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We continue our investigation of the optical properties of the solar gravitational lens (SGL). We treat the
Sun as an extended axisymmetric body and model its gravitational field using zonal harmonics. We
consider a point source that is positioned at a large but finite distance from the Sun and, using our new
angular eikonal method, we established the electromagnetic field on the image plane in the focal region
behind the SGL and derive the SGL impulse response in the form of its point-spread function (PSF). The
expression that we derive describes the extended Sun in all regions of interest, including the regions of
strong and weak interference and the region of geometric optics. The result is in the form of a single integral
with respect to the azimuthal angle of the impact parameter, covering all lensing regimes of the SGL. The
same expression can be used to describe gravitational lensing by a compact axisymmetric mass distribution,
characterized by small deviations from spherical symmetry. It is valid in all lensing regimes. We also derive
results that describe the intensity of light observed by an imaging telescope in the focal region. We present
results of numerical simulations showing the view by a telescope that moves in the image plane toward the
optical axis. We consider imaging of both point and extended sources. We show that while point sources
yield a number of distinct images consistent with the caustics due to zonal harmonics of a particular order
(e.g., Einstein cross), extended sources always result in the formation of an Einstein ring. These results
represent the most comprehensive wave-theoretical treatment of gravitational lensing in the weak
gravitational field of a compact axisymmetric gravitating object.
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I. INTRODUCTION

Gravitational lensing is recognized as a unique tool to
conduct many important investigations in modern astrophys-
ics [1-3]. Since the beginning of the 21st century, it has been
used to study the distribution of matter in stelar structures, to
probe the dark matter distribution in the universe, even to
search for exoplanets orbiting distant stars [4—7].

Due to the nonlinear nature of the equations involved,
most relevant efforts were constrained to monopole lenses,
where the gravitational field is taken to be that of a
structureless point source [8§—10]. Nevertheless, there have
been attempts to model extended lenses, including quadru-
pole and general shear distortions of the lensing potential
[2,11-13] as well as to describe binaries [14]. It was
recognized that such deviations from spherical symmetry
lead to the formation of caustics, which complicates image
formation [15-18]. Most of these investigations were
conducted using the geometric optics approximation,
which is known to be of limited utility when it comes to
describing light amplification, especially in the presence of
caustics [19,20], where such results have singularities. As
caustics appear naturally in the point-spread function (PSF)
characterizing the optical properties of an extended gravi-
tational lens, there is a need to address these shortcomings.
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In particular, it was recognized that a wave-optical treat-
ment of gravitational lensing is needed [21,22]. Until
recently, such a description of an extended lens was not
available.

Meanwhile, the solar gravitational lens (SGL) gained
attention as a possible means to obtain resolved images of
exoplanets [23-26]. From the beginning, our efforts to
describe the SGL were conducted within the Mie theory
[27,28], aiming to describe diffraction of electromagnetic
(EM) waves by a gravitational field. Such an approach
solves a Schrodinger-like wave equation for Debye poten-
tials, yielding a wave-optical description for the lens.' At
first, the lens was modeled as a gravitational monopole.
This established a good foundation on which increasingly
refined models could be constructed. These refinements

'In Ref. [29] we show that although similar results may be
obtained within a scalar theory by using a general Fresnel-
Kirchhoff diffraction formula or the path integral formalism of
quantum field theory, the Mie-inspired solution covers a method
to treat vector fields. Such an approach is advantageous from a
practical standpoint as it allows us to deal with directly observ-
able quantities and evaluate detection sensitivities (i.e., signal-to-
noise ratio [25,26]) while preserving the vectorial nature of the
EM field in a weak gravitational field.
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were needed to capture the fact that the Sun is not a perfect
sphere; its rotation and the resulting oblateness result in
small axisymmetric perturbations of its otherwise spheri-
cally symmetric gravitational field in the form of the
quadrupole and, to a lesser extent, higher-order zonal
harmonics.

Although our initial objective was to capture only the
dominant quadrupole perturbation captured by the J, zonal
harmonics, we were able to do much more. We developed a
wave-optical treatment that we call the angular eikonal
method, which can be used to describe gravitational lensing
by any axisymmetric gravitational field that is dominated by
the monopole potential, but perturbed by an infinite set of
zonal harmonics [29]. The resulting wave-optical treatment
of gravitational lensing focuses on evaluating the eikonal
phase shift that an EM wave acquires as it travels from the
source to the image plane. This phase shift now may be
evaluated for any gravitational potential that can be modeled
as a perturbed monopole gravitational field. The new
method may in fact be used to recover the multipole
moments that characterize the mass distribution of the lens,
and thus recover its basic geometry and structure. This wave-
optical approach is especially useful to describe imaging
with realistic axisymmetric astrophysical lenses [30].

