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The literature features many instances of spacetimes containing two black holes held apart by a thin
distribution of matter (strut or strings) on the axis joining the holes. For all such spacetimes, the Einstein
field equations are integrated with an energy-momentum tensor that does not include a contribution from
the axial matter; the presence of this matter is inferred instead from the existence of a conical singularity in
the spacetime. And for all such spacetimes, the axial matter is characterized by a pressure (or tension) equal
to its linear energy density, which are both constant along the length of the strut (or strings); the matter is
therefore revealed to have a very specific equation of state. Our purpose with this paper is to show that the
axial matter can be introduced at the very start of the exercise, through the specification of a distributional
energy-momentum tensor, and that one can choose for it any equation of state. To evade no-go theorems
regarding line sources in general relativity, which are too singular to be accommodated by the theory’s
nonlinearities, we retreat to a perturbative expansion of the gravitational field, using the Schwarzschild
metric as a description of the background spacetime. Instead of a second black hole, our prototypical
system features a point particle at a fixed position outside the Schwarzschild black hole, attached to a string
extending to infinity. While this string prevents the particle from falling toward the black hole, a second
string is attached to the black hole to prevent it from falling toward the particle. All this matter is described
in terms of a distributional energy-momentum tensor, and we examine different equations of state for the
strings. To integrate the field equations we introduce a new “Weyl” gauge for the metric perturbation, which
allows us to find closed-form expressions for the gravitational potentials. Our solutions are linearized
versions of multihole spacetimes, and some of them feature strings with a varying tension, unequal to the
energy density. We describe the properties of these spacetimes, and begin an exploration of their extended
thermodynamics.
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I. INTRODUCTION AND SUMMARY

A. Multihole spacetimes and conical singularities

In 1922, in the earliest days of relativistic gravitation,
Bach and Weyl [1] produced an exact solution to the
Einstein field equations describing two Schwarzschild
black holes held apart by a thin strut; the presence of
the strut was revealed by a conical singularity in the
spacetime (see Ref. [2] for an English translation of their
article). In 1964, in the earliest days of the golden age of
black hole research, Israel and Khan [3] generalized the
Bach-Weyl solution to any number of black holes, provided
that these are assembled in a collinear sequence; again
struts ensure that the holes are kept at a fixed distance from
one another. Further generalizations kept coming: the black
holes were allowed to rotate in Refs. [4–10], and endowed
with an electric charge in Refs. [11–13].
We pause and point out that a conical singularity can be

associated either with a strut or a string. A strut has a
positive longitudinal stress (a positive pressure), while a
string has a negative stress (a positive tension). Our focus in
these introductory remarks shall be on struts; it will
eventually shift to strings.

The presence of conical singularities in these spacetimes
can be viewed as an unwanted feature: to be physically
meaningful, the spacetime should be free of such singu-
larities. Indeed, a thread of the literature has adopted this
sensible point of view, and sought singularity-free solutions
in which the black holes are kept apart either by an
electrostatic repulsion or a spin-spin interaction [14].
Investigations have concluded that charged black holes
can sometimes be held apart without a strut [15], but that
uncharged, rotating black holes cannot [16–18].
Another thread of the literature has embraced the struts

as idealized physical objects, and welcomed the oppor-
tunities they provide in the construction of static (or
stationary) multihole spacetimes. A motivation to examine
such spacetimes comes from the study of the thermody-
namic properties of multihole systems [19–23]. These
studies were complemented with descriptions of the
thermodynamics of black holes with conical defects
[24–27], and black holes accelerated by means of a cosmic
string or a cosmological constant [28–30]; the spacetime of
a black hole accelerated by a massive string was presented
in Ref. [31]. Intriguing aspects of these thermodynamics
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are that the total mass of the spacetime appears as an
enthalpy variable in the first law [32,33], and that conical
singularities necessitate the introduction of new state
functions, including a thermodynamic length for each strut
[28]. Another motivation is provided by Ref. [34]: a string
is adopted as the physical agent responsible for keeping a
charged particle stationary in a black hole spacetime, and
the particle’s self-force [35] is measured by the string’s
tension. We follow this tradition in this paper, and take a
conical singularity seriously as the manifestation of an
idealized physical object.
Much of the literature reviewed in the preceding para-

graphs takes its foundation in Weyl’s canonical metric (for
a review, see Chapter 10 of Ref. [36])

ds2¼−e−2Udt2þe2ðUþγÞðdρ2þdz2Þþe2Uρ2dϕ2; ð1:1Þ

in which the potentials U and γ depend on ρ and z only; the
metric is static and axially symmetric, and with an addi-
tional potential it can be generalized to describe a stationary
gravitational field. The ability to generate multihole sol-
utions from this metric originates from the fact that the field
equation for U is linear; in vacuum it takes the form of
Laplace’s equation. Solutions can therefore be formed by
superposition, and once U is known, γ can in principle be
obtained by quadratures. For these solutions, it is found that
in general, γ fails to vanish on part of the z axis, a condition
that signals the presence of a conical singularity. Indeed, for
a spacetime with the metric of Eq. (1.1), the ratio of proper
circumference to proper radius for a small circle ρ ¼
constant around the z axis is given by 2π expð−γaxisÞ,
where γaxis ≔ γðρ ¼ 0; zÞ. Elementary flatness demands
that this ratio be precisely 2π, and for this we must have
γaxis ¼ 0. Failure to achieve this implies that an angular
deficit measured by 2π½1 − expð−γaxisÞ� has been intro-
duced in the geometry; the spacetime contains a conical
singularity. As was shown by Israel [37], the singularity
signals the presence of a thin distribution of matter on the
axis—a strut or string. It is this axial matter that is
physically responsible for holding the black holes apart,
and keeping the spacetime static (or stationary).

B. Objectives of this work

A review of this literature reveals some remarkable
aspects that seemed to us worthy of further reflection.
First, it is interesting to observe that the axial matter (strut
or string) is revealed only after the fact, that is, after the task
of integrating the Einstein field equations is completed.
Indeed, as we have seen, the presence of matter on the axis
is inferred at the end, from the nonzero value of γaxis,
instead of being incorporated at the start of the exercise, in
the form of an energy-momentum tensor. Second, in all the
cases examined thus far, the strut or string turns out to have
a longitudinal stress that is precisely equal to its linear
energy density; moreover, the stress is constant along the

object. The absence of a gradient implies that the axial
matter is weightless, a property confirmed by the fact that it
makes no contribution to the gravitational potential U. In
view of all this, one wonders whether more control could be
placed into the design of a multihole spacetime. Should it
not be possible, for example, to specify an equation of state
for the axial matter, write down an energy-momentum
tensor for it, and find a solution to the field equations that
takes explicit account of this matter source? In particular,
should it not be possible to dictate, at the start of the
exercise, that the axial matter is to be a massive strut (or
string), with a varying pressure (or tension)? One of our
objectives with this paper is to restore such control.
A second objective is to provide a resolution to the

following puzzle. The form of Eq. (1.1) for the Weyl metric
necessarily implies the restriction Gρ

ρ þ Gz
z ¼ 0 on the

Einstein tensor, and therefore a similar restriction on the
energy-momentum tensor of any matter source. Axial
matter, however, is expected to come with a nonzero Tz

z
and a vanishing Tρ

ρ, and it should therefore produce a
violation of the stated condition. How is it that the matter
revealed by a conical singularity ends up violating a
restriction on the energy-momentum tensor imposed by
the assumed form of the metric?
To restore control to spacetime design, and to address the

puzzle, we shall introduce, instead of Eq. (1.1), a general
metric for a static and axially symmetric spacetime, one that
does not feature any other constraint on the energy-
momentum tensor. And we shall incorporate distributional
terms in this tensor, so that axial matter can explicitly be
placed in the spacetime at the very start of the construction.
We shall then endeavor to solve the Einstein field equations
for various models of this matter.
It is known that by virtue of the nonlinearities of general

relativity, a line source cannot, in general, be defined in terms
of a distribution-valued energy-momentum tensor [38].
Because the restored control and elucidation of the puzzle
require these distributional sources, we shall have to shy
away from a fully nonlinear description of the gravitational
field. Wewill, instead, construct spacetimes containing axial
matter by assuming that all energy densities and stresses are
sufficiently small that they produce small perturbations of a
given spacetime. These will be obtained by linearizing the
field equations around the selected background spacetime;
there is no obstacle to the introduction of distributional
sources at such a linearized level. Because we wish our
spacetimes to contain a black hole, we will take the back-
ground spacetime to be described by the Schwarzschild
metric. And to respect the perturbative nature of the con-
struction, we shall replace the additional hole with a small-
mass particle, also described by a distributional energy-
momentum tensor. (These is no obstacle to a generalization
to multiple particles.)
Our mission in this paper is therefore to construct

perturbations of the Schwarzschild spacetime that are
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produced by a point particle attached to various types of
axial matter. Our prototypical system shall be this: a
particle of mass m is held in place at position r ¼ r0
outside a Schwarzschild black hole of massM. We prevent
the particle from falling toward the black hole by attaching
it to a string, which extends all the way to infinity on the
upper axis of the spacetime. And we prevent the black hole
from falling toward the particle by attaching it to a second
string, which is placed on the lower axis. (We do not
consider struts in this paper. The methods to be developed,
however, apply to any type of axial matter.) The spacetime
is static and axisymmetric with respect to the axis defined
by the strings. Each string may be massless, with a tension
T equal to its energy density μ. Or it may be massive, with
T ≠ μ. In general we do not expect the perturbed spacetime
to have a metric that can be put in the form of Eq. (1.1);
after all, the distributional energy-momentum tensor vio-
lates the condition Tρ

ρ þ Tz
z ¼ 0. We shall find, however,

that in most circumstances the metric does in fact take a
form equivalent to Eq. (1.1).
In spite of the perturbative nature of the constructions,

we shall find that our gravitational potentials are not small
everywhere. Near the particle,U will be found to diverge as
r−1 when r → 0, where r is the distance to the particle. This
divergence is expected, and is an artifact of the assumed
pointlike nature of the particle. In a more elaborate
construction, the particle would be replaced by a finite-
sized body, and the r−1 divergence would be regulated. A
similar situation occurs near a massive string, where U
diverges as ln r when r → 0; a more sophisticated con-
struction featuring a finite-sized string would regularize this
behavior. These divergences are localized and essentially
harmless. They do not call to question the perturbative
nature of our calculations; one is simply reminded to take
the idealizations of a point particle and infinitely thin string
with a grain of salt. Another type of divergence, however, is
more serious. In the case of massive string, we shall find
that U diverges as ln r when r → ∞. This is an artifact of
the assumed infinite length of the string, and such a
logarithmic divergence is present even in the Newtonian
field of an infinite line mass. This divergence implies that
our linearized calculations cannot be trusted beyond a given
distance from the hole-particle-string system. A way to
avoid this pathology would be to truncate the massive
string to a finite segment, and to attach it to a massless
string that extends the remaining way to infinity. (There is
no divergence issue with a massless string, which makes no
contribution to U.) The techniques introduced below could
easily be exploited to calculate the gravitational potentials
for this more satisfactory construction, but we shall not
pursue this here.

C. Overview of our results

We begin in Sec. II with a brief review of metric
perturbations of the Schwarzschild spacetime, specialized

to static and axially symmetric situations. A Weyl class of
perturbations is then introduced in Sec. III. These are
perturbations of the Schwarzschild metric that can be
expressed in a form directly related to Eq. (1.1); the relation
involves a transformation from cylindrical to spherical
coordinates. Perturbations in the Weyl class are restricted
by the same condition on the energy-momentum tensor; in
spherical coordinates the restriction reads Tr

r þ Tθ
θ ¼ 0.

Because of this condition, a perturbation of the
Schwarzschild spacetime will not, in general, belong to
the Weyl class. In Sec. IV we introduce a Weyl gauge for
static and axisymmetric, but otherwise generic, perturba-
tions of the Schwarzschild metric. The gauge is designed to
keep the metric as close as possible to the spherical version
of Eq. (1.1), but without the restriction on the energy-
momentum tensor. We explore the properties of this gauge,
in particular the fact that it is not unique, and explain under
which special circumstances a perturbation in Weyl gauge
can belong to the Weyl class. The energy-momentum
tensor of our system of particle and strings is constructed
in Sec. V. The Einstein field equations are written down and
formally integrated in Sec. VI.
The remainder of the paper is devoted to various

applications of this formalism, starting with simple warmup
problems. In Sec. VII we examine the simplest type of
perturbation, one describing a tidal deformation of the
Schwarzschild spacetime (no particle, no string). The
perturbation in Weyl gauge is compared to its better known
expression in Regge-Wheeler gauge. In Sec. VIII we
construct the spacetime of a black hole attached to massless
strings of different tensions, one on the upper axis, the other
on the lower axis (strings, no particle). We recover a
linearized form of the C metric (see Sec. 14.1 of Ref. [36]
for a review of the exact solution). In Sec. IX we introduce
our favorite model of a massive string, one with

σ ≔ μ − T ¼ constant: ð1:2Þ

We recall that a massless string has σ ¼ 0, and here we
choose the constant to be nonvanishing. We calculate the
gravitational field of this string as a perturbation of flat
spacetime (massive string, no particle, no black hole). We
recover a linearized form of the Levi-Civita metric (see
Sec. 10.2 of Ref. [36]).
Next we turn to more ambitious applications of the

formalism. In Sec. X we integrate the perturbation equa-
tions for a system of particle, massless string on the upper
axis, and massless string on the lower axis. We show that
the perturbation belongs to the Weyl class, and obtain
explicit expressions for the potentials U and γ—see
Eqs. (10.12), (10.13), and (10.15). We explore the thermo-
dynamics of this spacetime by computing its total mass
Mtot, as well as the surface area A and surface gravity κ of
the black hole. We obtain a first law of the form
[Eq. (10.28)]
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dMtot ¼
κ

8π
dA − λdT þ zdm; ð1:3Þ

in which T is the (equal) tension in the upper and lower
strings, andm is the particle’s mass. Because the strings are
massless, they do not participate in the accounting of the
total mass, which is therefore the sum of black hole mass,
particle mass, and gravitational binding energy. As
expected, the law features the string’s thermodynamic
length λ, and the variable conjugate to m is z, a redshift
factor relating the energy of photons emitted at the
particle’s position and received at infinity. Most of the
results presented in this section were obtained previously in
Ref. [34] using different techniques. We reproduce them
here because they follow from a natural application of
perturbation theory in the Weyl gauge.
In Sec. XI we exploit the formalism to generate new

results. We integrate the perturbation equations for a system
of particle, massive string on the upper axis, and massless
string on the lower axis; the massive string is again taken to
satisfy Eq. (1.2). In this case we find again that the
perturbation belongs to the Weyl class, and obtain explicit
expressions for the potentials U and γ—see Eqs. (11.36)
and (11.37). We examine the impact of the massive string
on the thermodynamic properties of the spacetime. While
there is no obstacle to the computation of A and κ, the fact
that the geometry is no longer asymptotically flat—the
potentialU diverges logarithmically—creates a difficulty in
defining a notion of total mass Mtot. In addition, the
massive nature of the string implies that its tension and
density vary along its length, and that the definition of state
variables is no longer straightforward. In spite of these
conceptual difficulties, we show that a formulation of the
first law can nevertheless be given. It takes the form
[Eq. (11.47)]

dMtot ¼
κ

8π
dA − λdT∞ þ ωdσ þ zdm; ð1:4Þ

where T∞ is the string tension measured at infinity (either
on the upper or lower axis), and σ is the parameter
introduced in Eq. (1.2), which, for this specific model of
a massive string, makes a plausible candidate of state
variable. To this we join ω as a conjugate variable, which
can be interpreted as a new kind of thermodynamic length.
The least compelling ingredient appearing in the first law is
Mtot, which is formally the same as the one appearing in
Eq. (1.3). In other words, our “total mass” accounts for the
black hole and particle and binding energy, but it ignores
entirely the (infinite) contribution from the massive string.
So while Eq. (1.4) is a valid relation among changes of
various quantities that appear in the solution, its physical
interpretation as a first law remains lacking. Nevertheless,
this successful attempt at extending the thermodynamics of
black holes and massless strings to massive strings should
motivate further work on this topic.

In Sec. XII, the final section of the paper, we go away
from the specific model of Eq. (1.2) and examine massive
strings with a well-motivated equation of state. The
enhanced realism of the string model, however, comes at
the price of a lost ability to integrate the perturbation
equations exactly. We therefore let the particle and string lie
in the weak-field region of the Schwarzschild spacetime,
and construct approximate solutions to the equations. This
retreat, fortunately, comes with its own measure of success:
we are able to find a weak-field solution for a generic string
that satisfies a broad class of plausible equations of state.
Once again we find that the perturbation belongs to the
Weyl class, and we obtain explicit expressions for the
potentials U and γ—see Eq. (12.44).
In all the cases reviewed in the preceding paragraphs, we

observe that γaxis is in an intimate relationship with the
string tension, whether the string is massless or massive,
and whether the tension is constant or not. We find that

γaxisðzÞ ¼ 4TðzÞ; ð1:5Þ

where the dependence on z indicates that these quantities
depend on position along the axis. A special case of this
result was encountered previously in the literature [37]: the
statement that γaxis ¼ 4T, with the dependence on z
removed. By this we mean the following. The field
equations for γ imply that ∂zγ ¼ 0 when ρ ¼ 0 (on axis),
provided that U is nonsingular there. In a typical situation
featuring a black hole, a particle, and massless strings, U is
singular at the black hole and particle, and it is well
behaved everywhere else. In this situation, γaxis is piecewise
constant, but it jumps from one constant to another across
the black hole, and at the particle. With γaxis ¼ 4T we mean
to capture the piecewise constant behavior of these quan-
tities; the equation does not capture the jumps.
Equation (1.5) means something else: it states that γaxis

and T can both vary along the axis, which they do when the
string is massive, but that they are always proportional to
each other. The evasion of the condition ∂zγ ¼ 0 when
ρ ¼ 0 for a massive string comes from the fact that U is
then singular on the axis—it diverges logarithmically.
Some technical developments are relegated to appendi-

ces. A sum over tensorial spherical harmonics is evaluated
in Appendix A, ready to be used in Sec. III. In Appendix B
we identify the conditions under which a metric perturba-
tion in Weyl gauge is regular at the black hole horizon.
Relations between hypergeometric and Legendre functions
are established in Appendix C, to be exploited in Sec. VII;
this material is duplicated from Appendix B of Ref. [39] for
ease of reference. In Appendix D we compute integrals
featuring a product of Legendre functions, to aid integration
of the perturbation equations in Sec. X. Finally, the
calculation of U and γ in Secs. X–XII requires the
evaluation of a large number of infinite sums over multipole
order l, and this is carried out in Appendix E.
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D. Design control restored; puzzle resolved

We have restored control to spacetime design. We have
also resolved the puzzle. The resolution is simply that the
restriction Tρ

ρ þ Tz
z ¼ 0 on the energy-momentum tensor

is not meant to apply to the axis, at which the cylindrical
coordinates of Eq. (1.1) are singular. As we show through-
out the paper, using more suitable spherical coordinates, it
is entirely permissible to introduce a distributional energy-
momentum tensor that violates the restriction on axis, and
nevertheless obtain a metric that can be cast in the form
of Eq. (1.1).

