector containing the full set of evolution
fields, and neither the radial fluxes FðuÞ nor the source
terms SðuÞ contain terms with derivatives of the evolution
fields.

B. Numerical setup and radiation extraction

The numerical code employed in this work is an
extension of the one presented in Ref. [49], which was
used to study the dynamics of k-essence in vacuum
spacetimes, with the model given by Eq. (5). The code
has been fully tested also in GR, by studying the dynamics
of black holes [74], boson stars [76], fermion-boson stars
[77], and anisotropic compact objects [79].
We use a high-resolution shock-capturing (HRSC)

scheme, based on finite differences, to discretize both
the Einstein equations and the relativistic hydrodynamics
equations [74]. This method can be interpreted as a fourth-
order finite difference scheme plus a third-order adaptive
dissipation. The dissipation coefficient is given by the
maximum propagation speed at each grid point. For the
scalar field, we use a more robust HRSC second-order
method, by combining the Lax-Friedrichs flux formula
with a monotonic-centered limiter [80,81].
The time evolution is performed through the method

of lines using a third-order-accurate, strong-stability-
preserving Runge-Kutta integration scheme. We set a
Courant factor Δt=Δr ¼ 0.125, in units G¼c¼M⊙¼1,
so that the CFL condition imposed by the principal part of
the evolution system is always satisfied. Most of the
simulations presented in this work have been performed
with a spatial resolution of Δr ¼ 0.008 M⊙, in a domain
with outer boundary located at r ¼ 480 M⊙. We use
maximally dissipative boundary conditions for the spacetime
variables and outgoing boundary conditions for the scalar
field. We have verified that the results do not vary signifi-
cantly when the position of the outer boundary is changed.
We have also performed evolutions with different resolu-
tions, which indicate that the results presented here are
consistent and within the convergent regime.
Unlike in GR, monopole gravitational radiation (in the

form of scalar field waves) is permitted in ST theories and
is produced by gravitational collapse in FJBD theories
[82–84]. In the following, we will see that a nonvanishing
monopole flux is also emitted by stellar oscillations and by

gravitational collapse (in spherical symmetry) in k-essence.
The response of a gravitational interferometer to scalar
waves is encoded in the Jordan-frame Newman-Penrose
invariant ϕ22 [85], which far from the source can be
computed simply as [17]

ϕ22 ≃ −α
ffiffiffiffiffiffiffiffiffiffiffi
16πG

p ∂2
tφþO

�
1

r2

�
: ð38Þ

In deriving this expression, Ref. [17] assumed a decay
∝ 1=r for the scalar field, which, as stressed already, is only
a good approximation outside the screening radius in
k-essence. For this reason, and because the distance of
the interferometer from the source is typically much larger
than the screening radius (even for Λ ∼ ΛDE), we only
compute ϕ22 at extraction radii rext > rk. From ϕ22 one can
then obtain the scalar strain hs via ϕ22 ∝ ∂2

t hs [which, by
virtue of Eq. (38), yields hsðrextÞ ∝ φðrextÞ, up to terms
constant and linear in time]. The scalar strain can, in turn,
be used to compute the signal-to-noise ratio (SNR) for a
given detector [82,83].

C. Stellar oscillations

The nonlinear stability of k-mouflage stars in equilib-
rium configurations, like those constructed in Sec. III, can
be tested by perturbing them and following their evolution
numerically using the formalism described above. Here,
we consider k-essence theories with conformal coupling
α ≈ 0.14, but differing for the value of Λ, which we fix to
either Λ ∼ 71.8 or Λ ∼ 4.04 MeV. The former gives rise to
stars that are very similar to solutions of FJBD theory (with
the same conformal coupling), while the latter produces
a rather significant screening effect on the scalar field
(cf. Sec. III). Notice that we cannot consider Λ as small as
ΛDE, because, even though we can simulate static stars for
this value of the strong-coupling scale, the corresponding
dynamical evolutions become intractable because of large
round-off errors (since, as already mentioned and detailed
in the Appendix, the hierarchy of scales between the
screening and stellar radii requires one to use code units
G ¼ c ¼ M⊙ ¼ 1, in which ΛDE ∼ 10−12). Moreover, as
shown in Ref. [39], simulations of stars with significant
screening are also challenging as they require significant
spatial resolution near the origin, where the solutions pass
from the nonlinear regime applicable to the outer layers of
the star to a FJBD-like behavior.
We consider equilibrium configurations with central