Our prior work on gravitational lensing focused on the
strong interference region of the lens that exists in the
vicinity of its primary optical axis (see Fig. 1). As we move
further away from that axis, we enter the weak interference
region and then the region of geometric optics (see
description in [24]). Clearly, the farther we are from the
optical axis, the less is the impact of perturbations to
the monopole gravitational field. At some distance from the
optical axis, the behavior of an extended gravitational lens
becomes indistinguishable from that of a monopole lens. In
any case, a complete description of the transition process
between various regions is needed to fully understand the
behavior of the PSF of the lens. The images seen by a
telescope at different distances from the optical axis are also
of interest. A similar discussion in the context of a
monopole lens was presented in [25,31]. We can now
extend these results to the case of a generic lens that can be
described as a perturbed gravitational monopole.

In this paper, we apply our new approach beyond the
strong interference region, describing gravitational lensing
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FIG. 1. The different optical regions of the SGL (adapted
from [31]).

in all lensing regimes. This paper is organized as follows: In
Sec. II we summarize the wave-optical solution we call the
“angular eikonal method” [29] that allows us to determine
the EM field in all regions behind the extended axisym-
metric SGL, including the regions of strong and weak
interference as well as the region of geometric optics. In
Sec. III we address imaging with the SGL of the extended
Sun, where we describe the signal received at the focal
plane of an imaging telescope which moves in the image
plane. In Sec. IV we demonstrate the power of our
formalism by presenting results that show the view of a
point source, projected by the SGL and observed at various
distances from the optical axis by an imaging telescope. We
also present simulations of an extended source modeling
light from a distant resolved star. In Sec. V we present our
conclusions and identify next steps. In Appendix we
consider some limiting cases and demonstrate agreement
between previously obtained results and the results in the
present paper.

II. THE EM FIELD ALL REGIONS
BEHIND THE LENS

In Ref. [29], we studied diffraction of EM waves in the
presence of gravity. For this we considered a Mie problem
with the electromagnetic field propagating in the vicinity of
an extended gravitational lens in the first post-Newtonian
approximation of the general theory of relativity. We were
able to reduce the problem to a Schrodinger-like equation
describing the Debye potential and then we derived a
complete solution for the EM field on an image plane
positioned behind the lens. The resulting EM field was used
to compute the energy flux in various regions behind that
lens by calculating the Poynting vector—the quantity that
is needed to study the optical properties of the lens.”

A. Summary of the solution

We use a heliocentric spherical coordinate system (7, 8, ¢)
and consider a source positioned at a distance r, from a lens.
In [29] we studied propagation of a light ray with impact
parameter b with respect to the lens and determined the
components of the EM field that would be observed on an
image plane at distance r from the lens. For a high-frequency
EM wave (i.e., neglecting terms « (kr)~") and for r>>r,
(with r, = 2GM/ c? being the Schwarzschild radius of the
lens) we derived the EM field that is needed to estimate the
flux through the image plane. Following the logic of solving
the Mie problem [24,28], this field can be given to the
required order in the following form [29]:

To simplify the material and keep the focus of this paper on its
broader objectives, here we only summarize the solution, inviting
the reader to consult [29] for technical details if needed.
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where 1/7 = 1/r + 1/rq (as discussed in [31]) and 6, is the
Coulomb phase shift (see details in [24]). The summation is
conducted over the partial momenta £ that, in a semiclassical
analogy, is related to the impact parameter b as £ = kb. Also,
the sumin (2) starts at £ = kR, that corresponds to applying
a fully-absolving boundary condition, capturing the fact that
light rays with impact parameters 0 < b < RG = Rg + 1y
are completely absorbed by the opaque Sun. As usual,

PS) (cos@) are Legendre polynomials of the first kind
[32]. The radial components of the EM wave behave as
(D,,B,) ~O(p/z,b/ry); thus they are negligibly small
compared to the other two components (1).

The quantity &, in the phase of (2) is the eikonal phase
shift that is acquired by an EM wave as it travels in the
vicinity of an extended axisymmetric gravitational lens
(such as our Sun). To establish the form of this quantity, in
[29] we used a heliocentric coordinate system with its
z-axis aligned with the wave vector k of the incident wave,
so thatk = (0,0, 1), and introduce the vector of the impact
parameter, b = bn;. Using z to denote the heliocentric
distance of the image plane, we define x to mark a position
in the image plane. Lastly, we introduce a unit vector in the
direction of the solar rotation axis, s. These quantities are
given as

b = b(cos ¢, sin ¢, 0), (3)
x = p(cos ¢, sin ¢, 0), (4)

s = (sin f3, cos ¢, sin B, sin ¢, cos f3,). (5)

With this parametrization, the additional eikonal phase shift
£, induced by an extended, axisymmetric and rotating
gravitational lens characterized in terms of zonal harmonics
was determined [29] to have the form

&y = —kry an_n (%) nsin”ﬂs cos[n(¢;: — ¢,)]. (6)
n=2

where J, are the zonal harmonic coefficients of the
gravitational field of the lens, such as the SGL.

In [29], we considered solution (1)—(6) only in the strong
interference region that lies in the proximity of the primary
optical axis where 6 =~  /2r,/r. Our objective for this paper
is to use the solution above and derive results that will be
applicable in all the gravitational lensing regions that are
formed behind the else that also include the weak inter-
ference region and that of the geometric optics.

