
 

Two-fluid stellar objects in general relativity: The covariant formulation

Nolene F. Naidu ,1,* Sante Carloni ,2,† and Peter Dunsby1
1Department of Mathematics and Applied Mathematics, University of Cape Town
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We apply the 1þ 1þ 2 covariant approach to describe a general static and spherically symmetric
relativistic stellar object which contains two interacting fluids. We then use the 1þ 1þ 2 equations to
derive the corresponding Tolman-Oppenheimer-Volkoff equations in covariant form in the isotropic
noninteracting case. These equations are used to obtain new exact solutions by means of direct resolution
and reconstruction techniques. Finally, we show that the generating theorem known for the single-fluid case
can also be used to obtain two-fluid solutions from single-fluid ones.
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I. INTRODUCTION

The derivation of solutions for relativistic stellar objects
is a notoriously complex problem when approached using
analytical methods. It is probably for this reason that most
of the attempts to find such solutions have, up to now,
relied on modeling the matter distribution using a single-
fluid description. In realistic situations, however, such an
assumption is not physically realistic for several reasons:
compact stars can have a structure that can be wildly
different, in terms of composition and pressure, and there
could be interactions between different components. Hence,
in order to build more accurate models, it is necessary to turn
to a multifluid description of these objects.
So far, there have been several attempts to model stellar

objects containing different fluids. The majority of these
rely on using numerical noncovariant approaches (see, e.g.,
[1]). A different perspective was provided for the first time
by Carter and Langlois [2]. They showed that it is possible
to formulate a covariant exact model of multifluid (neutron)
stars using noninteracting fluids and assuming an equation
of state. Although in the end, the analysis of the equations
in [2] is still numeric, their attempt shows that a covariant
approach to the Tolman-Oppenheimer-Volkof (TOV) equa-
tions might be useful to uncover new aspects of these
equations.
The present work aims to construct a different approach,

which makes full use of covariance, and is oriented towards
an analytical investigation of the TOVequations. There are
several reasons why it is important to develop analytical
studies of the TOV equations in parallel to numerical
studies. For example, exact solutions can be used to explore
the full parameter space for a given metric, rather than a

single set of values. In addition, exact solutions can be used
to test numerical codes, particularly when they entail new
languages/approximations schemes.
We will also show that our analytical approach is able

to include other equations of state, can be generalized to
any number of fluids or fields, and can include fluxes and
interactions.
The cornerstone of our formulation will be the TOV

equations of hydrostatic equilibrium. These equations were
introduced in 1939 [3,4] and provide insights into the
pressure profile of a static spherically symmetric object in
general relativity (GR). Since their introduction, several
authors have tried to solve these equations exactly (see,
e.g., [5] for a list of exact solutions). In spite of these
efforts, the resolution of the TOV equations still remains a
formidable task, particularly if one aims at the deduction of
realistic solutions.
In two recent papers, the TOV equations were presented

in a fully covariant form and applied to the case of isotropic
and anisotropic fluids [6–8]. The generalized equations are
written in a covariant dimensionless and autonomous form,
thereby providing a combination of the Lane-Emden and
homology invariant formulation [9,10]. The covariant (and,
therefore, observer independent) form of the equations
presents many benefits. For example, one may change
coordinate systems with ease, making the description of the
system (i.e., its symmetries and properties) easily captured.
The covariant formulation of the TOVequations is based

on the so-called covariant approach. The original develop-
ment of the covariant formalisms is due to Ehlers, Ellis, and
other authors [11]. Their 1þ 3 covariant approach offers a
powerful method for studying the general properties of
exact relativistic (and Newtonian) cosmological models
[12]. Because all the gravitational and fluid equations can
be written down exactly, this approach is well suited to a
top-down construction of perturbation theory and has been
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widely used in studies of perturbations of Friedmann-
Robertson-Walker models [13] and other backgrounds that
admit a high degree of symmetry.
An extension of the 1þ 3 covariant approach, known as

the 1þ 1þ 2 covariant approach, proposed by Greenberg
[14] and adapted to locally rotationally symmetric (LRS)
spacetimes by Clarkson [15,16] and Betschart [17], allows
for the application of the formalism to numerous astro-
physical scenarios (for example, lensing in spherically
symmetric spacetimes [18] or spherically symmetric
spacetimes [19]). The further “split” or “foliation” is in
a spatial direction, leaving the other two spatial dimensions
unchanged.
The 1þ 1þ 2 TOV equations have already proven to

offer a useful new perspective on the problem of finding
exact models for relativistic stars. They are generally easier
to solve than the original ones and allow a direct application
of reconstruction methods. In addition, in [6,7] it was
shown that the generating theorems proposed by Boonserm
et al. in [20,21] can be easily formulated and extended to
more complex cases. The 1þ 1þ 2 TOV equations have
also been used to uncover new features of relativistic stellar
objects in Einstein-Cartan gravity in [8].
In the following, we will provide a complete description

of the interior of a relativistic star composed of two fluids
using the 1þ 1þ 2 formalism. In particular, we will use
the Ricci identities, the Bianchi identities, and the Einstein
equations to derive a complete system of covariant TOV
equations for two fluids with nonzero fluxes and can be
generalized to include anisotropies and interactions. Then
we will explore some exact solutions which are physically
relevant according to the criteria given in [5]. We will also
extend the generating theorems, proving that they can be
used to obtain two-fluid solutions from single-fluid ones.
The outline of this paper is as follows: In Sec. II the

1þ 1þ 2 equations in the case of two fluids are used to
construct the covariant TOV equations in the isotropic and
noninteracting case. Section III deals with the conditions of
physical viability for a given solution of the TOVequations.
Section IV, instead, gives a brief sketch of the generaliza-
tion of Israel’s junction conditions to the multifluid case.
Section V contains information on some known solutions
which will be useful to obtain the main results of the paper.
In Sec. VI we obtain the two-fluid generalization of the
interior Schwarzschild solution. In Sec. VII we employ a
reconstruction algorithm to derive new two-fluid solutions
based on the single-fluid ones of Sec. V. The two-fluid
extension of the generating theorems of [20] is discussed in
Sec. VIII. In Sec. IX we consider some exact two-fluid
solutions which include (stationary) fluxes. Finally, a
discussion and some concluding remarks can be found
in Sec. X. The main equations of the 1þ 1þ 2 formalism
are presented in the Appendix A and the N fluid gener-
alization of the 1þ 1þ 2 equations, which include aniso-
tropic pressure and interactions, in Appendix B.

II. THE 1+ 1+ 2 EQUATIONS FOR THE
TWO-FLUID CASE

Coordinate invariant and tetrad methods are an important
way of transforming the equations of general relativity into
first-order ordinary differential equations, as opposed to
second-order partial differential equations. The approach is
most useful in the presence of homogeneity, isotropy, and
spacetimes that admit a high degree of symmetry. The 1þ
1þ 2 formalism that we will employ in the following can
be considered a semitetrad approach because it relies on
both a timelike and a spacelike threading.1

We, therefore, start constructing the 1þ 1þ 2 formalism
from the threading decomposition of the spacetime. In this
way, we can construct a set of tensorial objects connected to
the properties of the field lines, which make up the set of
1þ 1þ 2 variables. Following this, we use the Bianchi and
Ricci identities, together with the Einstein equations, to
derive a closed system of first-order propagation and con-
straint equations. In this section, we present the equations for
the two-fluid case and refer the reader to Appendix A for
details of the general equations and formalism.
As it can be seen in Appendix B, the 1þ 1þ 2 equations

can be written down easily for any number of interacting
fluids. However, in this work we will limit ourselves to two
noninteracting fluids. Considering two fluids is justified,
other than by simplicity, by the fact that two-fluidsmodels are
already enough to describe systems like neutron stars, which
are one of the main applications of the TOV equations [22].
Wedefine a timelike threading vector fieldua associated to

the observer’s congruence with uaua ¼ −1 and a spacelike
vectoreawith eaea ¼ 1. Theua and ea congruences describe
a geometry defined by two projection tensors given by

hab ¼ gab þ uaub; haa ¼ 3;

Na
b ¼ hab − eaeb ¼ gab þ uaub − eaeb; Na

a ¼ 2;

ð1Þ
wherehab represents themetric of the 3-spaces orthogonal to
ua, andNa

b represents the metric of the 2-spaces orthogonal
toua and ea. Any tensorial objectmay nowbe split according
to the above foliations [6]. The covariant time derivative,
orthogonally projected covariant derivative, hat-derivative,
and δ-derivative are given by

_Xa…b
c…d ≡ ue∇eXa…b

c…d;

DeXa…b
c…d ≡ haf…hbghpc…hqdhre∇rXf…g

p…q;

X̂a…b
c…d ≡ efDfXa…b

c…d;

