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We investigate a Lorentz invariant action that is quadratic in two rank-2 symmetric tensor fields in
Minkowski spacetime. We apply a scalar-vector-tensor decomposition to two tensor fields by virtue of
three-dimensional rotation invariance of Minkowski spacetime and classify theories with 7 degrees of
freedom based on the Hamiltonian analysis. We find two new theories, which cannot be mapped from the
linearized Hassan-Rosen bigravity. In these theories, the new mass interactions can be allowed thanks to the

transverse diffeomorphism invariance of action.
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I. INTRODUCTION

The attempt to seek ghost-free massive gravity theories
has again attracted considerable attention by the discovery
of de Rham—Gabadadze-Tolley (dRGT) massive gravity
[1]. The first attempt of constructing massive spin-2 theory
has been carried out by Fierz and Pauli, and it is the
quadratic action for a massive spin-2 particle in a flat
spacetime [2]. Once we embed this into a curved spacetime,
the behavior of the massive spin-2 field does not smoothly
connect to the well-known massless one, i.e., the linearized
general relativity [3,4]. The discontinuity found by van
Dam, Veltman, and Zhakarov turned out to be an artifact of
the truncation at linear order, and the massive spin-2 theory,
in fact, has the continuous massless limit when taking into
account nonlinearities as pointed out by Vainshtein [5].
Nonetheless, an unwanted degree of freedom (DOF),
Boulware-Deser ghost [6], which is absent at linear order,
reappears at the nonlinear level, and it unfortunately
behaves as Ostrogradsky’s ghost [7]. In dRGT massive
gravity, such an unwanted degree of freedom is success-
fully eliminated by the careful choice of nonlinear potential
terms [1,8]. Although the dRGT massive gravity possesses
the cosmological constant solution in a cosmological
background [9], it is perturbatively unstable [10,11]. For
this reason, one needs to seek a ghost-free extension of
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massive gravity which should be at least cosmologically
viable and stable. Such an attempt without introducing an
extra DOF has been investigated, taking into account
derivative interactions [12—14] and metric transformation
[15], but unfortunately most of them are not successful.
Recently, by breaking the translation invariance of the
Stiickelberg field, new extended theories of massive gravity
have been found, and their cosmological perturbations are
stable around cosmological backgrounds [16-18].

Another way to extend massive gravity is to introduce
the second dynamical symmetric tensor field. In massive
gravity theories, to give mass to graviton, in addition to
the metric g,,, one needs to introduce the so-called
reference metric f,,, which is usually taken to be a
Minkowski metric. In massive bigravity theories, the
reference metric can be promoted to be a dynamical
tensor field by introducing its kinetic terms. The simplest
extension of dRGT massive gravity is proposed by Hassan
and Rosen by adding the Einstein-Hilbert kinetic terms
even for the second metric [19]. In Hassan-Rosen bigrav-
ity, the total number of physical DOFs is 7, which consists
of 2 from a massless graviton and 5 from a massive
graviton. This fact can easily be seen by expanding both
metrics around Minkowski spacetime, that is, g, — 17, +
h,, /M, and f,, — n,, + fu./Mz, where M, and M are,
respectively, the Planck mass for the metric g,, and f,.
Then the quadratic Lagrangian is given by [19]

‘Cgl% = - (hﬂvgﬂmﬂhaﬁ + fuyéﬂmﬂfaﬁ>
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Here &“% is the linearized Einstein-Hilbert kinetic
operator defined as

3’”’;,; _ {,]{(Iﬂnv) _ nlll/;,]aﬂi| O— 2a(ﬂa(a,,;)>
+ o aynaﬂ + aaaﬁn’w? (2)

where the round brackets denote the symmetrization of
indices, m is the mass of graviton, and the effective Planck
mass is given by M3 = (1/Mj + 1/M7)~". The mixing
terms between 4 and f in the mass terms can be removed
by introducing the linear combination of two metrics,

1 1 1
7”1/Eihu+7fw
Mg ™ M ™ M,

1 1 1
— v, =—hy —— f- 3
M ¢ My Mgf" (3)

Then the Lagrangian becomes

L= —(uﬂ,,g”mﬁuaﬂ + vﬂbg"mﬁvaﬁ>

mZ

4

—— (", —v?). (4)
This clearly shows that Hassan-Rosen bigravity at linear
order consists of the linearized general relativity for u,, and
the Fierz-Pauli theory for v,,. The absence of the Boulware-
Deser ghost has been proved in [20].

Since the construction of bigravity theory is inspired by
the dRGT theory, it is not trivial whether the mass
interaction of Hassan-Rosen bigravity is unique or not.
As for the uniqueness of the dRGT mass term in linear
massive gravity theories, see also [21]. For this reason, one
might be able to find a new type of mass interactions in
bimetric gravity theories. However, such a construction
would be extremely difficult to start with a curved
spacetime. To this end, in this paper, we investigate a
theory with a bispin-2 particle in a flat spacetime, which
could represent the linear expansion of a certain nonlinear
massive bigravity.

This paper is organized as follows. In Sec. II, we give an
action for two rank-2 tensor fields in our setup and
decompose them into scalar, vector, and tensor sectors
based on transformation properties of tensors with respect
to a three-dimensional spatial rotation. In Sec. III, we give
ghost-free conditions for the tensor mode. In Sec. IV, we
perform the Hamiltonian analysis and derive the conditions
to have 2 physical DOFs in the vector sector. In Sec. V, we
investigate the scalar sector and classify theories with 1
scalar DOFs. Section VI is devoted to the summary. In
Appendix A, we introduce a linear field redefinition and
investigate the reduction of the model parameter space. In
Appendix B, we provide an explicit expression of the
Lagrangian in the scalar sector. In Appendix C, we perform

the Hamiltonian analysis of the vector sector with two
primary constraints. In Appendix D, we investigate the
scalar sector with two primary constraints.

II. SETUP

In the present paper, we consider a Lorentz invariant
action for two rank-2 symmetric tensor fields, 4,, and f,,,
and consider the most general quadratic action which
contains up to two derivatives with respect to spacetime
for each term.' In general, these symmetric tensor fields
possess 20 DOFs in total, and therefore we should impose
some conditions to eliminate unwanted DOFs, which could
behave as a ghost. Because of the complexity of the analysis,
we only focus on theories with 7 physical DOFs, namely
2 x 2 (tensor) + 2 (vector) + 1 (scalar) DOFs, as in the
Hassan-Rosen bigravity [19] that consists of massless and
massive spin-2 fields in the linearized limit. As preparation
for later analysis, in this section, we introduce the generic
action for the bispin-2 tensor field and scalar-vector-tensor
decomposition of it. For the Hamiltonian analysis in Fourier
space, we follow the procedure developed in [22-24] and
adopt the notation in [21].

A. Double spin-2 theory

Let us consider a generic action for two rank-2 sym-
metric tensor fields up to the quadratic order in fields
around Minkowski spacetime,

S = / d4x <_KZ/}‘ﬂy/mh/w.ahpa,ﬂ _ K;ﬂ‘ﬂylmfﬂu,afpa,/}
- gaﬂwpahﬂwf pof Ml;zwah/whﬂo

- M?D/mfuyf/m - Nﬂwmhﬂyf/m) s (5)

where the coefficients Kg, G, M, and M, consist of all the
possible combinations with the Minkowski metric 7,,,

KV = kom™non’® + kogtt w1 + kosn P
+ Koanf . (6)

gePhre = (L™ + L “n )t + (L n*?