II. METRIC PERTURBATION

We begin with a review of the formalism of metric
perturbations of the Schwarzschild spacetime, specialized
to static and axisymmetric situations. The material is drawn
entirely from Ref. [40].
The background Schwarzschild metric gαβ is expressed

in the usual ðt; r; θ;ϕÞ coordinates, and it is given by

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð2:1Þ

where f ≔ 1 − 2M=r. It is useful to group the ðt; rÞ
coordinates into xa, and the ðθ;ϕÞ coordinates into θA.
We let ΩAB ≔ diag½1; sin2 θ� be the metric on the unit 2-
sphere, and ΩAB be its matrix inverse. We denote byDA the
covariant derivative operator compatible with ΩAB.
The metric perturbation pαβ is taken to be static and

axially symmetric, and we consider its even-parity sector
only; for the sources examined in this work, the odd-parity
sector plays no role and can be ignored. We expand the
perturbation in scalar, vector, and tensor harmonics based
on Legendre polynomials. We write

pab ¼
X∞
l¼0

hlabðrÞPl; ð2:2aÞ

paB ¼
X∞
l¼1

jlaðrÞPl
A; ð2:2bÞ

pAB ¼ r2ΩAB

X∞
l¼0

KlðrÞPl þ r2
X∞
l¼2

GlðrÞPl
AB; ð2:2cÞ

where Pl ≔ Plðcos θÞ are Legendre polynomials, and

Pl
A ≔ DAPl; Pl

AB ≔
�
DADB þ 1

2
lðlþ 1ÞΩAB

�
Pl:

ð2:3Þ

Legendre’s equation implies that ΩABPl
AB ¼ 0: the tenso-

rial harmonics are tracefree. Explicitly, the nonvanishing
components of the vector and tensor harmonics are

Pl
θ ¼ dPl

dθ
; Pl

θθ ¼ −
cos θ
sin θ

dPl

dθ
−
1

2
lðlþ 1ÞPl;

Pl
ϕϕ ¼ sin θ cos θ

dPl

dθ
þ 1

2
lðlþ 1Þsin2θPl: ð2:4Þ

They satisfy the orthogonality relations

Z
PlPl0 sin θdθ ¼ 2

2lþ 1
δll0 ; ð2:5aÞ

Z
ΩABPl

AP
l0
B sin θdθ ¼ 2lðlþ 1Þ

2lþ 1
δll0 ; ð2:5bÞ

Z
ΩACΩBDPl

ABP
l0
CD sinθdθ ¼ ðl− 1Þlðlþ 1Þðlþ 2Þ

2lþ 1
δll0 :

ð2:5cÞ

For a static perturbation we have that hltr ¼ 0 ¼ jlt .
These conditions restrict the gauge freedom to a vector Ξα

with nonvanishing components

Ξr ¼
X∞
l¼0

ξlr ðrÞPl; ΞA ¼
X∞
l¼1

ξlðrÞPl
A: ð2:6Þ

It produces the changes

Δhltt ¼
2Mf
r2

ξlr ; ð2:7aÞ

Δhlrr ¼ −2
dξlr
dr

−
2M
r2f

ξlr ; ð2:7bÞ

Δjlr ¼ −
dξl

dr
þ 2

r
ξl − ξlr ; ð2:7cÞ

ΔKl ¼ −
2f
r
ξlr þ

lðlþ 1Þ
r2

ξl; ð2:7dÞ

ΔGl ¼ −
2

r2
ξl ð2:7eÞ

in the metric perturbations. The equations for Δhltt, Δhlrr,
and ΔKl are valid for l ≥ 0, the equation for Δjlr is valid
for l ≥ 1, and the equation for ΔGl is valid for l ≥ 2. An
additional gauge freedom exists for l ¼ 0. It consists of a
rescaling of the time coordinate described by ξt ¼ αt, or
ξt ¼ −αft, where α is a dimensionless constant; this
produces Δhtt ¼ 2αf.
The Regge-Wheeler gauge [41] sets jlr ¼ 0 (for l ≥ 1)

and Gl ¼ 0 (for l ≥ 2). It is easy to check that this
determines the gauge vector completely. The Regge-
Wheeler is unique, and metric perturbations in this gauge
are completely gauge fixed (and therefore gauge invariant).
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III. WEYL CLASS

A static and axially symmetric perturbation of the Schwarzschild spacetime belongs to the Weyl class if it can be
presented in the form

ds2 ¼ −e−2Ufdt2 þ e2ðUþγÞðf−1dr2 þ r2dθ2Þ þ e2Ur2 sin2 θdϕ2; ð3:1Þ

where Uðr; θÞ and γðr; θÞ are the metric perturbations. Because these are small, it is understood that e−2U ¼ 1–2U
and e2γ ¼ 1þ 2γ.
Equation (3.1) is related to Eq. (1.1) in the following way. Starting from the cylindrical form of the Weyl metric, we write

U ¼ U0 þ Ū and γ ¼ γ0 þ γ̄, where U0, γ0 are the potentials associated with the Schwarzschild solution, and Ū, γ̄ are
perturbations. The background potentials are given by (see Sec. 10.3 of Ref. [36])

U0 ¼ −
1

2
ln
Rþ þ R− − 2M
Rþ þ R− þ 2M

; γ0 ¼
1

2
ln
ðRþ þ R−Þ2 − 4M2

4RþR−
; ð3:2Þ

where

R� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz ∓ MÞ2

q
: ð3:3Þ

In a Newtonian interpretation, U0 is the potential of a thin rod of massM and length 2M placed on the symmetry axis; the
rod is centered at z ¼ 0, and Rþ is the Euclidean distance to the positive end of the rod (at z ¼ M), while R− is the distance
to its negative end (at z ¼ −M). Next we perform a transformation from cylindrical to spherical coordinates, given by

ρ ¼ r
ffiffiffi
f

p
sin θ; z ¼ ðr −MÞ cos θ: ð3:4Þ

With R� ¼ r −M ∓ M cos θ, e−2U0 ¼ f, e2γ0 ¼ r2f=ðRþR−Þ, dρ2 þ dz2 ¼ ðRþR−=r2Þðf−1dr2 þ r2dϕ2Þ, we find that
the metric takes the form of Eq. (3.1), with Ū now denoted U, and γ̄ now denoted γ.
The linearized field equations for the metric of Eq. (3.1) are

4πr2ðTt
t − Tϕ

ϕÞ ¼ ∂rðr2f∂rUÞ þ 1

sin θ
∂θðsin θ∂θUÞ; ð3:5aÞ

8πr2Tr
r ¼ −8πr2Tθ

θ ¼ 2M∂rU þ ðr −MÞ∂rγ −
cos θ
sin θ

∂θγ; ð3:5bÞ

8πr2Tr
θ ¼ 2M∂θU þ r2f

cos θ
sin θ

∂rγ þ ðr −MÞ∂θγ; ð3:5cÞ

they come with the important restriction Tr
r þ Tθ

θ ¼ 0 on the perturbing energy-momentum tensor. Because of this
restriction, the metric of Eq. (3.1) is not merely the result of a choice of gauge for the perturbation.
The metric perturbation associated with Eq. (3.1) is given by

ptt ¼ 2Uf; prr ¼ 2ðU þ γÞf−1; pAB ¼ r2ð2UΩAB þ 2γeAeBÞ; ð3:6Þ

with all other components vanishing; here eA ≔ ∂Aθ is normal to surfaces of constant θ. The perturbation can be cast in the
language of Sec. II. We decompose U and γ as

U ¼
X∞
l¼0

ulðrÞPlðcos θÞ; γ ¼
X∞
l¼0

glðrÞPlðcos θÞ; ð3:7Þ

and see immediately that

hltt ¼ 2ulf; hlrr ¼ 2ðul þ glÞf−1: ð3:8Þ

MICHAEL LAHAYE and ERIC POISSON PHYS. REV. D 104, 044016 (2021)

044016-6



We also have that jlr ¼ 0. Taking the two-dimensional trace
of pAB reveals that

Kl ¼ 2ul þ gl: ð3:9Þ

The remaining, tracefree part of pAB then gives rise to the
equality

X∞
l¼2

GlPl
AB ¼ 2ehABi

X∞
l¼0

glPl; ð3:10Þ

where ehABi ≔ eAeB − 1
2
ΩAB.

Equation (3.10) is solved for Gl in Appendix A. We
obtain

1

4
ðl− 1Þlðlþ 1Þðlþ 2ÞGl ¼ ð2lþ 1ÞSl −

1

2
ðl− 1Þlgl;

l ≥ 2; ð3:11Þ

where

Sl ≔
�
g0 þ g2 þ � � � þ gl−2 l even

g1 þ g3 þ � � � þ gl−2 l odd
: ð3:12Þ

This quantity satisfies the recursion relation

Slþ2 ¼ Sl þ gl ð3:13Þ

together with the initial conditions

S2 ¼ g0; S3 ¼ g1: ð3:14Þ

Equation (3.11) states that each Gl is constructed alge-
braically from gl0 s with l0 ¼ fl;l − 2; � � �g, all the way
down to l0 ¼ 0 when l is even, or l0 ¼ 1 when l is odd.

IV. WEYL GAUGE

We define a Weyl gauge for the perturbation by making
the assignments

hltt ¼ 2ulf; hlrr ¼ 2ðul þ glÞf−1; Kl ¼ 2ul þ gl;

ð4:1Þ

together with jlr ¼ 0. These are the same relations as in the
Weyl class of Sec. III, but we do not impose Eq. (3.11). A
perturbation in Weyl gauge shall also belong to the Weyl
class when this additional condition results from the field
equations. In general, however, a perturbation in Weyl
gauge will not belong to the Weyl class, because of the
restriction on the perturbing energy-momentum tensor
encountered previously.

The Weyl gauge produces a metric perturbation that is
regular at r ¼ 2M provided that ul, gl, andGl are bounded
there, and provided also that

2ulðr ¼ 2MÞ þ glðr ¼ 2MÞ ¼ 0 ðl ≥ 1Þ: ð4:2Þ

This statement is established in Appendix B.
The gauge conditions are f−1hltt þ fhlrr − 2Kl ¼ 0 for

l ≥ 0, and jlr ¼ 0 for l ≥ 1. These can always be imposed
by a suitable choice of gauge vector. The gauge, however, is
not unique: Eq. (2.7) implies that

Δðf−1hlttþfhlrr−2KlÞ¼−2f
�
d
dr

−
2

r

�
ξlr −

2lðlþ1Þ
r2

ξl;

ð4:3aÞ

Δjlr ¼ −
�
d
dr

−
2

r

�
ξl − ξlr ; ð4:3bÞ

and these changes vanish for any pair ðξlr ; ξlÞ that satisfies

r2f
d2ξl

dr2
− 4rf

dξl

dr
− ½lðlþ 1Þ − 6f�ξl ¼ 0 ð4:4Þ

and ξlr ¼ −dξl=drþ 2ξl=r. The corresponding changes in
the perturbation variables are

Δul ¼ −
M
r3

�
r
dξl

dr
− 2ξl

�
; ð4:5aÞ

Δgl ¼ 2

r

�
1 −

M
r

�
dξl

dr
þ 1

r2

�
lðlþ 1Þ − 4þ 4M

r

�
ξl;

ð4:5bÞ

ΔGl ¼ −
2

r2
ξl: ð4:5cÞ

These results apply when l ≥ 1, and Eq. (4.5c) is restricted
to l ≥ 2. For l ¼ 0 we have that ξ is not defined, and we
find that ξr must satisfy dξr=dr − 2ξr=r ¼ 0. The solution
is ξr ¼ ðβ=MÞr2, where β is a dimensionless constant. This
produces the changes Δu ¼ β, Δg ¼ −2βðr=M − 1Þ in the
l ¼ 0 perturbation variables.
It is useful to rewrite Eq. (4.4) in terms of the new

independent variable

x ≔ r=M − 1: ð4:6Þ

This gives

ðx2 − 1Þd
2ξl

dx2
− 4ðx− 1Þdξ

l

dx
−
�
lðlþ 1Þ− 6

x− 1

xþ 1

�
ξl ¼ 0:

ð4:7Þ
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The linearly independent solutions to this equation are

ξl ¼ M2fðx − 1Þðxþ 1Þ3P0
lðxÞ; ðx − 1Þðxþ 1Þ3Q0

lðxÞg;
ð4:8Þ

with a prime indicating differentiation with respect to x.
Making the substitution in Eq. (4.5), we obtain

Δul ¼ −lðlþ 1ÞfPl; Qlg; ð4:9aÞ

Δgl ¼ lðlþ 1Þfðx2 − 1ÞP0
l þ 2xPl; ðx2 − 1ÞQ0

l þ 2xQlg;
ð4:9bÞ

ΔGl ¼ −2fðx2 − 1ÞP0
l; ðx2 − 1ÞQ0

lg: ð4:9cÞ

We recall that these results apply when l ≥ 1, or l ≥ 2 in
the case of ΔGl.
The gauge vector

ξW→RW ¼ 1

2
r2GW; ξW→RW

r ¼ −
�
d
dr

−
2

r

�
ξW→RW

ð4:10Þ
sends a perturbation from the Weyl gauge (W) to the
Regge-Wheeler gauge (RW). The new perturbation varia-
bles are

hRWtt ¼ 2f

�
uW þM

r2
ξW→RW
r

�
; ð4:11aÞ

hRWrr ¼ 2f−1
�
uW þ gW − f

d
dr

ξW→RW
r −

M
r2

ξW→RW
r

�
;

ð4:11bÞ

KRW ¼ 2uW þ gW −
2f
r
ξW→RW
r þ lðlþ 1Þ

r2
ξW→RW:

ð4:11cÞ

Here we omit the label l on the variables to avoid a clutter
of notation.

V. ENERGY-MOMENTUM TENSOR

In later portions of this paper we shall consider a
Schwarzschild black hole perturbed by a system of particle
and strings. In this section we construct the energy-
momentum tensor for the matter sources.
The particle has a mass m and it moves on a world line γ

described parametrically by xα ¼ ZαðτÞ, where τ is proper
time. Its velocity vector is vα ¼ dZα=dτ, and its energy-
momentum tensor is

Tαβ
p ¼ m

Z
γ
vαvβδðx; ZÞdτ; ð5:1Þ

where δðx; ZÞ ¼ δðx − ZÞ= ffiffiffiffiffiffi−gp
is a scalarized Dirac dis-

tribution; δðx − ZÞ is the usual four-dimensional delta
function, and g is the metric determinant. We place the
particle at r ¼ r0, θ ¼ 0, and assign to it the arbitrary
azimuthal coordinate ϕ0. The only nonvanishing compo-
nent of the velocity vector is then vt ¼ f−1=20 , where
f0 ≔ 1 − 2M=r0. The only nonvanishing component of
the energy-momentum tensor is

Tp
t
t ¼ −

mf1=20

r20
δðr − r0Þδðcos θ − 1Þδðϕ − ϕ0Þ: ð5:2Þ

The quantity mf1=20 is recognized as the particle’s Killing
energy in the Schwarzschild spacetime.
The particle is held in place with a thin string, which

extends from the particle to infinity along θ ¼ 0. Because it
is placed on the upper z-axis, we assign the label “up” to
this string, and we give it a linear energy density μup and a
tension Tup. The string moves on a world sheet W with
intrinsic coordinates ξa. The embedding relations are
xα ¼ XαðξaÞ, and eαa ≔ ∂Xα=∂ξa are tangent vectors on
W. The world sheet’s intrinsic metric is γab ≔ gαβeαae

β
b, and

ua is a velocity field onW. The string’s energy-momentum
tensor is

Tαβ
up ¼

Z
W
tabupeαae

β
bδðx; XÞ

ffiffiffiffiffiffi
−γ

p
d2ξ; ð5:3Þ

where

tabup ¼ μupuaub − Tupðγab þ uaubÞ ð5:4Þ

is the intrinsic energy-momentum tensor, and whereffiffiffiffiffiffi−γp
d2ξ is the element of surface area on the world sheet.

In our case the intrinsic coordinates are ξa ¼ ðt; rÞ, the
embedding relations are t ¼ t, r ¼ r, θ ¼ 0, and ϕ ¼ ϕ0

(the particle’s azimuthal coordinate). The string is static,
and the only nonvanishing component of its velocity vector
is ut ¼ f−1=2. With all this, we have that the nonvanishing
components of the energy-momentum tensor are

Tup
t
t ¼ −

μup
r2

Θðr − r0Þδðcos θ − 1Þδðϕ − ϕ0Þ;

Tup
r
r ¼ −

Tup

r2
Θðr − r0Þδðcos θ − 1Þδðϕ − ϕ0Þ; ð5:5Þ

where Θðr − r0Þ is the Heaviside step function, equal to 1
when r > r0 and 0 otherwise.
The black hole also is held in place with a thin string,

which extends from the event horizon to infinity along
θ ¼ π. Because this string is placed on the lower z axis, we
assign the label “dn” to it (short for “down”), and we give it
a linear energy density μdn and a tension Tdn. The non-
vanishing components of its energy-momentum tensor are

MICHAEL LAHAYE and ERIC POISSON PHYS. REV. D 104, 044016 (2021)

044016-8



Tdn
t
t ¼ −

μdn
r2

δðcos θ þ 1Þδðϕ − ϕ0Þ;

Tdn
r
r ¼ −

Tdn

r2
δðcos θ þ 1Þδðϕ − ϕ0Þ: ð5:6Þ

In this case there is no need to incorporate a step function.
The total energy-momentum tensor

Tαβ ¼ Tαβ
p þ Tαβ

up þ Tαβ
dn ð5:7Þ

is conserved. Because the particle is attached to the upper
string, but not interacting with the lower string, we have
that

∇βðTαβ
p þ Tαβ

upÞ ¼ 0: ð5:8Þ

This equation produces

dTup

dr
¼ M

r2f
ðμup − TupÞ ð5:9Þ

together with the boundary condition

Tupðr ¼ r0Þ ¼
mM

r20f
1=2
0

: ð5:10Þ

The quantity on the right-hand side is m times the
acceleration of a test mass at position r ¼ r0 in the
Schwarzschild spacetime; the conservation equation there-
fore implies that T ¼ ma, a statement of Newton’s sec-
ond law.
The energy-momentum tensor of the lower string is

conserved separately, and this statement gives rise to

dTdn

dr
¼ M

r2f
ðμdn − TdnÞ: ð5:11Þ

The upper string is massless when μup ¼ Tup, and similarly,
the lower string is massless when μdn ¼ Tdn; the conser-
vation equations then imply that the tension is constant
along each string. When the lower string is massive,
Eq. (5.11) implies that μdn − Tdn must approach zero when
r → 2M. This condition is likely impossible to fulfill for
most equations of state, and below we shall always take the
lower string to be massless.
The only remaining task for this section is to decompose

the energy-momentum tensor in Legendre polynomials.
This is accomplished with

δðcos θ − 1Þδðϕ − ϕ0Þ ¼
X∞
l¼0

2lþ 1

4π
Plðcos θÞ; ð5:12aÞ

δðcos θ þ 1Þδðϕ − ϕ0Þ ¼
X∞
l¼0

2lþ 1

4π
ð−1ÞlPlðcos θÞ:

ð5:12bÞ

These equations follow as direct consequences of the
completeness relation for spherical harmonics, together
with the properties Plð1Þ ¼ 1 and Plð−1Þ ¼ ð−1Þl of
Legendre polynomials.