δeXa…b
c…d ≡ Na

f…Nb
gNi

c…Nj
dNe

pDpXf…g
i…j: ð2Þ

1To be precise, we should point out that the 1þ 1þ 2
formalism is somewhat less general than the tetrad one: the
former assumes that the vector fields used for the threading are
everywhere regular.
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In the followingwewill consider onlyLRSII spacetimes. The
kinematical variables, which we will employ, are given by
(see Appendix A for the complete list of variables for a
general LRS spacetime)

A ¼ ea _ua; ð3aÞ
ϕ ¼ δaea; ð3bÞ

E ¼ Cac
bducud

�
eaeb −

1

2
Nb

a

�
; ð3cÞ

where Cabcd is the Weyl tensor.
The energy-momentum tensor is decomposed as

Tab ¼ μuaub þ pðeaeb þ NabÞ þ 2QeðaubÞ: ð4Þ

The matter variables are given by

μ ¼ Tabuaub;

p ¼ 1

3
Tabðeaeb þ NabÞ;

Q ¼ −Tabeaub; ð5Þ
where μ is the density, p is the pressure, and Q is the scalar
component of the heat flux.
Selecting a frame in which the total flux is zero, the

system (A7) for two isotropic fluids is given by2

ϕ̂ ¼ −
1

2
ϕ2 −

2

3
ðμ1 þ μ2Þ − E; ð6aÞ

Ê ¼ 1

3
ðμ̂1 − μ̂2Þ −

3

2
ϕE; ð6bÞ

−Aϕþ 1

3
ðμ1 þ 3p1Þ þ

1

3
ðμ2 þ 3p2Þ − E ¼ 0; ð6cÞ

Â ¼ −AðAþ ϕÞ þ 1

2
ðμ1 þ 3p1Þ þ

1

2
ðμ2 þ 3p2Þ; ð6dÞ

p̂1 ¼ −Aðμ1 þ p1Þ; ð6eÞ

p̂2 ¼ −Aðμ2 þ p2Þ; ð6fÞ

K ¼ 1

3
ðμ1 þ μ2Þ − E þ 1

4
ϕ2; ð6gÞ

Q̂1 ¼ −Q1ðϕþ 2AÞ; ð6hÞ

Q2 ¼ −Q1; ð6iÞ

K̂ ¼ −ϕK: ð6jÞ

Next, we introduce a useful parameter, named ρ, such that
X̂ ¼ ϕX;ρ. In this way the equation for the Gauss’s
curvature K (6j) can be solved to give

K ¼ K−1
0 e−ρ: ð7Þ

Defining the variables,

X ¼ ϕ;ρ

ϕ
; Y ¼ A

ϕ
;

K ¼ K
ϕ2

; E ¼ E
ϕ2

;

M1 ¼
μ1
ϕ2

; M2 ¼
μ2
ϕ2

;

P1 ¼
p1

ϕ2
; P2 ¼

p2

ϕ2
;

Q1 ¼
Q1

ϕ2
; Q2 ¼

Q2

ϕ2
; ð8Þ

and using ρ as parameter, we can recast Eqs. (6) as

Y;ρ ¼ −YðX þ Y þ 1Þ þ 1

2
ðM1 þM2Þ þ

3

2
ðP1 þ P2Þ;

ð9aÞ

K;ρ ¼ −Kð1þ 2XÞ; ð9bÞ

P1;ρ ¼ −YðM1 þ P1Þ − 2XP1; ð9cÞ

P2;ρ ¼ −YðM2 þ P2Þ − 2XP2; ð9dÞ

Q1;ρ ¼ −Q1ð1þ 2X þ 2YÞ; ð9eÞ

with the following constraints:

2ðM1 þM2Þ þ 2ðP1 þ P2Þ þ 2X − 2Y þ 1 ¼ 0; ð10aÞ

1 − 4K − 4ðP1 þ P2Þ þ 4Y ¼ 0; ð10bÞ

2ðM1 þM2Þ þ 6ðP1 þ P2Þ − 6Y − 6E ¼ 0; ð10cÞ

and

E ¼ 1

3
ðM1 þM2Þ þ P1 þ P2 − Y; ð11Þ

X ¼ −
1

2
− ðM1 þM2Þ − ðP1 þ P2Þ þ Y; ð12Þ

Q1 ¼ −Q2: ð13Þ

It is always possible, and sometimes useful, to write the
equation for the total pressure, which reads

2The generalization for equations in the case of n fluids and the
presence of anisotropic pressure can be found in Appendix B.
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Ptot;ρ þ PtotðY þ 2XÞ þ YMtot ¼ 0; ð14Þ

where Ptot ¼ P1 þ P2. The covariant equivalent of the TOVequations can be obtained using the constraints to eliminate all
the metric related variables except K. In this way one obtains

P1;ρ ¼ −P1
2 þ P1

�
M1 − 3Kþ 7

4

�
þM1

�
1

4
−K

�
− P1ðP2 − 2M2Þ −M1P2; ð15Þ

P2;ρ ¼ −P2
2 þ P2

�
M2 − 3Kþ 7

4

�
þM2

�
1

4
−K

�
− P2ðP1 − 2M1Þ −M2P1; ð16Þ

K;ρ ¼ 2K
�
1

4
−KþM1 þM2

�
; ð17Þ

Q1;ρ ¼ Q1

�
2K − 2ðM1 þM2Þ −

3

2

�
; ð18Þ

Ptot;ρ ¼ −Ptot
2 þ Ptot

�
Mtot − 3Kþ 7

4

�
þMtot

�
1

4
−K

�
: ð19Þ

In the following we will present some solutions of the
above equations for particular cases. It will be useful, then,
to give some results which might help the physical
interpretation of these solutions. For a generic metric tensor
of the form

ds2 ¼ −k1ðx; tÞdt2 þ k2ðx; tÞdx2
þ k3ðx; tÞ½dy2 þ k4ðyÞdz2�; ð20Þ

k4ðyÞ ¼
8<
:

sin y; closed geometry

y; flat geometry

sinh y; closed geometry;

ð21Þ

we can write [17]

ϕ ¼ k̂3
k3

; A ¼ k̂1
2k1

: ð22Þ

We will use these relations in Sec. IX, where we will deal
with models which include fluxes.
In the same way, in order to give a representation of the

solutions obtained below in a form more consistent with the
current literature, we give some conversion formulae
connecting the 1þ 1þ 2 potentials to the parameter ρ
and the area radius r. In terms of ρ, a generic solution of the
TOV equations will be written as

ds2 ¼ −k1ðρÞdt2 þ k2ðρÞdρ2 þ k3ðρÞdΩ2; ð23Þ

where

k3ðρÞ ¼ K0eρ; ð24Þ

dΩ2 ¼ dθ2 þ sin2 θdϕ2: ð25Þ

In these coordinates, we have

ϕ ¼ 1ffiffiffiffiffi
k2

p ; A ¼ k1;ρ
2k1

ffiffiffiffiffi
k2

p ;

X ¼ −
k2;ρ
k2

; Y ¼ k1;ρ
2k1

;

K ¼ k2
K0eρ

; ð26Þ

where K0 is a suitable constant. The solutions we find will,
however, be expressed in terms of the area radius r to offer
a more familiar representation of our results. The relation
between r and ρ is

ρ ¼ 2 ln

�
r
r0

�
; ð27Þ

r ¼
ffiffiffiffiffiffi
K0

p
eρ=2; ð28Þ

where r0 and K0 are constants related by K0 ¼ r20.
The conversion from the metric coefficient in ρ and the

ones in r can be achieved simply by noting that k1 and k3
are scalars, with respect to the change of the radial
parameter, and that

k2ðρÞ ¼
r2

4
k2ðrÞ: ð29Þ
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III. CONDITIONS FOR PHYSICAL VIABILITY

Although many solutions can be found to the TOV
equations, several of these are not physical. We give here
the set of conditions that a solution must satisfy to be
physically relevant [5–7,19]. Firstly, we require that each
fluid satisfy the weak energy condition:

μ ≥ 0; μþ p ≥ 0: ð30Þ

Secondly, they must satisfy the conditions

μ0 < 0; p0 < 0; ð31Þ

where the prime represents the derivative with respect
to the area radius. These conditions are necessary (but not
sufficient) for the stability of the solution.
The third requirement is for causality from the speed of

sound,

0 <
∂p
∂μ < 1: ð32Þ

We further require that the sources of the Einstein equations
are positive definite,

p ≥ 0: ð33Þ

Finally, we require that the matter variables are finite and
positive valued at the center of the matter distribution. A
possible exception to this rule will be discussed in Sec. IX.