+ L™ )P + s nPon, (7)
MG = pe "0 + peon“n’°, (8)
NWPT = 0 + nonn’”, )

1Strictly speaking, one can also include a Lorentz-invariant
scalar 1, x*x* = —t* 4+ x* for theories invariant under a global
Lorentz transformation. Once introducing this scalar quantity, the
analysis would be more complicated. For simplicity, we here do
not consider such a possibility.
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and we defined the label ® = (k, f). A comma denotes a par
tial derivative with respect to coordinates. Here, kg ¢2.03.045
li2345> MHolez, and ny, are constant parameters. The
linearized Hassan-Rosen bigravity corresponds to

Kip = —Kp3 = 2Kpg = —2Kp1,
Kf2 = _Kf3 = 2Kf4 = —2Kf],
l] :lzzl3zl4zl520,

K2 = —Hnis K = —Hyfts
ny = —n; = 2\/Mhlﬂf'1, (10)

as shown in (2), and this theory is invariant under the gauge
transformation

hy = hy, +

3 O 05,

f f;w ( u§v+8u§u) (11)

1
2/
Alternatively, one can diagonalize the mass terms to remove
n; and n, without changing the kinetic terms by taking linear
combinations of 4,, and f,,, and then the resultant theory
satisfies

Kpy = —Kp3 = 2K = =2k,
Kf2 — _Kf3 = 2Kf4 = _2Kf1,
Hma = —Hpi Myt = pp =0,

112122132142152111:112:0, (12)

as found in (4). Then this theory with (12) is invariant under
the gauge transformation

h/w - h,uw f,uu - f/w + aﬂ‘fu + ay‘fﬂ' (13)

Thus, this is nothing but the Fierz-Pauli massive spin-2 field
for h,, and the linearized general relativity for f,,.

B. Scalar-vector-tensor decomposition
Following [21], we decompose the rank-2 symmetric
tensor fields 4, and f,, into transverse-traceless tensors,
transverse vectors, and scalars as
(DOO = (DOO = —2(1(1),
Dy = -0 =7+ BY (Blo;=0). (14)
®;; = OV = 2Ro;; + 265 + FP; + FP + 2HY,
(Fid),i =0, Hicbi = Hijd:,j =0). (15)

Here, scalar, vector, and tensors are defined based on
transformation properties with respect to a three-dimensional

rotation in Minkowski spacetime, and the transverse-trace-
less tensors H{7, two transverse vectors B{” and F’, and four
scalars ag, fo, R, and Eg, respectively, have two, four,
and four components in each ®. Since we focus on the
ories with 7 DOFs, to be more precise 2 x 2 (tensor)
+2 (vector) + 1 (scalar) DOFs, we need to eliminate six
components of the transverse vectors and seven components
of the scalars, and then the final DOFs become 20 —6 — 7 =
7 DOFs. Under this decomposition, the quadratic action can
always be separated into three parts, which solely consists of
scalar, vector, and tensor perturbations, respectively,

Sy f ) =500, fo. R Ea) + S [BE FP] +ST[H}1;}.

(16)
In the following section, we will examine each sector and
derive conditions to have theories with 7 DOFs by the
Hamiltonian analysis. Hereafter, we replace all the spatial

derivatives as 0> — —k? after integrating by parts, where k is
the wave number in the Fourier space.

III. TENSOR SECTOR

The action in the tensor sector is found to be

st [Hf’,va] _4/dfd3k[’<h1( )7 = (k1 k> + ) (HT)?

(Kf1k2+ﬂf1)(H )2
(kzll +I’l1)Hflelf]}, (17)

+’<f1( )
~LHH

where a dot denotes the time derivative. It is manifest that
the action is symmetric under the replacements /4 and f, and
hence the result will be applied to both modes in parallel.
Throughout this paper, assuming x;; # 0, we set

I, =0, (18)

which can be achieved by a field redefinition of f without
loss of generality (see Appendix A). Thanks to /; = 0 by
the field redefinition, the kinetic matrix composed of 4 and
f is diagonal, and the existence and ghost-free conditions
of both the tensor modes require

Kp1 > 0, Kr1 > 0. (19)
Hereafter, we impose the condition (19), and it is manifest

that the physical degrees of freedom in the tensor sector is 2
for each field.

IV. VECTOR SECTOR

In this section, we perform the Hamiltonian analysis for
the vector variables. In order to have a theory with 7 DOFs
in total, the vector sector should have 2 physical DOFs,
which means the reduction of the phase space is necessary
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in the view point of the Hamiltonian analysis. We first
rescale F? as F® — FP/k for convenience. Then, the
action in the vector sector is given by

SV[B®, F¥] = / KLY, + Ll + Ll (20)

where each Lagrangian is given by

LY = — 2Ky + Kia) (BI)? + 2K, (FT)?
- (2xp1 + KfZ)(B{)z + 2ky (F{>2 - 123?3{’ (21)

7gh —2(21(';,1 + Kh2) -1, 0
”B{ B —lz —2(2Kf1 + K'fg) 0
”F;’ - 0 0 4Khl
7y 0 0 0
Then the Hamiltonian is defined by
HY = Bl}'lﬂBh + B{'”Bf.‘ + F?ﬂ'p; + F{.HF[ - L. (25)

As one can see from (21), the kinetic parts of BY and F® are
completely decoupled; i.e., the kinetic matrix is block
diagonalized and the kinetic terms for F? indeed exist since
we have imposed (19). Therefore, in order to see the
degeneracy of the vector sector, it allows us to consider
only the kinetic matrix of BY, which is

K, = <_2<2Khl + Kn2) —b ) (26)

—lz _2(2Kfl + Kf2)

2 primary constraints : Fy(0) =0 & F,(0) #0 < kpp = =2k +

4 primary constraints : Fy(0) =0 & Fy(0) =0 < kjp = =2k & kpp = —2k5 & [, =0.

Here, at this point, 4 and f are symmetric; therefore, the case
with 2k, 4+ x5, = 0 in the case of two primary constraints
can be obtained by simply replacing / and f. When there are
only two primary constraints, the Hamiltonian analysis
shows that the number of the final physical DOFs can be
at least 4, and it is the undesired number. The analysis for
two primary cases is summarized in Appendix C. For this
reason, hereafter we only consider fourd primary cases,
where both B and B{ become nondynamical.

Lo =2ki)o BIF! +2kk ;> B F! + kil (BI FL + B},
(22)

Linass = 2Kk + ) (B])? = (K2 (2651 +Kp2) + 205 ) (F} )
+2(k*k gy +l4f1)(B{'.)2— (K (2K 1 +Kp2) +2p 1 )(F{)Z
+2n,B!"B! — (21, +2n, ) F' /. (23)

The relation between conjugate momentum 7g, = 9L/ 0®

and the time derivatives of canonical variables of B{ and
F? is found to be

0 B! 0 o o0 0)\/B!
0 B/ 0 0 0 offB5B
0 2 * 2kijy kI, 0 O || Fh | 24
disy F{ kl,  2kkp 00O Flf

The eigenvalue equation F,(4) of the kinetic matrix Ky, is
found to be

Fy(2) = det(Ky — AI)
= (4Kfl + 2Kf2 +ﬂ)(4Kh1 + 2Kh2 +ﬂ) - l%
=0. (27)

The determinant of the kinetic matrix is simply given by
detKV = Fv(o)

Now we would like to classify the cases based on the
number of primary constraints as follows:

3

_— 28
42k + Kp2) (28)

(29)

In this case, we have four primary constraints, which are
given by

Cl) =y 0, (30)
Cgf) =7, =0, (31)

and we define the total Hamiltonian by adding the
Lagrange multipliers Ag: and 4/,

044021-4
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MY =HY + apCll + 5 CLY). (32)

Then the time evolution of the primary constraints gen-
erates the secondary constraints

Bh = {CBh HYY = 4py B + 20, B — kmpn 20, (33)

{C HV} = anBh + 4ﬂf1B - kﬂ'Ff ~ 0 (34)

B/’

and the time evolution of the secondary constraints gives

(':g,_,) {cBh MY}
¢ {cy) M)
{CB“ Y} dppy 2my Ap!
= + ~0.
{CBf7HV} 27’11 4/’tf1 /13{

(35)

Therefore, when n} — 4u riin # 0, namely the coefficient
matrix in front of the Lagrange multipliers is not degen-
erate, all the Lagrange multipliers /13;1 and /13/ are deter-
mined by the above equations, and all the primary and
secondary constraints are second class. In this case, the
total number of physical DOFs is (8 x 2 —8)/2 = 4, and
thus we disregard this option.

