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We review the fundamentals and highlight the differences between some commonly used definitions for
the PPN gamma parameter (γ) and the gravitational slip (η). Here we stress the usefulness of a gammalike
parameter used by Berry and Gair (γΣ) that parametrizes the bending of light and the Shapiro time delay in
situations in which the standard γ cannot be promptly used. First we apply our considerations to two well-
known cases, but for which some conflicting results can be found: massive Brans-Dicke gravity and fðRÞ
gravity (both the metric and the Palatini versions). Although the slip parameter is always well defined, it has
in general no direct relation to either light deflection or the Shapiro time delay, hence care should be taken
on imposing the PPN γ bounds on the slip. We stress that, for any system with a well-posed Newtonian
limit, Palatini fðRÞ theories always have γ ¼ 1; while metric fðRÞ theories can only have two values: either
1 or 1=2. The extension toward Horndeski gravity shows no qualitative surprises, and γΣ is a constant in this
context (only assuming that the Horndeski potentials can be approximated by analytical functions). This
implies that a precise study on the bending of light for different impact parameters can in principle be used
to rule out the complete Horndeski action as an action for gravity. Also, we comment on the consequences
for γ inferences at external galaxies.
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I. INTRODUCTION

Parametrized Post-Newtonian (PPN) formalisms [1–7]
provide practical and rigorous procedures to infer model
constraints from several different observations. Although
there are some relevant differences between different PPN
formalisms, they all require the model to be expressed in a
precise way and to satisfy certain set of hypothesis. If these
conditions are met, the PPN parameters of the model are
found and they can be promptly compared to observational
bounds. There is currently large interest in using PPN
parameters beyond the classical domain of the solar system
(e.g., [8–10]), which is welcome to test both general
relativity (GR) and newer proposals for gravity. Other
parametrizations, related or inspired by the PPN formal-
isms, have also emerged (e.g., [11–15]). We stress here
certain subtle differences which may, under some circum-
stances, be important and change the inferred parameter
bounds. Although our conclusions can be applied in
different contexts (including the solar system), our main

physical motivation comes from constraining gravitational
parameters by light deflection from external galaxies (as in
Refs. [8,10,16]). In this context, the Newtonian limit is
commonly expected, but it may not hold, hence considering
both the cases is valuable.
We start by reviewing the fundamentals of the standard

PPN formalism, due to Will and Nordtvedt and referred as
WN-PPN, with emphasis to its γ parameter [6,7]. The
parameter γ has a special role since it is the single post-
Newtonian (PN) parameter that appears in a first order
metric expansion and it is directly associated with tests
concerning the propagation of electromagnetic waves.
Based on that, we will explore two others γ-like parameters
(here denoted by γe and γΣ) that appears within an
extension of the WN-PPN parametrization, addressing
the similarities and differences between the gammas and
the gravitational slip parameter (η). We apply these dis-
cussions to the case of scalar-tensor and fðRÞ theories. We
understand that there are some common misconceptions, in
particular on the view that the slip can be seen as an
effective gamma, which can lead to wrong interpretations
on the behavior of electromagnetic waves and the numeri-
cal bounds of the theory.
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The paper is organized as follows. In Sec. II we review
the fundamentals of WN-PPN formalism and the physical
meaning of the gamma parameter, also, following [17], we
introduce γΣ as a more general parametrization for the
dynamics of electromagnetic waves. By the end of Sec. II,
we start to explain some of the relevant differences between
η, γ and γΣ. Section III describes the identification of the
slip and gamma parameters in generalized Brans-Dicke
theories and fðRÞ theories. Section IVextends the previous
arguments toward Horndeski theory. Finally, we present
our conclusions in Sec. V.

II. GAMMA PARAMETERS AND
GRAVITATIONAL SLIPS

A. WN-PPN introduction

The large number of different physical constraints that
can be extracted from solar system tests lead to the
development of practical mechanisms to confront a theory’s
prediction with observational data. Eddington was one of
the pioneers [1], followed by Robertson and Schiff [2,3].
The Eddington-Robertson-Schiff (ERS) formalism des-
cribes the planets as test particles moving along geodesics
of a spherical and static background that extends the
corresponding GR solution by introducing two parameters,
usually denoted by γ and β. A more recent and well-known
PPN formalism is based on works by Will and Nordtvedt
(WN-PPN), where a continuous matter description of
celestial bodies is used [4,6]. The WN-PPN formalism
uses ten metric parameters, with nine of them being directly
constrained by observations [7].
One of the advantages of the WN-PPN formalism resides

in the fact that, once the PN metric of a theoretical model is
obtained, one just needs to read off the PPN parameters
from the metric in order to confront theory and observation.
Contrary to the ERS case, it is not necessary to find explicit
metric solutions (or assume spherical symmetry), only the
relation between the metric and certain functionals need to
be found. All the study on the equations of motion was
already performed using the general metric of the formal-
ism. However, there are limitations since several of the
alternative theories cannot be parametrized according to the
original WN-PPN scheme. One thus needs to evaluate how
the new terms in the metric expansion can affect the
equations of motion in order to infer observational con-
straints in any free parameter of the theory (see e.g., [18]).
Extensions of GR that introduce a scalar field ϕ are

among the most frequently considered. Scalar-tensor mod-
els that depend on a potential VðϕÞ cannot be in general be
studied in WN-PPN, or even in a more general PN context.
This since the potential may spoil the existence of a
Newtonian gravity limit, while PN bounds on γ, for
instance, requires the existence of a Newtonian limit up
to certain precise order. We will revisit in detail this point in
this work.

B. The standard gamma definition

We start by defining the parameter γ in accordance with
the WN-PPN approach [6,7]. The latter requires that the
following assumptions must hold up to the expansion order
being considered:

(i) The matter of the system can be described as a
perfect fluid.

(ii) The relevant spacetime for the system is asymptoti-
cally flat.1

(iii) The metric can be expanded about Minkowski,
where the nth order expansion is of the same order
of ðv=cÞn.2

(iv) A well-defined Newtonian limit must exist.
The WN-PPN formalism, in its original form, considers

that metric perturbations depends on 10 functionals of the
fluid variables (the PPN potentials) and 10 dimensionless
constants that can be constrained from experimental and
observational bounds (the PPN parameters). The func-
tionals were chosen with considerations on fairness and
simplicity, being such that GR is included as a special case
(further details can be found in Sec. 4.1 from Ref. [6]).
Therefore, not all theories can be written in that form. If a
theory can be shown to be a particular case of that specific
metric parametrization, one simply has to consult a table
with the bounds on each of the constant coefficients. This
procedure is used in Ref. [18], for example. If the theory
depends on functionals that are not among the 10 original
ones, it is in general necessary to proceed to the full PN
equations of motion to find the physical bounds, as it was
done, for instance, in Ref. [19].
In order to compare to cosmological perturbative para-

metrizations (which is the context in which the slip is
commonly defined), we only need the WN-PPN metric
restricted to the first order metric perturbations. This
restriction is sufficient to include both the Newtonian
dynamics and the geometry input that determines light
trajectories. In this case, the WN-PPN metric depends on a
single parameter and it reads, in the PPN gauge,

gPPN00 ¼ −1þ 2U þOð4Þ; ð1aÞ

gPPN0i ¼ 0þOð3Þ; ð1bÞ

gPPNij ¼ δij þ 2γUδij þOð4Þ; ð1cÞ

where

Uðx; tÞ≡
Z

ρðx0; tÞ
jx − x0j d

3x0 ð2Þ

1At distance scales much larger than that of the system,
asymptotically flatness need not to be satisfied.