IV. JUNCTION CONDITIONS

Another important aspect of the search for solutions
relates to the junction between the interior solution and
the exterior vacuum spacetime, characterized by the
Schwarzschild metric. The procedure of the determination
of the junction conditions is very similar to the case of a
single-fluid solution treated in [6,7]. In particular, Israel’s
junction conditions [23,24] are equivalent to

½K� ¼ 0; ½Y� ¼ 0: ð34Þ

Using the constraint in Eq. (11) above, one gets

½P1 þ P2� ¼ 0: ð35Þ

This implies that a smooth junction with the Schwarzschild
metric requires the total pressure must be zero at the
junction. Since pressures must always be positive definite
in a realistic solution, the above result implies that the
pressure of both fluids must be zero at the junction. As we
shall see, however, the most common occurrence in two-
fluid solutions is that one of the pressures goes to zero at a
specific value of the radial parameter, while the other is not.
In this case, one should consider the two-fluid solution up

to that distance from the center and match this solution with
a single-fluid one, thereafter. In other words, the inclusion
of more than one fluid leads directly to a shelled structure
for the matter distribution. As in the case of a single fluid,
there is no condition on the energy density and the
tangential pressure apart from the ones discussed in the
previous section.
In the solution presented below, we will consider

vanishing the radial pressure on the vacuum boundary as
a desirable feature. Indeed, while there is no need to have a
“hard boundary” in a stellar object, the inclusion of a “soft”
boundary would require the introduction of types of
sources that we have not included in our treatment, i.e.,
electromagnetic fields, tensions, etc. As we have excluded
sources which are not a regular perfect fluid, the request of
a hard boundary seems well motivated from a physical
point of view.

V. SOME KNOWN SOLUTIONS FOR
SINGLE-FLUID RELATIVISTIC STARS

In the following sections, we will consider some indirect
resolution methods of the TOV equations (15). These
methods can be implemented in an easier way if we rely
on the characteristics of a known single-fluid solution. This
section aims to introduce three such solutions in a form
compatible with the formalism we will employ. We will
consider, in particular, the interior Schwarzschild [25], the
Tolman IV [3], and Heintzmann IIa [26] solutions.

A. Interior Schwarzschild (constant density) solution

The interior Schwarzschild solution [25] was the
very first solution for the interior of a static spherically
symmetric relativistic object. It assumes the fluid to be
incompressible, a feature introduced in the model by
assuming a constant density.
For a metric written in the form of (23), the constant

density solution is given by

k1 ¼ a0ðc1 þ zÞ2;

k2 ¼
3

z2
;

k3 ¼ r2; ð36Þ

where

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2μ1

q
; ð37Þ

and a0, c1, and μ1 are constants. The metric (36) cor-
responds, via the Einstein equations, to the follow-
ing expressions for the pressure and energy density,
respectively:
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pCDðrÞ ¼ −
μ1ð3zþ c1Þ
3ðzþ c1Þ

; ð38aÞ

μCDðrÞ ¼ μ1: ð38bÞ

Applying the conditions (30)–(33) with the exception of the
first equation in (31), we obtain with μ1 ≠ 0 the maximum
radius for the object described by this metric is

r <
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27 − c12

μ1

s
; ð39Þ

which corresponds to the well-known Buchdahl limit [27].
In terms of the newly defined variables (8) and the
parameter ρ, we have

ϕ ¼ −
2z1ffiffiffiffiffiffiffiffiffiffiffiffiffi
3K0eρ

p ; ð40Þ

and (38) correspond to

KðρÞ ¼ 3

4z12
; ð41aÞ

PðρÞ ¼ −
μ1K0eρð3z1 þ c1Þ

4z21ðz1 þ c1Þ
; ð41bÞ

MðρÞ ¼ 3μ1K0eρ

4z21
; ð41cÞ

YðρÞ ¼ −
μ1K0eρ

2z1ðz1 þ c1Þ
; ð41dÞ

where

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ1K0eρ

p
: ð42Þ

B. Tolman IV solution

The Tolman IV solution was presented in the seminal
paper by Tolman [3] and is a well-known solution with no
irregularity at r ¼ 0. It is characterized by an equation of
state that is quadratic in the pressure.
For a metric written in the form of (23), the Tolman IV

solution is given by

k1 ¼ B2

�
1þ r2

A2

�
;

k2 ¼
R2ðA2 þ 2r2Þ

ðR2 − r2ÞðA2 þ r2Þ ;

k3 ¼ r2; ð43Þ

with the following expressions for the pressure and energy
density, respectively:

pTðrÞ ¼
R2 − A2 − 3r2

R2ðA2 þ 2r2Þ ; ð44aÞ

μTðrÞ ¼
R2ð3A2 þ 2r2Þ þ 7A2r2 þ 3A4 þ 6r4

R2ðA2 þ 2r2Þ2 : ð44bÞ

Applying the conditions (30)–(33), we find that A ≠ 0 and
that the maximum radius for the object described by this
metric is

r ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − A2

3

r
: ð45Þ

In terms of the newly defined variables (8) and the
parameter ρ, we have

ϕT ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðA2 þ K0eρÞðR2 − K0eρÞ
K0eρR2ðA2 þ 2K0eρÞ

s
; ð46Þ

and (44) corresponds to

KTðρÞ ¼
R2ðA2 þ 2K0eρÞ

4ðA2 þ K0eρÞðR2 − K0eρÞ
; ð47aÞ

PTðρÞ ¼
K0eρðA2 þ 3K0eρ − R2Þ
4ðA2 þ K0eρÞðK0eρ − R2Þ ; ð47bÞ

MTðρÞ ¼
A2ð2A2 þ R2Þ

4ðA2 þ R2ÞðA2 þ K0eρÞ
−

A2

2ðA2 þ 2K0eρÞ

þ R2ð3A2 þ 4R2Þ
4ðA2 þ R2ÞðR2 − K0eρÞ

−
3

4
; ð47cÞ

YTðρÞ ¼
K0eρ

2ðA2 þ K0eρÞ
: ð47dÞ

C. Heintzmann IIa solution

The Heintzmann IIa solution was presented for the first
time in [26]. Its metric can be written as

k1 ¼ b2ð1þ ar2Þ3; ð48Þ

k2 ¼
�
1 −

3ar2

2

1þ cð1þ 4ar2Þ−1
2

1þ ar2

�−1
; ð49Þ

k3 ¼ r2; ð50Þ

with the pressure and energy density given by

pHðrÞ ¼ −
3a½7acr2 þ 3ðar2 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ar2 þ 1

p
þ c�

2ðar2 þ 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ar2 þ 1

p ;

ð51aÞ
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μHðrÞ ¼
3a½cð9ar2 þ 3Þ þ ðar2 þ 3Þð4ar2 þ 1Þ3=2�

2ðar2 þ 1Þ2ð4ar2 þ 1Þ3=2 :

ð51bÞ

The Heintzmann IIa metric satisfies conditions (30)–(33)
for a > 0:

r <
1ffiffiffi
a

p : ð52Þ

As before, in order to find some results useful for the next
sections, we give some of the variables (8) in terms of the
parameter ρ. We have

ϕ2
H ¼ 4e−ρ

K0

−
6a

aK0eρ þ 1

−
6ac

ðaK0eρ þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aK0eρ þ 1

p : ð53Þ

We can write (51) as

KHðρÞ ¼
aK0eρ þ 1

4 − 2aK0eρð1þ 3cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aK0eρþ1

p Þ ; ð54aÞ

PHðρÞ ¼
aK0eρ þ 1

2aeρK0ð1þ 3cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aK0eρþ1

p Þ − 4

−
3

2aK0eρ þ 2
þ 7

4
; ð54bÞ

MHðρÞ ¼
3aK0eρ

4ð4aK0eρ þ 1ÞðaK0eρ þ 1Þ

×
3cð3aK0eρ þ 1Þ þ ð4aK0eρ þ 1Þ32ðaK0eρ þ 3Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aK0eρ þ 1

p
− aK0eρð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aK0eρ þ 1

p þ 3cÞ ;

ð54cÞ

YHðρÞ ¼
3aK0eρ

2ð1þ aK0eρÞ
: ð54dÞ

VI. TWO-FLUID CONSTANT
DENSITY SOLUTION

As a first example of a two-fluid exact solution, we
consider the simplified case in which there is no interaction
and no fluxes. We assume, in addition, that the fluids have
energy densities which are both constant but differ in value.
In this case, the Eqs. (15) can be solved directly to obtain
a two-fluid generalization of Schwarzschild’s interior
solution.
Let us name the constant densities for fluids 1 and 2 as μ1

and μ2. In this case we have

Mi ¼ μiK0eρK; i ¼ 1; 2: ð55Þ

Substituting this into (17), we obtain the solution

K ¼ 3

4z2
;

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μtotK0eρ

p
; ð56Þ

which, solving the equation for the total pressure (19)
leads to

Ptot ¼ −
μtotK0eρð3zþ ctotÞ

4z2ðzþ ctotÞ
; ð57Þ

where μtot ¼ μ1 þ μ2 and ctot is an integration con-
stant. We now substitute in the first of Eqs. (15) the
relation P2 ¼ Ptot − P1 and the solution above to obtain
P1 and P2:

P1ðρÞ ¼
eρð4c1 − 3μ1K0zÞ

4z2ðzþ ctotÞ
; ð58Þ

P2ðρÞ ¼ −
eρð4c1 − 3K0zμ1 þ μtotK0ð3zþ ctotÞÞ

4z2ðzþ ctotÞ
; ð59Þ

where c1 and c2 are constants such that ctot ¼ c1 þ c2.
Mapping ρ to the area radius and utilizing

ϕ ¼ −
2zffiffiffiffiffiffiffiffiffiffiffiffiffi
3K0eρ

p ; ð60Þ

we can calculate the pressures p1 and p2 as

p1ðrÞ ¼
4c1 − 3μ1r02z
3r02ðzþ ctotÞ

; ð61aÞ

p2ðrÞ ¼ −
4c1 þ r02ð3zμ2 þ ctotμtotÞ

3r02ðzþ ctotÞ
; ð61bÞ

where r0 ¼ K1=2
0 and

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2μtot

q
: ð62Þ

The variable Y can be found using (10b). Now, breaking
covariance and choosing a metric of the form (23), the
expressions (26) give

k1 ¼ a0½c1 þ c2 þ z�2; ð63aÞ

k2 ¼
3

z2
; ð63bÞ

k3 ¼ r2; ð63cÞ
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where a0 is a constant, and we have set r0 ¼ 1 without loss
of generality. We will use this last convention when writing
the area radius solutions in all of the following sections so
that the size of the equations is reduced.
Notice that the coefficients of the metric (63), as

expected, are the same as the single-fluid solution presented
in the previous section. As a consequence, the central
pressure will also have the same structure as the single-fluid
solution, and the maximum possible mass Mtot of this
object will be the same, i.e.,

Mtot ¼ M1 þM2 ¼
4

9
R: ð64Þ

The difference is that the maximum mass can be achieved
with different combinations of the two fluids.
In Fig. 1 we give an example of the behavior of the

pressures p1 and p2 in a specific case that is compatible
with the requirements given in Sec. III.

VII. SOLUTION RECONSTRUCTION

In this section, we will expand the technique proposed in
[6,7] to deduce new two-fluid solutions starting from a
given metric. We begin with rearranging (9b) as

X ¼ −
1

2
−
K;ρ

2K
: ð65Þ

Using (10a) and (10b), we obtain

Mtot ¼ M1 þM2 ¼
K;ρ

2K
þK −

1

4
: ð66Þ

Equation (9a) together with (66) gives

Ptot ¼ P1 þ P2 ¼
1

3
½2Y;ρ þ 2Y2 þ Y� − 1

3
K

−
�
2Y þ 1

6

�
K;ρ

K
þ 1

12
: ð67Þ

Given a metric, and therefore the functions Y and K which
satisfy the relation [6,7]

ð2Y þ 1ÞK;ρ − 4K2 −K½4Y;ρ þ 4ðY − 1ÞY − 1� ¼ 0;

ð68Þ

we can obtain the sum of the pressure and energy density
variables of the two fluids.
One could then be tempted to choose the behavior for the

energy density and pressure of one of the two fluids and
deduce the other. This, however, would be a mistake, as it
would ignore the conservation laws associated to the single
fluids. Such an additional constraint can be introduced
considering also Eq. (9c),

P1;ρ ¼ −P1ð2X þ YÞ −M1Y; ð69Þ

which is a first-order differential equation. Solving for M1,
we obtain

M1 ¼ −
P1ðY þ 2XÞ þ P1;ρ

Y
; ð70Þ

which can be used to derive M1 once P1 is given. In fact,
remembering the formulae in (26), Eq. (69) can be solved,
in general, in terms of the metric coefficients and the energy
density to give

P1 ¼
k22ffiffiffiffiffi
k1

p
�
c1 −

Z
μ1k1;ρ
2
ffiffiffiffiffi
k1

p
k2

dρ

�
: ð71Þ

With this result, one can assign the energy density and
derive the pressure. Clearly, because (69) is an ordinary
differential equation, the two approaches above are com-
pletely equivalent.
Hence, once we choose a geometry, we can then choose

the behavior for the energy density or pressure of one of the
two fluids and deduce the other quantities via the elemen-
tary relations

M2 ¼ Mtot −M1; ð72aÞ

P2 ¼ Ptot − P1: ð72bÞ

At this point, one can obtain the expressions for the
energy densities and the pressures, taking into account
that the factor ϕ2 is the one associated with the underlying
geometry represented by K and Y in the formulae above.
In the following, we will construct models of a relativ-

istic star with two fluids using the Tolman IV and

FIG. 1. Pressure for fluid 1 (blue) and fluid 2 (orange) vs r for
the double constant density solution found in Sec. VI with μ1 ¼ 4
and μ2 ¼ 2, and parameter values c1 ¼ 3 and c2 ¼ −6.
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Heintzmann geometry and employing P and M of the
interior Schwarzschild, Tolman IV, and Heintzmann sol-
utions.3 These choices are particularly convenient as the
constraint (68) is already satisfied. However, the algorithm
is general and one can use any other known physical
solution to obtain two-fluid solutions. Naturally, these new
solutions should be tested against the requirements given in
Sec. III to verify their compatibility with physical objects.

A. Tolman IV-constant density relativistic object

We start with the Tolman IV geometry (43) and choose
one of the fluids to be the constant density fluid in Sec. VI.
In this way the energy density and the pressure of the two
fluids will be given by

μ2 ¼
3A4 þ 2r2ð3r2 þ R2Þ þ A2ð7r2 þ 3R2Þ

R2ðA2 þ 2r2Þ2 − μ1; ð74aÞ

p1 ¼ −μ1 −
4c1

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p ; ð74bÞ

p2 ¼
−A2 − 3r2 þ R2

R2ðA2 þ 2r2Þ þ 4c1
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p þ μ1; ð74cÞ

where μ1 is the constant density of the first fluid, c1 is a
constant of integration. The properties of the underlying
geometry, the energy density, and pressure of the first fluid
guarantee that μ2 and p2 do not have singularities.
Naturally, we should guarantee that the conditions (30),
(31), and (33) are all satisfied. Given the number of
parameters, it is not practical to give these conditions
analytically. Hence, we limit ourselves to show graphically
that at least one of these combinations exists. Figure 2
shows the pressure and energy density profiles
for both fluids, and Fig. 3 shows the square of the sound
speed ∂p

∂μ.
Notice that unlike in Fig. 1, the pressures do not

approach zero at the same value of the radial coordinate.
Indeed, we could find no value of the parameters for which
p1 and p2 are zero at the same r. However, this does not
imply that the solution we found should be discarded: for
the interval in which p1 and p2 are both positive, the
combination of (43) with (74) constitutes an acceptable
two-fluid solution. It is clear that in order to obtain a
complete model of a compact object, such a solution should
be joined using, e.g., Israel’s prescriptions [23,24], to a
shell or another solution which satisfies the conditions
(30)–(33), and whose pressure(s) approach zero at some
value of the radial coordinate r.
In other words, we obtain naturally a shelled structure

for this object: an internal shell in which two fluids are
present and an external one which can be matched
smoothly to the Schwarzschild solution. To model the
external shell, we can use any geometry or number of
fluids. An easy setting for the external shell could be a
single-fluid Tolman IV solution which has pressure p1 and
energy density μ1 þ μ2 at the junction point (where p2

vanishes). In the following, we will often find ourselves in

FIG. 2. The energy density (blue) and pressure (orange) for
fluid 1 and the energy density (green) and pressure (red) for fluid
2 vs r for the Tolman IV-constant density object. We used the
parameter values A ¼ 0.95; R ¼ 1.65; μ1 ¼ 1.2; c1 ¼ −1.1,
which satisfy the energy and stability conditions (30), (31),
and (33), in order to obtain the clearest representation. The
pressure for fluid 2 becomes negative close to r ¼ 0.455, as
indicated by the dashed vertical line.

FIG. 3. Plot of the square of the sound speed (∂p∂μ) for fluid 2 for
the Tolman IV-constant density object. We used the parameter
values A ¼ 0.95; R ¼ 1.65; μ1 ¼ 1.2; c1 ¼ −1.1 as in Fig. 2.

3It should be noted here that, because of the different forms of
ϕ, the relation between P andMwith p and μ is not the usual one.
For example, in the Tolman IV-Heintzmann object, PT and MT
will not correspond to pT and μT . These last quantities are in fact
connected to p1 and μ1 by

p1 ¼ pT
ϕ2
H

ϕ2
T
; μ1 ¼ μT

ϕ2
H

ϕ2
T
: ð73Þ

In this sense, the name “Tolman IV-Heintzmann object”
will indicate the origin of the solution, rather than its actual
composition.
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the same situation. For the sake of brevity, we will not give
a description of the single-fluid external shells for each
instance.