On the other hand, when n{—4usuy =0, the
coefficient matrix in front of the Lagrange multipliers
is degenerate, and two out of four Lagrange multip
liers cannot be determined. Hereafter we assume py, #
0 and solve n} — g = 0 for pyy. 21t is convenlent to
redefine the primary constraints associated with B as a
linear combination of the original primary constralnts
|

Vector DOF =

8 X 2 —4(2 primary & 2 secondary) —4(2 primary & 2 secondary) x 2(first-class)

Cl) = mg 0, (36)
é(l-)Eﬂ/—Lﬂ'h%O. 37
5] B opy P B37)

We also redefine the total Hamiltonian
HY =N + dpCl) + 7, C (38)
T B} ph B/ Bl
Then the secondary constraints become

{C H¥} = 4/lhlBh + 2n1B - kﬂ'Fh ~ 0 (39)

Bh Bh ’
~ ~ n
Co={ch) 1y} = k<2M;l T — an> ~0. (40)

The time evolution of the secondary constraints yields

{CBh My} =2k(2pp Fl +ny F )+4ﬂh1/13h ~0,

(41)
¢ = {22, 1Yy ~oO. (42)

Here, the time evolution of the secondary constraints éf_/)

is trivially zero. Therefore, two of the Lagrange multi-
pliers can be determined by the time evolution of the
secondary constraints, and the rest of them are undeter-

mined. Since the constraints (?22 and (Nfl(:f) commute with

all the constraints including themselves, they are first-
class constraints. To summarize, we find

The choice of the coefficients are

Kpp = _2Khl 56 0, Kf2 = _2Kfl # 0,

n2

[, =0, MﬂZV;l’

pim # 0. (44)

*For the w1 = 0 case, one can simply switch all the notation of
h and f. When pj = us; = n; =0, all the constraints become
first class, implying that the physical degrees of freedom are zero
in the vector sector.

5 =2, (43)

In the analysis for the scalar sector in the next section,
conditions (19) and (44) are imposed.

V. SCALAR SECTOR

In this section, we focus on the scalar sector. Here, we
need to eliminate 7 DOFs in the scalar sector in order to
have 1 physical DOF. Introducing dimensionless varia-
bles, fo — Po/k and Egp — Ep/k*, the Lagrangian
reduces to

‘CS = ‘lein + ‘Cgross + Lglassa (45)

044021-5
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where the explicit form of the first part reads

N
‘ckin -

4(kp1 + Ko + Kna + Kpa) o, — (2651 + Kh2)[}%z + 12(xp; + 3Kh4)7:‘)'121 + 4(xp + Kh4)£%

— 4(Ky3 + 2Kpa) (=3Ry, + E1)r — (k1 + 3xa) RiE + 4(kp1 + Kpy + Kp3 + Kpa)ag — (2671 + Kfz)ﬁj%

+ 12(Kf1 + 3K'f4)R]20 + 4(Kf1 + K'f4)g]20 - 4<K'f3 + 2Kf4)(_3Rf + €f>af - 8(Kf1 + 3Kf4>ngf
F AL+ Iy 4 Ly 15) iy — LBy 4 361 Ry Ry + MuE,Er +12(13 + 1)y Ry + 12(14 + I5)a, Ry,

— ALy + 1)y — MLy + 1s)arEy — 1204(RuEf + RyEN),

and the explicit expression for the remaining parts can be
found in Appendix B. Once we impose the condition (44),
the time derivative of f3;, and 3, vanishes in the Lagrangian;
hence f, and f; can be treated as the nondynamical
variables. By utilizing the field redefinition summarized
in Appendix A, we can further impose without loss of
generality
Kpz = 2Khl’ Kf3 = 2Kfl? l3 + l4 + l5 = 0, (47)
in addition to /; = 0. Hereafter, we assume these conditions
to simplify the discussion. The conjugate momenta can be
written as

2(kpy +Kpa)  6(kp + Kpa)

* 6(kn1 + 3kpa)  —2(kp1 + 3Kna)
Ks = * * 2(kp1 + Kpa)
* * *
* * *
* * *
and
”ﬂh = ﬂﬂf =0. (50)

Note that there are at least two primary constraints from
np, =0 and 74 = 0. The Hamiltonian is given by

HS = dhﬂ'a,, + dfﬂaf + RhﬂRh + RfﬂR/ + (&:hﬂgh

+ é‘fﬂ'gf -I—ﬁhﬂ'/}h ‘l—ﬁfﬂ'ﬁf - ES. (51)

A. Classification of primary constraints

Now, we would like to classify the cases based on the
number of primary constraints. As performed in the
analysis of the vector sector, we consider the eigenvalue
equation,

—2(kpy + Kpa)

(46)
|
Tq, Ay 0 —Is
R, 7:2/1 —4K =35
| | O a0 ipea| B k.
Mg, ay -3 0
®, Ry -3 —4Ky1
g, & g I3 0

(48)
where the kinetic matrix for the scalar variables

{an. Ry Epap, Ry, Ef} is given by

0 31 Is
=31 =9(l5 + Is) 3( +1s)
I3 3(l3 + 1) —(l3+1s) (49)
2(kp +Kpa)  O(kp +Kpg) 2k +Kp) |
* 6(ks +3kps)  —2(kp + 3Kpy)
* * 2(k sy +Kpa)
Fo(d) =det(Kg — Al), (52)

The eigenvalue equation with 4 = 0, namely the determi-
nant of the kinetic matrix, reads

det’CS = fs(o)
= 16K, [8(K 1 + Kpa)Kn1

+ 313][8(kn1 + Kna)kp1 + 3] (53)

When the above determinant is nonzero, that is, det g # 0,
there are only two primary constraints, which can be
defined by (50). In this case, the number of the physical
DOFs is 4 as proved in Appendix D. Therefore, we
disregard this option. The case of three primary constraints
can be obtained by demanding F(0) =0,

044021-6
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312 312
3 primary constraints : F(0) =0 < kpy = —kpy — 3 or Ky = —kp ——-. (54)
: ; 8Khl 8Kf1
Using the conditions above, we have
8k (S22 + 8x2, ) (312 + 8 f - 34
F10) =8k 1 (505 + 8k, ) (315 + Bicpy (kpt + kpa))  for kpy = —kpy — g, (55)
S = 312
—8y1 (515 + 8kF,) (315 + 8k (kp1 + Kkp4))  for kpy = —kyy — T

Now, F%(0) = 0 gives only one solution of four primary
cases due to the symmetric property under 4 and f in (54),

4 primary constraints : Fg(0) =0 & F5(0) =
312 312
<_)Kh4__Khl_Wfl & Kf4——K'f1—Whl. (56)

The absence of the case with five primary constraints can be
proved as follows. In addition to Fg(0) =0 and
F’5(0) = 0, we further need to impose F§(0) = 0, which
is given by
91315](‘]4'1 2
.7:”(0) = 32(12 + 16K2 )(Kh] _—
s : N 12 + 163,

8(52 + 8"%1)2 (57)
2 > =
I5 + 16k7,
It is manifest that there is no real solution for this equation
under the assumption (19), and therefore, the scalar sector
cannot have five or more primary constraints.

B. Three primary constraints

In this subsection, we consider the case with three
primary constraints. Although there are two options as
|

|
in (54), they are essentially equivalent since they are
transformed from each other as shown in Appendix A 2,
which satisfies

Kpy = —Kp3 = =2k #0, Ky = —kp3 = =2k #0,
3B
K4 = —Kg ——8’0;1 s
h=h=1l=pn=n=0, Is=~l;. (58)

In this case, we have three primary constraints, which are
defined by

(1) _ l3
Caf = ﬂaf - Khl (ﬂR/,

1
C/gf) = 15, % 0. (59)

1
~3,,)~0, Cy =, 20,

The total Hamiltonian is given by
s () (1)
Hy =HS + 2, Caf +25,Cp) +25.C5 7. (60)

The evolution of the primary constraints yields the secon-
dary constraints

= {C4) H}}= 2 <2k213 +2ny + ljﬂh]>ah + 2<2k213 —6ny + 3”’“)72;1 + 2<2k213 +2n, - 3”h‘)5h

hl

K13 kK>3 + 4k 4k
+4<~—2uf2)(qf—5f)+4< (353 1Kn1)

Kn1 Kn1

C(i) = {C(l } = (ﬂa, + ﬂgh) + 4 pr =0, (62)
kls
;) =1{Cy) Hi} = —kne, + . (37, —7g,) 0.
(63)

Here, none of the above constraints can be trivially zero
with any choice of the parameters under the assumption
(19). Then, the time evolution of the secondary constraint

Kn1 Kn1

|
Cg) gives the tertiary constraint

Cy = {C)) M3} = kCG) + 43 [l (ay — €, + 3Ry)
- 4Kfl Rf] ~ O, (64)

and its time evolution demands

¢y = k(CY) + k) ~ 0. (65)

044021-7
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Since C does not generate an independent equation, there
is no more constraint from ;. The evolution of the rest of
the secondary constraints are given by

A R (7 AN R (¢ )
¢ (e 15} {c) 15y
3Bum
—app =2 o\ (7,
Lo TR, " ~0. (66)
0 2ﬂh1 ﬂﬂh

Since uy; # 0, the Lagrange multiplier 45, is determined by
C/(}i) = 0. When the Poisson bracket {Cﬁ,zf),C;lf)}, i.e., the
coefficient of 4, ’ in C((,zf), is nonvanishing, the evolution of
cﬁf) determines the Lagrange multiplier 4, ; and no more

constraint from C((f[) will be generated. Now we redefine the
following constraints:
C 5, kCa ; ~0,

;3 = o)

@
5 ~kCy) 0. (67)

The constraints C},;) and é;;@ commute with all constraints;
therefore, these are first class. The rest of the constraints are
second class. In summary, the number of the physical DOFs
is (8x2-4-3x2)/2=3.