VI. FIELD EQUATIONS IN THE WEYL GAUGE

The Einstein field equations Gα
β ¼ 8πTα

β are linearized
with respect to the metric perturbation pαβ, which is
presented in the Weyl gauge of Sec. IV. We incorporate
the energy-momentum tensor of Sec. V, and obtain an
equation for ul,

r2f
d2ul
dr2

þ 2ðr−MÞdul
dr

− lðlþ 1Þul ¼ −ð2lþ 1Þ½mf1=20 δðr− r0Þ þ ðμup − TupÞΘðr− r0Þ þ ð−1Þlðμdn − TdnÞ�; ð6:1Þ

an equation for gl,

r2f
d2gl
dr2

− lðlþ 1Þgl ¼ 4M
dul
dr

; ð6:2Þ

and an equation for Gl,

1

4
ðl − 1Þlðlþ 1Þðlþ 2ÞGl ¼ 2M

dul
dr

þ ðr −MÞ dgl
dr

−
1

2
½lðlþ 1Þ þ 2�gl þ 2ð2lþ 1Þ½TupΘðr − r0Þ þ ð−1ÞlTdn�:

ð6:3Þ

All three equations are valid for l ≥ 0. For l ¼ 0 and l ¼ 1, Eq. (6.3) plays the role of a constraint equation implicating
dul=dr, dgl=dr, and gl.
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It is useful to reexpress the field equations in terms of x ≔ r=M − 1, previously introduced in Eq. (4.6). We have

ðx2 − 1Þ d
2ul
dx2

þ 2x
dul
dx

− lðlþ 1Þul ¼ −ð2lþ 1Þ½kδðx − x0Þ þ ðμup − TupÞΘðx − x0Þ þ ð−1Þlðμdn − TdnÞ�; ð6:4aÞ

ðx2 − 1Þ d
2gl
dx2

− lðlþ 1Þgl ¼ 4
dul
dx

; ð6:4bÞ

1

4
ðl − 1Þlðlþ 1Þðlþ 2ÞGl ¼ ð2lþ 1ÞŜl −

1

2
ðl − 1Þlgl; ð6:4cÞ

where

ð2lþ 1ÞŜl ≔ 2
dul
dx

þ x
dgl
dx

− ðlþ 1Þgl þ 2ð2lþ 1Þ½TupΘðx − x0Þ þ ð−1ÞlTdn�: ð6:5Þ

We have also introduced

k ≔
m
M

f1=20 ¼ m
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 − 1

x0 þ 1

s
ð6:6Þ

and x0 ≔ r0=M − 1.
The homogeneous version of Eq. (6.4a) has the linearly independent solutions

uhomo
l ¼ fPlðxÞ; QlðxÞg: ð6:7Þ

The first solution is finite at x ¼ 1 (the event horizon of the Schwarzschild spacetime) and diverges at x ¼ ∞; the second
solution vanishes at infinity but diverges logarithmically at the horizon. These solutions can be exploited to construct a
Green’s function for Eq. (6.4a), and we find that a particular solution is

upartl ¼ −QlðxÞ
Z

x
Plðx0ÞWlðx0Þdx0 − PlðxÞ

Z
x
Qlðx0ÞWlðx0Þdx0; ð6:8Þ

withWl denoting the right-hand side of Eq. (6.4a). The general solution is obtained by adding to this a linear superposition
of the functions listed in Eq. (6.7). The physical solution to Eq. (6.4a) is identified by imposing regularity at x ¼ ∞ and
smoothness at x ¼ 1.
The homogeneous version of Eq. (6.4b) has the linearly independent solutions

ghomo
l ¼ fðx2 − 1ÞP0

lðxÞ; ðx2 − 1ÞQ0
lðxÞg; ð6:9Þ

when l ≥ 1; a prime on a Legendre function indicates differentiation with respect to x. Using these to construct a Green’s
function, we find that a particular solution to Eq. (6.4b) is

gpartl ¼ 4ðx2 − 1Þ
lðlþ 1Þ

�
Q0

lðxÞ
Z

x
P0
lðx0Þu0lðx0Þdx0 þ P0

lðxÞ
Z
x
Q0

lðx0Þu0lðx0Þdx0
�
: ð6:10Þ

The case l ¼ 0 requires a separate treatment. The homogeneous solutions are then x − 1 and 1, and the particular solution is

gpart0 ¼ −4
Z

x u00ðx0Þ
x0 þ 1

dx0 − 4ðx − 1Þ
Z
x

u00ðx0Þ
x02 − 1

dx0: ð6:11Þ

The general solution is obtained by combining particular
and homogeneous solutions, and again, the physical

solution to Eq. (6.4b) is identified by imposing regularity
at x ¼ ∞ and smoothness at x ¼ 1.
We observed back in Sec. IV that the Weyl gauge is not

unique. In principle, the solutions to Eqs. (6.4) can be
modified at will by effecting the changes described by
Eqs. (4.9). These changes, however, are likely to produce a
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perturbation that is no longer smooth at x ¼ 1 or regular at
x ¼ ∞. In most situations, therefore, the residual gauge
freedom cannot be exercised and the Weyl gauge is
effectively unique. It may be noted that Δul, Δgl, and
ΔGl satisfy the vacuum field equations—Eqs. (6.4) with all
material sources set to zero. It is also interesting to note that
Δul and uhomo

l are given by the same set of functions.
It was pointed out at the beginning of Sec. IV that a

solution to Eqs. (6.4) will not, in general, produce a
perturbation that belongs the Weyl class of Sec. III. The
reason is that the Gl obtained from Eq. (6.4c) will fail, in
general, to satisfy the condition of Eq. (3.11). In excep-
tional circumstances, however, this condition will be
satisfied, and the perturbation will belong to the Weyl
class. To test whether this is the case, we examine the
quantity Ŝl defined by Eq. (6.5). According to Eqs. (3.11)
and (6.4c), the perturbation belongs to the Weyl class
provided that Ŝl ¼ Sl, where Sl is defined by Eq. (3.12).
Alternatively, following the discussion at the end of
Sec. III, the perturbation is in the Weyl class when Ŝl
satisfies the recursion relation

Ŝlþ2 ¼ Ŝl þ gl ð6:12Þ

together with the initial conditions

Ŝ2 ¼ g0; Ŝ3 ¼ g1: ð6:13Þ

To see whether a perturbation belongs to the Weyl class,
one therefore computes Ŝl with the help of Eq. (6.5), and
verifies if it satisfies the recursion relation and initial
conditions.

VII. APPLICATION: TIDAL PERTURBATION

We may now consider some applications of the formal-
ism put in place in the preceding section. We begin with a
simple case, a tidal perturbation of the Schwarzschild black
hole (no particle, no strings). We take the metric perturba-
tion to be a pure multipole of order l, with l ≥ 2.
Everywhere in this section we omit the label l on the
perturbation variables.

A. Regge-Wheeler gauge

A tidal perturbation of a Schwarzschild black hole was
previously worked out in the Regge-Wheeler gauge by
Binnington and Poisson [42]. They obtain

hRWtt ¼ 2uRWf; hRWtt ¼ 2uRWf−1 ð7:1Þ

with

uRW ¼ z−lð1 − zÞFð−lþ 2;−l;−2l; zÞ; ð7:2Þ

where z ≔ 2M=r and Fða; b; c; zÞ is the hypergeometric
function. They also get

KRW ¼ 2

l − 1
z−l½ðlþ 1ÞFð−l;−l;−2l; zÞ

− 2Fð−l − 1;−l;−2l; zÞ� ð7:3Þ

for the remaining perturbation variable. The tidal field is
normalized so that uRW ∼ ðr=2MÞl and KRW ∼ 2ðr=2MÞl
when r ≫ 2M.
An alternative representation of the tidal field in terms of

Legendre polynomials is

uRW ¼ μl½−2xP0
lðxÞ þ lðlþ 1ÞPlðxÞ�; ð7:4aÞ

KRW ¼ 2μl½−2ðx − 1ÞP0
lðxÞ þ lðlþ 1ÞPlðxÞ�; ð7:4bÞ

where a prime indicates differentiation with respect to x,
and where

μl ≔
ðl − 2Þ!ðl − 1Þ!

2ð2l − 1Þ! : ð7:5Þ

The equivalence between these representations is estab-
lished on the basis of results collected in Appendix C.

B. Weyl gauge

A tidal perturbation must satisfy the vacuum field
equations, and u must therefore be a solution to
Eq. (6.4a) with a zero right-hand side. The solution must
be smooth at r ¼ 2M, and this requirement selects

uW ¼ λlPlðxÞ; ð7:6Þ

where λl is a normalization factor. We normalize the
potential so that it behaves as ðr=2MÞl when r ≫ 2M,
and therefore set (refer to Appendix C)

λl ¼ ðl!Þ2
ð2lÞ! : ð7:7Þ

With u thus identified, g must be a solution to Eq. (6.4b). The particular solution of Eq. (6.10) is

gpart ¼ 4λlðx2 − 1Þ
lðlþ 1Þ

�
Q0

lðxÞ
Z

x
P0
lðx0ÞP0

lðx0Þdx0 þ P0
lðxÞ

Z
x
P0
lðx0ÞQ0

lðx0Þdx0
�
; ð7:8Þ
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and the integrals are evaluated in Appendix D. We obtain

gpart ¼ λl½c1ðx2 − 1ÞP0
lðxÞ þ c2ðx2 − 1ÞQ0

lðxÞ − 2xPlðxÞ�; ð7:9Þ

where c1 and c2 are arbitrary constants. The freedom to add solutions to the homogeneous equation, described by Eq. (6.9),
allows us to eliminate the term implicating Q0

lðxÞ, which is not smooth at x ¼ 1. It also allows us to shift arbitrarily the
value of c1. The physical solution to the field equations is therefore

gW ¼ λl½cðx2 − 1ÞP0
lðxÞ − 2xPlðxÞ�; ð7:10Þ

where c remains as an arbitrary constant. We verify that u and g satisfy the regularity condition of Eq. (4.2) for any value
of c.
With u and g determined, we finally obtain G from Eq. (6.4c). The result is

GW ¼ 4λl
ðl − 1Þlðlþ 1Þðlþ 2Þ

�
−
�
2þ 1

2
ðl2 þ lþ 2Þc

�
ðx2 − 1ÞP0

lðxÞ þ ðcþ 1Þlðlþ 1ÞxPlðxÞ
�
: ð7:11Þ

Equations (7.6), (7.10), and (7.11) give a complete description of a tidal perturbation in the Weyl gauge. Because Eq. (3.11)
is violated, the perturbation does not belong to the Weyl class.

C. Transformation to Regge-Wheeler gauge

The meaning of the constant c can be elucidated by subjecting the perturbation to a change of gauge, fromWeyl gauge to
Regge-Wheeler gauge. The operation should reproduce the results of Eqs. (7.4).
The gauge transformation was described at the end of Sec. IV. The gauge vector is given by

ξW→RW ¼ 1

2
M2ðxþ 1Þ2GW; ξW→RW

r ¼ −
1

M

�
d
dx

−
2

xþ 1

�
ξW→RW; ð7:12Þ

and the transformation is given by

uW→RW ¼ uW þ 1

M
1

ðxþ 1Þ2 ξ
W→RW
r ; ð7:13aÞ

uW→RW ¼ uW þ gW −
1

M

�
x − 1

xþ 1

d
dx

þ 1

ðxþ 1Þ2
�
ξW→RW
r ; ð7:13bÞ

KW→RW ¼ 2uW þ gW −
2

M
x − 1

ðxþ 1Þ2 ξ
W→RW
r þ 1

M2

lðlþ 1Þ
ðxþ 1Þ2 ξ

W→RW: ð7:13cÞ

The calculation yields

uW→RW ¼ ðcþ 1Þλl
ðl − 1Þðlþ 2Þ ½−2xP

0
lðxÞ þ lðlþ 1ÞPlðxÞ�; ð7:14aÞ

KRW ¼ 2ðcþ 1Þλl
ðl − 1Þðlþ 2Þ ½−2ðx − 1ÞP0

lðxÞ þ lðlþ 1ÞPlðxÞ�: ð7:14bÞ

Comparing with Eqs. (7.4) and accounting for Eq. (7.5), we
see that we have a match provided that cþ 1 ¼ ðlþ 2Þ=l,
or c ¼ 2=l.
This calculation informs us that a choice of c corre-

sponds to a choice of normalization for the tidal perturba-
tion. A specific normalization was imposed on uRW, and it
seemed as if the same normalization was adopted for uW.

The normalization of uW, however, can be altered at will by
the residual gauge freedom contained in the Weyl gauge; as
we saw back in Eq. (4.9), Δu is of the same functional form
as the tidal potential of Eq. (7.6). The choice of normali-
zation for uW is therefore immaterial, and it is the constant c
that assumes responsibility for the physical normalization
of the tidal perturbation.

MICHAEL LAHAYE and ERIC POISSON PHYS. REV. D 104, 044016 (2021)

044016-12



D. Calibrated tidal potentials

As we saw, the choice c ¼ 2=l returns a tidal perturba-
tion that matches the normalization adopted in the Regge-
Wheeler gauge. Making this choice, the Weyl-gauge
potentials become

uWcal ¼ λlPlðxÞ; ð7:15aÞ

gWcal ¼ 2λl
l

½ðx2 − 1ÞP0
lðxÞ − lxPlðxÞ�; ð7:15bÞ

GWcal ¼ −
4λl

ðl − 1Þl2
½ðx2 − 1ÞP0

lðxÞ − lxPlðxÞ�: ð7:15cÞ

The superscript “Wcal” indicates that the potentials are
calibrated by their Regge-Wheeler counterparts so that a
gauge transformation returns a precise match for Eqs. (7.4).
A standard identity involving Legendre polynomials brings
the potentials to the simpler form

uWcal ¼ λlPlðxÞ; ð7:16aÞ

gWcal ¼ −2λlPl−1ðxÞ; ð7:16bÞ

GWcal ¼ 4λl
ðl − 1ÞlPl−1ðxÞ: ð7:16cÞ

E. Minimal gauge

We observed that uW can be normalized arbitrarily, and
that the choice does not affect the physical description of
the tidal perturbation. The residual gauge transformation

Δu ¼ −λlPlðxÞ; ð7:17aÞ

Δg ¼ λl½ðx2 − 1ÞP0
lðxÞ þ 2xPlðxÞ�; ð7:17bÞ

ΔG ¼ −
2λl

lðlþ 1Þ ðx
2 − 1ÞP0

lðxÞ; ð7:17cÞ

drawn from Eqs. (4.9), allows us to eliminate uW altogether.
In this refinement of the Weyl gauge, called here the
“minimal gauge,” the tidal perturbation is described by the
potentials

umin ¼ 0; ð7:18aÞ

gmin ¼ ðcþ 1Þλlðx2 − 1ÞP0
lðxÞ; ð7:18bÞ

Gmin¼ 2ðcþ1Þλl
ðl−1Þlðlþ1Þðlþ2Þ

× ½−ðl2þlþ2Þðx2−1ÞP0
lðxÞþ2lðlþ1ÞxPlðxÞ�:

ð7:18cÞ

This expression makes the point rather clearly that the
normalization of the tidal perturbation is governed by
cþ 1; the choice cþ 1 ¼ ðlþ 2Þ=l continues to provide
a calibration against a description in Regge-Wheeler gauge.

VIII. APPLICATION: MASSLESS STRINGS

In this section we integrate the perturbation equations for
a system of two massless strings attached to the black hole;
there is no particle in the system. The first string extends
along the upper z axis and has an energy density μup equal
to its tension Tup; both are constant along the string. The
second string is placed on the lower z axis, and has a
density μdn equal to its tension Tdn; these also are constant.
We do not assume that Tup ¼ Tdn, and shall see that
unbalanced tensions produce an acceleration of the black
hole in the perturbed spacetime.
The variables ul satisfy Eq. (6.4a) with a zero right-hand

side, and gl must be a solution to Eq. (6.4b). For l ¼ 0 we
set u0 ¼ c1 and g0 ¼ c2 þ c3x, where the cns are constants.
The constraint equation (6.4c) yields c2 ¼ 2ðTup þ TdnÞ,
and we choose c1 ¼ c3 ¼ 0. We therefore have

u0 ¼ 0; g0 ¼ 2ðTup þ TdnÞ: ð8:1Þ

For l ¼ 1 we get that u1 ¼ c1x and g1 ¼ −2c1þ
c2ðx2 − 1Þ. The constraint implies that c1 ¼ − 1

3
c2 − ðTup−

TdnÞ. We choose c2 ¼ 0 and therefore obtain

u1 ¼ −ðTup − TdnÞx; g1 ¼ 2ðTup − TdnÞ: ð8:2Þ

We observe that the regularity condition of Eq. (4.2) is
satisfied. For l ≥ 2 we simply set ul ¼ gl ¼ 0; nonzero
values would describe a tidal deformation of the black hole,
as described in Sec. VII. Equation (6.4c) then returns

Gl ¼ 8ð2lþ 1Þ
ðl − 1Þlðlþ 1Þðlþ 2Þ ½Tup þ ð−1ÞlTdn�: ð8:3Þ

It is easy to verify that this satisfies the condition of
Eq. (3.10); the perturbation belongs to the Weyl class.
The gravitational perturbation created by the massless

strings is therefore described by the Weyl-class potentials

U ¼ −ðTup − TdnÞðr=M − 1Þ cos θ;
γ ¼ 2ðTup þ TdnÞ þ 2ðTup − TdnÞ cos θ: ð8:4Þ

The line element is given by Eq. (3.1). This is a form of the
Cmetric (see Sec. 14.1 of Ref. [36]), linearized with respect
to the tension parameters. We note that γðθ ¼ 0Þ ¼ 4Tup

while γðθ ¼ πÞ ¼ 4Tdn, in agreement with Eq. (1.5).
When r ≫ 2M, the temporal component of the metric is

given asymptotically by
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gtt ¼ −2
Tup − Tdn

M
r cos θ þOð1Þ: ð8:5Þ

The linear growth in r cos θ indicates that the black hole is
accelerated in the z direction. The acceleration a is given by
Ma ¼ Tup − Tdn. As claimed, unbalanced tensions across
the black hole give rise to an acceleration in the perturbed
spacetime.

IX. APPLICATION: MASSIVE STRING,
NO BLACK HOLE

In this section we construct the linearized gravitational
field of a single massive string; there is no black hole in the
spacetime, and no particle. Our treatment is based on the
field equations of Sec. VI, in which we set M ¼ 0 and
m ¼ 0. Because there is no black hole and no particle, there
is no distinction between the “up” and “down” strings; we
write μ ≔ μup ¼ μdn and T ≔ Tup ¼ Tdn.

A. String model and field equations

Our model of a massive string is a simple one. We let

σ ≔ μ − T ¼ constant: ð9:1Þ

The conservation equations (5.9) and (5.11), specialized to
the case M ¼ 0, imply that T is a constant. In this section,
therefore, the energy density and tension are taken to be
unequal constants.

Equation (6.1) becomes

r2
d2ul
dr2

þ 2r
dul
dr

− lðlþ 1Þul ¼ −ð2lþ 1Þ½1þ ð−1Þl�σ;
ð9:2Þ

and the solution is

ul ¼ 2lþ 1

lðlþ 1Þ ½1þ ð−1Þl�σ ðl ≠ 0Þ: ð9:3Þ

The freedom to add solutions to the homogeneous equation
cannot be exercised, because these behave as rl and
r−ðlþ1Þ, which fail to be regular at either r ¼ 0 or
r ¼ ∞. For l ¼ 0 we have u0 ¼ c1 − 2σ ln r. In this case
we have the freedom to add a constant, which is denoted c1.
Its value will be chosen below.
Equation (6.2) becomes

r2
d2gl
dr2

− lðlþ 1Þgl ¼ 0: ð9:4Þ

The nontrivial solutions behave as r−l and rlþ1, and they
must both be discarded when l ≠ 0. We therefore have

gl ¼ 0 ðl ≠ 0Þ: ð9:5Þ

For l ¼ 0 we eliminate the term proportional to r, and
retain g0 ¼ c2, where c2 is a constant that will be
determined presently.

Equation (6.3) becomes

1

4
ðl − 1Þlðlþ 1Þðlþ 2ÞGl ¼ r

dgl
dr

−
1

2
½lðlþ 1Þ þ 2�gl þ 2ð2lþ 1Þ½1þ ð−1Þl�T: ð9:6Þ

For l ¼ 0 the equation returns c2 ¼ 4T. For l ¼ 1 it delivers 0 ¼ 0, and for l ≥ 2 we obtain

Gl ¼ 8ð2lþ 1Þ
ðl − 1Þlðlþ 1Þðlþ 2Þ ½1þ ð−1Þl�T: ð9:7Þ

We then find that Eq. (3.11) is satisfied, because Sl is equal to g0 ¼ 4T when l is even, and vanishes when l is odd. The
perturbation therefore belongs to the Weyl class.

B. Potentials and metric

The sum of Eq. (3.7) is carried out with the help of Eqs. (E1a) and (E2). We obtain

U ¼ U0 − σ lnðr2 sin2 θÞ; ð9:8Þ

where U0 ≔ c1 − 2σð1 − ln 2Þ. The sum for γ is immediate, and we get

γ ¼ 4T: ð9:9Þ

This assignment gives us a special case of Eq. (1.5).
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We insert the potentials within the metric of Eq. (3.1), in which we set f ¼ 1. The factors of e�2U0 can be eliminated with
a rescaling of the coordinates, t → e−U0t and r → eU0r. This gives us the freedom to setU0 ¼ 0, which provides a choice of
constant c1. The metric becomes

ds2 ¼ −½1þ 2σ lnðr2 sin2 θÞ�dt2 þ ½1 − 2σ lnðr2 sin2 θÞ þ 8T�ðdr2 þ r2dθ2Þ þ ½1 − 2σ lnðr2 sin2 θÞ�r2 sin2 θdϕ2: ð9:10Þ

A transformation to cylindrical coordinates ρ ¼ r sin θ, z ¼ r cos θ produces

ds2 ¼ −ð1þ 2σ ln ρ2Þdt2 þ ð1 − 2σ ln ρ2 þ 8TÞðdρ2 þ dz2Þ þ ð1 − 2σ ln ρ2Þρ2dϕ2: ð9:11Þ

If we restore the original exponential notation, then this is

ds2 ¼ −ρ4σdt2 þ e8Tρ−4σðdρ2 þ dz2Þ þ ρ2ð1−2σÞdϕ2; ð9:12Þ

with σ and T both considered to be small. As expected for an infinitely long, massive string, the metric is singular on the axis
(ρ ¼ 0) and at infinity ðρ ¼ ∞Þ.