B. Eikonal correction for the azimuthal term

To evaluate expression (2), following [29], we use the
asymptotic representation for P,(cosd) and £ > 1 from®
[32,34-36],

P, (cos6) — M%JO(%) Lo@). ()

Next, we use expression
OP(cos 0)
06

—£1,(20) + é@]o(fe) o), (8)

PS) (cos@) =

alongside with the recurrence relations for the Bessel
functions [32]

2n

an(x) =Jy1 (%) + g (%), 9)

and derive the following two well-known [28] and useful
relations

(1)
Py (cos8) _ %52(10(1,”6) + J,(29)).

sin @
() (cos
W:%ﬁ(h(f@) — J,(£0)). (10)

Substituting (10) in expression (2), and following the
approach that we presented in [31], we consider the case of
the large partial momenta, £ > 1, which is certainly valid
here, as the integration is done from ¢ = kRg > 1 to
infinity. In this case, the term y(r, 0, ¢) is determined from
the following integral

*For an improved, explicit, uniformly valid two-term asymp-
totic form of this expression, see [33].
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To evaluate this integral we used the angular eikonal
method presented in [29]. For that, we first recognize that in
the case of a point mass (i.e., when only the monopole is
present), the resulting gravitational field is spherically
symmetric [24,37]. However, once we include the field
from the gravitational multipoles, that symmetry is broken
as the eikonal phase shift acquires an azimuthal term,
namely &, = £,(b,0, ). However, we found a way to
develop the treatment of the problem even in this generic
case. First, we recall that the eikonal phase shift &, was
obtained through an iterative process involving the eikonal
approximation that originates from the field of high-energy
particle physics but is also applicable in the optics domain.
Next, we recognize that for a spherically symmetric field
(which is used as the starting point of our iterative process)
the Bessel function J,(£0) can be used in its integral form*

1 [2= )
J()(Lﬂg) = 2—/ d¢§€_lﬂ9005<¢5_4’)‘ (12)

T Jo

This is the natural step that captures the spherical symmetry
of the field of a gravitational monopole. So, the iterative
process used to derive the eikonal phase is conducted under
this integral over all the azimuthal angles, ¢.. However, in
the case of the multipoles the azimuthal symmetry is
broken. The presence of this integral over dg;: allows us
to account for this azimuthal dependence within the angular
eikonal approximation; hence the name of the method.

We now substitute (12) into (11) and see that expression
(11), to the order of O(6%,r,/r, r2), transforms as

EO ueik(r+r0+r_,, In4k>rrg) 1

5 9’ - ~
r(r.0.¢) o ikr 27 Jo

2z
do;

x / T pdteiCortiant0csG:9)  (13)
¢=kRg

In this form, the integral over d¢, properly acts not only
on the monopole term represented by the term 26, + 2’% -
20 cos(¢: — ¢) in the phase of the expression (13) but also

on the entire phase 20, + 2% +2&, — O cos(¢ps — ),
which now includes contributions from nonspherical parts
of the gravitational potential via the eikonal phase term 2&,.
This process constitutes the angular eikonal method (valid
for weak gravitational fields) which allows us to study the

“Note that we can use the same representation of this function
with the positive sign in the phase, but the result is identical as it
will be integrated over the entire range of the azimuthal angle ¢.

scattering of light on nonspherical potentials under the
eikonal approximation.

C. Taking the integral over b with the method
of stationary phase

To develop a solution for (13), and for convenience, we
use (6) and introduce quantity y(b), as

fb(b) = _krgl/’(b)’

i) =322 (B Sivp, cosatg - 41 (1)

n=2

Furthermore, for £ > kr, evaluate 6, as [38]

afz—krglnf. (15)
This form agrees with the other known forms of ¢, [39,40]
that are approximated for large # (see discussion in
[24,41)).

We rely on the semiclassical approximation (see relevant
discussion in [24,37]) that connects the partial momenta, £,
to the impact parameter b

£ ~ kb, (16)
which is applicable for small angles € [or large distances
from the Sun (Ry/r < b/r < 1)], (see [24] for details) and
present the phase in (13) as

2
0(b) =20+ 1+ 28, F0cos(h; ~ )
= k{g—;—becos(¢§ —¢) —2rg(lnkb+l,l/(b))}. (17)

To establish the nature of this quantity, we recognize from
(3) that the vector of the impact parameter has the form given
by (3) as b = b(cos Qe sin g, 0). With this, we define the
vector € to a point on the image plane with coordinates
(r, 8, @) that has the form @ = 6(cos ¢, sin ¢, 0), developed
from (4) with € = p/r. With these definitions, we see that
bl cos(¢p: — ¢) = (b - @), and, thus (17) takes the form

@(b) = k{zi
+O(6?).

7

(b —79)* — 2r,(Inkb + y/(b))}
(18)

Thus, ¢(b) represents the Fermat potential that governs the
gravitational lensing phenomena [1,2,4]. Note that the same
form of the expression (18) may be obtained within the path
integral approach (see [29]).