2Where v is the fluid velocity and c is the speed of light.
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is the (negative of the) Newtonian potential and ρ is the rest
mass density. In the above, and hereafter, we use units such
that G ¼ c ¼ 1 and the notation OðNÞ to indicate terms of
order vN. For a bounded Newtonian system, from the virial
theorem, U ∼ v2 ∼Oð2Þ.
The PN corrections to light dynamics are entirely

determined by the second-order metric components [20].
The PPN approach of Damour and Esposito-Farese [5] is

different from the WN-PPN one, but their metric agrees
with the metric (1) up to O(2) terms.
The Oð2Þ term in g00 (i.e., 2U) provides the Newtonian-

order effects (with G ¼ c ¼ 1). Since PPN is a post-
Newtonian parametrization (as implied by its name), it is
not surprising that Newtonian dynamics are already taken
for granted at the appropriate expansion order. Applying
PPN parametrizations on theories without a Newtonian
limit is not impossible, but cannot be done blindly: it
requires a “modified PPN” approach in which one has to
return to investigate the physical meaning of the PPN
parameters in the new context (e.g., [21]). In order to
review and better detail the relevance of γΣ [17], even for
the cases without a Newtonian limit, we will consider the
equations of motion for light.
The gij components include the single contribution that

is PN up to the first-order metric perturbation. Within GR it
has only a single term up to Oð2Þ, which is proportional to
Uδij. TheWN-PPN formalism generalize the latter depend-
ence by appending an arbitrary constant γ factor. If any
parameter should be called γPPN, we understand that it is
this one. For convenience, we call it γ and use other
symbols for other similar quantities.
One may consider other possible contributions atOð2Þ to

gij, however there are not many options that are in agree-
ment with the WN-PPN gauge and respect the PPN
expansion. For instance, another natural candidate would
be Uij [6], where

Uijðx; tÞ≡
Z

ρðx0; tÞðxi − x0iÞðxj − x0jÞ
jx − x0j3 d3x0: ð3Þ

This non-diagonal quantity asymptotically decays, it has
the right dimensions and it is indeed a Oð2Þ quantity.
However, Uij can be removed by a gauge choice, being
absent from the metric in the standard WN-PPN gauge.
In conclusion, up to the Oð2Þ, the single PPN parameter

is γ, which is a constant. This parameter is more than an
arbitrary number in the metric, it has well-defined physical
implications. Indeed, its value changes the trajectories of
photons, as explained in the next section.

C. The physical meaning of γ

Consider the propagation of photons in the metric
expansion (1). The geodesic equation reads

d2xμ

dλ2
¼ −Γμ

αβ

dxα

dλ
dxβ

dλ
; ð4Þ

where λ is an affine parameter. It is useful to express the
above without reference to λ. For massless particles it can
be written as,

dvμ

dt
¼ −ðΓμ

αβ − vμΓ0
αβÞvαvβ; ð5Þ

where Γμ
αβ is the Levi-Civita connection and vμ ¼

dxμ=dt ¼ ð1; v⃗Þ is the photon four-velocity, which satisfies,

gαβvαvβ ¼ 0: ð6Þ

Up to Oð2Þ terms, Eq. (6) leads to

vivjδij ¼ 1 − 2ð1þ γÞU ð7Þ

and hence,

vi ¼ ½1 − ð1þ γÞU�ni; ð8Þ

where ni is a normalized vector such that ninjδij ¼ 1. The
velocity v is lightlike, hence it is not small, but v is small.
From Eqs. (5) and (8), and up toOð2Þ contributions [20],

dni

dt
¼ ð1þ γÞðδij − ninjÞ∂jU; ð9Þ

where it was used that dU=dt ¼ ∂tU þ vj∂jU ≈ vj∂jU.
This since time derivatives increase the perturbation order
by one [6].
The relevant equations for the deflection of light by a

static body, as well as the Shapiro time-delay effect, are
directly obtained from Eqs. (8) and (9) (see [6] for further
details). Both phenomena can be used to put bounds on γ.
Currently, the time-delay in the propagation of light is the
phenomenon responsible for the strongest constraint, yield-
ing [7],

jγ − 1j≲ 2.3 × 10−5: ð10Þ

The parameter γ also influences other PN effects, like the
perihelion shift. However, it is the single PPN parameter to
have an effect on the time-delay and deflection of light.
The bound given in (10), like any other bound on γ

within the WN-PPN, depends on the validity of all the WN-
PPN hypothesis. Among them, we recall that only the
Newtonian potential is present at the Oð2Þ order and that γ
is a constant. Scalar-tensor theories need not to satisfy these
conditions.
In the following subsection, we present an extension of

the metric parametrization (1) and a gamma parameter (γΣ)
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that captures the physical essence of γ in this extended
parametrization.

D. Extended PPN metric parametrization and γΣ
Here we consider the PN equations of motion for

photons within an extended metric with respect to
Eq. (1), namely

ḡ00 ¼ −1þ 2αeU þOð4Þ; ð11aÞ

ḡ0i ¼ 0þOð3Þ; ð11bÞ

ḡij ¼ δij þ 2γeUδij þOð4Þ: ð11cÞ

In the above, γe and αe are arbitrary functions of space and
time and we use the subscript e for extended. Due to the
arbitrariness on γe and αe, the U that appears above is just a
useful notation convention to compare with the standard
PPN metric results. The metric above depends on two
arbitrary scalars. We remark that although α can be
eliminated by a unit redefinition, thus without physical
impact, αe can at most be eliminated locally. The same issue
can be found in some other PPN extensions that consider
dynamics at scales much larger than that of the solar system
(e.g., [15]).
By repeating the same computations of Eqs. (8) and (9),

one then finds

vi ¼ ½1 − ðαe þ γeÞU�ni; ð12Þ

dni

dt
¼ ðδij − ninjÞ∂j½ðαe þ γeÞU�: ð13Þ

In the above expressions, time derivatives were once again
neglected, since they are one order higher with respect to
spatial variations. From the above, one sees that the
equations of motion with αe þ γe ¼ 2 are the same equa-
tions of GR for light. This holds even if γe =≈1, or even if αe
and γe are spacetime functions that change considerably
locally.
A direct comparison between Eqs. (12)–(13) and (8)–(9),

allows one to identify an effective gamma parameter as a
function of the sum αe þ γe. Indeed, this observation was
done by Berry and Gair in the specific context of fðRÞ
theories [17]. Let this effective gamma be denoted by γΣ,
with “Σ” as a reference for sum, and with

γΣ ≡ αe þ γe − 1: ð14Þ

The gamma parameter above is a natural definition since:
(i) if both γe and αe are constants, one can redefine ρ such
that αe ¼ 1 and γΣ ¼ γ; (ii) whenever γΣ is a constant, it has
exactly the same role that γ has for light propagation [7].
This implies, in particular, that the impact parameter
dependence, associated to light bending and the Shapiro

time-delay, will be the same of GR. This however does not
imply that the γ bounds can be immediately applied to γΣ,
since γ is measured within a valid Newtonian limit, which is
important for the gravitational mass definition, while γΣ can
be computed even without a Newtonian limit (hence, the
meaning of the gravitational mass may not be fixed). For
instance, the important prediction of GR about the deflec-
tion of light by the Sun was only a prediction since it was
known what was the (gravitational) mass of the Sun. On the
other hand, even without the knowledge of the mass of the
Sun, one could test how the deflection angle changes for
different impact parameter values. To be more explicit, we
state the expression for light deflection as a function of a
constant γΣ (which are the same of WN-PPN with γ → γΣ)
[6]. For simplicity, let ρ ¼ Mδ3ðrÞ, hence

δθ ¼
�
1þ γΣ

2

�
4M
d

�
1þ cos θ0

2

�
: ð15Þ

In the above, θ0 is the unperturbed (true) angle between a
massive body of mass M and a luminous source (e.g., the
Sun and a distant star), δθ is the deflection angle due to the
massive body and d is the light impact parameter. The mass
M enters in the above due to U ¼ M=r.
In general, for systems that can be described by the

metric (11), spacetime can be fully described by the pair of
functions ðαe; γeÞ, or equivalently by ðαe; γΣÞ. This is
similar to cosmological approaches within first order
perturbations (e.g., [12,22]). However, our focus here is
on approaches closer related to PPN. As it will be shown,
for scalar-tensor theories in the Horndeski family and fðRÞ
theories, γΣ is a constant, even though αe and γe are not
constants in general. Thus implying that the relation (15) is
valid for this family of theories.