In order to eliminate extra DOFs, one has to impose an

extra condition {C((,f),Caf } = 0, namely
38u
ppp = — 4%’1 . (68)

In this case, the evolution of C,(l_zf) yields the tertiary
constraint when /5 # 0 or n, # 0,

¢y = {ce 15} ~o0, (69)

where the explicit expression of CE{? is given in Appendix E.
When I3 = n, = 0,C) = —kC/(ff),
more constraint. Therefore, we, hereafter, consider the case
with /3 # 0 or n, # 0. Now, the evolution of Ca /
quaternary constraint Caf = {Caf ,H3} ~0. Since C&?

contains Az, , it is useful to define the following linear
combination of constraints:

implying that there is no

yields the

i 2kl
Cof = o+ 2Cp 4G =0, (70)

I=(C) 1} ~ 0, (71)

When {é&j’, cﬁ})} #0, the Lagrange multiplier /Llf is
determined by the time evolution of 85;}?. In this case, the
constraints, C},i) and @}5’3), still commute with all constraints,
and hence, these are first class. The rest of the constraints are
second class; therefore, the number of the physical DOFs is
given by (8 x2—-6-3x2)/2=2.

To obtain a theory with 1 DOF in the scalar sector, one
more DOF has to be eliminated. Then, we would like to
consider the following case:

{e.c)y = i( 30803, Kyt (2 + 3z3y,ﬂ)2>
' ’ K%ll Kn1 8Kf1 (Khl + Kh4) + 31%
=0. (72)

Solving the above equation, we obtain

33 ki (2kpng + 3Lup)?
8K'f1 24l3,uhl

(73)

Kpga = —Kp1 —

In this case, we have two additional constraints:
(lf {Caf s H } ~ 0’ af {Caf ) H } 0. (74)

Again, é((,?) contains the Lagrange multiplier 45, and we
redefine the constraint as

ey =l +xCy) Cy ={CY) 13y ~0, (75)

where
kl 8nyk k2, — 903
x:T3 _2kz’<%1+ﬂh]( 2K 1K) 3ﬂh1) (76)
K1 K1 (2kmny + 3l
If {C S,?,CS,‘)} # 0, the Lagrange multiplier 4, can be

determined by ég) = {@fff), H35} ~ 0 and no further con-

straint is generated,

. LA A2 A6
first class: C;/), C},f), Cé)» (77)
. (1) 2 »G) mE 50
second class:  Co/, Cuf, Cal. Cal. Ca,
7(6) (1) (2)
co, b, . (78)

We finally have

1
Scalar DOF = 3% {8 x 2 —8(2 primary & 2 secondary & 1 tertiary & 1 quaternary + 2 more)

—3(1 primary & 1 secondary & 1 tertiary) x 2(first—class)} =1. (79)
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To summarize, we find a novel class of theory,
(Class Ia):

Kpp = —Kpz3 = =2k # 0, Ky = —Kp3 = —2k5 # 0,
31% 31%/4111
Kfa = —Kpp =4 Hpp = — )
f ! SK'h] f 4K%l1

11212214:/#1:”1:07 ls = —Is,

33k (2kpna + 3l )?
8K'f1 241%#%11

Kpg = —Kp1 —

(30)

The Lagrangian for class with 1 DOF in the scalar sector Ia
is given by

L= _(Khlh[ll/éﬂyaﬂhaﬂ + Kflfﬂyéﬂmﬂfaﬁ) + 5’<h4h,ﬂf'”
312 y y
+ 873f.uf’ﬂ + l3 (h,vf,»;l - h;jlfzx)
Kn1

31%/%1

— iyl WY — s h?
Hp1 My Hpp™ + ( 4,

/= nzh>f, (81)
where

3k (2kny + 3Lpp)?
8Kk s1 24842,

5Kh4 = (82)

One can check that this theory is invariant under the gauge
transformation

Ry = hy, = h (83)

wo
fuw = Fu=Ffu+ 0,5 + 0,6, with 9", =0. (84)

As one can see from the transverse condition in the
gauge transformation, this class is totally distinct from
the linearized Hassan-Rosen bigravity, and there are
nontrivial kinetic terms for h, derivative and mass
interactions.

Let us finally discuss the final option where the time

(3)
(lf

constraint. Such a case can be found by rewriting Cg) in

terms of other constraints, C/(ji), C’},ﬁ,), é},i), C(%.), C((,i), C;fi)’

evolution of the tertiary constraint Cy does not yield a new

Kpy = —Kp3 = =2k # 0,

h=bL=I=pp=n =0, ls = -1,
py R
31%#;11 4

Kf2 = _Kf3 = _2Kf1 ;é O,

Kpg = —Kp1 —

and Cﬁ), and setting it to be zero. Then, we obtain two
conditions: Eq. (73) and

2455, (An3xz, + 3Gun (i + 4p))

=0, (85
K (2nakpy + 3l3pp)? )
which can be solved for py,,
2.2
3K, Hnpt
Uy = — - (86)
"> 3Bu, 4

since we assumed /3 # 0 and p;,; # 0. Note that the case

where {é E.fj’), CE,;)} vanishes in Class Ia reduces to this option.
In this case, as shown in (E16), the time evolution of both the

tertiary constraints éf,i) and 8/(;;) can be written in terms of the
linear combination of the primary and second class con-

straints, implying no further constraints. Redefining Cg) as
72 _ o, 2K )
Caf = Caf +K_/’lICﬂh , (87)

we find

o) B2 H0) (2 &0
first class: Co/,  Co/, Cap, Cﬁf, Cﬁf, Cy . (88)

. ) (2)
second class: Cﬂh , C/}h , (89)

and

1
Scalar DOF = 5% [8 x2—2(1 primary & 1 secondary)

—6(2 primary & 2 secondary & 2 tertiary)
x 2(first-class)] = 1. (90)

In this case, the number of the physical DOF is the same as
Class Ia, and the resultant theory is invariant under the
gauge transformation (84). For this reason, this case can
be considered as the special case of Class I by choosing
(86) although an additional gauge symmetry is present. To
summarize,

(Class Ib):

31% 3@%1
K = —K -5 - - )
4 M 8Kh1 ”fz 4K%1

3 ki (2kping + 3L )?
8Ky1 2483, ’
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The Lagrangian for Class Ib is given by

L= _<Kh1h/w£”yaﬂhaﬂ + Kf1f,w£”mﬁfaﬂ) + Okpah S

38 o
35— K ) (h,,

8Kh1

C. Four primary constraints

Next, let us consider the case with four primary constraints.
As you can see from (56), there are kinetic interactions
between & and f fields, which will make the Hamiltonian
analysis involved in general. It is interesting to note that we
can always map this theory into a simpler theory with two
Einstein-Hilbert terms without kinetic interactions between
them as explicitly shown in Appendix A 3. Hereinafter we
will perform the Hamiltonian analysis in this simple model:

Kpy = —Kp3 = 2Kp4 = —2kp1 # 0,
KfZ = _Kf3 = 2K.'f4 = _2Kfl ?é 0,
11212213214215:0, /tﬂ:nl:O. (93)
Now we have the following four primary constraints:
1 1
C,(xh) =7,, ~0, Céf) = Mg, & 0,
M _ n_
C/jh = ﬂ/}h ~ 0, Cﬂf = 71'/;/ ~ 0. (94)
The total Hamiltonian can be expressed as
My = HS + 24,Clp) + 20, C) + 25,5 + Aﬂfc (95)