B. Heintzmann-constant density
relativistic object

We start with the Heintzmann IIa geometry (48) and
choose one of the fluids to be the constant density fluid in
Sec. VI. In this way the energy density and the pressure of
the two fluids will be given by

μ1 ¼
μ1z2z3

z41ðc1 þ z1Þ2
ð2c1μ1r2ðc1 þ 3z1Þ

þ z21ðz4ðc1 þ z1Þðc1 þ 3z1Þ þ 2c1ðc1 þ 4z1Þ þ 18ÞÞ;
ð75aÞ

μ2 ¼ −z3z5 þ
μ1z2z3

z41ðc1 þ z1Þ2
ð2c1μ1r2z1ð2z4 þ 1Þ

− z1z4ðc21z1 þ 12c1 þ 3z31Þ − 6ðc1 þ z1Þðc1 þ 3z1ÞÞ;
ð75bÞ

p1 ¼ −
μ1z3ðc1 þ 3z1Þ
z21ðc1 þ z1Þ

; ð75cÞ

p2 ¼ z3

�
μ1ðc1 þ 3z1Þ
z21ðc1 þ z1Þ

þ z6

�
; ð75dÞ

where we have written

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ar2 þ 1

p
;

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ1r2

q
;

z2 ¼
1þ ar2

3ar2
;

z3 ¼ 1 −
3ðz0 þ cÞ
2z2z0

;

z4 ¼
ar2far2½4az0r2 þ 9ðz0 − cÞ� þ 18z0g þ 4z0
z0ðar2 þ 1Þ½ar2ð3cz0 þ 4ar2 − 7Þ − 2� ;

z5 ¼
3a½cð9ar2 þ 3Þ þ ðar2 þ 3Þz30�
z20ðar2 þ 1Þ½ar2ðz0 þ 3cÞ − 2z0�

;

z6 ¼
3a½7acr2 þ 3ðar2 − 1Þz0 þ c�
ðar2 þ 1Þ½ar2ðz0 þ 3cÞ − 2z0�

; ð76Þ

for compactness, μ1 is the energy density associated with
the constant density solution, c1 is a constant of integration,
and we have used (48). Figure 4 shows the pressure and
energy density profiles of both fluids, and Fig. 5 shows ∂p

∂μ.

C. Heintzmann-Tolman relativistic object

We start from the Heintzmann IIa geometry (43) and
choose one of the fluids to be the Tolman IV fluid (48). In
this way the energy density and the pressure of the two
fluids will be given by

μ1 ¼
z2z3
z27

½−R4ðA2ðz4 þ 2Þ þ z4r2Þ − 4A2r4ðz4 þ 1Þ

þ R2ðA2r2ð5z4 þ 12Þ þ A4ðz4 þ 2Þ þ 4r4ðz4 þ 1ÞÞ
− A4r2z4 − 3r6z4�; ð77aÞ

FIG. 4. Energy density of fluid 1 (blue) and fluid 2 (green), as
well as the pressure for fluid 1 (orange) and for fluid 2 (red), vs r
for the Heintzmann-constant density object. We used the param-
eter values a ¼ 1.5; c ¼ 0.1; μ1 ¼ 3.3; c1 ¼ −2.5, which satisfy
the energy and stability conditions (30), (31), and (33), in order to
obtain the clearest representation. The pressure of fluid 2
becomes negative close to r ¼ 0.6.

FIG. 5. Plot of the square of the sound speed (∂p∂μ) for fluid 2 for
the Heintzmann-constant density object. We used the parameter
values a ¼ 1.5; c ¼ 0.1; μ1 ¼ 3.3; c1 ¼ −2.5 as in Fig. 4.
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μ2 ¼ z3

�
−z5 þ

z2
z27ðrþ RÞ2 × ½3z7r2ðz4 þ 4Þ

− R2z7ðz4 þ 2Þ þ A2ðz7ðz4 þ 2Þ þ 4r2R2 − 10r4Þ

− 2A4r2 − 2r2ð−5r2R2 þ 6r4 þ R4Þ�
�
; ð77bÞ

p1 ¼
z8z3
z7

; ð77cÞ

p2 ¼
z3ðz6z7 − z8Þ

z7
; ð77dÞ

where we have used the zi given in (76) and written

z7 ¼ ðA2 þ r2Þðr2 − R2Þ;
z8 ¼ A2 þ 3r2 − R2; ð78Þ

for compactness, and we have used (44) and (51). Figure 6
shows the pressure and energy density profiles of the two
fluids, and Fig. 7 shows the square of the sound speed ð∂p∂μÞ.

VIII. A GENERATING THEOREM

In their 2005 paper, Boonserm et al. [20,21] developed
transformation theorems able to map one perfect fluid
sphere into another called generating theorems. The work
in [20,21] focuses on the spacetime geometry, starting with
a known perfect fluid sphere and applying the theorem in
order to obtain a new class of solutions to the Einstein field
equations. Certain metrics, known as seed metrics, are
transformed to generate new metrics.
In [6,7] it was shown that in the context of the covariant

version of the TOV equations, the generating theorems
assume the simple forms of linear solution deformation. In
this section, we will show that one of such theorems can
also be used to obtain two-fluid solutions from single-fluid
ones. In the following, we will focus on the simplest cases
in which the solution can be obtained analytically. In doing
so, we will assume isotropy, no fluxes, and no interaction.
As seen in the previous section, and as it happens for the
single-fluid generating theorems, it is not obvious that the
new solution will be compatible with the conditions (30),
(31), and (33). These constraints must be imposed a pos-
teriori to evaluate the physical relevance of the solution.4

The TOV equations in the case Q1 ¼ 0 reads

P;ρ ¼ −P2 þ P

�
Mþ 1 − 3

�
K −

1

4

��
−
�
K −

1

4

�
M;

K;ρ ¼ −2K
�
K −

1

4
−M

�
: ð79Þ

Given a solution of (79) represented by P0,M0,K0, and Y0,
we perform the linear deformation

P0 → P0 þ P̃; Y0 → Y0 þ Ỹ;

M0 → M0; K0 → K0 ð80Þ

corresponding to Theorem 2 of [20]. We can use this
theorem to obtain a two-fluid solution from a single-
fluid one.

FIG. 6. Energy density of fluid 1 (blue) and fluid 2 (green), as
well as the pressure for fluid 1 (orange) and for fluid 2 (red), vs r
for the Heintzmann-Tolman object. We used the parameter values
A ¼ 0.5; R ¼ 4; a ¼ 3; c ¼ 1, which satisfy the energy and
stability conditions (30), (31), and (33), in order to obtain the
clearest representation. The pressure of fluid 2 becomes negative
close to r ¼ 0.25.

FIG. 7. Plot of the square of the sound speed (∂p∂μ) for fluid 2 for
the Heintzmann-Tolman object. We used the parameter values
A ¼ 0.5; R ¼ 4; a ¼ 3; c ¼ 1 as in Fig. 6.

4It is worth adding that relaxing the requirement of deducing
an analytical form extends enormously the number of achievable
solutions. We will not undertake such analysis here. The reader is
reminded, however, that such course of action implies the
additional problem to find a justification for the chosen values
of the parameters.
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In fact, the transformation (80) can be interpreted as a
change from a setting in which we have a single fluid with
pressure p0 ¼ P0ϕ

2 to a new setting in which we have two
fluids of pressures p0 ¼ P0ϕ

2 and p̃ ¼ P̃ϕ2, where P̃ is
given by the equation

P̃;ρ þ P̃2 þ P̃

�
3K0 −M0 þ 2P0 −

7

4

�
¼ 0; ð81Þ

derived by combining (9a), (9b), and the constraints (10)
with the transformation (80).
We then need to determine the energy density of the

two fluids. This can be accomplished using the conserva-
tion law,

P̃;ρ ¼ −P̃ð2X þ YÞ − M̃Y; ð82Þ

that has to hold for the fluid with pressure p̃. Combining
(9a), (9b), and the constraints (10) with the transformation
(80) and (82), we obtain Ỹ ¼ P̃ and

M̃ ¼ P̃ð1 − 4K0 þ 4M0 þ 4Y0Þ
4ðP̃þ Y0Þ

: ð83Þ

This last equation allows to obtain the energy density
corresponding to p̃ as μ̃ ¼ M̃ϕ2. Instead, the energy density
of the remaining fluid can be obtained, keeping in mind that
the total energy density should be μ0. From (80) we can
then write

M0 ¼ M̄0 þ M̃; ð84Þ

where M̄0 is the energy density variable associated to the
fluid with pressure p0 in the two-fluid picture. The energy
density for this last fluid will be, then,

μ̄0 ¼ μ0 − μ̃; ð85Þ

where μ̄0 ¼ M̄0ϕ
2. Hence, starting with a known single-

fluid solution characterized by ðp0; μ0Þ, we obtain a two-
fluids solution characterized by a fluid with ðp̃; μ̃Þ and a
second fluid with ðp0; μ̄0Þ.
The transformation (80) induces a transformation of the

metric coefficients given by

k1 → k1 exp

�Z
Ỹdρ

�
; ð86aÞ

k2 → k2; ð86bÞ

k3 → k3; ð86cÞ

where we have used the form (23). These relations allow to
complete the description of the new two-fluid solution.