Using (17), we can present the y(r, 6, ¢) factor from
(13) as
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We recognize that this is the double integral is with
respect to the impact parameter, b, specifically, d’b =
d¢:bdb. We may try to take this integral with using the
two-dimensional method of stationary phase. However, as
even the presence a quadrupole leads to appearance of
caustics such a solution will not be precise. This problem
can be mitigated if only one of the two integrals in (19) may
be taken with the method of stationary phase. When the
multipoles represent a small distortion of the gravitational
field, contributions to the eikonal phase shift due to
multipoles (14) are much smaller than that of the monopole
[given by the In kb term in (18))]. In this case, we may take
the integral over db using the method of stationary phase,
leaving the integral over d¢; unevaluated.

In case of gravitation, the monopole term is responsible for
a long-range gravitational field that affects rays of light over
very large distances (similar to the effect of a Coulomb
potential in the time-independent Schrédinger equation). In
that case, the behavior of the light ray is well understood. The
impact of the monopole is that it affects the light ray’s
trajectory along its entire path from emission to reception.
Within the eikonal approximation, any multipole distor-
tion leads to a phase shift in addition to that produced by the
monopole. This makes it possible to evaluate the radial
integral using the method of stationary phase. It can be shown
that the error incurred by doing so is of ~O((kr,)™"), which
is negligible in practice. This justifies our approach in the
case of a weak gravitational field and its long-range behavior.

1. Solving for the impact parameter
for the stationary phase

As was done in [31], we evaluate this integral using the
method of stationary phase. To do that, we note that the
relevant b-dependent part of the phase in (19) is of the form
(17). The phase is stationary when dg(b)/db = 0, which
implies

g —0Ocos(¢p: — )

_ % (1 _ g J, (%’) nsin”ﬁY cos[n(¢pe — ¢s)]>
— O(2.0). (20)

We solve this equation iteratively, using a trial solution b =
by + by + O(J2), which allows us to form two equations

b[20] — b[()ﬁ’@COS((ﬁg - ¢) - ng? = O(r!%’ez)’ (21)

b[l](Zb[()] - 70 COS(¢§ - ¢))

+2r,F i T (Ro) sin'p, cos[n(¢; — ¢y)]
n=2 b[()]
_ (’)(ré,@z). (22)

The quadratic equation (21) yields the following two
solutions,

1. I 2 8
b[io] = Er9cos(q,’7,§ —-¢)+ \/<§ 76 cos(¢p: — 45)) +2r,F

+ O, r5.J,). (23)
We require the impact parameter to be positive. This

condition is be satisfied only for the positive sign in
(23). Thus, the impact parameter b has the form

byg = \/<% 76 cos(¢p: — qb))z +2r,F +%79 cos(¢: — @)
+ 06,12, 7,). (24)

As this solution has dependence on the azimuthal
angle ¢, in the case of a monopole, (24) actually represents
two families of impact parameters when ¢: — ¢ = 0 and

¢z — ¢ = m, yielding

(0] 1_\? N
bin == <§r6> —|—2rgr+§r9,
1 2 1

where bi[g] and b[s(g are the two impact parameters describing

incident and scattered EM waves, corresponding to light
rays passing by the near side and the far side of the Sun
(with respect to the location of the telescope) correspond-
ingly. After it is diffracted by a point-source gravitational
lens, a wave front is described as the sum of a gravity-
modified plane wave (the incident wave) and a spherical
wave centered on the gravitational lensing source (the
scattered wave); see, for instance, Fig. 2 of [24]. The impact
parameters bi[g] and b[s(g correspond to images that appear
close to the Einstein ring on opposite sides of the lens; the
“scattered” image, denoted by “Sc”, on the far side relative
to the telescope (called the minor image) always appears
inside the Einstein ring, and the “incident” image, denoted
by “in” on the near side always appears outside (called the
major image); see [2] for details.

For /2r,/F < 0, this result is equivalent to the two
solutions derived in Sec. IV of [31]. However, the form (24)
allows us to study the behavior of the EM wave in the
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transition between the two solutions in the region where the
angle 0 is of the same order as the FEinstein deflection

angle 0 ~ \/2r, /7.
It is convenient to use a shorthand notation
Ocos(¢: —¢) = (n:-0), where 6 = 6(cos¢p,sing.0).

Then, by dividing the solution (24) by 7, we may present
the two solutions in term of the angles 9 —b[0 /7,
for ¢:—¢ =0, and 6 = bV/7 for p.—¢p =1 to

(9(63,rg,J ), we have

1
0% =3 ( (n: - 0)2 + 462 + (n; -0))

Al :%(\/92+49§+9) and
i :%<\/92+49%—9), (26)

where g = ,/2r,/7 is the Einstein deflection angle.
This establishes the correspondence of our analysis in
this section to the well-known modeling of microlens-
ing [1,2,4].

The expressions in (26) lead to the familiar expression
used to describe the image magnification of A = (u* +2)/

(uv'u? + 4), where u = 6/ Our description allows us to
develop the vectorial description of the microlensing
phenomena and, besides magnification, it also allows us
to describe light amplification. Furthermore, our approach
allows further improvement; it allows us to describe
deflection on the multipoles where the motion is no longer
in one plane, but is a function of all three coordinates
(.0.4).