energy density ρc ¼ 9.3 × 1014 g=cm3 and excite oscilla-
tions by increasing the internal energy by 4% (“small
oscillations”) or 14% (“large oscillations”). Notice that,
although this initial perturbation introduces small con-
straint violations, these are comparable to the solution’s
truncation error. Therefore, it is not necessary to solve the
energy constraint on the initial slice. Results for the two
values of Λ are presented in Fig. 6, which displays the
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central values for the rest-mass density and for the scalar
field as a function of time. The purple lines show the
dynamics of unperturbed stars (i.e., stars only perturbed by
numerical truncation errors), which confirms the stability of
these systems. For small perturbations (red lines) and large
perturbations (green lines), the stars begin to oscillate.
Indeed, since we increase the internal energy of the stars to

trigger the oscillations, the stellar compactness initially
decreases and so does the scalar field magnitude. The latter
oscillates with the same frequency as the density, but with a
small time shift. Notice that the oscillations do not grow in
amplitude, confirming that these stars are stable.
As can be seen from Fig. 6 (right panel), the amplitude of

the central scalar field oscillations decreases withΛ, just like
the central scalar field of the static solutions [cf. Eq. (14)].
This seems to confirm the validity of kinetic screening even
in this dynamical case. To strengthen this conclusion,
we have also extracted the scalar monopole signal ϕ22 for
oscillating stars initially subjected to the same large (∼14%)
perturbations of the internal density, for Λ ¼ f71.8;
12.8; 7.18; 4.04; 2.27g MeV. The results are presented in
Fig. 7 for an extraction radius rext ¼ 150GM⊙ > rk, as a
function of retarded time, defined as tret ¼ t − rext. As can
be seen, the amplitude of the signal is an increasing
function of Λ.
In order to see the effect of screeningmore clearly,wehave

plotted inFig. 8 (left panel) the amplitude of the same signals,
whichwe compute as the root mean square of the time series.
Notice that with the exception of Λ ∼ 71.8 MeV, for which
there is no screening (even in the static case), the monopole
amplitude scales as Λ, as expected from the scaling of the
central scalar field of the static stellar solutions [cf. Eq. (14)].
By integrating ϕ22 in time twice to get the monopole strain
hs, we can compute its SNR for Advanced LIGO (at design
sensitivity2) for an optimally oriented source at 8 kpc

FIG. 6. Evolution of the rest-mass density and the scalar field in the Jordan frame as a function of time for Λ ¼ 71.8 MeV (left)
and Λ ¼ 4.04 MeV (right) and conformal coupling α ≈ 0.14. We consider static initial conditions (A), as well as small (i.e., 4%)
and large (i.e., 14%) initial perturbations in the internal energy density (B and C, respectively). Note that no secular growth is present;
i.e., k-mouflage stars are nonlinearly stable.

FIG. 7. The Jordan-frame Newman-Penrose invariant ϕ22

(which describes monopole scalar radiation) for oscillating stars
(with large 14% initial perturbations in the internal energy
density), as function of the retarded time tret ¼ t − rext, with
rext ¼ 150GM⊙ > rk the extraction radius. The conformal cou-
pling is set to α ≈ 0.14.

2For the sensitivity, we used the zero detuning, high-power
configuration of https://dcc.ligo.org/LIGO-T0900288/public.
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(corresponding to the distance between the Earth and the
center of the Galaxy). The results are displayed in Fig. 8
(right panel) and show again a scaling roughly linear withΛ.
Extrapolating to values ofΛ ∼ ΛDE relevant for dark energy,
one would get a tiny unobservable SNR ∼ 10−6 at 8 kpc.