E. Gravitational slip

Many efforts have been concentrated in the development
of a PPN-like formalism applicable to cosmology.
Bertschinger drew attention to the importance to find ways
to constraint the difference between the two scalars that
appear in cosmological first order perturbations in the
Newtonian gauge [11] (which are commonly denoted by ϕ
and ψ). He suggested that a comparison between lensing
effects generated by a given system with the nonrelativistic
internal motion of the same system could be used to test the
difference between ϕ and ψ . Different variations, that
follow this physical setup, can be found (e.g., Ref. [13]
and references therein).
In a cosmological context, let

ds2 ¼ a2ðτÞ½−ð1 − 2ψÞdτ2 þ ð1þ 2ϕÞdx2�; ð16Þ

where we use τ for the conformal time.
The gravitational slip can be defined in several different

ways. A common definition is given by the ratio of the
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Fourier transforms of the two scalar perturbations in the
quasistatic limit [13,23–25], that is

ηk ≡ ϕk

ψk
: ð17Þ

In the above, the dependence on τ is implicit. Sometimes
one also considers the slip parameter in physical space, η
(e.g., [26,27]). As it is customary, we use the same letter η
to designate it, but it is actually an independent function: it
is not the Fourier transform of ηk. The slip in physical space
is defined as

η≡ ϕ

ψ
: ð18Þ

In this work, unless otherwise specified, we use the
space-dependent definition of the slip (18), which is simply
denoted by η. We recall here that, within GR up to first
order perturbations, one finds η ¼ 1 whenever Tij ¼ 0

for i ≠ j.

F. Slip is not gamma

The slip was introduced in a cosmological context, but it
can be promptly particularized for the solar system one.
Indeed, for the WN-PPN metric (1), η is a constant and it is
given by

ηjPPN ¼ γ: ð19Þ

The subscript “PPN” is a reference to the metric (1). In
particular, this equality implies that any bounds on the γ
parameter are also valid to ηjPPN. Probably this relation had
a role as the source of the confusion between γ and η. The
point to be stressed is that the equality η ¼ γ is wrong in
general, but it holds for the metric (1).
For the extended PPN-like metric (11), here labeled as

“EPPN”, one has

ηjEPPN ¼ γe
αe

: ð20Þ

The gravitational slip above is neither equivalent to γ, γe or
γΣ. Hence, in general, there is no reason for η to satisfy any
bounds that are valid for γ.
The physical phenomena that η probes is not in general

the same phenomena tested by γ, γe or γΣ: they happen to
coincide for the particular metric (1), but η is commonly
used with the metric (16). A key difference is that the
parameter γ is defined in a PN context, hence Newtonian
gravity is assumed to hold up to a given order, and it is in
this context that the γ bounds are derived. On the other
hand, ηmay be used in different contexts, independently on
the Newtonian limit and on the metric (1).

Apart from the differences mentioned above, it is
instructive to consider if there is some approximation,
with αe ≠ 1, in which η could be seen as an effective γ, in
the sense of a parametrization which could be subjected to
the same observational bounds of γ. The simplest case is the
following: if it is assumed that αe can be approximated by a
constant inside the system being considered, then it is
possible to redefine ρ (or the gravitational constant) inside
U such that αeU → U, implying that γeU → ηU. It is
further needed that η can be approximated by a constant.
For this simple case, it is correct to apply the γ bounds over
η, but care should be taken to ensure that αe and η are
indeed sufficiently close to constants. Considering all the
solar system tests commonly probed in the PPN context,
these quantities need to be constants for a significantly
large range of distances: from the largest distances of the
planets orbits ∼30 au (if not beyond) to the solar radius
∼5 × 10−3 au (since the bending of light and the Shapiro
time delay are particularly susceptible and tested when light
passes close to the solar radius).
It is possible to alleviate the assumptions above on αe

and η being exact constants. Indeed, according to Eqs. (9)
and (13), it is not necessary that αe and η are constants for
parametrizing light bending, but at least that

j∂jðαe þ αeηÞUj ≪ jðαe þ αeηÞ∂jUj: ð21Þ

If the latter holds, then jαeð1þ ηÞ − 2j will be subjected to
the same bounds that jγ − 1j is subjected.3 That is, if
jγ − 1j < Bγ , where Bγ is some small positive number, then

jαeð1þ ηÞ − 2j < Bγ: ð22Þ

Clearly, this bound depends on both αe and η, it is not a
bound for η alone. If one assumes that jη − 1j≲ Bγ then,
from Eq. (22),

jαe − 1j≲ Bγ: ð23Þ

In conclusion, for systems with arbitrary αe values, it is not
correct to assume that the γ bounds should be applied to η.
As previously discussed, if αe is a constant, then it is

possible to redefine U (or ρ) to absorb αe. This procedure
does not leave the bound (22) invariant. The reason being
that one is redefining the mass (or the gravitational
constant), and such redefinition does change the light
trajectories and the Shapiro time delay, but it does not
change η, since η does not depend on the gravitational
constant. This simple observation has the following con-
sequence: in general, it is not possible to infer conclusions
of a complete system by subdividing it into parts in which
αe and η are approximate constants. This since each part

3Considering the theory presented in Sec. II D, this should be
no surprise.
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will have its own mass definition (or its own gravitational
constant).
It is important to stress a (natural) limitation of the PPN

parametrization: for systems without a proper Newtonian
limit, αe cannot be set to be 1, hence neither there is a well-
defined γ, in the sense of the WN-PPN metric, nor one can
assume that η will be subjected to the γ bounds. For
instance, when studying external galaxies and without
assuming GR, a Newtonian limit need not to exist, and
one may consider relaxing the Newtonian limit. By doing
so, the PPN parameter γ is not well defined. In the latter
case, one can talk about γΣ, γe and η, but not γ [since γ is
defined from the metric (1)].4 For instance, Ref. [10] (and
similar works) claim to find γ limits from external galaxies.
In its context, GR is not assumed, but the Newtonian limit
is (i.e., αe ¼ 1). Together with the assumption that η is
constant inside the galaxy being studied, they indeed find
bounds for γ from the analysis of η; since with these
hypothesis η and γ coincide.
At last, there is also an issue with nomenclature, which

can lead to some confusion. Although we follow here a
common convention for the slip (η) [13,23–25], there are
other conventions. For instance, Ref. [28] uses the same
symbol η with the same definition that we are using here in
momentum space (17), but it uses the name gravitational
slip for ϖ ≡ 1=η − 1, following [29] and similarly to [14].
There are also works that use the symbol “γ” for ϕ=ψ but
consistently use it, without trying to impose the standard
PPN bounds on it (e.g., [14,30]).

III. THE GAMMA PARAMETER IN
GENERALIZED BRANS-DICKE THEORIES AND

f ðRÞ THEORIES

A. Generalized Brans-Dicke before considering the
Newtonian limit

In this section we consider the PN limit of generalized
Brans-Dicke theories, that is, Brans-Dicke theories with a
potential. These theories are among the simplest GR
generalizations, but yet they are sufficiently nontrivial
for a practical discussion on the gamma parameters and
the gravitational slip. Furthermore, they will be useful to
explore fðRÞ theories, which are considered in Sec. III E.
At last, the results here shown will be generalized toward
Horndeski theories in Sec. IV.
We start by considering the following action,

S ¼
Z ffiffiffiffiffiffi−gp

2κ

�
ΦRþ 2

ωðΦÞ
Φ

X − VðΦÞ
�
d4xþ Sm; ð24Þ

where Sm is the action of the matter fields (assumed
to be independent from Φ), κ is the coupling constant

(which is here dimensionless, since we are using G ¼ 1),
and

X ¼ −
1

2
gμν∂μΦ∂νΦ ð25Þ

is the kinetic term. There are two free functions in the
theory, the scalar field potential V and the coupling
function ω.
Variations with respect to the metric and the scalar field

return the following field equations,

Gμν ¼
κ

Φ
Tμν þ

1

Φ
½∇ν∇μΦ − gμν□Φ�

þ ω

Φ2
½∂μΦ∂νΦþ Xgμν� − gμν

V
2Φ

; ð26Þ

2ω

Φ
□Φ ¼ −Rþ 2ω0

Φ
X −

2ω

Φ2
X þ V 0; ð27Þ

where Gμν is the Einstein tensor, Tμν is the usual energy-
momentum tensor,∇μ indicates a covariant derivative,□ ¼
∇μ∇μ is the d’Alembertian operator and the prime symbol
“ 0” represents a derivative with respect to the scalar fieldΦ.
A consistent PN expansion up to Oð2Þ is obtained by

considering5

Φ ¼ φ0 þ φ; with φ0 > 0 and φ ∼Oð2Þ: ð28Þ

The φ0 term is the zeroth order expansion, i.e., φ0 ∼Oð0Þ,
and it is the average value of Φ in the considered spacetime
region in the absence of the local system being considered
(i.e., φ0 depends on other systems that are much larger than
the system being considered, cosmology for instance).6

Therefore, within the considered system, Φ must asymp-
totically approach φ0 as one moves farther from its center.
The relevant length scale of the system should be small
enough such that the true metric can be written as an
expansion about Minkowski, as in Eq. (11). The value of φ0

is taken as positive to guarantee the Newtonian limit.
Henceforth we consider that VðΦÞ and ωðΦÞ are either

analytical functions ofΦ or that they can be approximated by

VðΦÞ ≈ V0 þ V1φþ V2φ
2; ð29Þ

ωðΦÞ ≈ ω0 þ ω1φþ ω2φ
2; ð30Þ

with Vn and ωn constants. In particular, Vðφ0Þ ¼ V0 and
ωðφ0Þ ¼ ω0, since Φ ¼ φ0 implies φ ¼ 0.