To demonstrate this, we continue with the solution of
(22). To solve for bm we use bl from (21) and substitute it

in (22) to derive bl to O(r2,6%)

R sin” f; cos[n(d; — ¢y)]

by = — i i J,

. (27)
V G0cos(p: — 9)7 +2r, 7078 (1) ($T0cos(de = §))* + 21,7 + L0 cos(p: — ¢))"
As a result, using expression (24) and (27) in the solution to (20) takes the form valid to the order of O(rg, 93),
1. 2 .
b= 3 70 cos(¢pz — ) | +2r 7 + 3 76 cos(¢p: — @)
_ l"g;' i Jn R%Sin”ﬁs COS[" (¢§ - ¢s)] ) (28)
\/(% 70 cos(d: — p))? + 2r F n=2 (\/(% 70 cos(¢pe — ¢))? + 2r,F + 70 cos(d: — )"
I
With this result for the impact parameter b, we may now d*¢ 1 2r,

proceed with forming the stationary phase solution. db? =k 7 b2 +0(,) |- (29)

2. Computing expressions needed
the stationary phase

To establish the solution with the method of stationary
phase, we also need to compute the second derivative of the
phase ¢(b) from (17). With respect to b, we have

Note that we need ¢” only to the order of O(J,) as in the
eikonal approximation we may neglect the influence of the
short-range potential (that depends on the mass multipoles)
on the amplitude of the EM wave.

Now, using expression for b = b, from (28) we have

1~ 2 =

2k (570 cos(ps — ¢))* + 2r,F
o'(bo) =% /¢ : + 005, 0°.,), (30)

T\ GT0cos(ge = §))? + 2r,F + L0 cos(p: — o)
which is always positive. Next, we compute +/27/¢"(bg) as
20 1/2
,/ . b == [ 270 coslde = ) + O 1,). (31)
0) \/(2 70 cos(¢s — )) + 2r,F
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As a result, the amplitude of the integrand in (19), for b from (28), takes the form

[ ox k \/5,; e <\/(%6’cos(¢§_¢))2 +27:ﬂ+%9cos(¢5_¢))3 1/2
A(bo) =—Db\[—= : (32)
@"(bo) rro \¢" r+r 2

\/Gocos(ge - p)) + 2

We are now ready to assemble the stationary phase solution for (19), treating the radial part of the double integral.

3. Summary of the stationary phase solution

Finally, we need to compute the stationary phase. For this, we substitute the solution for the impact parameter, b, from
(28) into the expression for the phase, ¢(b) given by (17),

1. 1 2 21, 1
#(binjsc) = k{—grecosm -9) <\/ (Eecos@pg - ¢>) + 2040 cos( - ¢)>

1 2 2r, 1 B
—2r,In <\/<§9(zos(¢§ - ¢)> t— 59008(455 - ¢)> +ry—=2r,Ink¥

s 2"’: T, REsin"f cosn(pe — )] }
T (\/(% 70 cos(gs — ))? + 2r,F + 3 FO cos(d: — p))"

(33)

As aresult, the factor y(7, 6, ¢p) from (19) corresponding to the incident EM wave moving towards the interference region
is given in the following form:

E, . N I | 27 o r
7.0, — 7O ik(rd+rotryIndkrro+r,=2r, lnkr)—zz_/ d 7.0, ip(r.0.9) L O 92’_992 , 34
r0.9) =0 57 | deatr0.g)e 0+ 0( 0. (34)

(\/(%HCOSW& —$))? + 22+ L0 cos(¢; - ¢))3 12
Vocoss — )7 + %

a(7,0,¢) = k¥ ) (35)

B 1. 1 2 2r 1
o(7.0,¢) = _k{i 76 cos(¢p: — ¢) (\/(Eé’cos(gb,: — ¢)> + 7{} + Eecos(cj;é - ¢)>

+2r,In (\/<;9008(¢§ - ¢)>2 + 2f:q + %9008(455 - ¢)>

Loy i": Ju R sin B, cos[n(pz — )] }
=i (\/(%?9008(4%: —§))? + 2r, 7 + 170 cos(p: — )"

(36)

Results (34)—(36) provide all the necessary information for us to compute the components of the EM field in all the
regions behind the lens in the case of the weak gravitational field.

D. Deriving the EM field on the image plane

As a result of the expressions developed above, the components of the incident and scattered EM field from (1) to the
order of O(r2,6% b/z,) take the form

<Da) _ ( B, ) — B0 e L [ gpa.0. ¢)<COS¢), (37)
By -D, r+r 27 Jo sin ¢
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where the phase Q(z) is given as
Q(t) = k(r + ro + r, I 4k2rrg + ry — 2r, In kF) — Z ~ ot, (38)
and the complex amplitude A = A(x, ¢¢) is given as

A<X’ ¢§> - a(X, ¢§)ei(ﬂ(x’(/)¢)
<\/<%GCOS(¢§ —$))* + 2%9 + %9C05(¢§ — ¢))3 1/2
\ Gocos(h; - @) + 22

1 1 2 2r, 1
X exXp l—lk{i 76 cos(¢p: — @) <\/<§Gcos(¢§ - ¢)) + 7‘(] + iﬁcos(qﬁé - ¢)>