C. Levi-Civita metric

It is easy to promote the metric of Eq. (9.12) to an exact
solution to the vacuum field equations, away from ρ ¼ 0
and ρ ¼ ∞. The result is the Levi-Civita metric, reviewed
in Sec. 10.2 of Ref. [36].
The Levi-Civita solution is obtained by imposing a

cylindrical symmetry on the Weyl metric of Eq. (1.1).
Setting U ¼ UðρÞ, we find that the field equations return
U ¼ −σ ln ρ2 up to the addition of an irrelevant constant;
this agrees with our previous expression. Setting γ ¼ γðρÞ
we also get that γ ¼ γ0 þ 2σ2 ln ρ2, where γ0 is a constant;
this agrees with our previous result when we neglect the
second term and make the association γ0 ¼ 4T.
Inserting these results within the metric, we arrive at

ds2 ¼ −ρ4σdt2 þ e2γ0ρ−4σð1−2σÞðdρ2 þ dz2Þ þ ρ2ð1−2σÞdϕ2;

ð9:13Þ

the exact version of Eq. (9.12). While the Levi-Civita
metric does not come with an immediate interpretation for
the parameters σ and γ0, its linearized version makes
explicit contact with our model of a massive string.

X. APPLICATION: PARTICLE AND MASSLESS
STRING

In this section we consider a particle of mass m held in
place at r ¼ r0 outside a Schwarzschild black hole. The
particle is tied to a massless string with tension Tup, and the
black hole is attached to another string with tension Tdn.

The tension in each string is constant, and we assume from
the outset that Tup ¼ Tdn, so that the black hole is not
accelerated in the perturbed spacetime; the tensions are
henceforth denoted T.

A. Field equations and solutions

The field equations of Sec. VI for ul and gl become

ðx2 − 1Þu00l þ 2xu0l − lðlþ 1Þul ¼ −ð2lþ 1Þkδðx − x0Þ;
ð10:1aÞ

ðx2 − 1Þg00l − lðlþ 1Þgl ¼ 4u0l; ð10:1bÞ

where x ≔ r=M − 1, x0 ≔ r0=M − 1, and k ≔ ðm=MÞ ffiffiffiffiffi
f0

p
with f0 ¼ ðx0 − 1Þ=ðx0 þ 1Þ. These equations are accom-
panied by Eqs. (6.4c) and (6.5), which provide constraints
when l ¼ 0, 1, and which determine Gl when l ≥ 2. We
recall that the string tension T is given by Eq. (5.10); this
becomes

T ¼ k
x20 − 1

ð10:2Þ

when expressed in terms of k and x0.
The solution for ul is obtained by inserting Wl ¼

−ð2lþ 1Þkδðx − x0Þ within Eq. (6.8). This gives

ul ¼ ð2lþ 1Þk
�
Qlðx0ÞPlðxÞ x < x0
Plðx0ÞQlðxÞ x > x0

: ð10:3Þ

The solution for gl is found by substituting Eq. (10.3) into Eq. (6.10). A particular solution to Eq. (10.1b) is

gpartl ¼ 4ð2l − 1Þ
lðlþ 1Þ kðx

2 − 1Þ
�
Q0

lðxÞ
Z

x

1

P0
lðx0ÞVlðx0Þdx0 þ P0

lðxÞ
Z

∞

x
Q0

lðx0ÞVlðx0Þdx
�
; ð10:4Þ
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where

Vlðx0Þ ≔
�
Qlðx0ÞP0

lðx0Þ x0 < x0
Plðx0ÞQ0

lðx0Þ x0 > x0
: ð10:5Þ

When x < x0 the first integral involves the x0 < x0 member of Vl; the second integral is broken up into two domains, the
first from x to x0 involving also the x0 < x0 member of Vl, and the second from x0 to ∞ involving the x0 > x0 member of
Vl. When x > x0, the first integral is broken up into one from 1 to x0 involving the x0 < x0 member of Vl, and another from
x0 to x involving the x0 > x0 member of Vl; the second integral implicates the x0 > x0 member of Vl. Each integral is of the
form given in Appendix D, and after a fairly long computation we obtain

gpartl ¼ −
2ð2lþ 1Þ
lðlþ 1Þ k

�
lðlþ 1ÞQlðx0ÞxPlðxÞ þ lðlþ 1ÞQlðx0Þðx2 − 1ÞQ0

lðxÞ þ x0Q0
lðx0Þðx2 − 1ÞP0

lðxÞ x < x0
lðlþ 1ÞPlðx0ÞxQlðxÞ þ lðlþ 1ÞQlðx0Þðx2 − 1ÞQ0

lðxÞ þ x0P0
lðx0Þðx2 − 1ÞQ0

lðxÞ x > x0
:

ð10:6Þ

The result was simplified by making repeated use of the Wronskian identity PlðxÞQ0
lðxÞ − P0

lðxÞQlðxÞ ¼ −ðx2 − 1Þ−1.
We observe that the term proportional to ðx2 − 1ÞQ0

lðxÞ is common to both members of gpartl , and that it fails to be smooth
at x ¼ 1. We eliminate this term by subtracting a corresponding solution to the homogeneous equation for gl, as described
by Eq. (6.9). The physical solution is therefore

gl ¼ −
2ð2lþ 1Þ
lðlþ 1Þ k

�
lðlþ 1ÞQlðx0ÞxPlðxÞ þ x0Q0

lðx0Þðx2 − 1ÞP0
lðxÞ x < x0

lðlþ 1ÞPlðx0ÞxQlðxÞ þ x0P0
lðx0Þðx2 − 1ÞQ0

lðxÞ x > x0
: ð10:7Þ

It can be verified that glðxÞ is continuous and differentiable at x ¼ x0; its second derivative, however, is discontinuous, in
view of the discontinuity in u0l. It can also be verified that the regularity condition of Eq. (4.2) is satisfied. Furthermore, the
constraint of Eq. (6.4c) is enforced when l ¼ 1.
The solution of Eq. (10.7) does not apply when l ¼ 0. In this case we have that u0 ¼ kQ0ðx0Þ when x < x0 and u0 ¼

kQ0ðxÞwhenx > x0, whereQ0ðxÞ ¼ − 1
2
ln½ðx − 1Þ=ðxþ 1Þ�.Whenx < x0 the solution toEq. (10.1b) is g ¼ c1 þ c2x,where

c1 and c2 are constants. When x > x0 the solution is instead g ¼ c3 þ c4xþ kx ln½ðx − 1Þ=ðxþ 1Þ�. Continuity and
differentiability at x ¼ x0 determines two of the four constants, whichwe pick to be c2 and c3. The constraint of Eq. (6.4c) then
allows us to determine c1, which is given by c1 ¼ 2T ¼ 2k=ðx20 − 1Þ. The fourth constant, c4, remains arbitrary, andwe set it to
zero to avoid a linear growth of g when x > x0. With all this, we find that

g0 ¼
2k

x20 − 1
þ k

�
ln
x0 − 1

x0 þ 1
þ 2x0
x20 − 1

�
x ð10:8Þ

when x < x0, and

g0 ¼
2kðx20 þ 1Þ
x20 − 1

þ kx ln
x − 1

xþ 1
ð10:9Þ

when x > x0.
With ul and gl thus determined, Eq. (6.4c) provides expressions for Gl when l ≥ 2. We follow the strategy described at

the end of Sec. VI to establish that the perturbation belongs to the Weyl class. First, we compute Ŝl according to Eq. (6.5),
and get

Ŝl ¼ 2k

�−Q0
l−1ðx0ÞPl−1ðxÞ þ ð−1Þlðx20 − 1Þ−1 x < x0

−P0
l−1ðx0ÞQl−1ðxÞ þ ½1þ ð−1Þl�ðx20 − 1Þ−1 x > x0

: ð10:10Þ

Second, we verify that Ŝ2 ¼ g0 and Ŝ3 ¼ g1, so that Ŝl satisfies the initial conditions of Eq. (6.13). And third, we compute
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Ŝlþ2 − Ŝl ¼ −
2ð2lþ 1Þ
lðlþ 1Þ k

�
lðlþ 1ÞQlðx0ÞxPlðxÞ þ x0Q0

lðx0Þðx2 − 1ÞP0
lðxÞ x < x0

lðlþ 1ÞPlðx0ÞxQlðxÞ þ x0P0
lðx0Þðx2 − 1ÞQ0

lðxÞ x > x0
; ð10:11Þ

and thereby prove that Ŝl satisfies the recursion relation of
Eq. (6.12). The perturbation does indeed belong to the
Weyl class.

B. Summed potentials

The potentials Uðr; θÞ and γðr; θÞ are obtained from
Eq. (3.7), with ul given by Eq. (10.3) and gl by Eqs. (10.7),
(10.8), and (10.9). The sums can be evaluated with
formulas developed in Appendix E.
For U we get

U ¼ k
D

ð10:12Þ

with the help of Eq. (E13a), where k ≔ ðm=MÞ ffiffiffiffiffi
f0

p
and

D ≔ ðx2 − 2x0x cos θ þ x20 − sin2 θÞ1=2 ð10:13Þ

is the spatial distance between x and x0 in the
Schwarzschild spacetime. This is immediately recognized
as the potential of a point particle of mass m and Killing
energy m

ffiffiffiffiffi
f0

p
.

For γ, the sum over l must separate out the contribution
from l ¼ 0; we therefore write

γ ¼ g0 þ
X∞
l¼1

glðxÞPlðcos θÞ: ð10:14Þ

The sum involves two sets of terms, one involving the
product Qlðx0ÞPlðxÞ or Plðx0ÞQlðxÞ, the other involving
Q0

lðx0ÞP0
lðxÞ or P0

lðx0ÞQ0
lðxÞ. The sum over the first set of

terms is handled with Eq. (E13a), properly written so that
the sum begins at l ¼ 1. The sum over the second set is
handled with Eq. (E13b). After some simplifying algebra,
we arrive at

γ ¼ 2k
x20 − 1

�
x − x0 cos θ

D
þ 1

�
: ð10:15Þ

We recall that the string tension is T ¼ k=ðx20 − 1Þ.
From Eq. (10.15) we infer that

γðx; θ ¼ 0Þ ¼
�
0 x < x0
4T x > x0

; ð10:16aÞ

γðx; θ ¼ πÞ ¼ 4T: ð10:16bÞ

This reveals the existence of a conical singularity on the
upper axis when x > x0 (above the particle), and

everywhere on the lower axis. The field equations imply
that γaxis is either zero (between black hole and particle) or
equal to 4T (everywhere else). This is a special case
of Eq. (1.5).

C. Black hole properties and first law

The metric of a particle of mass m held in place at
position r ¼ r0 outside a Schwarzschild black hole of mass
M is given by Eq. (3.1), with the potentials of Eqs. (10.12)
and (10.15); both particle and black hole are supported with
a massless string of tension T ¼ k=ðx20 − 1Þ, where
k ≔ ðm=MÞ½ðx0 − 1Þ=ðx0 þ 1Þ�1=2. We recall that x ≔
r=M − 1 and x0 ≔ r0=M − 1.
The Komar mass associated with a closed 2-surface S is

(see, for example, Sec. 4.3.3 of Ref. [43])

MKðSÞ ¼
1

4π

I
S
∇αtβnαrβdS; ð10:17Þ

where tα is the timelike Killing vector, nα the surface’s
unit timelike normal, rα its unit spacelike normal, and
dS the element of surface area. We take S to be a
surface of constant t and r. In the ðt; r; θ;ϕÞ coordinates,
we have that tα ¼ ð1; 0; 0; 0Þ, nα ¼ e−Uf1=2ð−1; 0; 0; 0Þ,
rα ¼ eUþγf−1=2ð0; 1; 0; 0Þ, and dS ¼ e2Uþγr2 sin θdθdϕ.
Evaluation of the integral gives

MKðrÞ ¼ M − r2fh∂rUi; ð10:18Þ

where

h∂rUi ≔ 1

2

Z
π

0

∂rU sin θ dθ ð10:19Þ

is the average of∂rU over the 2-surface. For large rweobtain

MKðrÞ ¼ M þ kM þOðr−1Þ; ð10:20Þ

in which we recognize kM ¼ m½ðx0 − 1Þ=ðx0 þ 1Þ�1=2 ¼
mð1 − 2M=r0Þ1=2 as the particle’s Killing energy in the
Schwarzschild spacetime. The r → ∞ limit of the Komar
mass defines the total mass of the spacetime:

Mtot ¼ M þ kM: ð10:21Þ
This coincides with its Arnowitt-Deser-Misner mass.
With the metric of Eq. (3.1), the event horizon of the

perturbed black hole is still situated at r ¼ 2M, or x ¼ 1,
where gtt ¼ 0. The field equation (3.5c), evaluated on the
horizon, produces ∂θð2U þ γÞ ¼ 0. It follows that
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β ≔ e2Uþγjr¼2M ¼ constant; independent of θ: ð10:22Þ

As we shall see presently, this observation is behind the
validity of the zeroth law of black hole mechanics in this
class of spacetimes.
The element of surface area on the event horizon is

dS ¼ ð2MÞ2β sin θ dθdϕ. Integration yields

A ¼ 4πð2MÞ2β ð10:23Þ

for the black hole area. The surface gravity κ is obtained
from κ2 ¼ − 1

2
ð∇αtβÞð∇αtβÞ, with the right-hand side

evaluated at r ¼ 2M. This gives

κ ¼ 1

4Mβ
: ð10:24Þ

As was previously stated, Eq. (10.22) ensures that κ is
uniform on the horizon, as required by the zeroth law. The
Smarr mass MSmarr ≔ κA=ð4πÞ evaluates to

MSmarr ¼ M: ð10:25Þ

The results of Eqs. (10.22), (10.23), (10.24), and (10.25)
hold for any metric of the form of Eq. (3.1). In fact, they are
exact consequences of this metric, which remain true even
when U and γ are no longer assumed to be small.
For the application at hand, and the potentials of

Eqs. (10.12) and (10.15), we find that

β ¼ 1þ 2k
x0 − 1

: ð10:26Þ

This result is perturbative in m, which hides within the
constant k.
The quantities Mtot, A, and T are functions of the

parameters M, m, and x0. As a matter of mathematical
identity we have that

dMtot ¼
∂Mtot

∂M dM þ ∂Mtot

∂m dmþ ∂Mtot

∂x0 dx0; ð10:27aÞ

dA ¼ ∂A
∂MdM þ ∂A

∂mdmþ ∂A
∂x0 dx0; ð10:27bÞ

dT ¼ ∂T
∂MdM þ ∂T

∂mdmþ ∂T
∂x0 dx0; ð10:27cÞ

and an examination of these relations reveals that

dMtot ¼
κ

8π
dA − λdT þ zdm; ð10:28Þ

where

λ ≔ Mðx0 þ 1Þ ¼ r0 ð10:29Þ

is the string’s “thermodynamic length,” and

z ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 − 1

x0 þ 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r0

p
ð10:30Þ

is the redshift factor for a photon emitted at r ¼ r0 and
received at infinity in the Schwarzschild spacetime.
Equation (10.28) is the first law of black hole mechanics
for the perturbed spacetime. It expresses the fact that Mtot
can be viewed as a function of A, T, and m instead of as a
function of M, m, and x0.
It might be noted that in Eq. (10.28), the quantities dT

and dm are perturbations, while dA and dMtot contain
background and perturbative terms. It follows from this
observation that κ also contains background and perturba-
tive terms, but that λ and z are purely background
quantities, defined in the Schwarzschild spacetime.

XI. APPLICATION: PARTICLE
AND MASSIVE STRING

In this section we continue to place a particle of mass m
at position r ¼ r0 outside a Schwarzschild black hole, but
we now replace the massless upper string of Sec. X with a
massive string. This shall have an energy density μup and
tension Tup that are not equal to each other. We recall that
the string tension is subjected to the conservation equa-
tion (5.9) and the boundary condition of Eq. (5.10). We
continue to hold the black hole with a massless string, so
that μdn ¼ Tdn ¼ constant.

A. Source superposition

In Sec. X we found the gravitational field of a particle of
mass m at r ¼ r0, held in place by a massless string with

μmassless
up ¼ Tmassless

up ¼ k
x20 − 1

; k ¼ m
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 − 1

x0 þ 1

s
;

ð11:1Þ

where x0 ≔ r0=M − 1. The black hole also was held with a
massless string, with

μmassless
dn ¼ Tmassless

dn ¼ k
x20 − 1

: ð11:2Þ

The balanced tensions ensured that the black hole was
unaccelerated in the perturbed spacetime.
We make good use of this solution when we replace the

massless upper string with a massive one. The idea is to
write
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particleþmassive string

¼ ðparticleþmassless stringÞ
þ ðmassive string −massless stringÞ ð11:3Þ

and to exploit the superposition principle afforded by the
linearized field equations. Because we already have the
solution to the first problem on the right-hand side of
the equation, we can place our attention entirely on the
second one, and add the solutions in the final step. For this
second problem we have no particle, but we have a
“massive difference string” on the upper axis, extending
from r ¼ r0 to infinity, and a “massless difference string”
everywhere on the lower axis.
The energy density and tension of the actual massive

string are denoted μmassive
up and Tmassive

up , respectively. The
density and tension of the upper difference string are then

μdiffup ¼ μmassive
up −

k
x20 − 1

; Tdiff
up ¼ Tmassive

up −
k

x20 − 1
:

ð11:4Þ

By virtue of Eqs. (5.9) and (5.10), we have that

dTdiff
up

dx
¼ μdiffup − Tdiff

up

x2 − 1
; Tdiff

up ðx ¼ x0Þ ¼ 0; ð11:5Þ

where x ≔ r=M − 1. On the other hand, the actual string
that holds the black hole is still massless, with an energy
density μmassless

dn and a tension Tmassless
dn that are equal to each

other. The density and tension of the lower difference string
are then

μdiffdn ¼ Tdiff
dn ¼ Tmassless

dn −
k

x20 − 1
: ð11:6Þ

The conservation equation implies that Tdiff
dn is constant

along the string.
Our focus from this point on shall be on the “difference

strings,” and to unclutter the notation we shall write

μup ≔ μdiffup ; Tup ≔ Tdiff
up μdn ≔ μdiffdn ; Tdn ≔ Tdiff

dn :

ð11:7Þ

We adopt the model of a massive string introduced in
Sec. IX, and set

σ ≔ μup − Tup ¼ constant: ð11:8Þ

For this model, Eq. (11.5) produces

Tup ¼
1

2
σ

�
ln
x − 1

xþ 1
þ ln

x0 þ 1

x0 − 1

�
: ð11:9Þ

We expect that the black hole will remain unaccelerated
when the string tensions are balanced at infinity. Based on
this expectation, we anticipate that the field equations will
demand that

Tdn ¼
1

2
σ ln

x0 þ 1

x0 − 1
: ð11:10Þ

We shall see that this is indeed the correct expression for the
tension in the lower difference string.