The evolution of the primary constraints is given by

Co) = {Cl) HEY = ~8(upy + ) + 8(2K2Ky
= 3pp2) Ry + 8umEn—4ny(ay + 3Ry — Ef) 0
(96)

(1/ {Cq[ ,H }__8ﬂj2af +8(2k Kf] _3/’tf2)Rf

+ 8,uf25f—4n2 ((lh —+ 3Rh _Eh) ~0 s (97)

C(?) = {C(l)’ H%} — _kﬂ-gh + 4p,, B = 0, (98)

={C}}) . H}} = —kng, % 0. (99)

Here, all the secondary constraints cannot be trivially zero
with any choice of the coefficients since k;; # 0 and k7 # 0.
First, let us take a look at the time evolution of the other
primary constraints, that is,

1 1 Kpin 31 Hin 2
Dh””+h2>+ (”' 2p-3 ) . 92
) 5 U ®2)
[
6512) {C((f) JHS) {C&z) HS)
C | = {c sy | =] (e 75y
¢y ) \dcy ) \{c;) 7%y

—8(un1 +Hn2) —4ny 0 Aa
+ —47’12 —Sﬂfz O /Iaf z()
0 0 4:“/11 /15

(100)

When n3 —4u s (s + pp) # 0, all the Lagrange multi-

pliers, /L,h, Aa = and /Iﬂh, are determined by the above
equations. As for C(2f>, it commutes with all the primary

constraints and the consistency of Cg) gives the tertiary

constraint
/}f {C[)’f H }
= —8k/«lf2<(lf + 3Rf - gf) - 4kn2(ah + 3Rh - Eh)
~0. (101)

Now we redefine the secondary and tertiary constraints for 3,
as

52 _
¢y =c) —kCy) =

n ( af +ﬂ€f) 07 (102)

Cﬁ

!

C B

Y —kCE) = —16K Ry 2 0.

(103)

Then, C does commute with Cél) and C&y, and one can see
2

C /,, k C
In addition, one can also check that the constraints, C;lf) and
~(2.3)
C/}f
first class while the rest of the constraints are second class.
Therefore, we conclude the number of the physical DOFs is
(8x2-6-3x2)/2=2 when nj- Ay (um + pio)
#0.

In order to remove an extra DOF, we need to impose an
additional constraint for the parameter

~ 0, implying no more constraint is generated.

, commute with all the constraints, and hence these are
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n3 — Ao (ppy + ppa) = 0, (104)
which yields two branches,
n2
Hn2 = —pm +—— (Class II), (105)
dusr
fpr =ny, =0 (Class III). (106)

Note that C[(;_)
(Class III).

trivially vanishes in the second case

1. Class 11

Let us consider Class II first. For convenience, we
redefine the primary constraint for a;, with a linear
combination of those for @, and a;. Then the four primary
constraints read

(1) _ n (1 _ N
C“h = Ty, — 2u s ”af ~0, Caf = g, N 0,
(1 — ~ (1 — ~
Cﬂh = ﬂ:ﬂh ~ O, Cﬂf = ”ﬁf ~ 0. (107)

We have the same constraints from the evolution of the
primary constraints for ay, f;, and B, as in (97), (98), and
(99), respectively. Because of condition (104), only one of
the Lagrange multlphers /1(,/ or l,,f, is determined by the
evolution of C,(,h) or Cy ). Suppose that 4,,
determined by the evolutlon of Caf though 4, has not.
The evolution of the primary constraint for o, demands

8k*n,x
{Cah aH } = _Sﬂhlgh —;ﬁRf
Hp
+ 8(2k%kp + 3 )Ry =0, (108)
n
3 2
Co) = {C) M3} = —Skuppy - Tzﬂsf + K2y,
K2
Ml
- ~U. 109
2K/’l1 ”Rh ( )

Since Cg,i) does not commute with C/(lh), it is convenient to

introduce a linear combination of CS,) and C;i) as

el = ¢y +2kCy) (110)

The evolution of é((f,,) yields the constraint @((;,t) = {553,), H5}

~0. Since {C4,Cl)} = —12443, /xp1 # 0, the evolution of
4)

Caf determines the Lagrange multiplier 4, «

constraint is generated. It can easily be checked that C((fh) and

and no more

é((;,t) cannot be trivially zero. Since in this case

. ) %2 »03
first class: C/(f), C; f>, C; f), (111)
second class: Cy), C, CY, Cf,‘;), Cg,),
(2) (1) )
has been Cofy Cy' Cy, (112)
therefore we have
|
1
Scalar DOF = > [8 x 2 —8(3 primary & 3 secondary & 1 tertiary & 1 quaternary)
—3(1 primary & 1 secondary & 1 tertiary) x 2(ﬁrst—class)} =1. (113)

To summarize, we find another novel class of theory with a
single DOF in the scalar sector.
Class II:

Kip = —Kpz = 2Kpg = —2K51 # 0,

Kpp = —Kp3 = 2kpq = —2K5 # 0,

h=h=L=1=105=0, Hrl =0,
n
ny =0, M +Mh2—4—:0- (114)
Hpa
The Lagrangian for Class II is given by
L= (Kmh,wg ﬂha/i + Kf1f,w ﬂfa/})
_:uhl(h;wh/w _hz) _—(n2h+2ﬂf2f)2' (115)

K2

One can check that this theory is invariant under the gauge
transformation

(116)

fuw = f;w = fu + 0,8 +0,&, with 045, =0. (117)
Again, because of the transverse condition in the gauge
transformation, this theory is different from the linearized
Hassan-Rosen bigravity.

2. Class II1

In this case, we have the same primary constraints as well
as the same Hamiltonian as before with the only exception
that 4y, = n, = 0 and hence the subsequent constraints are
the same. To summarize, we have
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(95): M5 = HS + 44, Chy) + 20, Clt) + 25, Ci1) + 25, C5)

Py
(118)
and
(94): Cly) =1, %0,  C4) =, ~0,

W _ W_ .
Cﬂh :ﬂﬂh NO, Cﬁf :ﬂﬂf/vo, (119)

(96-99): € =0, €2 ~0,

2 2

Cy ~0, ¢ w0 (120)

The Lagrange multipliers /1a,, and Aﬂh are determined from

the time evolution of Cﬁ) and Cﬁ). This is because
2 1 2 1

{C&).CL)Y = =8(un + i) and {C).Cl} =y #0

with the fact that other Poisson brackets with the primary

constraints vanish. In addition, the evolution of Cgi) and C;i)

does not yield a new constraint since

o) ={Cg 15} = -k} ~0, (121)

and €} = {C;), 1§} ~ 0. Therefore, we find 2 DOFs in
the scalar sector,

1
Scalar DOF = 3 [8 x 2 —4(2 primary & 2 secondary)

—4(2 primary & 2 secondary)

Mt + pp2 =0, (125)

so that we obtain the tertiary constraint from «;,. In this case
the tertiary constraint reads

Kn TR,
) = {CQ HE} = =8k By + Ko, — —2l:<h N)
1

(126)

Since CS,) does not commute with C};), let us define

Co) =) +2kCy). (127)

The evolution of this constraint gives the quaternary
constraint:

o) = {Co) 15
_ 4

Kp1
~0. (128)

=3upmay + 2unEx + 2(K2kn = 3pn )R]

The time evolution of é,&‘,‘,) determines the Lagrange
multiplier 4,,. On the other hand, the evolution of the
secondary constraints for ay, $;, and f; do not yield a new

constraint. The evolution of Cg) and C},zf) are trivial since
: 2 2 52) 2
¢ ={C8 15} = —kCp) and CJ ={C}) i} =0,

The time evolution of C;,zh) can be used to determine the

X 2(f1rst-class)} =2 (122) Lagrange multiplier, 4, . Since
since
first class: C((llf) , C&?, C,(Blf)’ Cgf) , (129)
1 2 1 2
first class: CE,), c&»), C},f) , C/(,f>, (123)
second class: C((xl,), C((,z), 8&?, @((,4), C(l), C(z),
second class: Cfllh) , C,(,?, C;,},) , Cgl). (124) ' ! ' ! P ﬁ( hl 30)
Now the only possible option to have a single DOF is to
impose we find
1
Scalar DOF = 3 [8 x 2 —6(2 primary & 2 secondary & 1 tertiary & 1 quaternary)
—4(2 primary & 2 secondary) x 2(first-class)] = 1. (131)
In this case
Class III:
Kpp = —Kp3z = 2Kh4 = _2Kh] $é 0, Kf2 = _Kf3 = 2Kf4 = _2Kfl ?é O,
h=bh=L=l=Ils=n=n=pup =pup=0, Hn2 = —Hhni- (132)
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The Lagrangian for Class III is given by

L= _(Khlhyvéﬂyaﬁhaﬁ + x5S, ,wé”mﬂf p)

- ﬂhl(huuh’w - hz)' (133)
It is clear that this case corresponds to the linearized
Hassan-Rosen bigravity, (10).