4This definition for γ is clear and not prone to generate
misinterpretations.

5The relation A ∼OðnÞ means that jAj is at most of the same
order of vn, that is jAj ≲ vn.

6Consequently, φ0 does not depend on either t or x, but
depends on the central time and space values selected to do the
expansion.
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From Eq. (26), one sees that V0 acts as an effective
cosmological constant. Since far from the Sun the PPN
metric must approach the Minkowski metric, V0 needs to
be sufficiently small such that it can be neglected in the
solar system. It is not possible to consider V0 as non-
negligible in the WN-PPN formalism without a careful and
specific justification, this since it violates one of its
cornerstones assumptions: asymptotic flatness [6,7]. The
effect of a cosmological constant to the bending of light
requires a careful and specialized analysis which is not
covered by this formalism (e.g., see the discussion in
Refs. [31–34]).
The matter content is, up to the considered order,

approximated by a perfect fluid description, with

Tμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν; ð31Þ

where ρ is the mass density, Π is the fluid’s internal energy
per unity mass, p is the pressure and ðuμÞ ¼ ðdxμ=dλÞ ¼
ðu0; uiÞ ¼ u0ð1; viÞ is the fluid four-velocity.
Following the slow motion condition, the energy

momentum tensor and metric components are expanded
in orders of v ∼Oð1Þ and one finds [7]

ρ ∼Oð2Þ and p ∼ ρΠ ∼Oð4Þ: ð32Þ

It is also well known that time derivatives increase the
perturbation order by one (i.e., ∂t ∼Oð1Þ); and that, from
the viral theorem applied to Newtonian gravity, it is known
that the Newtonian gravitational potential is of order Oð2Þ,
which must be the largest contribution to the metric
perturbations, denoted by hμν. Hence,

hμν ∼Oð2Þ: ð33Þ

To solve the modified Einstein’s equations (26), the Ricci
tensor is expanded up to the second order, Oð2Þ, as follows
[using Eq. (11)],

R00 ≈ −∇2ðαeUÞ; ð34Þ

R0i ≈ 0 ð35Þ

Rij ≈ −δij∇2ðγeUÞ þ ∂j∂i½ðαe þ γeÞU�: ð36Þ

We recall that U, αe and γe depend on time in general, but
their time derivatives do not appear in the expressions
above since they are of order Oð3Þ or higher order.
The energy momentum tensor, up to second order, has a

single non-null component given by T00 ≈ ρ. Hence, using
the field equations (26), the Ricci scalar can be written as

R ≈
κ

φ0

ρþ 3∇2φ

φ0

þ 2V1

φ0

φ: ð37Þ

Therefore, Eq. (27) up to Oð2Þ reads

∇2φ −m2
φφ ¼ −

κρ

3þ 2ω0

; ð38Þ

with the mass term given by,

m2
φ ¼ 2ðV2φ0 − V1Þ

3þ 2ω0

: ð39Þ

This mass expression can also be found in Refs. [35,36].
The special case ω0 ¼ −3=2 will be considered in
Sec. III F.
The Eq. (38) solution, with the boundary condition that φ

should approach zero far from the Sun, is a Yukawa
potential, which is expressed as follows,

φ ¼ κ

4πð3þ 2ω0Þ
Z

ρðx0; tÞ
jx − x0j e

−mφjx−x0jd3x0: ð40Þ

Signatures of an Yukawa correction to the Newtonian
potential have been examined by laboratory experiments
and astronomical observational tests. Up to now, no
deviations from Newton’s inverse square law have been
detected from submillimeter to astronomical distances (see
[37–40] and the references therein).
Using Eqs. (2), (37), (38), the time-time component of

Eq. (26) up to Oð2Þ yields

16πφ0

κ
∇2ðαeUÞ ¼ a1∇2U þ a2∇2φ; ð41Þ

where

a1 ≡ 2 −
2

3þ 2ω0

V1

m2
φ

and a2 ≡ 8π

κ

�
1þ V1

m2
φ

�
: ð42Þ

Therefore, Eq. (41) can be solved as

αe ¼
κ

16πφ0

�
a1 þ a2

φ

U

�
: ð43Þ

The relation above must be satisfied always, independently
on the Newtonian limit.
In order to find γ and η, we also need the field equations

for the spatial components. Writing gij ¼ δij þ hij, up to
first order on hij, we consider the gauge

∂khki þ
1

2
∂ih00 −

1

2
∂ihkk ¼

1

φ0

∂iφ: ð44Þ

Therefore, the spatial part of Eq. (26) can be written as
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16πφ0

κ
∇2ðγeUÞ ¼ a3∇2U − a2∇2φ; ð45Þ

with

a3 ≡ 2þ 2

3þ 2ω0

V1

m2
φ
¼ 4 − a1: ð46Þ

From the above it is found that

γe ¼
κ

16πφ0

�
a3 − a2

φ

U

�
. ð47Þ

The standard PPN bounds cannot be applied to γe, as
previously explained. However, one can compute γΣ from
Eq. (14), which is a constant for this case, namely

γΣ ¼ κ

4πφ0

− 1: ð48Þ

The (physical space) slip parameter is computed from
Eq. (18),

η ¼ a3 − a2φ=U
a1 þ a2φ=U

¼ −1þ 4

a1 þ a2φ=U
: ð49Þ

For a fixed value of κ, in the limit ω0 → ∞ ormφ → ∞, one
finds η → 1, as expected.7

The above equations stress the differences between γe; γΣ
and η. As explained in Secs. II D and II F, the standard PPN
bound on γ can be used on γΣ, not on η. The γΣ parameter in
generalized Brans-Dicke theories is always a constant and
its value depends on the theory’s coupling constant κ. In
particular this means that its numerical value is influenced
by Newtonian limit, or, in the absence of a Newtonian limit,
by the definition of the mass (gravitational constant). The
gravitational slip η, on other hand, is a spacetime function
whose value is independent from κ.
In the following three subsections, we consider specific

developments according to the mass of the scalar field.
Metric and Palatini fðRÞ theories are considered in
Secs. III E and III F. We comment on other results in the
literature about γ and η in Sec. III G.