Let us now suppose that the starting solution is the
Tolman IV metric given in (47). The formulas above lead to
a new solution, which is sourced by a first fluid, whose
pressure is given by

p̃ðrÞ ¼ 4z1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
ðA2 þ R2Þ

z4R2

× f½2z2z3 þ c1ðA2 þ R2Þ�ðA2 þ r2Þ
þ 2z1z4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
g−1; ð87Þ

where

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2

p
; ð88aÞ

z2 ¼ E

 
sin−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2

A2 þ R2

s !
;

A2

A2 þ 2R2
þ 1

!
;

− F

 
sin−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2

A2 þ R2

s !
;

A2

A2 þ 2R2
þ 1

!
; ð88bÞ

z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 2R2

p
; ð88cÞ

z4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 2r2

p
; ð88dÞ

and c1 is a constant, E is the complete elliptical integral,
and F is the elliptical integral of the first kind. The
corresponding energy density is given by Eq. (83) and
reads,

μ̃ðrÞ ¼ 4z23
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
ðA2 þ R2Þ

R2z34

× fð2z4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
þ c1z1ðA2 þ R2Þ

− 2z1z2z3Þg−1; ð89Þ

where the quantities zi are the same as (88). Instead, the
second fluid will have pressure p0 given by (44a), i.e.,

p0 ¼ pT ¼ R2 − A2 − 3r2

R2ðA2 þ 2r2Þ ð90Þ

and energy density given by (85), i.e.,

μ̄0 ¼
R2ð3A2 þ 2r2Þ þ 7A2r2 þ 3A4 þ 6r4

R2ðA2 þ 2r2Þ2 ð91Þ

−
4z23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
ðA2 þ R2Þ

R2z34

× fð2z4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
þ c1z1ðA2 þ R2Þ

− 2z1z2z3Þg−1: ð92Þ
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Figure 8 shows a plot of the pressure p̃. The four quantities
μ0, μ̃, p0, and p̃ are graphically represented in Fig. 9, and
the equations of state are shown graphically in Fig. 10, for
specific values of the parameters. We also give a plot of the
ratio of the two pressures p0=p̃, shown in Fig. 11, and the
two energy densities in Fig. 12.
Finally, using (86), the full expression of the metric

coefficients is found to be

k1 ¼
�

2c1
A2 þ R2

�
z1z4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p − z2z3

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
þ c2

�
2

; ð93Þ

k2 ¼
R2z42

z12ðA2 þ r2Þ ; ð94Þ

k3 ¼ r2; ð95Þ

FIG. 11. p0=p̃ vs r for the solution generated in Sec. VIII with
constant values A ¼ −2.55; R ¼ −3.6; c1 ¼ −3.6.

FIG. 10. Square of the sound speed (∂p∂μ) for the fluid with
pressure p0 (orange) and with p̃ (blue) vs r for the solution
generated in Sec. VIII with constant values A ¼ −2.55;
R ¼ −3.6; c1 ¼ −3.6.

FIG. 12. μ̃=μ̄0 vs r for the solution generated in Sec. VIII with
constant values A ¼ −2.55; R ¼ −3.6; c1 ¼ −3.6.

FIG. 8. Pressure p̃ vs r for the solution generated in Sec. VIII
with constant values A ¼ −2.55; R ¼ −3.6; c1 ¼ −3.6.

FIG. 9. Pressure p0 (orange), deformation pressure p̃ (blue),
energydensity μ̄0 (green), anddeformationenergydensity μ̃ (red)vs
r for the solution generated in Sec. VIII with constant values
A ¼ −2.55; R ¼ −3.6; c1 ¼ −3.6.
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where the zi are the same as (88). We show a plot of these
metric coefficients in Fig. 13.

IX. INTRODUCING THE FLUXES

Looking at Eq. (6i) it is clear that a two-fluid static
solution can be of two types. The first, in which the fluxes
are identically zero, and a second, in which the flux of
one fluid counteracts exactly the flux of the other. In this
section we will consider this last class of solutions. The
analysis of the behavior of the fluxes in these solutions is
relatively straightforward. Equations (22) allow us to write
Eq. (6h) as

Q̂1 ¼ −Q1

�
k̂3
k3

þ k̂1
k1

�
; ð96Þ

where we have set the interaction terms to zero. The above
equation can be integrated by separation of variables to give

Q1 ¼
Q̄1

k1k3
¼ −Q2; ð97Þ

where Q̄1 is an integration constant. The same expression
holds in terms of the parameter ρ and the area radius r as k1
and k3 are scalars for changes in these parameters. Notice
that the behavior of the flux depends only on the spacetime
geometry and, therefore, it is independent of the properties
of matter.
An important aspect of Eq. (97) is that as the flux is

inversely proportional to the Gaussian curvature, we expect
that in the center, where k3 ¼ 0 (the metric (23) is singular),
the flux will diverge. Such divergence is present also
without spherical symmetry and even if we relax the
assumption of staticity. In fact, in the case of a completely
general LRS class II spacetime of the type (20), the 1þ
1þ 2 equations give [17]

Q ¼
_̂k3
k3

−
_k3
k3

k̂2
k2

−
_k3
k3

k̂3
k3

; ð98Þ

which might also diverge when k3 ¼ 0. The origin of this
divergence is fundamentally related to the pathological
behavior of the angular coordinates in r ¼ 0 and, therefore,
we might expect that using a different chart the divergence
ofQ would disappear, not unlike the case of the divergence
of the Schwarzschild horizon.
As an application, we will now give the form of the

fluxes for the solutions that we have found in the previous
sections. For the two-fluid constant density interior
Schwarzschild solution (63) of Sec. VI, we have

Q1 ¼
Q̄1

r2½c1 þ c2 þ z�2 : ð99Þ

For the solution based on the Tolman geometry in Sec. VII,
we have

Q1 ¼
A2Q̄1

r2B2ðA2 þ r2Þ ; ð100Þ

whereas, for the solution based on the Heintzmann geom-
etry in Sec. VII, we have

Q1 ¼
Q̄1

r2b2ð1þ ar2Þ3 : ð101Þ

Finally, for the solution obtained by the generating theorem
in Sec. VIII, we have

Q1 ¼
Q̄1ðA2 þ R2Þ2

r2
½−2c1z2z3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
þ c2ðA2 þ R2Þ þ 2c1z1z4�−2; ð102Þ

FIG. 14. Flux for interior Schwarzschild (red), Tolman IV
(orange), Heintzmann IIa (blue), and the solution found with
the generating theorem (green) vs r. We use the constant values
Q̄1 ¼ 3; a¼ 3; b¼ 2; A¼ 2;B¼ 2;R¼ 1;μ1 ¼ 2;μ2 ¼ 3; c1 ¼ 3;
c2 ¼ 4; c3 ¼ 5; c4 ¼ 3.

FIG. 13. Metric coefficients k1 (blue) and k2 (orange) vs r for
the solution generated in Sec. VIII. We use the constant values
A ¼ −2.55; R ¼ −3.6; c1 ¼ −3.6 and c2 ¼ −1.45.
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where the zi are given by (88). The fluxes are graphically
represented in Fig. 14.