B. Field equations and solutions

With the choices made in the preceding subsection, we
find that the perturbation equations of Sec. VI for ul and gl
become

ðx2 − 1Þu00l þ 2xu0l − lðlþ 1Þul ¼ −ð2lþ 1ÞσΘðx− x0Þ;
ð11:11aÞ

ðx2 − 1Þg00l − lðlþ 1Þgl ¼ 4u0l: ð11:11bÞ

These equations are accompanied by Eqs. (6.4c) and (6.5),
which provide constraints when l ¼ 0, 1, and which
determine Gl when l ≥ 2. It is useful to note that the
equations are very similar to Eqs. (10.1), with the step
function associated with the massive string replacing the
delta function associated with the particle. This observation
implies that a solution to the (particleþmassless string)
problem can be recovered from a solution to the massive
string problem by differentiating with respect to x0,
inserting a minus sign, and replacing σ with k. This
correspondence will be used below as a check on our
solutions.
The techniques developed in Sec. VI and exploited in

Sec. X can be put to the task of integrating Eqs. (11.11a).
Our experience with these techniques, however, allows us
to identify some shortcuts.
Equation (11.11) is homogeneous when x < x0, and

according to Eq. (6.7), its solution must be a superposition
of Legendre functions; regularity at the horizon requires the
elimination ofQlðxÞ. When x > x0, a particular solution to
Eq. (11.11a) is the constant ð2lþ 1Þσ=½lðlþ 1Þ�, and to
this we may add any solution to the homogeneous equation;
regularity at infinity requires the elimination of PlðxÞ. The
global solution to Eq. (11.11a) must be continuous and
differentiable at x ¼ x0. Combining all these requirements,
we obtain

u<l ¼ −σ
2lþ 1

lðlþ 1Þ ðx
2
0 − 1ÞQ0

lðx0ÞPlðxÞ; ð11:12aÞ

u>l ¼ −σ
2lþ 1

lðlþ 1Þ ½ðx
2
0 − 1ÞP0

lðx0ÞQlðxÞ − 1�: ð11:12bÞ
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Here u<l is the solution for x < x0, while u>l is the solution for x > x0. To arrive at these results we made use of the
Wronskian identity PlðxÞQ0

lðxÞ − P0
lðxÞQlðxÞ ¼ −ðx2 − 1Þ−1. It is easy to verify that differentiation with respect to x0

returns Eq. (10.3), as was explained previously.
The preceding results do not apply when l ¼ 0, and this case requires a separate treatment. The only change is in the

particular solution when x > x0, which becomes− 1
2
σ lnðx2 − 1Þ. Following the same steps as before, we find that the global

solution is given by

u<0 ¼ 0; ð11:13aÞ

u>0 ¼ 1

2
σ

�
ðx0 − 1Þ ln x − 1

x0 − 1
− ðx0 þ 1Þ ln xþ 1

x0 þ 1

�
: ð11:13bÞ

The solution is defined up to the addition of an overall constant. Here we chose the constant so that u0 vanishes when
x < x0. Other choices are of course possible, and this issue will be reexamined at a later stage.
We next turn to Eq. (11.11b). With ulðxÞ given by Eq. (11.12), it is easy to check that

gpartl ¼ 2σ
2lþ 1

lðlþ 1Þ
� ðx20 − 1ÞQ0

lðx0ÞxPlðxÞ x < x0
ðx20 − 1ÞP0

lðx0ÞxQlðxÞ x > x0
ð11:14Þ

is a particular solution to the equation. To this we may add solutions to the homogeneous equation, which were identified in
Eq. (6.9). The global solution is identified by imposing smoothness at the horizon and regularity at infinity, as well as
continuity and differentiability at x ¼ x0. We arrive at

g<l ¼ 2σ
2lþ 1

lðlþ 1Þ
�
ðx20 − 1ÞQ0

lðx0ÞxPlðxÞ þ
�
x0Qlðx0Þ −

1

lðlþ 1Þ ðx
2
0 − 1ÞQ0

lðx0Þ
�
ðx2 − 1ÞP0

lðxÞ
�
; ð11:15aÞ

g>l ¼ 2σ
2lþ 1

lðlþ 1Þ
�
ðx20 − 1ÞP0

lðx0ÞxQlðxÞ þ
�
x0Plðx0Þ −

1

lðlþ 1Þ ðx
2
0 − 1ÞP0

lðx0Þ
�
ðx2 − 1ÞQ0

lðxÞ
�
: ð11:15bÞ

It can be verified that Eq. (10.7) is recovered after differentiation with respect to x0. A little more work reveals that the
functions can be simplified to

g<l ¼ 2σ½Qlþ1ðx0ÞPlþ1ðxÞ −Ql−1ðx0ÞPl−1ðxÞ�; ð11:16aÞ

g>l ¼ 2σ½Plþ1ðx0ÞQlþ1ðxÞ − Pl−1ðx0ÞQl−1ðxÞ�: ð11:16bÞ

The translation involves extensive use of identities satisfied by Legendre functions.
Again the case l ¼ 0 requires a separate treatment. We obtain

g<0 ¼ −σ
�
ðx0x − 1Þ ln x0 − 1

x0 þ 1
þ 2xþ c

�
; ð11:17aÞ

g>0 ¼ −σ
�
ðx0x − 1Þ ln x − 1

xþ 1
þ 2x0 þ c

�
; ð11:17bÞ

where c is a constant that will be determined presently.
To complete the solution we must impose the constraints contained in Eq. (6.4c). For l ¼ 0 the equation returns

σ

�
c − ln

x0 − 1

x0 þ 1

�
þ 2Tdn ¼ 0; ð11:18Þ

and for l ¼ 1 we get
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σ ln
x0 − 1

x0 þ 1
þ 2Tdn ¼ 0: ð11:19Þ

The second equation determines Tdn, and we recover the
statement of Eq. (11.10). The first equation then implies
that c ¼ 2 ln½ðx0 − 1Þ=ðx0 þ 1Þ�. Making the substitution in
Eq. (11.17), we find that g0 becomes

g<0 ¼ −σ
�
ðx0xþ 1Þ ln x0 − 1

x0 þ 1
þ 2x

�
; ð11:20aÞ

g>0 ¼ −σ
�
ðx0x − 1Þ ln x − 1

xþ 1
þ 2 ln

x0 − 1

x0 þ 1
þ 2x0

�
:

ð11:20bÞ

Differentiation with respect to x0 produces Eqs. (10.8)
and (10.9). For l ≥ 2, Eq. (6.4c) produces an explicit
expression for Gl. There is no need to display this here.
The next order of business is to show that the perturba-

tion belongs to the Weyl class. We compute Ŝl with the
help of Eq. (6.5), and obtain

Ŝ<l ¼σ

�
2Ql−1ðx0ÞPl−1ðxÞþð−1Þl lnx0þ1

x0−1

�
; ð11:21aÞ

Ŝ>l ¼ σ

�
2Pl−1ðx0ÞQl−1ðxÞ þ ln

x − 1

xþ 1

þ ½1þ ð−1Þl� ln x0 þ 1

x0 − 1

�
ð11:21bÞ

after simplification. From this it follows that Ŝ2 ¼ g0 and
Ŝ3 ¼ g1, and as can be seen from Eqs. (11.16) and (11.20),
we also have that Ŝlþ2 − Ŝl ¼ gl. The conditions of

Eqs. (6.12) and (6.13) are satisfied, and this implies that
the perturbation is indeed in the Weyl class.

C. Summed potentials

The potential Uðx; θÞ is obtained by evaluating the sum
of Eq. (3.7) with the uls calculated in the preceding
subsection. For x < x0 we make use of the summation
formula (E15a), and we arrive at

U ¼ −σ lnðDþ x0 − x cos θÞ þU0; ð11:22Þ

where

D ≔ ðx2 − 2x0x cos θ þ x20 − sin2 θÞ1=2 ð11:23Þ

was first introduced in Eq. (10.13), andU0 ≔ σ½1
2
ðx0 þ 1Þ×

lnðx0 þ 1Þ − 1
2
ðx0 − 1Þ lnðx0 − 1Þ − 1þ ln 2� is a constant.

For x > x0 we invoke Eqs. (E1a) and (E15b) instead, and
again land on Eq. (11.22).
As was pointed out in Sec. IX, a constant term U0 in the

potential can always be eliminated with a rescaling of the t
and r coordinates. We exercise this freedom to set U0 ¼ 0
in Eq. (11.22). Another way to achieve this result would
have been to shift u0, as displayed in Eq. (11.13), by the
constant U0.
The potential γðx; θÞ is also obtained from Eq. (3.7), in

which we insert the gls computed previously. For x < x0
we invoke Eq. (E15a) multiplied by x, Eq. (E15b) with x
and y≡ x0 interchanged, and Eq. (E15c). Many terms
cancel out in these sums, and we obtain

γ ¼ σ ln
ðx0 þ 1ÞΦ−

ðx0 − 1ÞΦþ
; ð11:24Þ

where

Φ� ≔ ðx0 � cos θÞðDþ x0 � cos θÞ − ðx0 cos θ � 1Þðx� 1Þ: ð11:25Þ

For x > x0 we use Eq. (E15b) multiplied by x, Eq. (E15a) with x and y interchanged, and Eq. (E15c), also with x and y
interchanged. This time we arrive at

γ ¼ σ ln
ðx0 þ 1Þ2ðx − 1ÞΨ−

ðx0 − 1Þ2ðxþ 1ÞΨþ
; ð11:26Þ

where

Ψ� ≔ ðx� cos θÞðDþ x� cos θÞ − ðx0 � 1Þðx cos θ � 1Þ: ð11:27Þ

The identities

ΦþΨ− ¼ ðx0 − 1Þðxþ 1Þð1 − cos θÞϒ; Φ−Ψþ ¼ ðx0 þ 1Þðx − 1Þð1 − cos θÞϒ; ð11:28Þ

with
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ϒ ≔ D2 þ ðxþ yÞDþ ðxy − cos θÞð1þ cos θÞ; ð11:29Þ

guarantee that Eqs. (11.24) and (11.26) are equivalent. The expression of Eq. (11.24) is simpler, and unlike Eq. (11.26), it
does not feature an apparent singularity at the event horizon, situated at x ¼ 1.
The potentials behave as

Uðx ≫ 1Þ ∼ −σ
�
ln½xð1 − cos θÞ� þ x0

x
þOðx−2Þ

�
; γðx ≫ 1Þ ∼ 2σ

�
ln
x0 þ 1

x0 − 1
−
1þ cos θ

x
þOðx−2Þ

�
; ð11:30Þ

when x ≔ r=M − 1 is large. As expected for an infinite line source, U diverges logarithmically at large distances; the
spacetime is not asymptotically flat. At the event horizon the potentials become

Uðx ¼ 1Þ ¼ −σ ln½2ðx0 − cos θÞ�; γðx ¼ 1Þ ¼ 2σ ln
x0 − cos θ
x0 − 1

: ð11:31Þ

We also find that U diverges logarithmically when evaluated on the massive string (on the upper axis, with x > x0), but
that it is bounded everywhere else on the axis. The calculation of γ on the upper axis is complicated by the fact that when
x > x0, both Φ− and Φþ go to zero when θ ¼ 0; it is therefore necessary to take a limit θ → 0. We have that

Φ− ∼
ðx0 þ 1Þðx − 1Þ2

2ðx − x0Þ
θ2; Φþ ∼

ðx0 − 1Þðxþ 1Þ2
2ðx − x0Þ

θ2; ð11:32Þ

and we arrive at

γðx > x0; θ → 0Þ ¼ 2σ ln
ðx0 þ 1Þðx − 1Þ
ðx0 þ 1Þðxþ 1Þ : ð11:33Þ

By virtue of Eq. (11.9), this implies that γ ¼ 4Tup on this portion of the upper axis. Below x ¼ x0 the calculation is
straightforward, and we obtain

γðx < x0; θ ¼ 0Þ ¼ 0: ð11:34Þ

On the lower axis the calculation is equally straightforward, and we obtain

γðθ ¼ πÞ ¼ 2σ ln
x0 þ 1

x0 − 1
: ð11:35Þ

According to Eq. (11.10), we have that γ ¼ 4Tdn everywhere on the lower axis. It is a remarkable fact that the value of γ on
the upper and lower axis can be linked to the string tension, even when the string is massive and the tension is not constant.
This result was previously announced in Eq. (1.5).

D. Complete potentials

To conclude, we recall that the potentialsU and γ obtained here are those of the “difference strings” introduced in Sec. XI A.
The solution to the (particleþmassive string) problem is then given by the sum of these potentials and those computed in
Sec. X. The complete potentials are

Ucomplete ¼
k
D
− σ lnðDþ x0 − x cos θÞ ð11:36Þ

and

γcomplete ¼
2k

x20 − 1

�
x − x0 cos θ

D
þ 1

�
þ σ ln

ðx0 þ 1ÞΦ−

ðx0 − 1ÞΦþ
: ð11:37Þ

We recall that x ≔ r=M − 1, x0 ≔ r0=M − 1,
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k ≔
m
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 − 1

x0 þ 1

s
; σ ≔ μmassive

up − Tmassive
up ¼ constant;

ð11:38Þ

and that

D ≔ ðx2 − 2x0x cos θ þ x20 − sin2 θÞ1=2: ð11:39Þ

According to our previous results, we have that

γaxiscomplete ¼

8>><
>>:

4Tmassive
up upper axis; x > x0

0 upper axis; x < x0
4Tmassless

dn lower axis

; ð11:40Þ

where

Tmassive
up ¼ k

x20 − 1
þ 1

2
σ

�
ln
x − 1

xþ 1
þ ln

x0 þ 1

x0 − 1

�
ð11:41Þ

is the tension in themassive string holding the particle, while

Tmassless
dn ¼ k

x20 − 1
þ 1

2
σ ln

x0 þ 1

x0 − 1
ð11:42Þ

is the tension in the massless string holding the black hole.

E. Black hole properties and first law

Our discussion here parallels the one of Sec. X C. The
starting points are the same: the metric of Eq. (3.1), the
Komar mass of Eqs. (10.18) and (10.19), and the black hole
quantities of Eqs. (10.22)–(10.25). The difference is that we
now work with the potentials of Eqs. (11.36) and (11.37).
The Komar mass for a large 2-surface of constant t and r

is now given by

MKðrÞ ¼ σrþM þ kM − σMðx0 þ 1Þ þOðr−1Þ:
ð11:43Þ

This diverges in the limit r → ∞, as should be expected for
an infinite massive string. The finite piece of the Komar
mass, M þ kM − σMðx0 þ 1Þ, provides a plausible candi-
date for a total massMtot that could be implicated in the first
law. As we shall see, however, this candidate will even-
tually be rejected.
The horizon quantity defined in Eq. (10.22) is now

given by

β ¼ 1þ 2k
x0 − 1

− 2σ ln½2ðx0 − 1Þ�; ð11:44Þ

it is perturbative in both m (which is hidden in k) and σ.
This is inserted within Eqs. (10.23) and (10.24) to obtain
the area and surface gravity of the perturbed black hole.
We wish to generalize the first law of Eq. (10.28) to the

case of a massive string. To the extent that a “total mass”
can be defined, we expect that it should be generalized to

Mtot ¼ M þ kM þ σEðM; x0Þ ð11:45Þ

to account for σ, the second perturbation parameter. The
quantity EðM; x0Þ is an unknown function of M and x0; it
cannot depend onm because the total mass should be of the
first order in both m and σ. For thermodynamic variables
external to the black hole we choose σ and

T∞ ≔
k

x20 − 1
þ 1

2
σ ln

x0 þ 1

x0 − 1
; ð11:46Þ

the tension measured in either string at infinity.
We expect the first law to take the new form

dMtot ¼
κ

8π
dA − λdT∞ þ ωdσ þ zdm; ð11:47Þ

which expresses the fact that Mtot can be viewed as a
function of A, T∞, σ, and m, instead of as a function of M,
m, σ, and x0. Because dT∞ and dm are perturbative
quantities, the thermodynamic length λ and the redshift
factor z will remain unchanged from Eqs. (10.29) and
(10.30). We must then verify that the coefficient in front of
dA remains κ=ð8πÞ, discover the identity of EðM; x0Þ, and
obtain an expression for ω.
For the moment we keep κ unrelated to Eq. (10.24); we

view it as an unknown coefficient in front of dA, and we
write it as ð4MÞ−1ð1þ kκ1 þ σκ2Þ, with κ1 and κ2 functions
of M and x0. We write the candidate first law as

0 ¼ dMtot −
κ

8π
dAþ λdT∞ − ωdσ − zdm; ð11:48Þ

and because each quantity is a function ofM, m, σ, and x0,
the expression becomes

0 ¼ P1dM þ P2dmþ P3dσ þ P4dx0 ð11:49Þ

for some functionsPn;P1 andP4 contain background terms
as well as terms linear in bothm and σ;P2 andP3 have only
background terms. BecauseM,m, σ, and x0 are independent
parameters, each Pn must vanish separately. The require-
ment that P1 ¼ 0 implies that κ1 ¼ −2=ðx0 − 1Þ and κ2 ¼
2 ln½2ðx0 − 1Þ� − ∂E=∂M; these expressions agree with κ ¼
ð4MβÞ−1 provided that E is independent ofM. We find that
P2 ¼ 0 is automatically satisfied, and P4 ¼ 0 implies that
∂E=∂x0 ¼ 0. Finally, we find that P3 ¼ 0 returns
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ω ¼ M

�
ln 2þ 1

2
ðx0 þ 1Þ lnðx0 þ 1Þ − 1

2
ðx0 − 1Þ lnðx0 − 1Þ

�
− EðMÞ: ð11:50Þ

The contribution σE to the totalmassmust be independent of x0, and this rules out the candidateE ¼ −Mðx0 þ 1Þ delivered by
the finite piece of theKomarmass. This analysis permits the existence of a contribution of the form σEðMÞ to the totalmass, but
it does not disclose its identity.
The simplest assignment is EðMÞ ¼ 0. With this choice, κ reacquires its meaning as the black hole’s surface gravity, and

ω becomes simply

ω ¼ M

�
ln 2þ 1

2
ðx0 þ 1Þ lnðx0 þ 1Þ − 1

2
ðx0 − 1Þ lnðx0 − 1Þ

�
: ð11:51Þ

With this, and with Eqs. (10.29) and (10.30) for λ and z, we
have established that Eq. (11.47) is a valid formulation of
the first law. It is puzzling that the total mass Mtot ¼
M þ kM identified by the law makes no reference to the
massive string. In addition, the physical interpretation of
the new thermodynamic length ω remains unclear. For
these reasons, the first law of Eq. (11.47) should be taken
with a grain of salt. It is a valid mathematical identity
implicating various quantities associated with the space-
time, but it is lacking in terms of a compelling physical
interpretation.

XII. APPLICATION: PARTICLE AND GENERIC
STRING IN WEAK FIELD

In the previous sections we formulated string models that
were particularly simple, so as to facilitate an exact
integration of the perturbation equations. In this section
we go beyond the simple and examine models of massive
strings that might be more realistic. Unfortunately, this
enhanced realism comes at the price of a lost ability to
integrate the equations exactly. We shall have to resort to
finding approximate solutions to the perturbation equa-
tions, taking the particle and string to lie in the weak-field
region of the Schwarzschild spacetime.