B. Scalar field with negligible mass

Here we are concerned with the case in which mφ is
small enough compared with the system length scale. We
start by expanding the exponential in Eq. (40) about
mφ ¼ 0. Hence,

φ ∝
Z

ρðx0; tÞ
jx − x0j ½1 −mφjx − x0j þOðm2

φÞ�d3x0: ð50Þ

The first term of the expansion above states that φ ∝ U, and
it leads to a well-posed Newtonian limit. The second term
does not breaks the previous result, since it simply adds a
constant to φ (or U), which will not change the Newtonian
picture. The third term adds a function that has no
counterpart in Newtonian physics. Hence, here we consider
mφ to be small enough such that the third term is negligible;
otherwise there would be no Newtonian limit in the
considered system. For the order expansion used in
PPN, and if l represents the typical length of the system,
we have m2

φl2 ∼Oð1Þ.
Consequently, for a given mass mφ, and inside the

system of length scale l, with m2
φl2 ∼Oð1Þ, αe behaves

approximately as a constant, namely

αe ≈
κ

4πφ0

2þ ω0

3þ 2ω0

: ð51Þ

The approximation symbol above is used to emphasize that
Eq. (51) does not hold in general, since for sufficiently
large distances αe is not a constant. We already fixedG ¼ 1
[see Eq. (2)], hence it is not possible to consider a G
redefinition in order to absorb the αe value above.
Therefore, the Newtonian limit demands the right-hand
side of (51) to be equal to 1, which implies

κ

4πφ0

¼ 3þ 2ω0

2þ ω0

: ð52Þ

The relation above, combined with Eq. (48), results in

γΣ ¼ 1þ ω0

2þ ω0

: ð53Þ

It is worth it to reinforce that expression (53) is valid even
where the Newtonian limit is not valid.
Within the approximation above γe will also behave

approximately as a constant inside the considered system,
and the EPPN metric (11) achieves the same form of the
WN-PPN one (1). In this limit, all the γ’s and the slip are the
same, since

η ¼ γe ¼ γ ¼ γΣ ðfor the WN-PPN metricÞ: ð54Þ

On the other hand, in general, γe, γΣ and η can be used and
computed independently from the Newtonian limit, and
their meanings and bounds are in general independent from
the γ bounds, as shown in Secs. II D and II E.
Since the expressions used above include inverse powers

of mφ, we cannot consider the case mφ ¼ 0 exactly.
However, one can directly verify that the cases mφ → 0

or mφ ¼ 0 lead to the same results for γΣ. The case mφ ¼ 0

7The limit ω0 → ∞ implies that mφ → 0, however mφ → 0
does not imply that ω0 → ∞. We can parametrize the model with
mφ as an independent parameter, in place of V2.
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was considered in several works, see e.g., [6]. The
distinction is reserved to the fact that, for the massless
case (mφ ¼ 0), all the gamma’s and the slip are constants at
any point in space, while for the approximate case (mφ ≈ 0)
in general there will be sufficiently large distances such that
these parameters will change, and become different among
themselves.

C. Large mass scalar field

From Eq. (43), we can write

g00 ¼ −1þ κ

8πφ0

ða1U þ a2φÞ: ð55Þ

The three options for finding aNewtonian limit are that either
φ is proportional toU,φ is a constant orφ is negligible, that is
jφj ≪ U. From Eq. (40), one sees that the latter can be found
if mφ is sufficiently large (i.e., m2

φl2 ≫ 1). More precisely,
we need that φ ∼Oð3Þ or e−mφl ∼Oð1Þ (PN considerations
will enforce this limit to be stronger, but from the Newtonian
physics alone that is sufficient). Assuming this case, the term
a2φ in the above equation becomes negligible within the
considered system and, from the Newtonian limit, one must
impose the relation

κ

4πφ0

¼ 4

a1
: ð56Þ

Hence, γΣ can be computed from Eq. (48), implying that

γΣ ¼ 4

a1
− 1 ¼ a3

a1
¼ ð3þ 2ω0Þm2

φ þ V1

ð3þ 2ω0Þm2
φ − V1

: ð57Þ

Likewise the previous case with negligible mass, we
have succeeded in rewriting the metric in the same form of
the standard PPNmetric, hence all the gamma’s and the slip
are the same in the considered regime [e−mφl ∼Oð1Þ]. On
the other hand, for distances much smaller than l, the
Newtonian correspondence is broken and η and γe deviates
from γΣ.
The GR result γΣ ¼ 1 is found if either mφ → ∞, ω0 →

∞ or V1 → 0. The case V1 ¼ 0 is commonly studied and it
yields γΣ ¼ 1 for the large mass case. The limit mφ → 0

cannot be used in the above, since we are consider-
ing e−mφl ∼Oð1Þ.

D. Intermediate mass scalar field

It is tempting to ask what happens if the scalar field mass
is neither negligible nor large. More precisely, for a system
that is evaluated within a typical length scale l, if mφ

satisfies

Oð1=2Þ < mφl < j lnOð1Þj ð58Þ

what would be the consequences? From the two previous
sections, one sees that, for such case, φ is neither propor-
tional to U plus a constant, nor it is negligible, hence
h00∝U þ constantþOð3Þ. Consequently, there is no well-
defined Newtonian limit for the considered system and one
cannot truly apply a PPN formalism (as the formalism
name suggests). We recall that a principle of the PPN
formalism is that any non-Newtonian correction should
appear beyond the Newtonian order, never at the
Newtonian order.
The issue above is developed in detail by Alsing et al

[21], where the observational data from the Shapiro time
delay, due to Cassini, are used to constrain the massive
Brans-Dicke theory. Hence, constraints on the allowed
regions for the pair (ω0; mφ), in the intermediate mass
range, can be estimated considering the selected observa-
tional data. As developed in that reference (in their
Sec. IV), it is not possible to fully follow the WN-PPN
formalism in the intermediate mass range. They used a
modified PPN formalism in which U includes a Yukawa
correction. It is shown that the Shapiro time delay is exactly
that of GR, apart from a constant multiplicative factor that
is related to the mass definition of the Sun (an issue that
deserves special care in theories without a Newtonian
limit). It is curious that, following their conventions, this
constant factor is written as an effective gamma parameter
denoted by γ̃, which has the same form of the slip,8 but
with the Earth’s orbit radius in place of the radial r
dependence (due to how the mass is defined in their
approach, not due to an approximation within given radial
range). That is, contrary to the slip, γ̃ needs to be a true
constant.
The result of Ref. [21] is compatible with ours, which is

based on γΣ (48). They have found that the Shapiro time
delay behaves exactly as in GR, apart from a constant
redefinition of the mass of the Sun. This is precisely what a
constant γΣ means (and we recall that γΣ does not depend
on the Newtonian limit to be a valid parametrization for
light deflection and the Shapiro time delay). Moreover,
following their conventions we can reproduce their results,
which for completeness we do below.
From Eq. (55) with V1 ¼ 0, ρðxÞ ¼ M⊙δ

3ðxÞ and
jxj ¼ r, we find

h00 ¼
κ

4πφ0

U þ 1

φ0

φ

¼ κ

4πφ0

M⊙

r

�
1þ 1

3þ 2ω0

e−mφr

�
: ð59Þ

Recalling that we have already used G ¼ 1, and follow-
ing the principles of Ref. [21] (see also Ref. [41]), now we
set the coupling constants such that Earth’s orbit follows

8We note that this reference uses V1 ¼ 0, while we left V1 free
in order to compare with other references that do not fix it.
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Kepler laws (this approach simply focus on the Shapiro
time delay, and neglects other observables, like the precise
orbits of the other planets). Anyway, this can be assured if

h00ðr⊕Þ ¼ 2
M⊙

r⊕
; ð60Þ

where r⊕ stands for the Earth’s orbit radius. Therefore,

κ

4πφ0

¼ 2

1þ 1
3þ2ω0

e−mφr⊕
ð61Þ

and, from Eq. (48),

γΣ ¼
1 − 1

3þ2ω0
e−mφr⊕

1þ 1
3þ2ω0

e−mφr⊕
¼ γ̃: ð62Þ

In the above, γ̃ is the same used in Ref. [21]. One can also
state that ηðr⊕Þ ¼ γ̃.
Reference [21] was not the first to study the intermediate

mass case, see in particular Refs. [36,41]. These two cite
the approach of Refs. [35,42] for matching an effective
gamma with the slip. Perivolaropoulos [41] adopted a
convention that lead, under certain approximation, to the
same bounds found in Ref. [21]. Indeed, both works show
equivalent allowed regions in the ðω; mφÞ plane.9 While
Ref. [41] uses r ≈ 1 au as an approximation valid for any
solar system observation, Ref. [21] uses r ¼ 1 au since “it
is the scale associated with the determination of the
Keplerian mass of the Sun”. Hence, for the latter, it is a
matter of defining units, the effective gamma (γ̃ or γΣ) is not
approximately a constant, it is a true constant, no matter
what are the conventions used to define the Keplerian
gravitational mass. If one simply uses ηðrÞ in place of γ,
one would find that the Shapiro time delay would acquire a
dependence on the impact parameter different from that of
GR,10 which is false.
The points to be stressed are that: (i) there is a constant

parameter γΣ that describes light trajectories and time delay,
just like the standard γ, which is different from ηðrÞ.
(ii) Physical constraints within the intermediate mass
regime can be found, but they are not part of a standard
PPN approach, since they violate the Newtonian limit.