D. Gravitational collapse

As discussed in Ref. [39], the characteristic propagation
speeds of the scalar field equation (7) diverge when
k-mouflage stars collapse (“Keldysh problem”). In more
detail, the evolution equation for the scalar field can be
recast as

γμν∇μ∇νφ ¼ AT
2K0ðXÞ ; ð39Þ

in terms of the effective metric

γμν ≡ gμν þ 2K00ðXÞ
K0ðXÞ ∂μφ∂νφ: ð40Þ

The characteristic speeds of this equation are then given
by [49]

V� ¼ −
γtr

γtt
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðγμνÞ
ðγttÞ2

s
: ð41Þ

As shown in Ref. [49], at leading order (on Minkowski
space and in standard Cartesian coordinates) these veloc-
ities reduce to the usual expression for the speed of the
scalar mode in k-essence, cs ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2XK00=K0p
(see,

e.g., [54]), of which they constitute the nonlinear
generalization.

During the gravitational collapse of a k-mouflage star
(which can be triggered, e.g., by decreasing its internal
energy), these velocities diverge because γtt goes to zero.
This problem also appears during the collapse of scalar
field pulses in vacuum [48,49,86] and resembles the
behavior of the Keldysh equation

t∂2
tφðt; rÞ þ ∂2

rφðt; rÞ ¼ 0: ð42Þ

This equation is hyperbolic with characteristic speeds
�ð−tÞ−1=2 for t < 0, leading to a divergence at t ¼ 0.
Diverging characteristic speeds constitute at the very

least a practical obstacle that prevents one from evolving
the dynamics past this divergence by using explicit time
integrators, since the CFL bound forces the time step to
vanish when the Keldysh behavior appears. As stressed in
Ref. [49], this divergence may, in principle, be avoided by
allowing for a nonvanishing shift. However, neither
Refs. [39] nor [49] managed to find a suitable coordinate
condition in spherical symmetry that would maintain the
characteristic speeds finite, while still ensuring stable
numerical evolutions. This leaves open the possibility that
the Keldysh problem that we find might have a physical
relevance, besides a practical one. Here, however, we assume
that the Keldysh problem is not fundamental, and we attempt
to amend it by using an approach inspired by Refs. [50,51],
which put forward a method to ameliorate the stability of
Cauchy evolutions in theories with higher derivatives3 (see
also Ref. [52] for an application of this approach to a specific
higher derivative extension of GR).
The method consists of modifying the theory’s dynamics

by adding extra fields and fixing equations (i.e., drivers) for

FIG. 8. The amplitude of rextϕ22 as plotted in Fig. 7 (left) and the corresponding SNR at 8 kpc for Advanced LIGO at design sensitivity
(right) as a function Λ. The orange dashed lines show a linear scaling in Λ.

3This method is, in turn, inspired by the Müller-Israel-Stewart
formalism of viscous relativistic hydrodynamics [87–89].
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them. The drivers are chosen so that on sufficiently long
timescales the evolution dynamics approximately matches
that of the theory under consideration (k-essence in our
case). We stress that this modification of the field equations
does not correspond to a standard ultraviolet completion
of k-essence, which is not known for theories giving
screening [90]. However, this dynamical fixing of the
Cauchy problem might make sense if the effective field
theory “classicalizes” [91] at high energies.
To apply the method of Refs. [50,51], let us first recall

that Ref. [39] found that, in order to deal with shocks
appearing in k-mouflage stars, the scalar field equation
needs to be written as a conservation law [cf. Eq. (7)]. The
fixing equation that we introduce must therefore share this
property. Let us then introduce the new field Σ and the
modified evolution system

∂tð
ffiffiffiffiffiffi
−g

p
Σ∇tφÞ þ ∂ið

ffiffiffiffiffiffi
−g

p
Σ∇iφÞ ¼ 1

2

ffiffiffiffiffiffi
−g

p
AT; ð43Þ

∂tΣ ¼ −
1

τ
ðΣ − K0ðXÞÞ: ð44Þ

The second equation is a driver that will force Σ to K0ðXÞ
on a timescale τ > 0. As can be seen, the principal part of
this system takes indeed the form of a conservation law.
Restricting then to the spherical symmetric case and using
the line element (25), Eqs. (43) and (44) can be written as