A. String models

The intrinsic energy-momentum tensor tab of a massive
string was written down in Eq. (5.4), and expressed in terms
of an energy density μ, tension T, and velocity field ua. To
these variables we add a rest-mass density ρ and a density
of internal energy ϵ. The new and old variables are linked
by μ ¼ ρþ ϵ and the first law of thermodynamics,
dðϵ=ρÞ ¼ Tdð1=ρÞ. Assuming that the string is subjected
to the continuity equation DaðρuaÞ ¼ 0, with Da denoting
the covariant-derivative operator compatible with the world
sheet metric γab, the first law follows from the conservation
equation uaDbtab ¼ 0. We take the string to possess an
equation of state of the form T ¼ TðρÞ.
We focus our attention on the upper string, placed at

θ ¼ 0 and extending from particle to infinity. This shall
now be a realistic string described by the variables

introduced in the preceding paragraph—we omit the label
“up” on these variables. We continue to take the lower
string, situated at θ ¼ π and extending from black hole to
infinity, to be a massless string with equal (and constant)
energy density μdn and tension Tdn. To prevent the black
hole from being accelerated in the perturbed spacetime, we
continue to set Tdn ¼ T∞ ≔ Tðr ¼ ∞Þ.
As was discussed in Sec. V, the energy density μ and

tension T of the upper string are linked by the conservation
equation [refer back to Eqs. (5.9) and (5.10)]

dT
dx

¼ μ − T
x2 − 1

; T0 ≔ Tðx ¼ x0Þ ¼
k

x20 − 1
;

k ≔
m
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 − 1

x0 þ 1

s
; ð12:1Þ

where x ≔ r=M − 1 and x0 ¼ r0=M − 1. We recall that the
particle has a mass m, and that it is situated at r ¼ r0 (or
x ¼ x0) on the upper axis of the Schwarzschild spacetime.
As a first example of a realistic string model, we consider

a polytropic string with equation of state

T ¼ Kρ1þ1=n; ð12:2Þ

where K and n are constants. The first law of thermody-
namics produces ϵ ¼ −nT, and we have that μ ¼ ρ − nT.
To integrate Eq. (12.1) we introduce the Lane-Emden
variable ϑ defined by

ρ ¼ ρ0ϑ
n; ð12:3Þ

where ρ0 is the density at x ¼ x0. The conservation
equation becomes

ðnþ 1Þbdϑ
dx

¼ 1− ðnþ 1Þbϑ
x2 − 1

; ϑðx¼ x0Þ ¼ 1; ð12:4Þ

where b ≔ T0=ρ0. The solution is
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ϑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 − 1

p
x0 þ 1

xþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
�
1 −

1

ðnþ 1Þb
�
þ 1

ðnþ 1Þb ; ð12:5Þ

and the profiles μðxÞ, TðxÞ are determined. In the weak-field regime, in which x0 ≫ 1 and x ≫ 1, this reduces to

ϑ ¼
�
1 −

1

ðnþ 1Þb
��

1þ
�
1

x
−

1

x0

�
þ 1

2

�
1

x
−

1

x0

�
2

þ � � �
�
þ 1

ðnþ 1Þb : ð12:6Þ

It follows that in this regime, μ − T admits an expansion in powers of ðx−1 − x−10 Þ.
As a second example of a realistic string model, we consider the linear equation of state

T ¼ Kρ; ð12:7Þ

where K is a constant. In this case the first law returns ϵ ¼ −Kρ ln ρ, and we have that μ ¼ ρð1 − K ln ρÞ. To integrate
Eq. (12.1) we write

ρ ¼ ρ0eψ ; ð12:8Þ

where ρ0 is again the density at x ¼ x0. The equation becomes

K
dψ
dx

¼ A − Kψ

x2 − 1
; ψðx ¼ x0Þ ¼ 0; ð12:9Þ

where A ≔ 1 − Kð1þ ln ρ0Þ. The solution is

ψ ¼ A
K

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 − 1

p
x0 þ 1

xþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
�
; ð12:10Þ

and it becomes

ψ ¼ −
A
K

��
1

x
−

1

x0

�
þ 1

2

�
1

x
−

1

x0

�
2

þ � � �
�

ð12:11Þ

in the weak-field regime. Again we find that μ − T admits an expansion in powers of ðx−1 − x−10 Þ.

B. Generic string

Summarizing our results from this (albeit limited) survey of string models, we take a generic string to have an energy
density μ and tension T related by

μ − T ¼ σ − C1

�
1

x
−

1

x0

�
þ C2

�
1

x
−

1

x0

�
2

þ � � � ð12:12Þ

in the weak-field region of the Schwarzschild spacetime. Here σ, C1, and C2 are constants determined by the string’s
equation of state. For this generic string, Eq. (12.1) implies

T ¼ T0 − σ

��
1

x
−

1

x0

�
þ 1

3

�
1

x3
−

1

x30

��
þ 1

2
C1

�
1

x
−

1

x0

�
2

−
1

3
C2

�
1

x
−

1

x0

�
3

þ � � � : ð12:13Þ

The tension at x ¼ ∞ is then

T∞ ¼ T0 þ σ

�
1

x0
þ 1

3x30

�
þ C1

1

2x20
þ C2

1

3x30
þ � � � : ð12:14Þ

This, we recall, shall be matched to the tension in the lower, massless string.
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As we did in Sec. XI A, we decompose the (particleþmassive string) system into a superposition of
(particleþmassless string) and (difference string) systems. The “difference” string consists of our actual massive string
from which we subtract a massless string with tension T0, so that

μdiff − Tdiff ¼ σ − C1

�
1

x
−

1

x0

�
þ C2

�
1

x
−

1

x0

�
2

þ � � � ; ð12:15aÞ

Tdiff ¼ −σ
��

1

x
−

1

x0

�
þ 1

3

�
1

x3
−

1

x30

��
þ 1

2
C1

�
1

x
−

1

x0

�
2

−
1

3
C2

�
1

x
−

1

x0

�
3

þ � � � ; ð12:15bÞ

Tdiff
∞ ¼ σ

�
1

x0
þ 1

3x30

�
þ C1

1

2x20
þ C2

1

3x30
þ � � � : ð12:15cÞ

The complete solution to the (particleþmassive string) problem is then the solution to the (particleþmassless string)
problem, as worked out in Sec. X, added to the solution to the (difference string) problem, to be obtained below.
We extend the superposition principle even further, and decompose the (difference string) problem into the three separate

problems of a σ string, a C1 string, and a C2 string. The metric perturbation produced by a σ string was already obtained in
Sec. XI, and there is no need to duplicate this effort here. The previous work, however, was carried out in the exact
Schwarzschild background, without the assumption that x and x0 are large. To adapt it to the current context, we shall have
to specialize all expressions to the weak-field regime.

C. Integration of the perturbation equations

The equations to be integrated were presented in Sec. VI. The main two are

ðx2 − 1Þu00l þ 2xu0l − lðlþ 1Þul ¼ −ð2lþ 1ÞW; ð12:16aÞ

ðx2 − 1Þg00l − lðlþ 1Þgl ¼ 4u0l; ð12:16bÞ

where

W ≔
�
σ − C1

�
1

x
−

1

x0

�
þ C2

�
1

x
−

1

x0

�
2
�
Θðx − x0Þ: ð12:17Þ

As usual, these equations are accompanied by Eqs. (6.4c) and (6.5), which provide constraints when l ¼ 0, 1, and
determine Gl when l ≥ 2.
We saw back in Sec. VI that particular solutions to these equations are given by

upartl ¼ ð2lþ 1Þ
�
QlðxÞ

Z
x

x1

Plðx0ÞWðx0Þdx0 þ PlðxÞ
Z

∞

x
Qlðx0ÞWðx0Þdx0

�
; ð12:18aÞ

gpartl ¼ 4ðx2 − 1Þ
lðlþ 1Þ

�
Q0

lðxÞ
Z

x

x1

P0
lðx0Þu0lðx0Þdx0 þ P0

lðxÞ
Z

∞

x
Q0

lðx0Þu0lðx0Þdx0
�
; ð12:18bÞ

where x1 is any constant. (The expression for g
part
l does not apply when l ¼ 0.) Because we are interested in the weak-field

regime, for which x ≫ 1, we take x1 to be the minimum value of x at which the solution is to be evaluated; we have that
1 ≪ x1 < x0. We observe that in the integrals involving Plðx0Þ, the contributions from the boundary at x ¼ x1 give rise to
terms in upartl and gpartl that are proportional to QlðxÞ or its derivative, and that such terms would fail to be smooth at x ¼ 1;
we eliminate these boundary terms to obtain the correct physical solution to the perturbation equations. Regularity at x ¼ ∞
is ensured by setting to infinity the upper bound of the integrals involving Qlðx0Þ.
All integrals are defined in the large-x0 regime, and in these we may substitute the asymptotic behaviors1

PlðxÞ ¼
ð2l − 1Þ!!

l!
xl
�
1 −

1

2

ðl − 1Þl
2lþ 1

1

x2
þ � � �

�
; ð12:19aÞ

1Refer to Sec. 14.8 of Ref. [44] for the numerical prefactors. The subleading terms are derived from Legendre’s equation.
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QlðxÞ ¼
l!

ð2lþ 1Þ!!
1

xlþ1

�
1þ 1

2

ðlþ 1Þðlþ 2Þ
2lþ 3

1

x2
þ � � �

�
ð12:19bÞ

for the Legendre functions. All subsequent calculations are
then straightforward. These computations, however, can be
further simplified by exploiting the fact that the expression
forW is truncated beyond order ε2, where ε ≔ Oðx−1; x−10 Þ.
Consider, for example, the piece of the solution propor-
tional to C1. This piece originates from the C1 term in W,
which occurs at order ε. The leading contributions to Pl
and Ql give rise to terms that are also of order ε in the
solution, while the subleading contributions would produce
terms of order ε3; these are comparable to terms that would
arise from neglected contributions of order ε3 to W, and
they may therefore be neglected as well. We conclude that
the C1 piece of the solution can be constructed solely from
the leading terms in the Legendre functions. The same
conclusion applies to the C2 piece, which is of order ε2. The
conclusion, however, does not apply to the σ piece, which
leads at order ε0 and comes with corrections of order ε2; for
this we do require the subleading terms in the Legendre
functions. But as was pointed out previously, this piece of
the solution was already obtained in Sec. XI, and it does not
need to be calculated again.

The upshot is that the computation of ul and gl for the
C1 and C2 strings require only the leading contributions to
the Legendre functions. This observation is equivalent to
the statement that x2 − 1 can be approximated by x2 in the
differential equations, which become

x2u00l þ 2xu0l − lðlþ 1Þul ¼ −ð2lþ 1ÞW; ð12:20aÞ

x2g00l − lðlþ 1Þgl ¼ 4u0l: ð12:20bÞ

Integration is then a very simple matter. In this simplified
setting, regularity at the event horizon (x ¼ 1) is replaced
by regularity at x ¼ 0; the solutions must still be well
behaved at x ¼ ∞.

D. C1 string

After imposing the boundary conditions at x ¼ 0 and
x ¼ ∞, as well as continuity and differentiability at x ¼ x0,
we find that the solutions to Eqs. (12.20) for the C1 string
are

u<l ¼ C1

1

lðlþ 1Þ
xl

xlþ1
0

; ð12:21aÞ

u>l ¼ C1

�
1

lðlþ 1Þ
xl0
xlþ1

−
2lþ 1

lðlþ 1Þ
�
1

x
−

1

x0

��
ð12:21bÞ

and

g<l ¼ C1

�
2

ðlþ 3Þð2lþ 3Þ
xlþ1

xlþ3
0

−
2

ðlþ 1Þð2l − 1Þ
xl−1

xlþ1
0

�
; ð12:22aÞ

g>l ¼ C1

�
−

2

lð2lþ 3Þ
xl0
xlþ2

þ 2

ðl − 2Þð2l − 1Þ
xl−20

xl
−

4ð2lþ 1Þ
ðl − 2Þlðlþ 1Þðlþ 3Þ

1

x2

�
: ð12:22bÞ

We recall that u<l and g<l apply when x < x0, while u>l and
g>l apply when x > x0. The special cases are

u<0 ¼ 0; ð12:23aÞ

u>0 ¼ C1

�
−2

�
1

x
−

1

x0

�
−
�
1

x
þ 1

x0

�
lnðx=x0Þ

�
; ð12:23bÞ

g<0 ¼ C1

�
2x
9x30

þ 1

x20

�
; ð12:23cÞ

g>0 ¼ C1

�
11

9x2
−

2

x0x
þ 2

x20
þ 2

3x2
lnðx=x0Þ

�
; ð12:23dÞ

and

g>2 ¼ C1

�
−

x20
7x4

−
1

45x2
−

2

3x2
lnðx=x0Þ

�
: ð12:24Þ

The integration constant in g0 is determined by imposing
the constraints of Eqs. (6.4c) and (6.5) when l ¼ 0 and
l ¼ 1. The constraints also confirm that Tdn ¼ T∞, as
given by the C1 term in Eq. (12.15). Our results imply that
the recursion relation of Eq. (6.12) is satisfied, together
with the initial conditions of Eq. (6.13). The perturbation
created by the C1 string therefore belongs to the Weyl class
of Sec. III.
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The potentials

U ¼
X∞
l¼0

ulPlðcos θÞ; γ ¼
X∞
l¼0

glPlðcos θÞ ð12:25Þ

are evaluated with the help of summation formulas developed in Appendix E. To obtain U when x < x0 we make use of
Eq. (E42a) with y≡ x0. When x > x0 instead, we invoke Eq. (E42a) again, but with x and y interchanged, and complete the
task with Eq. (E1a). In either case we find that

U½C1� ¼ C1

�
1

x
½ln x0 þ lnð1 − cos θÞ − lnðEþ x − x0 cos θÞ� þ

1

x0
½ln 2þ ln x0 − lnðEþ x0 − x cos θÞ�

�
; ð12:26Þ

where

E ≔ ðx2 − 2x0x cos θ þ x20Þ1=2 ð12:27Þ

is the Euclidean distance between a point at ðx; θÞ and the particle at ðx0; 0Þ. This expression for U½C1� reflects a choice of
integration constant; this choice can always be altered by adding another constant U0 to the potential.
We proceed as follows to find γ. When x < x0 we write

2

ðlþ 3Þð2lþ 3Þ ¼
4

3

1

2lþ 3
−
2

3

1

lþ 3
;

2

ðlþ 1Þð2l − 1Þ ¼
4

3

1

2l − 1
−
2

3

1

lþ 1
ð12:28Þ

and make use of Eqs. (E42b) and (E42c). We obtain

γ½C1� ¼ C1

�
sin2θ
x2

½lnðEþ x − x0 cos θÞ − ln x0 − lnð1 − cos θÞ� þ x − x0 cos θ
x20x

2
Eþ 1

x20
−

2

x0x
þ cos θ

x2

�
: ð12:29Þ

When x > x0 we write

2

lð2lþ 3Þ ¼ −
4

3

1

2lþ 3
þ 2

3

1

l
;

2

ðl − 2Þð2l − 1Þ ¼ −
4

3

1

2l − 1
þ 2

3

1

l − 2
ð12:30Þ

and invoke Eqs. (E1c), (E44a), and (E44b); we obtain the same expression for γ½C1�.

E. C2 string

The solutions to Eqs. (12.20) for the C2 string are

u<l ¼ C2

2

lðlþ 1Þðlþ 2Þ
xl

xlþ2
0

; ð12:31aÞ

u>l ¼ C2

�
−

2

ðl − 1Þlðlþ 1Þ
xl−10

xlþ1
þ 2lþ 1

ðl − 1Þðlþ 2Þ
1

x2
þ 2lþ 1

lðlþ 1Þ
�
1

x20
−

2

x0x

��
; ð12:31bÞ

and

g<l ¼ C2

�
4

ðlþ 3Þðlþ 4ÞÞð2lþ 3Þ
xlþ1

xlþ4
0

−
4

ðlþ 1Þðlþ 2Þð2l − 1Þ
xl−1

xlþ2
0

�
; ð12:32aÞ

g>l ¼ C2

�
4

ðl − 1Þlð2lþ 3Þ
xl−10

xlþ2
−

4

ðl − 3Þðl − 2Þð2l − 1Þ
xl−30

xl

−
8ð2lþ 1Þ

ðl − 2Þlðlþ 1Þðlþ 3Þ
1

x0x2
þ 8ð2lþ 1Þ
ðl − 3Þðl − 1Þðlþ 2Þðlþ 4Þ

1

x3

�
: ð12:32bÞ
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The exceptional cases are

u<0 ¼ 0; ð12:33aÞ

u>0 ¼ C2 −
1

2x2
−

2

x0x
þ 5

2x20
−
�

2

x0x
þ 1

x20

�
lnðx=x0Þ; ð12:33bÞ

g<0 ¼ C2

�
x
9x40

þ 2

3x30

�
; ð12:33cÞ

g>0 ¼ C2

�
1

3x3
þ 10

9x0x2
−

2

x20x
þ 4

3x30
þ 4

3x0x2
lnðx=x0Þ

�
; ð12:33dÞ

and

u>1 ¼ C2

�
11

6x2
−

3

x0x
þ 3

2x20
þ 1

x2
lnðx=x0Þ

�
; ð12:34aÞ

g>1 ¼ C2

�
−

122

75x3
þ 3

x0x2
−

2

x20x
−

4

5x3
lnðx=x0Þ

�
; ð12:34bÞ

g>2 ¼ C2

�
2x0
7x4

−
5

3x3
þ 58

45x0x2
−

4

3x0x2
lnðx=x0Þ

�
; ð12:34cÞ

g>3 ¼ C2

�
2x20
27x5

þ 118

175x3
−

7

9x0x2
þ 4

5x3
lnðx=x0Þ

�
: ð12:34dÞ

Equations (6.4c) and (6.5), evaluated with l ¼ 0 and l ¼ 1, determine the integration constant in g0 and confirm that
Tdn ¼ T∞, as given by the C2-term in Eq. (12.15). Our results imply that the recursion relation of Eq. (6.12) is satisfied,
together with the initial conditions of Eq. (6.13). The perturbation created by the C2 string also belongs to the Weyl class.
Because all pieces of the massive string produce a perturbation in the Weyl class, the superposition principle guarantees that
the perturbation created by the entire system belongs to the Weyl class. The metric of the (particleþmassive string) system
can therefore be put in the form of Eq. (3.1).
The potential U is evaluated as follows. When x < x0 we invoke Eq. (E42d). When x > x0 instead, we make use of

Eqs. (E1a)–(E44c). In both cases we obtain

U½C2� ¼ C2

��
2

x0x
−
cos θ
x2

�
½ln x0 þ lnð1 − cos θÞ − lnðEþ x − x0 cos θÞ�

þ 1

x20
½ln 2þ ln x0 − lnðEþ x0 − x cos θÞ� þ E

x0x2
−

1

x2
þ 3

2x20

�
; ð12:35Þ

where E is still given by Eq. (12.27). Again this expression reflects a choice of integration constant, which can be altered at
will by adding any constant U0 to the potential.
For γ we proceed in the following way. When x < x0 we write

4

ðlþ 3Þðlþ 4Þð2lþ 3Þ ¼ −
4

3

1

lþ 3
þ 4

5

1

lþ 4
þ 16

15

1

2lþ 3
; ð12:36aÞ

4

ðlþ 1Þðlþ 2Þð2l − 1Þ ¼ −
4

3

1

lþ 1
þ 4

5

1

lþ 2
þ 16

15

1

2l − 1
; ð12:36bÞ

and import Eqs. (E42b), (E42c), and (E42e). When x > x0 we write
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4

ðl − 1Þlð2lþ 3Þ ¼
4

5

1

l − 1
−
4

3

1

l
þ 16

15

1

2lþ 3
; ð12:37aÞ

4

ðl − 3Þðl − 2Þð2l − 1Þ ¼
4

5

1

l − 3
−
4

3

1

l − 2
þ 16

15

1

2l − 1
; ð12:37bÞ

and make use of Eqs. (E1c), (E1d), (E44a), (E44b), and (E44d). The end result in either case is

γ½C2� ¼ C2

�
2ðx − x0 cos θÞsin2θ

x0x3
½lnðEþ x − x0 cos θÞ − lnð1 − cos θÞ − lnðx0Þ�

þ
�
−

4

3x0x3
þ 2cos2θ

x0x3
−
4 cos θ
3x20x

2
þ 2

3x30x

�
Eþ 4

3x3
−
2cos2θ
x3

þ 2 cos θ
x0x2

−
2

x20x
þ 2

3x30

�
: ð12:38Þ

F. Other contributions to the potentials

To the potentials of the preceding subsections we must add those of the σ-string, which were obtained in Sec. XI. The
potentials, however, must be expanded in powers of x−1 and x−10 to reflect the weak-field approximation exploited in this
section. To the required order we obtain

U½σ� ¼ σ

�
− lnðEþ x0 − x cos θÞ þ sin2 θ

2EðEþ x0 − x cos θÞ
�

ð12:39Þ

from Eq. (11.22), and

γ½σ� ¼ σ

�
2ð1 − cos θÞðEþ xþ x0Þ
x0ðEþ x0 − x cos θÞ þ ð1 − cos θÞ2Ξ

3x30EðEþ x0 − x cos θÞ3
�

ð12:40Þ

from Eq. (11.24), where

Ξ ≔ 2ð1 − cos θÞE4 þ 2ð1 − cos θÞ½xþ x0ð3þ 2 cos θÞ�E3 þ 3x0 sin2 θ½2xþ x0ð2þ cos θÞ�E2

þ x20ð1þ cos θÞ½xð7þ cos θ − 8 cos2 θÞ þ 2x0ð1þ 2 cos θÞ�Eþ 3x30ð1þ cos θÞ2½xð1 − 2 cos2 θÞ þ x0 cos θ�: ð12:41Þ

The potentials obtained thus far make up the solution to the (difference string) problem. The final solution to the
(particleþmassive string) problem is then the sum of these with those of the (particleþmassless string) problem, which
were obtained in Sec. X. After an expansion in powers of x−1 and x−10 , we find that

U½k� ¼ k

�
1

E
þ sin2 θ

2E3

�
ð12:42Þ

from Eq. (10.12), and

γ½k� ¼ k

�
2

x20
þ 2ðx − x0 cos θÞ

x20E
þ 2

x40
þ 2ðx − x0 cos θÞ

x40E
þ ðx − x0 cos θÞ sin2 θ

x20E
3

�
ð12:43Þ

from Eq. (10.15).