E. Metric f ðRÞ theories
The extension of GR by including nonlinear corrections

of the Ricci scalar in the action is a well-known proposal for

modified gravity theories (see e.g., [43–45] for reviews on
the subject). Since there is an equivalence between fðRÞ
and scalar-tensor theories, the analysis of the previous
subsections is tightly related to such theories, both in metric
and Palatini formulations [43].
This class of theories is defined from the action

S ¼ 1

2κ

Z
fðRÞ ffiffiffiffiffiffi

−g
p

d4xþ Sm: ð63Þ

In order for the PN expansion on v to be consistent and with
a viable Newtonian limit, similarly to VðΦÞ in scalar-tensor
theories, fðRÞ cannot be an arbitrary function. In the
considered system, it should be possible to expand it as
follows [43,44]

fðRÞ ¼ f0 þ f1Rþ f2R2 þOðR3Þ; ð64Þ

where fi are constant coefficients. The higher order
corrections OðR3Þ are not relevant for the developments
here presented. Since PPN requires asymptotic flatness, we
henceforth consider that f0 is sufficiently small to be
negligible for the dynamics.
The interpretation of a fðRÞmodel as an effective scalar-

tensor theory is done through the following Legendre
transform,

Φ≡ dfðRÞ
dR

; ð65Þ

VðΦÞ≡ RΦ − fðRÞ: ð66Þ

Whenever the Hessian d2f=dR2 is nonsingular, this
transformation is both well posed and it has an inverse.
Therefore, all the information in the scalar-tensor frame
should be equivalent (within a given map) to the fðRÞ one.
For more complex cases with several scalars and singular
Hessians, see Ref. [46].
It is well known that the resulting action is a particular

case of the scalar-tensor action (24), with ω ¼ 0. Moreover,
from Eqs. (28), (64), (65) one finds

φ0 ¼ f1 and φ ¼ 2f2R: ð67Þ

And from these results together with Eqs. (29), (39),

V1 ¼ 0; V2 ¼
1

4f2
and m2

φ ¼ 1

6

f1
f2

: ð68Þ

Had we kept an arbitrary f0, at this point we would find
V0 ¼ f0, but since V0 ¼ 0, we would conclude f0 ¼ 0.
Just like the scalar-tensor case, a Newtonian limit can only

exist if either f1l2=ð6f2Þ ∼Oð1Þ or e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1l2=ð6f2Þ

p
∼Oð1Þ,

which, for fixed f1=f2, depends on the typical size (l) of the
system under consideration. In a PN context, the Newtonian

9The plots in these references are compatible, but they consider
different independent variables: while Ref. [21] usesms (which is
ours mφ), Ref. [41] uses m0 ∝ mφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p
.

10Namely, the Shapiro time delay, either in GR or in gener-
alized Brans-Dick theories, decays with lnðb−2Þ, where b is the
impact parameter [21].
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limit should be imposed for one of these cases and,
consequently, the possible answers for γΣ in fðRÞ theories
are,

γΣ ¼

8>>><
>>>:

κ
4πf1

− 1; in general;

1
2
; if f1l2

6f2
∼Oð1Þ;

1; if e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1l2=ð6f2Þ

p
∼Oð1Þ:

ð69Þ

These values are obtained by imposing fðRÞ-equivalent
conditions (52) and (56) and using Eq. (48). In the regions
where there is a Newtonian correspondence, the metric
assumes the PPN form and one can obtain the equivalent
γ, otherwise it is not defined. Thus, only two possible
answers can emerge:

γ ¼
8<
:

1
2
; if f1l2

6f2
∼Oð1Þ;

1; if e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1l2=ð6f2Þ

p
∼Oð1Þ:

ð70Þ

The slip comes from Eq. (49) and it reads

η ¼ 1 − 1
3
ξ

1þ 1
3
ξ
; ð71Þ

with

ξ≡
R ρðx0;tÞ

jx−x0j e
−

ffiffiffiffi
f1
6f2

q
jx−x0j

d3x0R ρðx00;tÞ
jx−x00j d

3x00
: ð72Þ

If all the mass is in a single particle (p) at x0, it is simply

ξjp ¼ e
−

ffiffiffiffi
f1
6f2

q
jx−x0j

: ð73Þ

Although the true gamma (γ) can only have the values 1 or
1=2 for fðRÞ theories, η is not a constant. The approx-
imately constant cases η ≈ 1=2 and η ≈ 1 occur at distances
much smaller and much larger than l, respectively. More
precisely, one has

η ¼

8>><
>>:

Spatial functionwithout direct relation to light deflection; in general;
1
2
; if f1l2

6f2
∼Oð1Þ;

1; if e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1l2=ð6f2Þ

p
∼Oð1Þ:

ð74Þ

The slip can be very important to describe modified gravity,
but it does not have the same role of γΣ or γ. The slip is a
comparison between the two potentials ϕ and ψ ; being such
that GR satisfies η ¼ 1. On the other hand, both γ and γΣ
parametrize electromagnetic waves. In the regions where
there is a Newtonian limit, η, γ and γΣ coincide. In general,
however, η does not parametrize light deflection, nor the
gamma bounds have any meaning for η.

F. Palatini f ðRÞ theories
Palatini formulations are a special case whereω ¼ −3=2,

implying that the scalar field is not dynamical. One must
return to Eq. (38) and rewrite it to obtain that the scalar field
is now proportional to the fluid mass density, namely

φ ¼ 2κf2
f1

ρ; ð75Þ

after using expressions (67) and (68). Apart from the above
distinction, the results for αe and γe continue to hold since
the ω-proportional terms in the field equations (26) have no
influence up toOð2Þ. One just needs to eliminated the mass
terms, through Eq. (39), in the an constants before sub-
stituting ω0 ¼ −3=2, which gives [together with (68)],

a1 ¼ a3 ¼ 2; ð76Þ

a2jω0¼−3
2
¼ 8π

κ
: ð77Þ

Using the above and Eq. (43),

g00 ¼ −1þ κ

4πf1
U þ 2κf2

f21
ρ: ð78Þ

The last term indicates that Newtonian gravity is violated
inside matter. However, this violation is relevant only if the
pressure and the internal energy are known from first
principles (not indirectly through gravitational effects),
since in principle it is possible to redefine these quantities
and completely absorb the non-Newtonian contribution
above (as we have shown in detail in Ref. [19]). Thus, apart
from the case with microscopic modeling for the fluid
pressure and internal energy, which is not a common
situation for the systems considered under PPN, the
Newtonian limit of Palatini fðRÞ theories is well posed
if one sets

f1 ¼
κ

8π
: ð79Þ
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Consequently, it is obtained

γΣ ¼ 1; ð80Þ

and light trajectories are the same as in GR. It is easy to see
that, in vacuum, the linearized metric assumes the usual
PPN form (since fðRÞ Palatini is identical to GR in
vacuum) and, with Eq. (79), one also finds γ ¼ 1.

G. Discussion on the f ðRÞ and Brans-Dicke results

In the context of scalar-tensor and fðRÞ gravity, several
references do a nice work on the computation of the slip,
which is relevant for several bounds and analyses, but use
the slip (or suggest that it can be used) as if it had the same
physical properties of γ and, therefore, as if it would be
submitted to be same numerical constraints. It is not our
purpose to present an exhaustive list of such issues. A few
cases include Refs. [35,36,41,42,47–50].
References [35,42,48,50] compute the slip and use in

place of γ (sometimes called effective γ), without providing
further details. In part, they are simply computing the slip
with a notation different from ours, which is valid and
relevant in their contexts; but it is also suggested that the
gamma they compute is the one from PPN, which would be
subjected to the standard γ bounds. References [36,41] cite
[35,42] in part to justify their procedures; while Ref. [49]
justify their use of η in place of γ in part by citing [48]. All
such procedures may perhaps be justified under certain
limits, together with precise considerations on the gravi-
tational mass definition whenever there is no explicit
Newtonian limit.
The case of Ref. [41] is particularly interesting, since the

derived numerical bounds were correct, but a detailed
explanation on why it really works (and the limitations
of such specific approach) only appeared latter [21]
(Sec. III D details further this point). In essence, the results
of Ref. [41] are correct if the slip is not assumed to be an
approximate constant equal to γ, but if instead one first
properly define the gravitational mass, leading to a (truly)
constant effective gamma which indeed parametrizes both
light deflection and the time delay (this constant coincides
with γΣ, as here used). This approach, with constant γΣ, has
important consequences that will be further commented in
the next sections.
Reference [49] considers pressure effects to the PPN γ