X. DISCUSSION AND CONCLUSION

In this paper, we have presented a complete set of
equations able to describe the interior solution of relativistic
objects with more than one fluid source, including possible
anisotropic stress, energy flux, and interaction terms. These
equations have been written by means of the 1þ 1þ 2
covariant formalism, which allows a relatively straightfor-
ward treatment of the many features of these kinds of
systems. As it is done in GR, the 1þ 1þ 2 equations can
be combined to obtain the covariant equivalent of the TOV
equations.
The properties of the TOV equations, however, can be

more clearly appreciated when they are recast in a form that
either contains dimensionless variables or it is written in
terms of quantities which are invariant under homological
transformation. Using the 1þ 1þ 2 potential, we have
defined variables with similar properties, which allow one
to write the TOVequations as a closed system of the Riccati
and Bernoulli equations, when the equation of state of
matter is included. As in the case of the single-fluid
solutions, these equations can be solved exactly with
several techniques, other than direct resolution.
We have presented here some of these solutions. In

particular, we have obtained the generalization of the
interior Schwarzschild solution to the case of two fluids.
We have also formulated a reconstruction algorithm
for the two-fluid TOV equations. The structure of the
reconstruction equations seems to show that there is a
degeneracy as a given spacetime metric might correspond
to many different combinations of fluids. The origin of such
degeneracy is ultimately correlated with the equivalence
principle: as all matter gravitates and does it in the same
way, several multifluid configurations can produce the
same spacetime metric. However, in the two-fluid case,
the conservation laws for the individual fluids are inde-
pendent equations and, therefore, one must include an
additional equation. Consequently, an additional constraint
must be added to the reconstruction equations, and this
additional equation immediately resolves the degeneracy.
We found that the additional equation can be seen as a
differential constraint for the pressure of one of the fluids or
an algebraic one for the energy density. Using the new
reconstruction equations and the single-fluid solutions
presented in the previous sections, we have been able to
obtain two-fluid solutions that are physically viable in the
sense of the constraints given in [5] and in Sec. III.
A somewhat surprising, but nonetheless interesting,

result concerns the generating theorems that have been
shown to hold in the case of single-fluid solutions. We
discovered that one of these theorems (Theorem 2 of [20])
can also be employed to construct two-fluid solutions. We
used this theorem to obtain a solution representing a two-

fluid relativistic star, comprising a perfect fluid and a fluid
with a nontrivial equation of state.
As mentioned above, the equations we have constructed

contain a complete description of the properties of the fluid,
including fluxes. Since one can integrate, in general, the
equation for the heat flux for every two-fluid solution
known, there is an additional one in which the fluxes are
nonzero. We have given the expressions of the flux for all
the solutions obtained in the text. We found that in
Schwarzschild coordinates these fluxes are always diver-
gent in the center of the matter distribution. As such
divergence could be an artifact of the coordinates used
for describing the metric, we do not consider the divergence
of the flux as a reason to discard solutions, as we have done
with other matter potentials. Further investigation on this
matter might shed light on the real nature of this feature.
In general, the majority of the solutions we have found

present a shell structure. In particular, we found that these
solutions have to be completed with an additional shell,
which can be joined smoothly to any external spacetime
we choose to consider (e.g., the Schwarzschild [25],
Vaidya [28], etc.). Such a shell can contain any number
of fluids/fields consistent with the junction conditions.
This should not be surprising: such configurations are
expected to arise in multifluid systems, and the constraints
arising from the junction conditions make such occurrences
even more likely, as it is more complex to find solutions in
which the pressures of two different fluids vanish at the
same point.
The set of results presented above indicate clearly that

the covariant formulation of the TOV equations is a
powerful tool to investigate analytically the physics of
interior solutions–even in the multifluid case. The pos-
sibility of obtaining physically reasonable and exact toy
models allows one to explore more deeply the features of
the interior of relativistic objects and their perturbations and
can be used as a complement to the large number of
numerical models in literature as a testing tool.
We conclude by remarking that the value of our

preliminary results goes beyond the scope of standard
multifluid relativistic objects. The two-fluid approach
described in this paper is also well suited to the study of
relativistic objects in theories beyond that of general
relativity, where the extra gravitational degree of freedom
can be treated as an additional (curvature) fluid coupled to
standard matter. This exciting application of our approach
will be important in the context of gravitational wave
astronomy, where for the first time the validity of general
relativity can be probed in the strong-field regime in
regions of high density and scalar curvature. These issues
will be explored in future papers.
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APPENDIX A: MAIN ASPECTS OF
THE 1+ 1+ 2 COVARIANT APPROACH

FOR A SINGLE FLUID

We will present the main aspects of the theory in this
section. For more details, the reader is referred to
[15,16,17].
We define a timelike threading vector field ua associated

to the observer’s congruence with uaua ¼ −1 and a space-
like vector ea with eaea ¼ 1. The ua and ea congruences
describe a geometry defined by two projection tensors
given by

hab ¼ gab þ uaub; haa ¼ 3;

Na
b ¼ hab − eaeb ¼ gab þ uaub − eaeb; Na

a ¼ 2;

ðA1Þ

where hab represents the metric of the 3-spaces orthogonal
to ua, and Na

b represents the metric of the 2-spaces
orthogonal to ua and ea. Any tensorial object may
now be split according to the above foliations [6].
The covariant time derivative, orthogonally projected
covariant derivative, hat-derivative, and δ-derivative are
given by

_Xa…b
c…d ≡ ue∇eXa…b

c…d;

DeXa…b
c…d ≡ haf…hbghpc…hqdhre∇rXf…g

p…q;

X̂a…b
c…d ≡ efDfXa…b

c…d;

δeXa…b
c…d ≡ Na

f…Nb
gNi

c…Nj
dNe

pDpXf…g
i…j:

ðA2Þ
The kinematical variables are given by

A ¼ ea _ua; Aa ¼ Nab _ub; ðA3aÞ

Θ ¼ Daua; ξ ¼ 1

2
εabδaeb; ðA3bÞ

Ω ¼ 1

2
εabcD½aub�ea; Ωa ¼ 1

2
εcbdD½cub�Nd

a; ðA3cÞ

σab ¼
�
hcðahbÞd −

1

3
habhcd

�
Dcud; ðA3dÞ

Σ ¼ σabeaeb; Σa ¼ σcdedNc
a; ðA3eÞ

Σab ¼
�
NcðaNbÞd −

1

2
NabNcd

�
σcd; ðA3fÞ

ab ¼ ecDceb ¼ êb; ϕ ¼ δaea; ðA3gÞ

ζab ¼
�
NcðaNbÞd −

1

2
NabNcd

�
δced; ðA3hÞ

E ¼ Cacbducudeaeb; ðA3iÞ

Ea ¼ CcedfueufecNd
a; Eab ¼ Cfacbgducud; ðA3jÞ

H ¼ 1

2
εadeCde

bcuceaeb; ðA3kÞ

Ha ¼
1

2
εcbeCbe

dfufecNd
a; ðA3lÞ

Hab ¼
1

2
εfadeCde

bgfuf; ðA3mÞ

where εab ≡ εabcec and εabc ¼ ηdabcecud are the volumes
of the two hypersurfaces, and Cabcd is the Weyl tensor.
We represent the symmetrization over the indices of a
tensor as TðabÞ ¼ 1

2
ðTab þ TbaÞ and the antisymmetriza-

tion as T ½ab� ¼ 1
2
ðTab − TbaÞ. We use curly brackets fg to

denote the projected symmetric trace free, with respect to
the na part of a tensor:

Xfabg ≡
�
NcðaNbÞd −

1

2
NabNcd

�
Xcd: ðA4Þ

The energy-momentum tensor is decomposed as

Tab ¼ μuaub þ ðpþ ΠÞeaeb þ
�
p −

1

2
Π
�
Nab

þ 2QeðaubÞ þ 2QðaubÞ þ 2ΠðaebÞ þ Πab: ðA5Þ

The matter variables are given by

μ ¼ Tabuaub;

p ¼ 1

3
Tabðeaeb þ NabÞ;

Π ¼ 1

3
Tabð2eaeb − NabÞ;

Q ¼ −Tabeaub;

Qa ¼ −TcdNc
aud;

Πa ¼ TcdNc
aed;

Πab ¼ Tfabg; ðA6Þ

where μ is the density, p is the pressure,Q andQa represent
the scalar and vector parts of the heat flux, and Π and Πa

represent the scalar and vector components of the aniso-
tropic pressure. The 1þ 1þ 2 formalism is most advanta-
geous when applied to spacetimes which have a unique
preferred spatial direction at each point, exhibiting local
rotational symmetry. This direction constitutes a local
axis of symmetry. In LRSII spacetimes, we have that the
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vorticity terms and the magnetic part of the Weyl tensor are
zero, i.e., Ω; ξ;H ¼ 0. For static and spherically symmetric
LRSII spacetimes, we also have Θ;Σ ¼ 0, and all the dot
derivatives vanish. The remaining 1þ 1þ 2 scalars, which
fully describe the spacetime, can be divided into three
categories [17]:
Propagation:

ϕ̂ ¼ −
1

2
ϕ2 −

2

3
μ − E −

1

2
Π; ðA7aÞ

Q ¼ 0; ðA7bÞ

Ê −
1

3
μ̂þ 1

2
Π̂ ¼ −

3

2
ϕ

�
E þ 1

2
Π
�
: ðA7cÞ

Evolution:

0 ¼ −Aϕþ 1

3
ðμþ 3pÞ − E þ 1

2
Π; ðA7dÞ

0 ¼ 1

2
ϕQ: ðA7eÞ

Propagation/evolution:

Â ¼ −AðAþ ϕÞ þ 1

2
ðμþ 3pÞ; ðA7fÞ

Q̂ ¼ −Qðϕþ 2AÞ þ ju; ðA7gÞ

p̂þ Π̂ ¼ −Π
�
3

2
ϕþA

�
−Aðμþ pÞ þ je; ðA7hÞ

K ¼ 1

3
μ − E −

1

2
Πþ 1

4
ϕ2; ðA7iÞ

where μ, p, Q, and π represent, in general, the total energy
density, pressure, total heat flux, and total anisotropic
pressure of the fluid. In addition, we have formally
included the total particle interaction currents as ju and
je according to the definition

ja ¼ juua þ jeea; ðA8Þ
with ju and je representing the ua and ea components,
respectively.
Finally, combining equations (A7), it is not too difficult

to prove that the Gauss curvature K satisfies the propaga-
tion equation

K̂ ¼ −ϕK: ðA9Þ

APPENDIX B: MULTIFLUID EQUATIONS

The 1þ 1þ 2 equations in the case of a static spheri-
cally symmetric spacetime and N different interacting
fluids can be written as

ϕ̂ ¼ −
1

2
ϕ2 −

2

3

XN
i¼1

μi − E −
1

2

XN
i¼1

Πi; ðB1aÞ

XN
i¼1

Qi ¼ 0; ðB1bÞ

Ê þ 3

2
ϕE ¼ 1

3

XN
i¼1

μ̂i −
1

2

XN
i¼1

Π̂i −
3

2
ϕ
1

2

XN
i¼1

Πi; ðB1cÞ

E þAϕ ¼ 1

3

XN
i¼1

ðμi þ 3piÞ þ
1

2

XN
i¼1

Πi; ðB1dÞ

K ¼ 1

4
ϕ2 − E þ 1

3

XN
i¼1

μi −
1

2

XN
i¼1

Πi; ðB1eÞ

Â ¼ −AðAþ ϕÞ þ 1

2

XN
i¼1

ðμi þ 3piÞ; ðB1fÞ

Q̂i ¼ −Qiðϕþ 2AÞ þ
XN
k≠i

jði;kÞu ; ðB1gÞ

p̂i þ Π̂i ¼
XN
k≠i

jði;kÞe − Πi

�
3

2
ϕþA

�
−Aðμi þ piÞ;

ðB1hÞ

where the index i represents the ith component, and jði;kÞe is
the interaction term between the component i and k. Notice

that jði;jÞu ¼ −jðj;iÞu and jði;jÞe ¼ −jðj;iÞe .
By summing the (B1h) over i we have the equation for

the total energy pressure:

p̂tot þ Π̂tot ¼ −
XN
i¼1

Π1

�
3

2
ϕþA

�
−A

XN
i¼1

ðμi þ piÞ:

ðB2Þ
In terms of the variable ρ defined by the relation K ¼
K0

−1e−ρ, the 1þ 1þ 2 equations can be written as

ϕϕ;ρ ¼ −
1

2
ϕ2 −

2

3

XN
i¼1

μi − E −
1

2

XN
i¼1

Πi; ðB3aÞ

XN
i¼1

Qi ¼ 0; ðB3bÞ

E;ρ þ
3

2
E ¼ 1

3

XN
i¼1

μi;ρ −
1

2

XN
i¼1

Πi;ρ −
3

2
ϕ
1

2

XN
i¼1

Πi; ðB3cÞ

E þAϕ ¼ 1

3

XN
i¼1

ðμi þ 3piÞ þ
1

2

XN
i¼1

Πi; ðB3dÞ
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K ¼ 1

4
ϕ2 − E þ 1

3

XN
i¼1

μi −
1

2

XN
i¼1

Πi; ðB3eÞ

ϕA;ρ ¼ −AðAþ ϕÞ þ 1

2

XN
i¼1

ðμi þ 3piÞ; ðB3fÞ

ϕQ̂i;ρ ¼ −Qiðϕþ 2AÞ þ
XN
k≠i

jði;kÞu ; ðB3gÞ

p̂i þ Π̂i ¼
XN
k≠i

jði;kÞe − Πi

�
3

2
ϕþA

�
−Aðμi þ piÞ:

ðB3hÞ

Using the variables,

X ¼ ϕ;ρ

ϕ
; Y ¼ A

ϕ
; K ¼ K

ϕ2
;

E ¼ E
ϕ2

; M1 ¼
μ1
ϕ2

; M2 ¼
μ2
ϕ2

;

P1 ¼
p1

ϕ2
; P2 ¼

p2

ϕ2
; P1 ¼

Π1

ϕ2
;

P2 ¼
Π2

ϕ2
; Q1 ¼

Q1

ϕ2
; Q2 ¼

Q2

ϕ2
; ðB4Þ

we obtain the covariant TOV equations as

Pi;ρ þ Pi;ρ ¼
XN
i≠k

Jði;kÞe − Pi
2 − Pi

2

þ Pi

�
Mi − 2Pi − 3Kþ 7

4

�

þ Pi

�
Mi − 3Kþ 1

4

�
þMi

�
1

4
−K

�

− Pi

XN
k≠i

ðPk þ Pk − 2MkÞ

− Pi

XN
k≠i

ðPk þ Pk − 2MkÞ

−Mi

XN
k≠i

ðPk þ PkÞ; ðB5Þ

K;ρ ¼ 2K
�
1

4
−Kþ

XN
k¼1

Mk

�
; ðB6Þ

Qi;ρ ¼ Qi

�
2K − 2

XN
k¼1

Mk −
3

2

�
−
XN
i≠k

Jði;kÞu ; ðB7Þ

where we have set

Jði;kÞu ¼ jði;kÞu

ϕ3
; Jði;kÞe ¼ jði;kÞe

ϕ3
: ðB8Þ

In the case of two fluids the equations above reduce to

ϕ̂ ¼ −
1

2
ϕ2 −

2

3
ðμ1 þ μ2Þ − E −

1

2
ðΠ1 þ Π2Þ;

ðB9aÞ

Ê ¼ 1

3
ðμ̂1 − μ̂2Þ −

1

2
ðΠ̂1 þ Π̂2Þ

−
3

2
ϕ

�
E þ 1

2
Π1 þ

1

2
Π2

�
; ðB9bÞ

−Aϕþ 1

3
ðμ1 þ 3p1Þ þ

1

3
ðμ2 þ 3p2Þ

− E þ 1

2
Π1 þ

1

2
Π2 ¼ 0; ðB9cÞ

Â ¼ −AðAþ ϕÞ þ 1

2
ðμ1 þ 3p1Þ þ

1

2
ðμ2 þ 3p2Þ;

ðB9dÞ

p̂1 þ Π̂1 ¼ −Π1

�
3

2
ϕþA

�
−Aðμ1 þ p1Þ þ jð1;2Þe ;

ðB9eÞ

p̂2 þ Π̂2 ¼ −Π2

�
3

2
ϕþA

�
−Aðμ2 þ p2Þ − jð2;1Þe ;

ðB9fÞ

K ¼ 1

3
ðμ1 þ μ2Þ − E −

1

2
ðΠ1 þ Π2Þ þ

1

4
ϕ2; ðB9gÞ

Q̂1 ¼ −Q1ðϕþ 2AÞ þ jð1;2Þu ; ðB9hÞ

Q2 ¼ −Q1; ðB9iÞ

jð1;2Þu ¼ −jð2;1Þu ðB9jÞ

jð1;2Þe ¼ −jð2;1Þe ; ðB9kÞ

which are given in (6) with Π ¼ 0, jð1;2Þu ¼ 0, and

jð1;2Þe ¼ 0. In terms of ρ,

ϕϕ;ρ ¼ −
1

2
ϕ2 −

2

3
ðμ1 þ μ2Þ − E −

1

2
ðΠ1 þ Π2Þ; ðB10aÞ

E;ρ ¼
1

3
ðμ1 − μ2Þ −

1

2
ðΠ1 þ Π2Þ −

3

2

�
E þ 1

2
Π1 þ

1

2
Π2

�
;

ðB10bÞ
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−Aϕþ 1

3
ðμ1 þ 3p1Þ þ

1

3
ðμ2 þ 3p2Þ

− E þ 1

2
Π1 þ

1

2
Π2 ¼ 0; ðB10cÞ

ϕA;ρ ¼ −AðAþ ϕÞ þ 1

2
ðμ1 þ 3p1Þ

þ 1

2
ðμ2 þ 3p2Þ; ðB10dÞ

ϕðp1;ρ þ Π1;ρÞ ¼ −Π1

�
3

2
ϕþA

�

−Aðμ1 þ p1Þ þ jð1;2Þe ; ðB10eÞ

ϕðp2;ρ þ Π2;ρÞ ¼ −Π2

�
3

2
ϕþA

�

−Aðμ2 þ p2Þ − jð1;2Þe ; ðB10fÞ

K þ E −
1

4
ϕ2 ¼ 1

3
ðμ1 þ μ2Þ −

1

2
ðΠ1 þ Π2Þ; ðB10gÞ

ϕQ1;ρ ¼ −Q1ðϕþ 2AÞ þ jð1;2Þu ; ðB10hÞ

Q2 ¼ −Q1; ðB10iÞ

and the corresponding TOVequations, for Π ¼ 0, are given
in (15).
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