G. Complete potentials

The complete potentials for the (particleþmassive string) problem are

U ¼ U½k� þ U½σ� þU½C1� þ U½C2�; ð12:44aÞ

γ ¼ γ½k� þ γ½σ� þ γ½C1� þ γ½C2�; ð12:44bÞ
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whereU½k� is given by Eq. (12.42),U½σ� by Eq. (12.39),U½C1� by Eq. (12.26),U½C2� by Eq. (12.35), and where γ½k� is given
by Eq. (12.43), γ½σ� by Eq. (12.40), γ½C1� by Eq. (12.29), and γ½C2� by Eq. (12.38).
It is instructive to examine the asymptotic behavior of U when x is much larger than x0. The individual contributions are

given by

U½k� ¼ k
x0

��
1þ 1

2
x−2sin2θ

�
uþ cos θu2 −

1

2
ð1 − 3cos2θÞu3 þOðu4Þ

�
; ð12:45aÞ

U½σ� ¼ σ

�
lnu − ln

�
1

2
ð1 − cos θÞ

�
−
�
1þ 1

2
x−2sin2θ

�
u −

1

2
cos θu2 þ 1

6
ð1 − 3cos2θÞu3 þOðu4Þ

�
; ð12:45bÞ

U½C1� ¼
C1

x0

�
ð1þ uÞ lnu − ð1 − uÞ ln

�
1

2
ð1 − cos θÞ

�
− uþ 1

2
cos θu2 −

1

12
ð1 − 3cos2θÞu3 þOðu4Þ

�
; ð12:45cÞ

U½C2� ¼
C2

x20

�
ð1þ 2u − cos θu2Þ lnu − ð1 − 2uþ cos θu2Þ ln

�
1

2
ð1 − cos θÞ

�

þ 3

2
−
1

2
ð2 − cos θÞu2 þ 1

6
ð1 − 3cos2θÞu3 þOðu4Þ

�
; ð12:45dÞ

where u ≔ x0=x. We see that as expected, the particle contributes to U a term that decays as 1=x, while the massive string
contributes terms that diverge logarithmically, both at infinity and on the upper portion of the axis (at θ ¼ 0).
It is also interesting to evaluate γ on the axis. When θ ¼ 0 and x > x0 (upper axis, above the particle) we find that

γðθ ¼ 0; x > x0Þ ¼
4k
x20

�
1þ 1

x20

�
− 4σ

��
1

x
−

1

x0

�
þ 1

3

�
1

x3
−

1

x30

��
þ 2C1

�
1

x
−

1

x0

�
2

−
4

3
C2

�
1

x
−

1

x0

�
3

: ð12:46Þ

When θ ¼ 0 and x < x0 (upper axis, below the particle) we find instead that

γðθ ¼ 0; x < x0Þ ¼ 0: ð12:47Þ

And when θ ¼ π (lower axis), we have that

γðθ ¼ πÞ ¼ 4k
x20

�
1þ 1

x20

�
þ 4σ

�
1

x0
þ 1

3x30

�
þ 2C1

1

x20
þ 4

3
C2

1

x30
: ð12:48Þ

All these results are summarized in the statement

γaxis ¼
8<
:

4TupðxÞ upper axis; x > x0
0 upper axis; x < x0
4Tdn lower axis

; ð12:49Þ

where the varying upper tension TupðxÞ is given by Eq. (12.13), with T0 found in Eq. (12.1) and expanded in powers of x−10 ,
and where the constant lower tension Tdn is given by T∞, as written in Eq. (12.14). This result was previously given a
simplified expression in Eq. (1.5).
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APPENDIX A: SUM OVER TENSIONAL HARMONICS

We provide a derivation of Eq. (3.11), which features an infinite sum over the tensorial harmonics Pl
AB defined

by Eq. (2.3).
We multiply Eq. (3.10) byΩACΩBDPl0

CD sin θ, and integrate with respect to θ, making use of the orthogonality relations of
Eq. (2.5). We obtain
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ðl − 1Þlðlþ 1Þðlþ 2Þ
2lþ 1

Gl ¼ 2
X∞
l0¼0

Jðl;l0Þgl0 ðA1Þ

with

Jðl;l0Þ ≔
Z

π

0

ΩACΩBDehABiPl
CDP

l0 sin θdθ: ðA2Þ

It is understood that l ≥ 2. Working out the integrand and making the change of variable u ¼ cos θ, we have that

Jðl;l0Þ ¼
Z

1

−1
uP0

lPl0du −
1

2
lðlþ 1Þ

Z
1

−1
PlPl0du ¼

Z
1

−1
uP0

lPl0du −
lðlþ 1Þ
2lþ 1

δll0 ; ðA3Þ

where a prime on PlðxÞ indicates differentiation with respect to u. If we apply to this the recursion relation
uP0

l ¼ P0
lþ1 − ðlþ 1ÞPl, then we have that

Jðl;l0Þ ¼ Kðlþ 1;l0Þ − ðlþ 1Þðlþ 2Þ
2lþ 1

δll0 ; ðA4Þ

where

Kðl;l0Þ ≔
Z

1

−1
P0
lPl0du: ðA5Þ

If we apply uP0
l ¼ P0

l−1 þ lPl instead, then we obtain

Jðl;l0Þ ¼ Kðl − 1;l0Þ − ðl − 1Þl
2lþ 1

δll0 : ðA6Þ

The two equivalent expressions for Jðl;l0Þ imply that Kðl;l0Þ satisfies the recursion relation
Kðlþ 1;l0Þ ¼ Kðl − 1;l0Þ þ 2δll0 . Initial values can be computed from the definition. We have that Kð1;l0Þ ¼ 2δ0l0
and Kð2;l0Þ ¼ 2δ1l0 , and the recursion relation gives

Kðlþ 1;l0Þ ¼ 2

�
δ0l0 þ δ2l0 þ � � � þ δll0 l even

δ1l0 þ δ3l0 þ � � � þ δll0 l odd
: ðA7Þ

Making the substitution in Jðl;l0Þ, we find that Eq. (A1) gives

ðl − 1Þlðlþ 1Þðlþ 2Þ
2lþ 1

Gl ¼ −
2ðlþ 1Þðlþ 2Þ

2lþ 1
gl þ 4

�
g0 þ g2 þ � � � þ gl l even

g1 þ g3 þ � � � þ gl l odd
: ðA8Þ

A slight rearrangement turns this into Eq. (3.11).

APPENDIX B: REGULARITY OF THE METRIC PERTURBATION AT r= 2M

We identify the conditions that ensure that a metric perturbation presented in the Weyl gauge is regular (as a tensor field)
at r ¼ 2M.
According to Eqs. (2.2), (3.7), and (4.1), the temporal and radial components of the metric tensor are given by

gtt ¼ −ð1 − 2UÞf; grr ¼ ð1þ 2U þ 2γÞf−1 ðB1Þ

in the Weyl gauge. The angular components are gAB ¼ r2ΩAB þ pAB, and these are regular provided that U and γ both are,
and provided also that the sum over all terms implicating Gl is regular.
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We decompose U and γ according to

U ¼ u0ðrÞ þ Ūðr; θÞ; γ ¼ g0ðrÞ þ γ̄ðr; θÞ; ðB2Þ

where Ū and ḡ are the sums of Eq. (3.7) with the l ¼ 0 terms omitted. The purpose of this is to isolate the spherically
symmetric piece of each perturbation variable. With the understanding that the perturbations are small, we have that

gtt ¼ −ð1 − 2u0Þð1 − 2ŪÞf; grr ¼ ð1þ 2u0 þ 2g0Þð1þ 2Ū þ 2γ̄Þf−1: ðB3Þ

The regularity of the metric perturbation must be ascertained in a coordinate system that is itself regular at r ¼ 2M. For
this purpose we make use of a variant of the Eddington-Finkelstein coordinates ðv; rÞ, with the advanced-time coordinate v
defined by

dv ¼ dtþ ð1þ 2u0 þ g0Þf−1dr: ðB4Þ

A quick computation reveals that the transformation brings the line element to the new form

ds2 ¼ −ð1 − 2u0Þð1 − 2ŪÞfdv2 þ 2ð1þ g0Þð1 − 2ŪÞdvdrþ 2ð2Ū þ γ̄Þf−1dr2 þ � � � ; ðB5Þ

where the ellipsis represents the angular piece of the line element. Regularity at r ¼ 2M requires that u0 and g0 be bounded
there, that Ū be bounded, and that 2Ū þ γ̄ ¼ 0, in order to compensate for the factor of f−1 in front of dr2. These are the
conditions specified at the beginning of Sec. IV.

APPENDIX C: HYPERGEOMETRIC AND LEGENDRE FUNCTIONS

We establish useful relations between hypergeometric functions and Legendre functions. A main resource for this
material is the NIST Handbook of Mathematical Functions [44], hereafter refereed to as “NIST.” We let z ≔ 2M=r and
x ≔ r=M − 1, so that x ¼ 2=z − 1 and z ¼ 2=ðxþ 1Þ. For r ≥ 2M we have that z ≤ 1 and x ≥ 1. It is also useful to note
that 1 − z ¼ ðx − 1Þ=ðxþ 1Þ.
It is easy to verify that the functions

h1 ≔ z−lFð−l;−l;−2l; zÞ; h2 ≔ zlþ1Fðlþ 1;lþ 1; 2lþ 2; zÞ; ðC1Þ

and

h3 ≔ PlðxÞ; h4 ≔ QlðxÞ ðC2Þ

all satisfy the differential equation

r2f
d2h
dr2

þ 2ðr −MÞ dh
dr

− lðlþ 1Þh ¼ 0: ðC3Þ

Because h1 is a terminating polynomial in z, and h3 is a terminating polynomial in x, these functions must be proportional to
each other. In principle, h2 could be a linear superposition of h3 and h4; an examination of many special cases reveals
instead that h2 is simply proportional to h4.
To identify the ratio h1=h3 we examine the z → 0 behavior of h1, which corresponds to the x → ∞ behavior of h3. The

leading-order term in h1 is z−l, and according to [NIST (14.8.12)], the leading-order term in h3 is ½ð2l − 1Þ!!=l!�xl.
Because z ∼ 2=x in this regime, we conclude that

z−lFð−l;−l;−2l; zÞ ¼ ðl!Þ2
ð2lÞ!PlðxÞ: ðC4Þ

To find the ratio h2=h4 we examine the z → 1 behavior of h2, which must match the x → 1 behavior of h4. According to
[NIST (14.7.7)], h4 ∼ −1=2 lnðx − 1Þ, and from [NIST (15.8.10)] we infer that h2 ∼ −½ð2lþ 1Þ!=l!2� lnð1 − zÞ. With
lnð1 − zÞ ∼ lnðx − 1Þ, we have that
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zlþ1Fðlþ 1;lþ 1; 2lþ 2; zÞ ¼ 2ð2lþ 1Þ!
ðl!Þ2 QlðxÞ: ðC5Þ

The identity [NIST (15.5.3)]

z
d
dz

½zaFða; b; c; zÞ� ¼ azaFðaþ 1; b; c; zÞ ðC6Þ

allows us to derive other relations between hypergeometric and Legendre functions; we note that zd=dz ¼ −ðxþ 1Þd=dx.
With a ¼ −l, b ¼ −l, and c ¼ −2l we get

z−lFð−lþ 1;−l;−2l; zÞ ¼ ðl − 1Þ!2
2ð2l − 1Þ! ðxþ 1ÞP0

lðxÞ; ðC7Þ

in which a prime indicates differentiation with respect to x. With a ¼ lþ 1, b ¼ lþ 1, c ¼ 2lþ 2 we get instead

zlþ1Fðlþ 2;lþ 1; 2lþ 2; zÞ ¼ −
2ð2lþ 1Þ!
l!ðlþ 1Þ! ðxþ 1ÞQ0

lðxÞ: ðC8Þ

With a ¼ −lþ 1, b ¼ −l, and c ¼ −2l we obtain

z−lFð−lþ 2;−l;−2l; zÞ ¼ ðl − 2Þ!ðl − 1Þ!
2ð2l − 1Þ! ðxþ 1Þ2P00

lðxÞ: ðC9Þ

And with a ¼ lþ 2, b ¼ lþ 1, c ¼ 2lþ 2 we arrive at

zlþ1Fðlþ 3;lþ 1; 2lþ 2; zÞ ¼ 2ð2lþ 1Þ!
l!ðlþ 2Þ! ðxþ 1Þ2Q00

lðxÞ: ðC10Þ

Another identity [NIST (15.5.5)],

z
d
dz

½zc−að1 − zÞaþb−cFða; b; c; zÞ� ¼ ðc − aÞzc−að1 − zÞaþb−c−1Fða − 1; b; c; zÞ; ðC11Þ

applied with a ¼ −l, b ¼ −l, c ¼ −2l, allows us to deduce that

z−lFð−l − 1;−l;−2l; zÞ ¼ ðl − 1Þ!2
2ð2l − 1Þ! ðx − 1ÞP0

lðxÞ: ðC12Þ

APPENDIX D: INTEGRALS OF PRODUCTS OF LEGENDRE FUNCTIONS

We evaluate indefinite integrals of the form

J½Al; Bl� ≔
Z

A0
lðxÞB0

lðxÞdx; ðD1Þ

in which Al and Bl are any solution to Legendre’s equation (with the same value of l). We note that the integral is
symmetric under an exchange of Al and Bl.
The first step is to integrate by parts, so that the derivative acting on Al is moved to B0

l. We then recall that B2
l ≔

ðx2 − 1ÞB00
l is an associated Legendre function, and write

J ¼ AlB0
l −

Z
AlB2

l

x2 − 1
dx: ðD2Þ

In the second step we invoke the Legendre equation for Al, the associated Legendre equation for B2
l, and deduce the identity
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AlB2
l

x2 − 1
¼ 1

4

d
dx

½ðx2 − 1ÞðAlB20
l − B2

lA
0
lÞ�: ðD3Þ

Integration is now immediate. In the third step we relate B2
l and B20

l to B0
l and Bl by making repeated use of Legendre’s

equation for Bl. After some simplifying algebra we obtain

J ¼ 1

2
lðlþ 1ÞxAlBl −

1

2
ðx2 − 1ÞAlB0

l −
1

4
lðlþ 1Þðx2 − 1ÞW −

1

2
xðx2 − 1ÞA0

lB
0
l þ constant; ðD4Þ

whereW ≔ AlB0
l − A0

lBl is the Wronskian of the two solutions to Legendre’s equation. This, of course, vanishes when Al

and Bl are linearly dependent.
We notice that the symmetry with respect to Al and Bl appears to be lost. In the fourth step we restore it by writing

AlB0
l ¼ 1

2
ðAlB0

l þ A0
lBlÞ þ 1

2
W, and by recalling that ðx2 − 1ÞW is a constant. The final result is

J½Al; Bl� ¼
1

2
lðlþ 1ÞxAlBl −

1

4
ðx2 − 1ÞðAlB0

l þ A0
lBlÞ −

1

2
xðx2 − 1ÞA0

lB
0
l þ constant: ðD5Þ

APPENDIX E: SUMMATION FORMULAS

We establish a number of summation identities that are required in the main text.

1. Functions of cos θ

The first set of identities involves functions of cos θ only. They are

X∞
l¼1

2lþ 1

lðlþ 1ÞPlðcos θÞ ¼ − lnð1 − cos θÞ þ ln 2 − 1; ðE1aÞ

X∞
l¼2

2lþ 1

ðl − 1Þðlþ 2ÞPlðcos θÞ ¼ − cos θ½lnð1 − cos θÞ − ln 2� − 4

3
cos θ −

1

2
; ðE1bÞ

X∞
l¼3

2lþ 1

ðl − 2Þlðlþ 1Þðlþ 3ÞPlðcos θÞ ¼
1

4
sin2 θ½lnð1 − cos θÞ − ln 2� − 2

15
cos2 θ þ 1

8
cos θ þ 11

60
; ðE1cÞ

X∞
l¼4

2lþ 1

ðl − 3Þðl − 1Þðlþ 2Þðlþ 4ÞPlðcos θÞ ¼
1

4
cos θ sin2 θ½lnð1 − cos θÞ − ln 2�

−
71

420
cos3 θ þ 1

16
cos2 θ þ 43

210
cos θ þ 1

48
: ðE1dÞ

If we change the sign in front of cos θ in Eq. (E1a) and exploit the even/odd nature of the Legendre polynomials, we find
that it becomes

X∞
l¼1

2lþ 1

lðlþ 1Þ ð−1Þ
lPlðcos θÞ ¼ − lnð1þ cos θÞ þ ln 2 − 1: ðE2Þ

The derivation of these results is a straightforward application of Legendre series, in which a function CðuÞ is
decomposed as

CðuÞ ¼
X∞
l¼0

clPlðuÞ; ðE3Þ

with coefficients given by
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cl ¼ 1

2
ð2lþ 1Þ

Z
1

−1
CðuÞPlðuÞdu: ðE4Þ

We use the notation u ≔ cos θ.
We begin with Eq. (E1a), and set CðuÞ ¼ lnð1 − uÞ. For l ¼ 0 the integration in Eq. (E4) is immediate, and we obtain

c0 ¼ ln 2 − 1. For l ≥ 1 we make use of Legendre’s equation,

d
du

½ð1 − u2ÞP0
lðuÞ� þ lðlþ 1ÞPlðuÞ ¼ 0; ðE5Þ

to replace PlðuÞwithin the integral; a prime indicates differentiation with respect to u. After integrating by parts and setting
the boundary terms to zero, we find that

cl ¼ −
2lþ 1

2lðlþ 1Þ
Z

1

−1
ð1þ uÞP0

lðuÞdu: ðE6Þ

Another integration by parts returns

cl ¼ −
2lþ 1

2lðlþ 1Þ
�
ð1þ uÞPlðuÞ

				1
−1

−
Z

1

−1
PlðuÞdu

�
: ðE7Þ

The boundary terms evaluate to 2, and the remaining integral vanishes when l ≥ 1. We arrive at

cl ¼ −
2lþ 1

lðlþ 1Þ ; ðE8Þ

in agreement with Eq. (E1a).
We follow the same steps to establish Eq. (E1b). In this case we set CðuÞ ¼ u lnð1 − uÞ, and for l ¼ f0; 1g the

corresponding coefficients are c0 ¼ −1=2 and c1 ¼ ln 2 − 4=3. For l ≥ 2 we obtain

cl ¼ 2lþ 1

2lðlþ 1Þ
Z

1

−1
½ð1 − u2Þ lnð1 − uÞ − uð1þ uÞ�P0

lðuÞdu ðE9Þ

after the first integration by parts. The second one produces

cl ¼ 2lþ 1

2lðlþ 1Þ
�
½ð1 − u2Þ lnð1 − uÞ − uð1þ uÞ�PlðuÞ

				1
−1

þ 2

Z
1

−1
u lnð1 − uÞPlðuÞduþ

Z
1

−1
ð1þ 2uÞPlðuÞdu

�
: ðE10Þ

The boundary terms evaluate to −2, the last integral vanishes when l ≥ 2, and the first integral is proportional to cl. We
arrive at cl ¼ −ð2lþ 1Þ=½ðl − 1Þðlþ 2Þ�, in agreement with Eq. (E1b).
To derive Eq. (E1c) we first set CðuÞ ¼ u2 lnð1 − uÞ and go through the preceding steps to obtain

cl ¼ −
ð2lþ 1Þðl − 1Þðlþ 2Þ
ðl − 2Þlðlþ 1Þðlþ 3Þ ðE11Þ

when l ≥ 3. We next combine this with Eq. (E1a) and get the Legendre series for ð1 − u2Þ lnð1 − uÞ. We arrive at Eq. (E1c)
after calculating the coefficients for the special cases l ¼ f0; 1; 2g.
For Eq. (E1d) we begin with CðuÞ ¼ u3 lnð1 − uÞ, for which we get

cl ¼ −
ð2lþ 1Þðl2 þ l − 8Þ

ðl − 3Þðl − 1Þðlþ 2Þðlþ 4Þ ðE12Þ

when l ≥ 4. Then we combine this with Eq. (E1b) to obtain the Legendre series for uð1 − u2Þ lnð1 − uÞ. The final result
is Eq. (E1d).
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2. Strong-field formulas