parameter. In a proper WN-PPN, approach it is not possible
for the pressure to have an effect on γ. The reason being that
pressure enters in the PPN formalism as a Oð4Þ correction,
hence neither it has an impact on the Newtonian limit nor it
can directly affect γ. On the other hand, pressure can affect
the slip, as the authors have shown11 and compared their

findings to other references that also identify the slip with
γ. The slip by itself is useful for several considerations and
physical bounds, but it only can be compared to γ in very
special cases, since in general it does not parametrize the
dynamics of light. A slip whose value is far from 1 does
not imply that the dynamics of light deviates from that
of GR.
This misidentification between gammas and the slip is

also found in a slightly distinct context of scalar-tensor
theories using different frames [51], scalar-torsion formu-
lations [52], and fðRÞ theories using an alternative method
of linearization [53].
Considering fðRÞ gravity, specifically, we stress that it

cannot have arbitrary values of γ if a Newtonian limit is
considered: it is either 1 or 1=2. This result is in agreement
with Refs. [17,19,54], in which PN analysis is considered
without resorting to the scalar-tensor representation. Berry
and Gair [17] conclude in their Sec. VIII-A, that “fðRÞ-
gravity is indistinguishable from GR” with respect to γ
parameter. They are considering models with κ ¼ 8π and
f1 ¼ 1, which recover GR when linearized with respect to
Ricci scalar, and returns γΣ ¼ 1. However, following the
discussion in Sec. III D, metric fðRÞ theories violate
Newtonian physics in general, and care should be taken
when applying to γΣ the observational bounds of γ, since
the mass definition of the Sun must be corrected.
The work of Collett et al. [10] is a reference work on

constraining GR deviations in the context of galaxies. From
the elliptical galaxy ESO 325-G004 internal dynamics and
the bending of the background light, it was found that
ϕ=ψ ∼ 0.97� 0.09. For deriving this, it was assumed:
(i) that this ratio is approximately constant in the galaxy;
and (ii) that the internal dynamics of massive bodies come
from Newtonian gravity (with a dark matter halo and a
black hole). In the context of the present work, one can
promptly say that this result is a constraint on the slip η.
But, due to their hypothesis, it is also correct to call it a
constraint on γ. Considering fðRÞ gravity, the result from
Ref. [10] strongly disfavors γ ¼ 1=2 for that galaxy. Such
results for one galaxy (likewise for the solar system) cannot
be immediately extended to all galaxies, in particular a
dependence on the cosmological time is in principle
possible [9,15].
Physically, the constancy of γΣ in fðRÞ and generalized

Brans-Dicke theories implies that, for a given mass, the
spatial dependence of the bending of light and the Shapiro
time delay are exactly the same of GR, but they may
diverge on the global multiplicative factor. This observation
is further generalized in the following section.

IV. EXTENSION TO HORNDESKI THEORIES

The results discussed before, for generalized Brans-Dicke
theories, are directly extended to the more general formu-
lation of scalar-tensor theories according to Horndeski [55].

11More precisely, what they call γ, following [48], is a kind of
slip defined Schwarzschild coordinates.
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The Horndeski action is given by,

S ¼
X5
i¼2

1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
Li þ Sm; ð81Þ

where Sm is the matter action and,

L2 ¼ KðΦ; XÞ; L3 ¼ −G3ðΦ; XÞ□Φ;

L4 ¼ G4ðΦ; XÞRþ G4XðΦ; XÞ½ð□ΦÞ2 − ð∇μ∇νΦÞ2�;

L5 ¼ G5ðΦ; XÞGμν∇μ∇νΦ −
1

6
G5XðΦ; XÞ½ð□ΦÞ3

− 3□Φð∇μ∇νΦÞ2 þ 2ð∇μ∇νΦÞ3�:

In the above expressions, we have used the following
notation,

ð∇μ∇νΦÞ2 ¼ ∇μ∇νΦ∇μ∇νΦ; ð82Þ

ð∇μ∇νΦÞ3 ¼ ∇μ∇νΦ∇ν∇λΦ∇λ∇μΦ: ð83Þ

TheK andGi are free functions of the scalar fieldΦ and the
kinetic term X. We represent each partial derivative with
extra sub-index indicating the derivative’s argument,
i.e., KX ¼ ∂K=∂X.
The field equations derived from the action (81) is

usually written as follows,

X5
i¼2

Gi
μν ¼ κTμν;

X5
i¼2

ð∇μJiμ − Pi
ΦÞ ¼ 0: ð84Þ

The complete expressions for Gi
μν, Jiμ and Pi

ϕ can be found
in the Appendix section of Ref. [56] and here we will only
write their linearized version. Following the PN approxi-
mation scheme, we consider that each one of the scalar
functions can be expanded as a power series about the
background value φ0. For any quantity ξðφ; XÞ or ξðΦ; XÞ,
recalling that Φ ¼ φ0 þ φ, we write

ξðφ; XÞ ≈ ξð0;0Þ þ ξð1;0Þφþ ξð0;1ÞX þ � � � ; ð85Þ

where ξðn;mÞ are constants. It is not necessary to assume that
ξ is a true analytic function (i.e., that the power series above
can be extended to infinity and it converges). It is assumed
that, up to the necessary order, it is possible to approximate
a function ξðΦ; XÞ with the power series above. Using the
notation above,

G2
μν ≈ −

1

2
ðKð0;0Þ þ Kð1;0ÞφÞðημν þ hμνÞ; ð86aÞ

G4
μν ≈G4ð0;0ÞGμν þ G4ð1;0Þð∇2φημν − ∂μ∂νφÞ; ð86bÞ

J2μ ≈ −Kð0;1Þ∂μφ; J3μ ≈ 2G3ð1;0Þ∂μφ; ð86cÞ

P2
Φ ≈ 2Kð2;0Þφ; P4

Φ ≈G4ð1;0ÞR: ð86dÞ

The remaining terms vanish up to second PN order.
The procedure to solve the linearized field equations is

the same as the one carried out in Sec. III. First, we use the
trace equation to describe R in terms of the scalar field and
eliminate it from the other equations. For φ, one finds,

φ ¼ κG4ð1;0Þ
4πW

Z
ρðx0; tÞ
jx − x0j e

−mφjx−x0jd3x0; ð87Þ

with,

W ¼ G4ð0;0ÞðKð0;1Þ − 2G3ð1;0ÞÞ þ 3G2
4ð1;0Þ; ð88Þ

m2
φ ¼ 2

W
ðKð1;0ÞG4ð1;0Þ − Kð2;0ÞG4ð0;0ÞÞ: ð89Þ

To solve the metric equations we generalize the gauge
condition (44) to,

∂khki þ
1

2
∂ih00 −

1

2
∂ihkk ¼

G4ð1;0Þ
G4ð0;0Þ

∂iφ: ð90Þ

At the end, one will find,

αe ¼
κ

16πG4ð0;0Þ

�
b1 þ b2

φ

U

�
; ð91Þ

γe ¼
κ

16πG4ð0;0Þ

�
b3 − b2

φ

U

�
; ð92Þ

where we have defined,

b1 ¼ 2þ 2Kð1;0ÞG4ð1;0Þ
Wm2

φ
; ð93Þ

b2 ¼
8π

κ

�
G4ð1;0Þ −

Kð1;0Þ
m2

φ

�
; ð94Þ

b3 ¼ 4 − b1: ð95Þ

Thus, the PN limit of Horndeski theories maintains the
same pattern shown by the generalized Brans-Dicke the-
ories. The contribution of the scalar field enters in the
coefficients αe and γe with opposite signals, which leads to
a constant γΣ parameter. Once again, the analysis of the
Newtonian limit will lead to different conditions for κ in the
cases of negligible or large mass scalar field. Following
the analysis of the previous section, one can extract the
possible behavior for γΣ and γ,
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γΣ ¼

8>>>>>><
>>>>>>:

κ
4πG4ð0;0Þ

− 1; in general;

γ ¼

8>><
>>:

W−G2
4ð1;0Þ

WþG2
4ð1;0Þ

;