∂tφ ¼ −NΠ; ð45Þ

∂tχ ¼ −∂r½NΠ�; ð46Þ

∂tΨ ¼ −∂rFr
Ψ −

2

r
Fr
Ψ þ 1

2
NζAT; ð47Þ

∂tΣ ¼ −
1

τ
ðΣ − K0ðXÞÞ; ð48Þ

where Ψ ¼ ζΣΠ and Fr
Ψ ¼ NζΣgrrχ. As in the original

k-essence equations in balance law form [49], there is a set
of conserved evolved fields fχ;Ψ;Σg and a set of primitive
fields fχ;Π;Σg required to calculate the right-hand side
of the equations. In this case, the only unknown primitive
field (Π) can be found by solving the linear equation Π ¼
Ψ=ζΣ at each time step. Finally, notice that the evolution
equations (45)–(48) lead to a strongly hyperbolic system,
thus ensuring that the Cauchy problem is well-posed. We
stress that this approach works trivially for FJBD theories,
since for the latterK0ðXÞ ¼ −1=2 is constant, and the driver
Eq. (48) relaxes Σ to K0ðXÞ exponentially on the timescale
τ. Moreover, we have tested it against the oscillating stars
presented in the previous section, obtaining very good
agreement.
Results for gravitational collapse in a theory with Λ ¼

4.04 MeV are shown in Fig. 9, for the minimum of the

lapse (top panel) and the central rest-mast density (bottom
panel). The black circles represent results obtained by
solving the field equations (6) and (7). In this case, the
characteristic speeds of the scalar field diverge (at the time
marked by a black cross) and the simulation stops long
before formation of a horizon because of the CFL con-
dition. The solid red line shows instead the results obtained
by adding the fixing equation, which allows for the
simulation to successfully complete, leading to the for-
mation of a hairless Schwarzschild black hole. The results
are obtained for values of τ down to 30GM⊙ and are
extrapolated to τ ¼ 0.
Figure 10 shows instead the time evolution of the scalar

field far from the source (at an extraction radius rext ¼
200GM⊙ > rk) as a function of time, for three values of Λ
giving screening in the static case (Λ ¼ 12.8, 7.18,
4.04 MeV). The results are again obtained for finite values
of τ (as small as 10 or 30GM⊙ according to the value of Λ)
and then extrapolated to τ ¼ 0. As indicated, the scalar field
is multiplied by the extraction radius so that the value
displayed is independent of the exact extraction position;
i.e., we show φrext, with rext ¼ 200GM⊙. As can be seen,
φrext goes from a constant nonvanishing value at the
beginning of the simulation to zero at late times, for all
values of Λ. This behavior is readily explained. The initial
value is set by the coefficient φ1 of Eq. (21), which is

FIG. 9. Evolution of the minimum of the lapse across the radial
grid (top) and the central rest-mast density (bottom) in the Jordan
frame, for the gravitational collapse of a neutron star in a theory
with Λ ¼ 4.04 MeV and α ≈ 0.14. The red lines represent the
evolution obtained with the fixing equation (extrapolated to
τ ¼ 0), and the black circles represent results obtained by solving
the field equations (6) and (7). Note that the latter evolution
presents diverging characteristic speeds for the scalar field at
t ¼ 0.37 ms (Keldysh behavior, black cross), which effectively
halts the simulation.
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proportional to the scalar charge [cf. Eq. (22)] and which is
largely independent ofΛ, since scalar effects are not screened
for r > rk. The final value is zero because a black hole forms,
and in k-essence black holes have no hair (i.e., no scalar
charge) because the theory is shift symmetric [92,93].
Therefore, we can interpret the difference between the initial
and final values ofφrext as due to the collapsing star shedding
its scalar hair.

Moreover, smaller values of Λ seem to lead to longer
characteristic timescales (i.e., lower frequencies) in the
simulations of Fig. 10. In fact, if one plots the scalar field’s
evolution as function of a rescaled time t0 ¼ ðt − t0Þ

ffiffiffiffi
Λ

p
G1=4

(with t0 a suitable offset), the results are very similar, as
shown in the inset of Fig. 10. From this “self-similarity,” we
can conclude that the frequencies contained in the signal
should scale as f ∝

ffiffiffiffi
Λ

p
. By combining this with the

observation that the initial and final values of φ are
independent of Λ, we can infer that ϕ22 should scale with
Λ as ϕ22 ∝ ð2πfÞ2φ ∝ Λ. We have verified this scaling by
computing ϕ22 explicitly (Fig. 11, left panel), extracting its
amplitude as the root mean square of its time series, and
verifying that the amplitude scales roughly linearly with Λ
(Fig. 11, right panel).
As for the SNR of the results shown in Fig. 10, we have