+2r,In <\/<%Hcos(¢§ - ¢))2 + 27:(’ + %9003(4&5 - gb))

Loy iﬂ Risin"f; cosn(pe — ¢y)] }] (39)
"3 (G0 cos(te - )7 + 2,7 + 170cos( — )"

= Vrk¥

where the radial components of the EM waves behave as (E,, H,)n/sc ~ O(p/r, b/1)) and thus are negligible for any

practical purposes. Note that if § > /2r /7, results are identical to those reported in [31].
As our interest is the EM field on the image plane, it is convenient to transform these solutions to cylindrical coordinates
(p. #. 2), as was done in [24,31]. Transforming (37), yields the components of both solutions, to O(r2, 6%, b/r), in the form

()= () - e ()
H, -E,) r+rn sing )

where the z-components of the EM waves behave as (E_, H.) ~ O(p/z,\/2r,z/z), and where ¢ is the angle that

corresponds to the rotated Z coordinate axis described in [31]. The quantity B(x) is the complex amplitude of the EM field
has the following form:

B(x) = %[ dp:A(x. §2). (41)

With A(x, ¢:) given by (39), the complex amplitude takes the form

3 1/2

\/(%Hcos(qﬁg —))? + 24 L0 cos(s — ¢)>
\/G0cos(p; - p))? + 2

B(x) = Wziﬂf”dcpé (

1 1 2 2r 1
X exXp l_lk{i 76 cos(¢p: — @) <\/<§Qcos(¢§ - 45)) + 79 + 59005(4)5 — 4)))

+2r,In <\/<%9cos(¢§ - ¢)>2 + ZT:g + %9005((755 - 4’))

Rsin" B cos[n(ps — )] }1 ,
(% 70 cos(ps — ))* + 2r,F + % 70 cos(¢; — 4)))"

(42)

+2rg§;%(\/
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This universal expression for the complex amplitude is
valid in all regions of an extended axisymmetric lens,
including the geometric optics region, weak and strong
interference regions. It represents a powerful result that is
now applicable in all these diverse regions with very
different gravitational lensing behavior.

We may now evaluate the optical performance of the
SGL of the extended Sun by computing its PSF. The PSF
characterizes the impulse response of the optical system; it
maps light from a point source into the image plane. We can
follow the approach used in [29] using the result (40)—(42)
to compute the energy flux in the image region of the lens.
With overline and brackets denoting time averaging and
ensemble averaging respectively, the relevant components
of the time-averaged Poynting vector for the EM field in the
image volume may be given in the following form (see
[24,31,37] for details),

c

S.(x) = —([ReE x ReH],)

2, (43)

where |B(x)|> = B(x)B*(x), with B*(x) being the
complex conjugate of B(x). Note that S, =S, =0 for
all practical purposes. Defining light amplification as
usual [24,31,37], p.(x) = S.(x)/[So(x)|, where Sy(x) =
(c/8m)E3/(r + ro)°k being the Poynting vector carried by
a plane wave in the vacuum in flat spacetime, we have the
light amplification factor of the lens that, for short wave-
lengths (i.e., kr, > 1) is given by

po(x) = [B(x)P. (44)

We recognize that the quantity u,(x) is the PSF of the SGL
that is scaled by the amplification factor and it describes all
lensing regimes with this extended lens. In Appendix we
show that, in some cases, the amplification factor explicitly
multiplies the PSF, but, in general, the PSF (44) is
implicitly scaled by the amplification factor via (42).

In Appendix we consider limiting cases of B(x) from
(42). Those cases include very small deviations p from the
optical axis, namely p/r =6 < /2r,/r, very large devia-
tions p/r =6 > /2r,/r, and those in between. We show
that far from the optical axis, the PSF that is constructed
with the help of B(x) from (42) exhibits the behavior of the
monopole PSF [24], but as we come closer to the optical
axis, the effect of multipoles becomes more pronounced,
ultimately bringing us to the caustic region discussed
in [29].

III. IMAGING WITH THE SGL OF THE
EXTENDED SUN

The complex amplitude (42) developed in the previous
section describes the EM field in the image plane. This field,
however, is not what is usually observed. Rather, observa-
tions are made with an imaging telescope looking back in the
direction of the lens. Our formalism also grants us the ability
to accurately describe the image that forms in the focal plane
of such a telescope: i.e., the actual observable.

A. Description of the imaging geometry

With the knowledge of the EM field in the image plane
behind an extended gravitational lens (40)—(42) and fol-
lowing the approach developed in [25,30,41], we can now
describe what an imaging telescope would detect on its
focal plane. Such telescopic capability is important as it
characterizes the measured optical signal [30,42].