VI. SUMMARY

In this paper, we investigated a Lorentz invariant action for
two rank-2 symmetric tensor fields 4, and f,. Based on the
Hamiltonian analysis, we classified theories with 7 physical
degrees of freedom whose action consists of the most generic
quadratic terms containing up to two derivatives with respect to
spacetime for each term. To simplify the problem, we have
utilized a field redefinition to reduce the model parameter
space. We then found three distinct classes of theories, which
are not connected by a linear field redefinition. In any case, the
Hamiltonian structure in the tensor and vector sectors are the
same; that is, one of the fields behaves as massless, and the
other has anonvanishing mass in dispersion relations. The first
theory, Class I, contains three primary constraints in the scalar
sector and is invariant under the transverse diffeomorphism.
Furthermore, the kinetic terms for both fields do not take the
form of the Einstein-Hilbert term even by the field redefinition,
and the mass term no longer has the Fierz-Pauli tuning. Class I1
is also invariant under the transverse diffeomorphism but
contains four primary constraints differently from Class I. The
kinetic terms for both fields are described by the Einstein-
Hilbert terms, and a new tuning parameter enters in the mass
matrix thanks to the transverse condition in the gauge trans-
formation, which was absent in the linearized Hassan-Rosen
bigravity. Class Il is nothing but the linearized Hassan-Rosen
bigravity, which is invariant under the standard diffeomor-
phism. Since we have reduced the model parameter space by
the linear field redefinition before the Hamiltonian analysis, a
broader class of theories can be obtained by the field
redefinition, which could be different theories depending on
the matter coupling, although their Hamiltonian properties and
physical degrees of freedom do not change. It should again be
stressed that neither Class I nor Class III can be mapped into
Class I through any field redefinition since the number of the
primary constraints does not change under the transformation.

The transverse diffeomorphism that appeared in
Classes I and II can be nonlinearized by introducing
the unimodular condition det g = 1, where g is one of the
metrics in bimetric gravity. Therefore, the first two
classes of theories, Class I and Class II, might open a
new window of finding extended theories of massive
bimetric gravity. In fact, if we linearize the Hassan-Rosen
bigravity with the unimodular condition, one is able to
obtain a part of Class II, where all the mixing terms are
switched off. Although such a case is trivial because the
unimodular condition brings just a cosmological constant

in the Einstein equation as the (massless) unimodular
gravity, it would be interesting to investigate whether
nonlinear completions of Class II itself can be possible or
not. Moreover, the nonlinearization of Class I would also
be interesting.
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APPENDIX A: LINEAR FIELD REDEFINITION

In this appendix, we consider the transformation of the
action for the fields 4, and f,, under a redefinition of them.
The most generic transformation linear in the fields® is

My =k, + opf + ol + 7, )0, (Al)

f;w = Qf]_c;w + a)f}_l,ub + (Ff] + yf'il)”yv’ (AZ)

where Q;, » and I, ; are constants and h and f are the traces
of h,, and f,, co.ntra}cted by #,,. Since Qh and Qf only
change the normalization for each Lagrangian, we hereafter
set €, =Qp =1. Applying the transformation to the
generic action, one obtains

S = / d4x(_I_CZﬁ‘ﬂyp6hﬂy,ahpa,ﬂ - I_C?ﬂ‘ﬂypgf;w.afpo',ﬂ
- Gaﬁ”ypo-hﬂu,af/)ﬂ,/)’ - -/\_/lzypo—h;wh/m

- M?ngfﬂbfpo' - J\_/”ypah/lvfpa)’ (A3)

where the coefficients of the transformed Lagrangian read

Kpi =k + op(l) + opkyy), (A4)

Kpp = Ko + @ p(l, + @k ypr), (AS)
Kpz = 20k + (1 + 40, )k

+ @2k + (07 + 4y )k 3]

+ (}’f + Fha)f>lz + (C()f -+ 47/f)l3

+ (1 +4T,)ls, (A6)

30ne can also consider other invertible transformations
involving derivatives such as h,, — h,, + 0,0,f and f,, = f,,
+0,0,h. However, these transformations introduces higher deriv-
atives, and the resultant action will be no longer the form of the
action (5) even after imposing the conditions (80), (91), (114), and
(132).
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I_<h4 = 2Fh(1 + Zrh)Khl + Fikhz + Fh(l + 4Fh)Kh3 + (1 + 4Fh)2Kh4
+2yp(0p + 27 p)kp + vk +yp(@p + AT ks + (@ + 470K
+rp(1+40) + o Tyl + v Dply + Tp@p +4yp)ls + (1 +40,) (wf + dyp)ly +vp(1 +40,)ls, (A7)

[

B = i + @jppn + opny, (A8) b= (It ouop)h + 20k + 20551, (AL0)

Fino =20, (1420, )y + (1+4T4) L=+ @,07) + 204K + 20K, (All)
+ 21 @42y p ) + (@5 447 )1 o)

+[Cpo 4+ (1440 )y plng +(1+4,) (0 +4y f)ns,
(A9) + zthhz + (C()h + 4}/h)l<'h3 + 2a)fFf1<f2

oy (1+4 )k, (A12)

73 = (Ff + C()f}’h>lz + (1 + 4Ff)l3 + a)f(a)h + 4}//1)[5

and K7y r2 3 p4 and fig; g can be obtained by replacing the
labels 4 and f. And also we find
|

Iy = (T + T +40,T s + ouys + 0prn + 47y )l + Ol s 4+ 7070l + [Ca(L+4T5) + 75 (05 + 470)]1
+ [(1+4T5) (1 +4T5) + (@), + 4yu) (@5 +4y)|ls + [T(1 +4T5) + v (@ + 47a)lls
+ 2[y (1 +40) + Dyl + 27i00knn + [ya(1 4 80%) + @, Dilkns + 2(1 + 40, (0, + 474 )Kkns
+2[y (L +4Tp) + L plipy 4 2y Uiy + (1 + 80p) + @l plkps 4+ 2(1 4+ 40 ) (05 + 4y )K 4 (A13)

Is = Ty + opyp) s + oy (0 +47,)ls + (1 4+40)ls + 27 jk o + (05 + 47 )k g3 + 20,0 4Kk50 + 0, (1 + 4T )k, (Al4)
iy = (1 + wpop)n; + 201 + 2wup, (A15)

+ [(@p + 4yu) (@5 + 4y p)|ny + 20y (1 + 4T3) + @ Ty lun + 2(1 + 40,) (0, + 4yva)in

The inverse transformation of the fields is given by

7o l {4hﬂl/ - 4whf/w - (h - a)hf)nm/ (1 + 4Ff)h - (wh + 47h)f n } (A17)
w 4 1 - a)ha)f (1 + 4Fh)(1 + 4Ff) — (a)f + 4]//)(60h + 47//1) wefe
A 1 {4f;w - 4a)fh/w - (f - wfh)rl;w (1 + 4Fh)f - (wf + 4}/f)h n } (A18)
m 4 1 - a)ha)f (1 + 4Fh)(1 + 4Ff) — (C()f + 47/]‘)(0)/1 + 4}’h) wefe
and that for the trace of the fields
P (1 +4Tp)h — (o, +47,)f (A19)
7o (1 +40,)f = (o +4yp)h (A20)
where the inverse transformation exists only when
1 — w0, #0, (A21)
1 +40), +40(1 +41,) = (0f +4y4) (@), +4y,) # 0. (A22)
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1. Transformation under vector conditions

In this appendix, we show that one can impose (47) by
using the field redefinition, without loss of generality. Here,
we consider a specific field redefinition under the vector
condition (44) to simplify the analysis. Let us first consider
the following transformation:

- I, - -
h;w = N _zilf;wv f;w :f,uw (A23)
Kn1

and then one can find I, = 0 in the transformed theories.
Moreover, in the case of k;3 # k1 and ky3 # kg, if one
considers the field transformation defined as

- 2K — Kp3
h,=h, ———hn,,,
" " 2(’%1 - Kh3) v
_ 2K —Kpy -
f1 f3
= - , A24
fm/ )22 Z(Kfl _ Kf3) f”/w ( )

one can transform to the theories with k3 = 2k, and k3 =
2k s with the use of the first two conditions of (44). Next,
when one considers the following transformation:

_ l _ _
h/w = h/w + <_K_Z1yfh + yhf) e <A25)

_ 1 _ _
f/w = f;w + <_ K__f517hf + yfh> Ump <A26)

one can check that the transformed parameters still satisfy
the conditions: k3 = 2k;; and ky3 = 2ky;. Under these
conditions, using the transformation Eqgs. (A25) and (A26)
|

in which only y is considered, one finds

LAly+ls=1341,+1s

I;(l3 + 41, + 41
+ 8(Kf1+K'f4)— 3(3 th 5) }/f.