computed it (assuming optimal source orientation) for
Advanced LIGO at design sensitivity and obtained values
of ∼200 at 8 kpc, with no appreciable dependence on the
value of Λ. This roughly constant (and detectable) SNR
comes about because the difference between the initial and
final value of φ (and thus the scalar strain hs) are largely
independent of Λ, since the star has to shed all of its hair
before forming a back hole. Because of the scaling of the

frequency with
ffiffiffiffi
Λ

p
, however, we expect that for Λ → ΛDE

the signal will eventually fall out of the frequency band of
terrestrial detectors. The latter are insensitive to frequencies
lower than 1–10 Hz because of seismic noise (even for third
generation detectors such as the Einstein Telescope [94]
or Cosmic Explorer [95]). In fact, when going from
Λ ∼ 10 MeV for the results in Fig. 10 (whose frequencies
are ∼ kilohertz) to Λ ∼ 10 eV, we expect the frequency to
drop by a factor ∼1000 to ∼1 Hz. Scalar monopole signals

FIG. 10. Evolution of the scalar field far from the source as a
function of the retarded time tret in the Jordan frame for different
values of Λ and α ≈ 0.14. These results have been obtained by
extrapolating to τ ¼ 0. In the inset we display the scalar field as a
function of the rescaled time t0, to show the self-similarity of
these solutions during the gravitational collapse.

FIG. 11. Left: we show the Jordan-frame Newman-Penrose invariant ϕ22 for collapsing stars, as function of the retarded time tret, with
rext ¼ 200GM⊙ > rk and conformal coupling α ≈ 0.14. Right: we show the amplitude of ϕ22 as a function ofΛ, together with a linear fit
in Λ (orange dashed line).

MIGUEL BEZARES et al. PHYS. REV. D 104, 044022 (2021)

044022-14



in theories with Λ≲ 10 eV are therefore likely unobserv-
able from Earth, but would fall, in principle, in the band of
space-borne detectors such as LISA. By using the self-
similarity of our solutions to compute the SNR for LISA in
the case of Λ ≈ ΛDE ≈ 2 meV, we obtain SNR ∼ 30–40
(according to whether we use the LISA sensitivity curve
from the proposal to ESA [96] or from the Science
Requirements Document [97]) for optimally oriented
sources at 8 kpc distance. For Λ ≈ 10 meV, we get instead
SNR ∼ 7–10. We should stress again, however, that these
results involve an extrapolation over 9 orders of magnitude
in Λ, based on the self-similarity of our simulations.

V. CONCLUSIONS

In this work, we have studied the spherically symmetric
nonlinear dynamics of compact stars in ST theories with
first-order derivative self-interactions for the scalar field
(k-essence theories). These theories have been suggested to
possess a mechanism (k-mouflage or kinetic screening) that
suppresses the scalar fifth force on local (Solar System)
scales, while allowing for potentially significant scalar
effects on large (cosmological) scales. We have confirmed
that k-mouflage works for static spherically symmetric
compact stars, whose structure we have calculated exactly
(up to numerical errors) for cosmologically relevant values
(∼meV) of the theory’s strong-coupling scale Λ. These
solutions are far from trivial to derive, because of the
hierarchy of scales between the stellar radius and the
screening one (∼1011 km), but they confirm that no
observable deviation from the GR geometry is to be
expected in the exterior of static spherically symmetric
stars (whatever their compactness), as long as one remains
within the screening radius.
We have then used these static spherically symmetric

solutions as initial data for dynamical evolutions (again in
spherical symmetry). In more detail, we have triggered
(nonlinear) oscillations of our compact stars by perturbing
their internal energy and extracted the resulting monopole
scalar radiation outside the screening radius. While we
could not simulate theories with strong-coupling scales
relevant for dark energy, we have managed to evolve stars
in theories with Λ as small as a few MeV, which already
shows that kinetic screening suppresses the monopole
scalar emission from stellar oscillations. Extrapolating to
Λ ∼meV, we have concluded that no observable monopole
emission is to be expected from stellar oscillations in these
theories.
We have also used our static spherically symmetric