Similarly to [30,41] we describe the geometry of the
observation, using X to represent the current position of an
optical telescope in the SGL image plane, x’ denoting any
point in the same plane, and x;, representing a point on the
focal plane of the optical telescope. These positions are
given as

{x} = (x,y,0) = p(cos ¢p,sing,0) = pn,  (45)
{x'} = (x,y,0) =p/(cos¢’,sing’,0) = p'm’,  (46)
{xi} = (x;,¥i,0) = p;(cos ¢;,sin;,0) = pn;.  (47)

To convolve the PSF of the SGL with that of a thin lens
that represents an aperture of a telescope, we first need to
establish an appropriate form of the PSF for point sources.
Examining (39), we see that it contains the expression
pcos(¢s — ¢), which may be transformed as

pcos(¢s — @) = (ng - x). (48)

We now transition from the current position x of the
telescope to an arbitrary location within the telescope’s
aperture by the substitution

X = x+x'. (49)

Therefore, we may write
(mg-x) = (ng-x) + (ng - x'). (50)

We note that x’ varies only with the aperture, whereas x can
be anywhere in the SGL image plane. In much of the image
plane, we have p’ < p. This allows us to expand (39) in
terms of the small parameter p’/p, keeping only terms of
the first order in p’/p. In addition, we recognize that the
vector @ = 0(cos ¢, sin¢,0) = x/r, with r being the dis-
tance to the image plane, may be transformed as

044013-9



SLAVA G. TURYSHEYV and VIKTOR T. TOTH

PHYS. REV. D 104, 044013 (2021)

/

(mg-0) =g -x)/r = (ng-x)/r+ (ng-x’)/r:'gcos(qbf — ) +'07cos(¢§ - ). (51)

This approximation yields the following result for the complex amplitude [A(x) from (39)] but given with the shifted

argument according to (49)

A(x,x') = a(x,ng) exp[i(5p(x, n;) — v(n; - x))], (52)

with the amplitude factor a(x) and phase S¢p(x) given as

(Vg 0/ + 3+ e )0r)

37 1/2

a(x,ng) = V k¥

Vw7 42

+O(x/r), (53)

Sp(x.n;) = —k{;ng-x) (\/ (3mex0/7) + 24 x>/r>

r n l -x\)/r ? % l -x)/r S ‘]_ﬂ R%Sin”ﬂscos[n(qﬁf_qﬁs)]
" g<1 (\/(2(115 !/ ) " r +2<n§ / >+; " <\/<%(n:'X))2+2rg?+%(n§'X)>n>}. >

We note that when the angle 6 is large, 6> ,/2r /7 and
thus, p > | /2r,7, and we get back the PSF of a monopole.
Thus, the integral (13) may be taken using the method of
stationary phase applied to the double integral. In that case,
the factors aj,/sc in (53) take their known values (see [31]
for details) namely af (p.7) =1+ O(r,6%,r;) and
ade(p.7) = (2r,7/p*)* + O(r 6% r2). However, our new
expressions (53) allow studying the cases when p =~ /2,7
anywhere in the image plane. The last quantity present in
(52) is the spatial frequency v = v(x,n;), defined as

v(x,ng) :k<\/<§(“:'X)/F>2+27:"+%(n5-x)/r>_

(55)

The quantities (52)—(55) describe the complex amplitude
of the EM field, B(x,x’) from (41), as measured in the
focal plane of an imaging telescope.

B. The EM field in the telescope’s focal plane

The focal plane of the optical telescope is located at the
focal distance f of the lens, centered on x’. Using the
Fresnel-Kirchhoff diffraction formula, the amplitude of
the image field in the optical telescope’s focal plane at a

location x; = (x;,y;) is derived from (41) and is given
by [28,43,44]

. e iks'
B(x,x;) = i// B(x,x')e 77X |2€—,d2X/. (56)
A Jixps(ajay s

The function exp[—is7|x'[*] = exp[~iy; (¥* +y?)] in
(56) represents the action of the convex lens that transforms
incident plane waves to spherical waves, focusing at the
focal point. Assuming that the focal length is sufficiently
greater than the radius of the lens, we may approximate
the optical path s" as s' = /(X' — x;)2 + (y = y;)* + f*> ~
f+((x=x)*+ (' —;)*)/2f. This allows us to present
(56) as

eikf(H»x%/Zfz) "
B(nyi) = _4// de/B(X,X/)e_17<X -xi).
lﬂf |X/|2S(%d)2
(57)

Expressions (52)—(55) allow us to consider imaging of
point sources with the SGL, now treated as that produced
by a gravitating body that is axisymmetric and rotating,
thus admitting characterization of its external gravitational
field by zonal harmonics. To accomplish this (following
[25,41]) we use the expression for A(x, x’) from (52) and
present the Fresnel-Kirchhoff diffraction formula as
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A eikf(1+x}/2f?) &~ TA( S in;(n;x’)
X, X)) =——F"77— XA, X7 )emm
) iAf / Aq@@dv

oikf(14x2/2f?)