(A27)

Hence, performing the transformation Eqs. (A25) and
(A26) with

B Kpi (I3 + 1y + 1s) _
yf - ’ Yh - 07
13(13 + 414 + 4[5) - 8Kh1 (Kfl + Kf4)

(A28)

one can transform to the theories with kj3 = 2Ky,
IZ'f3 = 2Ef1’ and l3 + l4 + 15 = 0

2. Three primary case in the scalar sector

In this appendix, we show that the conditions (58) can be
imposed by the field redefinition, without loss of generality.
Let us first consider the first case of (54) for the original
theory described by £,,. In order to simply the Lagrangian,
we impose

Kp3 = 2Kp1,
(A29)

These conditions determine the coefficients of the field
redefinition as follows:

op=—lL = R
2up 2ﬂh1’<f1
r,—— =25 (l3lsmy = 2(13 + Is)upkgr) + By (lmy + 2040 )K + 1K1Ky ’ = ny (2hsptpy + k) ’
SMM(—13"1 + 2ﬂh1Kf1)(l315 - Kf1’<h1) ’ Sﬂhl(zﬂthfl - 13”1)
vy = L’ vy = _mlglw% + 2D pk s (Cupkpy — Isny) +Kfl(415//l%,1’<fl + ny(Isny + 2pK51 k)
Bupi Kr1 8#h1(13n1 - 2Mh1Kf1)<l3ls - Kf1’<h1>

Then the transformed Lagrangian satisfies

Kip = —Kpz = =2k # 0,
38
8Kp1

Kf2 = —K'f3 = _2Kf1 ?é O,
Kf4 = —Kp1 — s h=bh=1ly=py=n =0,

. (A30)

I
Here the bars are omitted. Thus the kinetic term for f,, is
the Einstein-Hilbert term, and all kinetic interactions
between i and f are absent in this frame. Since these
conditions are the same as (58), we conclude that the
theories having the first option of (54) are transformed to
the theories with (58).

Next let us consider the second case of (54). Imposing
the same conditions (A29), we find the transformation,
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W), = M w; = ALY
24 2Mh1’<f1
_ _413@#%1 + 2L (=I5 + 2ukp0)Knn + 10 (G + Is)my + 2pmkp )k r, — 1
" 8t (2spn — nikny ) (lls — kg1 ’ e
lsny + 2pp K Ky 2Gpn (g = 2pmipy) = (Is (I3 + Is)nf + 2lsppynikpy + 45,67 )kn
= 8lsppy — 4niky ' = _a 8ﬂh1(215/"h1 - anhl)(l3ls - KflKhl) ’ (A32)

I
where the transformed Lagrangian satisfies (A31)  Then the transformed Lagrangian satisfies
equivalent to (58). Therefore, both the first and second
options of the three primary case (54) can be mapped
irf)to (58). prmALY G PP Knp = —Kn3 = 2Kpg = —2kp1 # 0,

Kf2 = _Kf3 == 2Kf4 == _2Kf1 ?é 0,

3. Four primary case in the scalar sector L=l=ly=1, =I5 =0, pp=m =0, (A36)

In this appendix, we show that conditions (93) can be
imposed using the field redefinition without loss of general-
ity. Let us now consider the four primary case (56) for the
original theory described by £,,. In order to simplify the

Lagrangian, we here impose

which is obviously equivalent to (93). Here we omit the bar
of the coefficients. Thus in the four primary case, we can
always map them into two Einstein-Hilbert terms with no
kinetic interactions between h and f.

[, =0, Kp3 = 2Kp1, K3 = 2Kg1,
Kpg = =Ry, Kpg=—Kpo  fip =0. (A33) APPENDIX B: LAGRANGIAN IN THE SCALAR
SECTOR
These conditions provide the field redefinition with the ) ) o
following coefficients: The Lagrangian for & scalar perturbations is given by
n nKp . -
Wy = —2—1’ Op = 217 Ly kin = 4(Knt + Kpp + Kp3 + Kna)@g — (2651 + ki) B
Hni Hn1Ky1 ) "
r - 213[5/”11 — l3i’l]K'h1 + 12(Kh1 + 3Kh4)Rh + 4(Kh1 + Kh4)gh
" 8uni (I3ls = kp1kp)’ — 4(Ky3 + 263) (—3Ry, + €y
r, = - 2031sppy + Isnykp ’ (A34) —8(kp1 + 3Kh4>Rh€h, (B1)
8#h1(l3ls - Kf1’<h1)
_ blsm + 2l kp L3 eross = =4k + 133, + (k2 + 3653) Ry

y - )

" 8 (l1s — Kp1Kp1)

_Khl(l3lsnl —215’<f1/4h1)
Sﬂhlkfl (1315 - KflKhl)

— (ki + K13) En kP (B2)

Vr= (A35)

Ly mass = —HK*(kn1 + Kna) + pn1 + polag + (k22641 + ki2) + 2065
— A4[k* (3K + Kz + 3Kz + 9na) + 3(unt + i) IRy — 4k (ki + Kia + Kz + Kna) + pn + i) €5
— 4[(k? (k3 + 6kpa) + Optya) Ry — (K (kp3 + 2kpa) + 2pm2) Enlety
+ 8k (kp1 + Kz + 2653 + 3xp4) + (1 + 3p2) | Ry (B3)
The Lagrangian for f perturbations can be obtained by replacing the above Lagrangian for 4 with f:
L3 i = 4L + I + Ly + 15)apey — LBy + 36L Ry Ry + 4LEE + 12(1 + L)y, Ry + 12(1y + I5)éy R,

— ALy + L)€ — 41y + Is)apEy — 1204 (RuE s + RyE), (B4)
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ﬁif,cross = -
‘Cif mass _4(k

-4
+4
4[k2 12 + 3[3 + 3[4 + 15) + ng + 31’12]le8;,.

APPENDIX C: TWO PRIMARY CASE IN
VECTOR SECTOR

In this appendix, we investigate the Hamiltonian analysis
in the case of two primary constraints in the vector sector,
where

b

4(2kp1 + Kpa) (1)

KfZ = _2Kfl +

is satisfied. In this case, we have the following two primary
constraints, which is defined by

I
W=pg, -2 4. x0. 2
s =" 2(2kp1 + Ki2) " ()
Then we define the total Hamiltonian
MY =HY + 2y CL). (C3)

The consistency of the primary constraints gives the
secondary constraints

2[(Ly + 21s)éy + (L + 615 Ry, — (I + 215)ExlkBy — 2[(Ly + 203)as + (I + 613) Ry — (I + 203)E 1k,

(BS)

2[4 +n; + nz)ahaf + (kzlz + 2n1)ﬂhﬁf - 4[k2(lz + 313 + 9[4 + 315) + 37’11 + 9”2]RhRf

k (12 + 13 + 14 + 15) +n; + I’lz]ghgf - 4[k2(3l4 + 15) + 3n2)ah’Rf - 4(](2(13 + 3[4) + 3n2]ath

k2(14 + l5) + nz]ahé'f + 4[](2(13 + 14) + nz]afé'h + 4[]{2(12 + l3 + 3[4 + 3[5) +n; + 3”2]Rhgf
(

(B6)

|
and the time evolution of the secondary constraints gives

Cy =1Cy HI} =1{Cy M"Y+ {Cy) ./} ~0. (C5)
where
{CB“ } = 4y + Ly(Lppy = 2ny (2K +Kh2)). (C6)

(251 + Kkp2)?