solutions as initial data for gravitational collapse. As
reported in Ref. [39], the k-essence equations are always
strongly hyperbolic, irrespective of the local state of the
dynamical variables (at least if terms cubic in the scalar
kinetic term are included in the action), but the character-
istic speeds for the scalar field diverge during collapse.
The same behavior appears in vacuum, for configurations

close to critical collapse [48,49]. This divergence is at the
very least a practical problem, as the system cannot be
simulated past it because of the CFL bound (i.e., the theory
becomes nonpredictive). Although Ref. [49] showed that
the characteristic speeds can be maintained finite by
allowing for a nonvanishing shift vector, it could not find
a shift choice in spherical symmetry yielding stable
evolutions.
We have taken here a different approach and modified

the k-essence dynamics by introducing an auxiliary vari-
able and a driver (or fixing equation) that relaxes the
modified dynamics to the true one on long timescales. We
have done so in the spirit of the recent proposal by
Refs. [50,51], which is, in turn, inspired by dissipative
relativistic hydrodynamics. This method has allowed us to
simulate gravitational collapse without incurring in any
divergent characteristic speed, for strong-coupling scales as
low as a few MeV. We have found that, unlike in the case
of stellar oscillations, kinetic screening does not suppress
the monopole scalar radiation (extracted outside the screen-
ing radius) from the collapse. This happens because the
collapsing star must shed away all of its scalar hair in scalar
waves before forming a (hairless) black hole. This scalar
signal would not be detectable by terrestrial gravitational
wave detectors because of its very low frequency (at least
for values of Λ ∼meV relevant for dark energy), but we
conjecture that it might be observable with space-based
detectors such as LISA, if a supernova explodes in the
Galaxy.
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APPENDIX: UNITS

In this paper, we have used units ℏ ¼ c ¼ 1, in which the
k-essence action is given by Eq. (4). When simulating
neutron stars numerically, it is convenient to use units
adapted to the problem, e.g., G ¼ c ¼ M⊙ ¼ 1.
To see what the k-essence action is in these units, let us

first factor out the Planck mass in the k-essence Lagrangian
density

Lk ¼
1

16πG

�
R −

1

2
X̄ þ β

4Λ̄4
X̄2 −

γ

8Λ̄8
X̄3 þ…

�
; ðA1Þ
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where we have introduced X̄ ≡ 2X=M2
Pl, which is the

kinetic energy X̄ ≡ gμν∂μφ̄∂νφ̄ for the dimensionless scalar
φ̄≡ ffiffiffi

2
p

φ=MPl, and defined also Λ̄≡ 21=4Λ=MPl
1=2.

To reinstate ℏ, one can then note that in generic units the
first two terms (the Ricci curvature and the kinetic energy for
the rescaled dimensionless field) have dimensions of a
length−2, hence one needs Λ̄ ¼ 21=4Λ=ðMPlℏÞ1=2, which
has the correct dimensions of length−1=2 (with c ¼ 1). For
Λ ≈ ΛDE ∼ 2 × 10−3 eV, one then has Λ̄ ∼ 10−13 m−1=2. In
unitsG ¼ c ¼ M⊙ ¼ 1, lengths are measured in units of the
Sun’s Schwarzschild radius GM⊙=c2 ≈ 1.5 km, and there-
fore, in these units one has Λ̄ ∼ 4 × 10−12. Rewriting then the

action (A2) in the same form as Eq. (4), but in units
G ¼ c ¼ M⊙ ¼ 1, one gets

Lk ¼
1

16π
R −

1

2
X þ β

4Λ4
X2 −

γ

8Λ8
X3 þ…; ðA2Þ

where X¼ X̄=ð16πÞ, φ ¼ φ̄=
ffiffiffiffiffiffiffiffi
16π

p
, and Λ ¼ Λ̄=ð16πÞ1=4≈

10−12. This very small value is among the reasons why
numerical evolutions of the dynamics of collapsing or
oscillating stars are challenging for theories with
Λ ∼ ΛDE. We stress, however, that we could successfully
simulate static stars for such theories (thanks to
Mathematica’s [56] arbitrary machine precision arithmetic).
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