Wm2
φ−Kð1;0ÞG4ð1;0Þ

Wm2
φþKð1;0ÞG4ð1;0Þ

;

if m2
φl2 ∼Oð1Þ;

if e−mφl ∼Oð1Þ:
ð96Þ

For the commonly studied case Kð1;0Þ ¼ 0 [57,58],

γΣ ¼

8>>><
>>>:

κ
4πG4ð0;0Þ

− 1; in general;

γ ¼
� W−G2

4ð1;0Þ
WþG2

4ð1;0Þ
;

1;

if m2
φl2 ∼Oð1Þ;

if e−mφl ∼Oð1Þ:
ð97Þ

It is important to stress that γΣ is not a spatial function, it
is a constant. Consequently, γ is a constant as well. Its value
depends on the typical scale of the system l in which the
Newtonian limit is valid.
The gravitational slip can be promptly computed and it is

a spatial function given by

η ¼ γe
αe

¼ b3 − b2φ=U
b1 þ b2φ=U

: ð98Þ

As before, in the presence of a Newtonian limit in the
studied system, the slip will coincide with γ and γΣ. For
systems in which a Newtonian limit is not assumed to hold
(for instance, it may be relevant to consider that gravity in
another galaxy does not have a Newtonian limit), then η
will be different from γΣ, while γ will be ill defined.
The Horndeski Lagrangian reduces to the generalized

Brans-Dicke theory discussed before by setting K ¼
2ωX=Φ − V, G4 ¼ Φ and G3 ¼ G5 ¼ 0. Therefore,
Kð1;0Þ ¼ −V1, Kð0;1Þ ¼ 2ω0=φ0, G4ð0;0Þ ¼ φ0, G4ð1;0Þ ¼ 1,
W ¼ 3þ 2ω0 and the expressions (96) and (98) generalize
the Brans-Dicke results of Sec. III.
References [57,58] compute several PPN parameters for

Horndeski. For the negligible mass case, their γ expression
fully coincides with ours above. For the large mass case,
they find γ ¼ 1, which correspond to Kð1;0Þ ¼ 0. For the
intermediary case, their expression for “γðrÞ” is our
expression for η particularized for a point particle and
with Kð1;0Þ ¼ 0 (the latter implies that b3 ¼ b1 ¼ 2). As
previously discussed, η or “γðrÞ” are not relevant in general
for evaluating light trajectories (or imposing γ bounds),
their results suggest that light trajectories in Horndeski may
behave differently in different regions of the considered
system (see also Ref. [59]). But, since γΣ is a constant, and
since a constant γΣ fully parametrizes light trajectories (as
discussed in Sec. II D), Horndeski theories have no novel
spatial dependence on the trajectories of light. That is, the
bending of light follows Eq. (15). There is a hypothesis

here that is not particularly restrictive, but it is relevant,
namely the expansions in Eqs. (86) need to be valid. With
this consideration, the constancy of γΣ means that, if in
Eq. (15) a different dependence on the impact parameter d
is detected observationally, this would not violate GR
alone, but the complete Horndeski theory as an action
for gravity.
For a more concrete test, valid even if the Newtonian

limit is not assumed, one can consider systems with two
Einstein rings. Such systems are rare, but they have already
been observed [60]. For simplicity, if the lens would be a
point source (which is not the case in the cited observation,
but we assume for simplicity), from the knowledge of the
value of δθ (15) for each one of the rings, one could simply
divide these values and compare if the division would be
compatible with the ratio between the radius of the two
Einstein rings. For a more realistic approach, in which the
lens is not a point mass, one needs to take into consid-
eration the mass distribution, since each ring would be
sensitive to a different mass. This would probably require
assumptions on dark matter. Although this case of con-
tinuous mass lens introduces technical difficulties and will
enlarge the error bars, in principle it is feasible, and it would
be a strong test of gravity; since it has the potential of
falsifying Horndeski gravity.
Another possibility is to test the constancy of γΣ, and

hence the validity of Horndeski gravity, is to test light
deflection or time delay within different subsystems. All of
them should be compatible with the same γΣ value.

V. CONCLUSIONS

The differences between the gamma from PPN, its
possible extensions and the gravitational slip are subtle
but with important consequences to the physical bounds, as
here discussed. The importance of precise statements about
them becomes higher with the crescent use of PPN and
related formalisms in the context of extragalactic
astronomy (e.g., [8–10,14,16,23,61]). Here we considered
three different gamma definitions, they are γ, γe and γΣ. The
first one (γ) is a constant whose definition comes straight
from the WN-PPN formalism, thus being the true “γPPN”
parameter. It is implicitly defined by the metric (1), hence it
is only well defined in the presence of a well-posed
Newtonian limit. The famous strong observational bounds
are valid for γ. The second (γe), which we name “extended
gamma”, is a straightforward and formal γ extension: it
does not depend on the Newtonian limit, nor it needs to be a
constant, it single similarity with γ is the slot it occupies in
the metric (11). This latter gamma is useful for comparisons
with cosmological parametrizations and as an intermediary
step for other computations. The third gamma (γΣ) is
defined from the extended PPN metric (11) and by the
sum (14). It was used by Berry and Gair [17] as an effective
γ to describe the bending of light and the time delay in the
context of fðRÞ gravity. As we have shown here, whenever
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γΣ is a constant (and only in this case), it can fully
parametrize light trajectories, even in the absence of a
well-defined Newtonian limit. At last, the slip parameter η
has several similar definitions in the literature (in essence it
is a comparison, by means of a division, between two
metric perturbations), we fixed here the one in Eq. (18). It
does not have the same physical implications of γ. When
using the standard PPN metric (1), η and all the gammas
coincide, but in general all these quantities are different
among themselves, and with different physical implica-
tions. In particular, contrary to certain common belief (as
discussed in Sec. III G), η can be far from the value of 1, its
value can be varying significantly across space, and yet it is
possible that the bending of light and the Shapiro time
delay are the same of GR.
We have methodically applied the formalism to the well-

known cases of Brans-Dicke theory with a potential and to
metric and Palatini fðRÞ gravity, addressing some discrep-
ancies with other references, but in agreement with
Refs. [17,21,54]. We have explicitly shown here that the
different approaches between [21] and Ref. [17] are
compatible, considering the phenomena associated to γ
(Sec. III D). In particular, γΣ in these theories is always a
constant.
Besides being in general wrong, we stress that there is no

computational advantage of using the slip as a parametri-
zation for light deflection and the time delay, the compu-
tation of γΣ is as easy as the computation of η. Also, in the
absence of a Newtonian limit, one is not following a PPN
approach, and the meaning of the PPN parameters can at
most be valid under some conditions, that should be
specified. We hope that this work stresses and clarifies
this point. This is in agreement with the approach of [21],
where they spelled out the relevant assumptions and
introduced a modified PPN approach to deal with a theory
without a proper Newtonian limit. Our approach here
extends and it is closer to the approach of Ref. [17], since
we do not modify U and use γΣ.
We have extended our results toward Horndeski gravity.

For this case, as expected, the slip is a space-time function
(98), but although it is considerably more general than the

BD case, γΣ is also a constant in this case. This implies, as
discussed in Section II D, that γΣ can be used to fully
parametrize light trajectories, and that light trajectories
behave exactly the same everywhere in the system, namely
consistently with Eq. (15). This is valid even without
assuming the existence of a Newtonian limit (but assuming
that the Horndeski functions can approximately described
by a power series, preserving the perturbative structure of
post-Newtonian approaches). The constancy of γΣ in a
given system can in principle be tested, even if the
Newtonian limit is not assumed. If it is, the situation is
simpler, there are two possible values for γ (96) and in
principle one can use Newtonian gravity to model the mass
distribution, besides detecting the light deflection locally. If
Newtonian limit is not assumed, apart from doing specific
model-dependent evaluations of the internal dynamics, one
can use a general analysis by studying double Einstein ring
systems which, in principle, allows for a verification on the
constance of γΣ, as explained by the end of Sec. IV.
To conclude, we notice that the analysis on the constance

of γΣ cannot consider subsystems that are cosmologically
far apart. This since the complete syste cannot be properly
described by a PN asymptotically flat spacetime (1).
Actually, for such setting, PPN cosmology [9,15] (or other
similar approach) should be used to study the cosmological
evolution of PPN parameters.
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