Therefore, when {CBf,

A B/ are determined by the above equation, and the primary

lf)} # 0, the Lagrange multipliers

and secondary constraints are second class. Therefore, the
number of the physical DOFs in the vector sector
is (8x2-4)/2=6.

In order to further reduce the variable in the phase space,
we need to 1mpose an extra condition. The only option here

is {CBf, } 0, i.e.,
lhn
={CY .1y} =4 B!
= ()0 = (- 5o )5
Lojiy: pp = — L(Lppy = 201 (2651 + ko)) (C7)
+2(n ——"———|B! B 4(2 2 )
( ! 2Kh1 +Kh2> ( Kn1 + KhZ)
ki,
—katpr + 7, (C4)
Fi 2(2kp1 + Kp2) Fi Then, Cg_f) serves as the tertiary constraints,
| i
o) _ [ (2631 + K1) = Lopi | (Ko FY + 2K(231 + 30) FI = g ~0 (C8)
B (2Kn + Ki2)” ’
and, since {CS) . Cgf)} = 0, subsequently we have quaternary constraints,
_ (Y MYy =  Im 2k ) ~ Lo [(KP 1+ 2n1) B + 2k (2631 + K1) + 24t11) B) = k] ~0.  (C9)
Bf - Bf’ - N

(26p1 + K2)?
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Now the time evolution of the quaternary constraints gives

Cy = {Cy My} = {C) M} + 4, {C5) . Cy ~ 0.
(C10)
where
_ 2
{CBf’ Bf}_ 2(n1 2k + ki) = L) (1)

(26p1 + Kp2)?

Therefore, as long as {C B ;)} is nonvanishing, the

Lagrange multiplier is determlned by the above equations,
and the number of the physical DOFs is (8 x 2 — 8)/2 = 4.

When n;(2x),; + kpp) — Luy; =0, the above tertiary
constraint trivially vanishes and its time evolution does
not generate the independent constraint. In this case, we
only have the primary and secondary constraints, but now
they are first class since all the primary and secondary
constraints commute each other. Thus, the number of the
physical DOFs is (8 x 2 —4 x 2)/2 = 4. Therefore, the
case with two primary constraints in the vector sector
cannot have 2 physical DOFs.

APPENDIX D: TWO PRIMARY CASE: det /C5 # 0
IN SCALAR SECTOR

Let us consider the case with two primary constraints,
namely the degenerate condition for the scalar components
|

!
;) ={cy) 13} =2k 2z5ah+/;"]1qf—2(315 -

Here, the tertiary constraint cannot be trivially zero since

ks # 0. One can also check that é;}i) = k2c,<,f) ~ 0, imply-

ing no more constraint is generated. The constraints C}}i‘m)

commute with all other constraints, and therefore, we have

(1,2,3)

three ﬁrst—class constraints C and two second-class

constraints C. ﬂh ) Hence, the number of the physical DOFs is

(8 x2—=2—-3x2)/2 = 4. Since there is no further option
|

2n1Kp
Hnl

!
)Rh—<8kﬂ— ‘ )Rf+2155h— Mgl ~o,
Hh Hni

is not imposed, and the parameters only satisfy the vector
conditions (44). We define the following two primary
constraints for convenience:

(1 _ ~ (2) _
Cﬁh = ﬂﬁh ~ O, Cﬁf = ﬂ:ﬁ/ 2/,[ ”ﬁh ~ 0. (Dl)
The total Hamiltonian is defined as
_ 1) (1)
HE =M+ 25,Cy) +25,Cy). (D2)

The evolution of the two primary constraints yields two
secondary constraints:

= —k(my, + 7g,) + 4 py + 2mfr = 0, (D3)
2 (1
Cy = {Cy) 15}
k}’ll
= _k(ﬂaf +7Z'gf) +%(ﬂ'ah —f—ﬂg}) ~ 0. (D4)

Since {C(i),Czi)} =4u;, #0, the Lagrange multiplier
Ap, 1s determined by imposing Cg)
—{C(zh),H}/ {C(i),C/(,lh)}. The evolution of the remaining
secondary constraint yields the tertiary constraint:

~0, namely Az~

31’;”1

(D5)

to eliminate DOFs, one cannot obtain 1 DOF theory in this
case.

APPENDIX E: EXPLICIT EXPRESSION OF
CONSTRAINTS

In this appendix, we give an explicit expression of the
constraints in the case of Class I. Equation (69) is given by

_ 8klz R K2l
a, = {Caf ,Hy = : hlﬂ t+c 3 ", + C;eh”Rh ¢ fﬂRf +;13”5h + k2”5 ~0, (E1)
h l 2
where c?h 3 (- “Hn1 1 3Ly (E3)
1 6 4cpy Knl
cg” = K |:l3 (k2 + K—hl) - (16Kh1Kf1 + 91%))/ s (EZ)
nl i R
C3 f = _l3y7 (E4)
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and
a 1
C4f = [_213(4Kh1’<f1 + 31%)<2Kh1k2 + 3/,£h1)y
y= 2ny601 + 33 (ES) Ki
2Khl (SKfl (Khl + Kh4) + 31%) + 8K'f1 (2Kh1n2 + 313/‘;;1))’ - 2kzl%(2kzl€h1 - Mh])]a
After rescaling, Eq. (70) is given by (E11)
af = {Caf ’ H } Eih —8(4Kf1 (Khl + K'h4) + l%)kzy
~ ~R;, R kzl3 31
- C'ihﬂ:(lr + C /”Rh + C3 fﬂRf - K—hlﬂgh ~ O’ (E6) —|— 2( 3 ( 2]('"1]12 ‘I— l3l’lh1) - 16Kf1/lh2>y
Kn1
where 413(2]C Kp1 — ﬂhl)ﬂm (E12)
Ki
A 5k%1,
P <& 4l (dxpix s + 315) 2 913/%1
1 2, Omn 5 4 = k¥y +2{ =8kpiny + y
I l 4k p - (16Kh1Kf1 =+ 9]3))7 s Kp1 hl
1 1 2120772
2k"1 (2k Kpi = Hn1)
(E7) S — , (E13)
n1
k1 l 2
R — o Re 2783 B Ml 3] ES
. . dkpy Ak ( Kn1 * 3y>. (E8) Ef/' = (4’<f1(’<h1 + 3xh4) —4l§)k2y
The time evolution of @((;/) yields the constraint + 2<9ZI (2kp1my — L) + 48k f1ﬂh2>y
éa-? = a((zf — Ezhah + Z’Zfaf + z‘ihgh + Z‘ffgf + Z‘thh _ 413( k4Kh1 — 2k2Kh1Mh1 B 3”]211) (E14)
J J 2 9
K
+ R, R0, (E9) "
where R _ A (8kpikp + 9%3) Ky
Cy
Kp1
~, 2\ 1,2
Cy = 8(4Kf1(’<hl + Kh4) + l3)k y 913/%1 6kzl§(2k2K‘h1 _,uhl)
31 + 6 8K'f27’l2 K2 y- K2 .
+ 2( (2&p115 + 3l3pp1) + 16K 5 (ki +ﬂh2)>)’ h1 hl
Kl (E15)
12y, (E10)
K%l Using other constraints, we then rewrite é&i) as
|
oW _ 2nykp1 + 3l3p |:l’; B 653ur, + Kzflkfl (k*(2kp1 10 + 3l3p1) — 4”2Hh1)c(3)
" ko (8 (e +pa) +38) [27Y 3By, h
kans 1
— 16K | o + 325, + 2 (En—a, —3Ry)
1 KniK 1 (2nakpy + 334 )° ) { (3)
+ - kiciy (2K K1 = pnt)Cy,
Koy (k%K1 + 3pn) ( 30345, (8K sy (Kt + Kpa) + 313) " b
+ 4/¢h1(4k21<%”n2 + 3[3#%])(5;, —ay — 3Rh) - 4813#%1 (2k2Kh1Rh - yhlah)} . (E16)

When we further impose the two additional conditions (73) and (86), the right-hand side of the above equation reduces to
the linear combination of the constraints, namely the time evolution of ésf) becomes trivial.
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