We present a derivation of the identities [45]

1

D
¼

X∞
l¼0

ð2lþ 1Þ
�
QlðyÞPlðxÞ
PlðyÞQlðxÞ

�
Plðcos θÞ; ðE13aÞ

xy − cos θ
D

¼
�
x

y

�
− ðx2 − 1Þðy2 − 1Þ

X∞
l¼1

2lþ 1

lðlþ 1Þ
�
Q0

lðyÞP0
lðxÞ

P0
lðyÞQ0

lðxÞ
�
Plðcos θÞ; ðE13bÞ

where

D ≔ ðx2 − 2xy cos θ þ y2 − sin2 θÞ1=2: ðE14Þ

In these equations, the upper row refers to the case x < y, while the lower row refers to x > y. We also establish that

X∞
l¼1

2lþ 1

lðlþ 1Þ ðy
2 − 1ÞQ0

lðyÞPlðxÞPlðcos θÞ ¼ lnðDþ y − x cos θÞ þ 1

2
ðy − 1Þ lnðy − 1Þ − 1

2
ðyþ 1Þ lnðyþ 1Þ

þ 1 − ln 2 ðx < yÞ; ðE15aÞ

X∞
l¼1

2lþ 1

lðlþ 1Þ ðy
2 − 1ÞP0

lðyÞQlðxÞPlðcos θÞ ¼ lnðDþ y − x cos θÞ þ 1

2
ðy − 1Þ lnðx − 1Þ − 1

2
ðyþ 1Þ lnðxþ 1Þ

− lnð1 − cos θÞ ðx > yÞ; ðE15bÞ

X∞
l¼1

2lþ 1

½lðlþ 1Þ�2 ðy
2 − 1ÞQ0

lðyÞðx2 − 1ÞP0
lðxÞPlðcos θÞ ¼

1

2
ðxy − x − yÞ lnðy − 1Þ − 1

2
ðxyþ xþ yÞ lnðyþ 1Þ

− y lnð1 − cos θÞ − x ln 2þ x lnðDþ y − x cos θÞ þ y lnðDþ x − y cos θÞ þ 1

2
ln
Φþ
Φ−

ðx < yÞ; ðE15cÞ

where

Φ� ≔ ðy� cos θÞðDþ y� cos θÞ − ðy cos θ � 1Þðx� 1Þ: ðE16Þ

To obtain Eq. (E13a) we rely on the fact that Gðr; r0Þ ¼ jr − r0j−1 is a Green’s function for Poisson’s equation, so that

∇2Gðr; r0Þ ¼ −4πδðr − r0Þ: ðE17Þ

Here, the position vectors r and r0 are defined in a flat, three-dimensional space, and jr − r0j is the Euclidean distance
between points at r and r0. The strategy is to express Green’s equation in elliptical coordinates ðs; θ;ϕÞ, defined in terms of
Cartesian coordinates ðX; Y; ZÞ by

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
sin θ cosϕ; Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
sin θ sinϕ; Z ¼ s cos θ; ðE18Þ

and to represent G as a sum over Legendre polynomials. The sum will then be identified with jr − r0j−1, also expressed in
elliptical coordinates.
The metric of flat space is given by

ds2 ¼ s2 − cos2 θ
s2 − 1

ds2 þ ðs2 − cos2 θÞdθ2 þ ðs2 − 1Þ sin2 θdϕ2 ðE19Þ

in elliptical coordinates. We have that
ffiffiffi
g

p ¼ ðs2 − cos2 θÞ sin θ, and for any function ψðs; θÞ, the action of the Laplacian
operator is given by
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∇2ψ ¼ 1

s2 − cos2θ

�
∂s½ðs2 − 1Þ∂sψ � þ

1

sin θ
∂θ½sin θ∂θψ �

�
: ðE20Þ

The point at r is given the coordinates ðs; θ;ϕÞ, and the point at r0 is placed on the polar axis, so that s0 ¼ s0 and θ0 ¼ 0. The
ϕ average of δðr − r0Þ is given by

hδðr − r0Þi ¼ 1

2πðs2 − cos2 θÞ δðs − s0Þδðcos θ − 1Þ; ðE21Þ

and Green’s equation becomes

∂s½ðs2 − 1Þ∂sG� þ
1

sin θ
∂θ½sin θ∂θG� ¼ −2δðs − s0Þδðcos θ − 1Þ: ðE22Þ

To integrate this equation we expand G and δðcos θ − 1Þ in Legendre polynomials,

Gðs; θÞ ¼
X∞
l¼0

GlðsÞPlðcos θÞ; δðcos θ − 1Þ ¼ 1

2

X∞
l¼0

ð2lþ 1ÞPlðcos θÞ: ðE23Þ

Making the substitution, we obtain

ðs2 − 1ÞG00
l þ 2sG0

l − lðlþ 1ÞGl ¼ −ð2lþ 1Þδðs − s0Þ: ðE24Þ

The solution is

Gl ¼ ð2lþ 1Þ
�
Qlðs0ÞPlðsÞ s < s0
Plðs0ÞQlðsÞ s > s0

; ðE25Þ

and the Green’s function can therefore be expressed as

G ¼
X∞
l¼0

ð2lþ 1Þ
�
Qlðs0ÞPlðsÞ
Plðs0ÞQlðsÞ

�
Plðcos θÞ: ðE26Þ

With s ¼ x and s0 ¼ y, this is the same as the right-hand side of Eq. (E13a).
On the other hand, simple algebra reveals that

jr − r0j ¼ ðs2 − 2s0s cos θ þ s20 − sin2 θÞ1=2; ðE27Þ

and since G ¼ jr − r0j−1, we also have the left-hand side of Eq. (E13a). The summation formula is therefore established.
Next we turn to Eq. (E13b). We begin with Eq. (E13a), which we differentiate with respect to x and y. We have

∂xyD−1 ¼
X∞
l¼1

ð2lþ 1Þ
�
Q0

lðyÞP0
lðxÞ

P0
lðyÞQ0

lðxÞ
�
Plðcos θÞ;

¼ −
X∞
l¼1

2lþ 1

lðlþ 1Þ
�
Q0

lðyÞP0
lðxÞ

P0
lðyÞQ0

lðxÞ
�

1

sin θ
d
dθ

�
sin θ

dPl

dθ

�
: ðE28Þ

We used Legendre’s equation in the second step, and a prime indicates differentiation with respect to the argument. We
multiply both sides by sin θ and integrate with respect to θ, to obtain

sin2 θ
D3

¼ −
X∞
l¼1

2lþ 1

lðlþ 1Þ
�
Q0

lðyÞP0
lðxÞ

P0
lðyÞQ0

lðxÞ
�
sin θ

dPl

dθ
: ðE29Þ
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The constant of integration, a function of x and y, is set to zero by evaluating both sides of the equation at θ ¼ 0. Next we
divide by sin θ and integrate again, to find that

xy − cos θ
D

¼ hðx; yÞ − ðx2 − 1Þðy2 − 1Þ
X∞
l¼1

2lþ 1

lðlþ 1Þ
�
Q0

lðyÞP0
lðxÞ

P0
lðyÞQ0

lðxÞ
�
Plðcos θÞ: ðE30Þ

We have obtained the left-hand side of Eq. (E13b) and most of the right-hand side, but we have yet to identify the
function hðx; yÞ.
To determine hðx; yÞ we first assume that x < y, and set θ ¼ 0 in Eq. (E30), so that

xy − 1

y − x
− hðx; yÞ ¼ −ðx2 − 1Þðy2 − 1Þ

X∞
l¼1

2lþ 1

lðlþ 1ÞQ
0
lðyÞP0

lðxÞ: ðE31Þ

We make the same assumption and substitution in Eq. (E13a), and get

1

y − x
¼

X∞
l¼0

ð2lþ 1ÞQlðyÞPlðxÞ ¼ Q0ðyÞ þ
X∞
l¼1

2lþ 1

lðlþ 1ÞQlðyÞ
d
dx

�
ðx2 − 1Þ dPl

dx

�
; ðE32Þ

where we used Eq. (E5) in the second step. We integrate with respect to x,

− lnðy − xÞ þ hðyÞ − xQ0ðyÞ ¼
X∞
l¼1

2lþ 1

lðlþ 1ÞQlðyÞðx2 − 1ÞP0
lðxÞ; ðE33Þ

and to determine the constant of integration, we set x ¼ 1 to find that hðyÞ ¼ 1
2
lnðy2 − 1Þ. Inserting this within the

preceding equation and differentiating with respect to y, we arrive at

x2 − 1

y − x
¼ −ðx2 − 1Þðy2 − 1Þ

X∞
l¼1

2lþ 1

lðlþ 1ÞQ
0
lðyÞP0

lðxÞ: ðE34Þ

We have the right-hand side of Eq. (E31), and comparing the left-hand sides, we conclude that hðx; yÞ ¼ x when x < y.
The case x > y can be handled in a similar fashion, but it is simpler to observe that since the left-hand side of Eq. (E30) is

symmetric under an exchange of x and y, the same must be true of hðx; yÞ. So if h is equal to x when x < y, then it must be
equal to y when x > y. We therefore have

hðx; yÞ ¼
�
x

y

�
; ðE35Þ

and inserting this within Eq. (E30), we obtain Eq. (E13b).
To establish Eq. (E15a) we begin with Eq. (E13a) for x < y, reexpressed as

X∞
l¼1

2lþ 1

lðlþ 1Þ
d
dy

½ðy2 − 1ÞQ0
lðyÞ�PlðxÞPlðcos θÞ ¼

1

D
þ 1

2
lnðy − 1Þ − 1

2
lnðyþ 1Þ: ðE36Þ

We integrate with respect to y and obtain

X∞
l¼1

2lþ 1

lðlþ 1Þ ðy
2 − 1ÞQ0

lðyÞPlðxÞPlðcosθÞ ¼ lnðDþ y− x cosθÞ þ 1

2
ðy− 1Þ lnðy− 1Þ− 1

2
ðyþ 1Þ lnðyþ 1Þ þ 1þ hðx;θÞ;

ðE37Þ

where hðx; θÞ is a constant of integration. In the limit y → ∞ the sum evaluates to zero, thanks to the decaying property of
Q0

lðyÞ, and we find that hðx; θÞ ¼ − ln 2. We have arrived at Eq. (E15a).
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We follow a very similar strategy to derive Eq. (E15b). Equation (E13a) with x > y can be expressed as

X∞
l¼1

2lþ 1

lðlþ 1Þ
d
dy

½ðy2 − 1ÞP0
lðyÞ�QlðxÞPlðcos θÞ ¼

1

D
þ 1

2
lnðx − 1Þ − 1

2
lnðxþ 1Þ; ðE38Þ

and integration with respect to y yields

X∞
l¼1

2lþ 1

lðlþ 1Þ ðy
2 − 1ÞP0

lðyÞQlðxÞPlðcos θÞ ¼ lnðDþ y − cos θÞ þ 1

2
y lnðx − 1Þ − 1

2
y lnðxþ 1Þ þ hðx; θÞ; ðE39Þ

where hðx; θÞ is a new constant of integration. We evaluate this equation at y ¼ 1, where the sum vanishes, and where
D ¼ x − cos θ. We find that h ¼ − 1

2
lnðx − 1Þ − 1

2
lnðxþ 1Þ − lnð1 − cos θÞ, and this gives us Eq. (E15b).

For Eq. (E15c) we begin with Eq. (E15a), which we rewrite as

X∞
l¼1

2lþ 1

½lðlþ 1Þ�2 ðy
2 − 1ÞQ0

lðyÞ
d
dx

½ðx2 − 1ÞP0
lðxÞ�Plðcos θÞ ¼ lnðDþ y − x cos θÞ þ 1

2
ðy − 1Þ lnðy − 1Þ

−
1

2
ðyþ 1Þ lnðyþ 1Þ þ 1 − ln 2: ðE40Þ

We integrate with respect to x and find

X∞
l¼1

2lþ 1

½lðlþ 1Þ�2 ðy
2 − 1ÞQ0

lðyÞðx2 − 1ÞP0
lðxÞPlðcos θÞ ¼

1

2
xðy − 1Þ lnðy − 1Þ − 1

2
xðyþ 1Þ lnðyþ 1Þ − x ln 2

þ x lnðDþ y − x cos θÞ þ y lnðDþ x − y cos θÞ þ 1

2
ln
Φþ
Φ−

þ hðy; θÞ; ðE41Þ

where hðy; θÞ is yet another constant of integration. To determine it we evaluate the preceding equation at x ¼ 1,
noting that D ¼ y − cos θ, Φþ ¼ 2ðy2 − 1Þ, Φ− ¼ 2ðy − cos θÞ2, and that the sum vanishes. This gives us
h ¼ − 1

2
y lnðy − 1Þ − 1

2
y lnðyþ 1Þ − y lnð1 − cos θÞ, and we arrive at Eq. (E15c).

3. Weak-field formulas

We conclude with two more sets of summation identities. For the first set we let x < y. We have

X∞
l¼1

1

lðlþ 1Þ
xl

ylþ1
Plðcos θÞ ¼

1

x
½ln yþ lnð1 − cos θÞ − lnðEþ x − y cos θÞ�

þ 1

y
½1þ ln 2þ ln y − lnðEþ y − x cos θÞ�; ðE42aÞ

X∞
l¼1

�
1

2lþ 3

xlþ1

ylþ3
−

1

2l − 1

xl−1

ylþ1

�
Plðcos θÞ ¼

E
xy2

−
x
3y3

−
1

xy
; ðE42bÞ

X∞
l¼1

�
1

lþ 3

xlþ1

ylþ3
−

1

lþ 1

xl−1

ylþ1

�
Plðcos θÞ ¼

3 sin2 θ
2x2

½ln yþ lnð1 − cos θÞ − lnðEþ x − y cos θÞ�

þ xþ 3y cos θ
2x2y2

E −
3 cos θ
2x2

þ 1

xy
−

x
3y3

; ðE42cÞ

X∞
l¼1

2

lðlþ 1Þðlþ 2Þ
xl

ylþ2
Plðcos θÞ ¼

�
cos θ
x2

−
2

xy

�
½lnðEþ x − y cos θÞ − lnð1 − cos θÞ − ln y�

−
1

y2
½lnðEþ y − x cos θÞ − ln y − ln 2� þ E

x2y
−

1

x2
þ 3

2y2
; ðE42dÞ
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X∞
l¼1

�
1

lþ 4

xlþ1

ylþ4
−

1

lþ 2

xl−1

ylþ2

�
Plðcos θÞ ¼

5 cos θ sin2 θ
2x3

½ln yþ lnð1 − cos θÞ − lnðEþ x − y cos θÞ�

þ
�

1

3xy3
−

5

3x3y
þ 5 cos θ

6x2y2
þ 5 cos2 θ

2x3y

�
Eþ 5

6x3
ð2 − 3 cos2 θÞ þ 1

2xy2
−

x
4y4

;

ðE42eÞ

where

E ≔ ðx2 − 2xy cos θ þ y2Þ1=2: ðE43Þ

For the second set we let x > y. We have

X∞
l¼3

�
1

l
yl

xlþ2
−

1

l − 2

yl−2

xl

�
Plðcos θÞ ¼

3 sin2 θ
2x2

½ln 2þ ln x − lnðEþ x − y cos θÞ� þ xþ 3y cos θ
2x2y2

E

−
1

2y2
−
cos θ
xy

þ 7 cos2 θ − 1

4x2
−
y cos θ
x3

−
y2

4x4
ð3 cos2 θ − 1Þ; ðE44aÞ

X∞
l¼3

�
1

2lþ 3

yl

xlþ2
−

1

2l − 1

yl−2

xl

�
Plðcos θÞ ¼

E
xy2

−
1

3x2
−

1

y2
−
�

y
5x3

−
1

xy

�
cos θ −

�
y2

14x4
−

1

6x2

�
ð3 cos2 θ − 1Þ;

ðE44bÞ

X∞
l¼2

2

ðl − 1Þlðlþ 1Þ
yl−1

xlþ1
Plðcos θÞ ¼ −

�
cos θ
x2

−
2

xy

�
½lnðEþ x − y cos θÞ − ln x − ln 2�

þ 1

y2
½lnðEþ y − x cos θÞ − ln x − lnð1 − cos θÞ� − E

x2y
þ cos θ

2x2
; ðE44cÞ

X∞
l¼4

�
1

l − 1

yl−1

xlþ2
−

1

l − 3

yl−3

xl

�
Plðcos θÞ ¼

5 cos θ sin2 θ
2x3

½ln 2þ ln x − lnðEþ x − y cos θÞ�

þ
�

1

3xy3
−

5

3x3y
þ 5 cos θ

6x2y2
þ 5 cos2 θ

2x3y

�
E −

�
5y2

4x5
−

37

12x3

�
cos3 θ

−
3

2

�
1

x2y
þ y
x4

�
cos2 θ −

�
1

2xy2
−
3y2

4x5
þ 9

4x3

�
cos θ

−
1

3y3
þ 3

2x2y
þ y
2x4

: ðE44dÞ

The function E−1 is intimately tied to the generating function for Legendre polynomials, and each identity in the listing of
Eqs. (E42) originates from

1

E
¼

X∞
l¼0

xl

ylþ1
Plðcos θÞ: ðE45Þ

To establish Eq. (E42a) we write the left-hand side as

X∞
l¼1

�
1

l
−

1

lþ 1

�
xl

ylþ1
Plðcos θÞ ¼

Z
1

x

�
1

E
−
1

y

�
dxþ

Z
1

y

�
1

E
−
1

y

�
dy; ðE46Þ

PARTICLE HANGING ON A STRING NEAR A SCHWARZSCHILD … PHYS. REV. D 104, 044016 (2021)

044016-41



and evaluate the integrals. In the first instance the
constant of integration is determined by taking the limit
x → 0, and demanding that it vanishes. For the second
integral we take the limit y → ∞, and also ensure that it
evaluates to zero. The end result is the right-hand side of
Eq. (E42a). Very similar steps produce Eqs. (E42c)
and (E42d).
For Eq. (E42b) we proceed slightly differently. We

introduce the new variable t ≔ ðx=yÞ1=2 and write the
left-hand side as

t
xy

X∞
l¼1

PlðcosθÞ
Z

ðt2þ t−2Þt2ldt

¼ t
xy

Z
ðt2þ t−2Þ½ð1−2t2cosθþ t4Þ−1=2−1�dt; ðE47Þ

where we again made use of the generating function.
Evaluating the integral returns the right-hand side of
Eq. (E42b); the constant of integration is set to zero to
eliminate odd powers of t in the final result.

For the listing of Eqs. (E44) we begin instead with

1

E
¼

X∞
l¼0

yl

xlþ1
Plðcos θÞ: ðE48Þ

To derive Eq. (E44a) we write the left-hand side as

X∞
l¼3

PlðcosθÞ
Z �

1

xy
−

x
y3

�
yl

xlþ1
dy

¼
Z �

1

xy
−

x
y3

��
1

E
−
1

x
−

y
x2

cosθ−
y2

2x3
ð3 cos2 θ− 1Þ

�
dy;

ðE49Þ
and evaluate the integral. The requirement that the result
vanish in the limit y → 0 determines the constant of integra-
tion, and we arrive at the right-hand side of Eq. (E44a). We
proceed in the same way for Eqs. (E44c) and (E44d); in the
first instancewe express 2=½ðl − 1Þlðlþ 1Þ� as 1=ðl − 1Þ−
2=lþ 1=ðlþ 1Þ and deal with each sum separately. For
Eq. (E44b)we can reintroduce t ≔ ðx=yÞ1=2 asbefore, but it is
simpler to notice that the equation is a version of Eq. (E42b)
with x and y interchanged.
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