= ———————a(x,np)erxn) // d>x! i(=v(nex)=ni(n;x')) (58)
Ix'[?<(d/2)*

irf

where the spatial frequency v = v(x, n;) is given by (55).
Also, for a telescope with focal length of f and for a radial
pixel position p;, the factor #; has the form [25,30,41]

0 = k%. (59)

Therefore, to derive the amplitudes of the EM field in the
focal plane of the optical telescope, corresponding to (52),
we need to evaluate an integral of the type

/ / 2x! el (v nex) = X)) (60)
X' <(d/2)

To evaluate this integral, we present the phase in (60) as
—v(ng X') —n;(n;-x') = —up'cos(¢' =) + O(p?).  (61)

where, for convenience, we defined
|

1
2

u=\/*+2un; cos(¢p: — ;) + ",
v COS g + 1; COS ¢b;

cosc = ,
u
. vsing: + n; sin ¢;
sing = fetnising, : (62)
u

With these definitions, and using the parametrization
given in (46), the integral (60) may be evaluated as

2 a2 o 227, (uld
[ [ (220080 g
0 0

2 Mi

As a result, using (52) in (58) leads to the following
amplitude of the EM wave on the optical telescope’s
image plane:

)ei(kf(l+x‘?/2f2)+6(p(x,n§)+’2—‘) + 0(,{2})}. (64)

Therefore, the Fourier-transformed complex amplitude (56) takes the from

1
27‘[0

where B(x, x;) is given as

B(x,x;) = %AM d¢5{a(x,n§)<

kd®

2
— dp:A(X,X;,n;) = <§

)ei(kf(l+xf/2f2)+’§’)3(x’ X,). (65)

2.]1 (M(Xl', X, né:) %d)

idp(x.n;) , 66
u(x;, x,ng)1d )e } (66)

where a(x,n;), ép(x,n¢), and u(x;,x,n;) are given by (53), (54), and (62), correspondingly.
Using this result together with (40), we obtain the EM field on the detector that is given as below

P

After time averaging, we derive the Poynting vector of
the EM wave in the focal plane of the imaging telescope,
E? kd?

stxox) =

262
=8t ) §> (x,x;). (68)

(Ep ) _ ( H,y > _ _Eoi@wsssiranenm) (ﬁ) B(x, x;) (COS?>. (67)
H ~E, r+rg 8f sin ¢

As a result, the intensity on the focal plane, Z(x, x;), of
the system that includes the SGL and a thin lens is given in
the form as below

I(x.x;) = B (x.x;). (69)
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where the Fourier-transformed complex amplitude is
B(x,x;) from (66). We emphasize that u_(x) from (44)
is the PSF of the extended SGL. It describes the image of a
point source projected on the image plane at the SGL focal
region. At the same time, the quantity Z(x, x;) from (69) is
the intensity of light received on the focal plane of an
imaging telescope. This is a directly observable quantity
that is accessible to an optical telescope. As such, it is of
most importance for any practical applications of the SGL.
The resulting expression for the intensity on the focal plane
allows considering imaging of various sources with the
SGL of an extended Sun. We will do that next.

IV. APPLICATION OF RESULTS

The formalism developed in the preceding section opens
the route to simulate the effects of the SGL beyond the
immediate vicinity of the optical axis in its strong inter-
ference region (see Fig. 1). There is, however, first our
obstacle: evaluation of the remaining integral in our final
expression (66).

A. Evaluation method

Equation (66) describes the view seen by an imaging
telescope of a distant source, both near and far from the
optical axis of the gravitational lens. To use this equation, it
is necessary to evaluate the remaining integral in the
regions of interest. Examining it more closely, we note
that the integral has finite integration limits, which makes
numerical evaluation easier. However, it is still an oscil-
latory integral. Moreover, at large distances from the optical
axis, the oscillations become very rapid. This makes direct
numerical evaluation challenging.

On the other hand, a rapidly oscillating integral implies
the possible use of the method of stationary phase once
again. This is precisely what we have accomplished in [42],
for the case when J, and higher-order zonal harmonics can
be safely neglected, thus leaving only the astroid caustic due
to J,. The result, expressed through the roots of a quartic
equation, works reliably everywhere in the region of strong
interference, only showing occasional rounding errors in the
immediate vicinity of the caustic boundary of the projected
astroid pattern of a quadrupole lens (Fig. 2 [29]).

Beyond the region of strong interference, the contribu-
tion of the zonal harmonics is negligible and we can use the
previously developed monopole solutions for efficient
evaluation.

Using this combination of methods, we are now in the
position to evaluate (66) everywhere in the image plane,
constructing simulated views of point sources as seen by an
imaging telescope through the SGL.

B. Simulated approach to the optical axis

To demonstrate the power of the approach captured by
the expression (66), we chose to simulate the view of a

FIG. 2. An illustrative example of the SGL PSF, appearing as
the astroid caustic projected into the image plane by the SGL,
with its recognizable cusps (vertices) and folds. As an imaging
telescope enters this region in the image plane, its view of a
distant source transitions from a pair of images (the primary and
secondary image) into some variation of an Einstein cross or
Einstein ring, depending on the size of the astroid, the imaging
wavelength, and the size of the light source. Adapted from [29].

distant point source, as seen by an imaging telescope that is
approaches the optical axis of that star with respect to
the SGL.

We were able to assemble a series of still images,
ultimately in the form of animations,5 which show how
an imaging telescope would see the distant source as it
approaches the optical axis that corresponds to that source.
Select frames from this animation are presented in this
section.

We began the simulation with the imaging telescope
located at 10° km from the optical axis, looking in the
direction of the Sun (see Fig. 3). This distance was chosen
because it is comparable in magnitude to the solar radius,
thus placing the imaging telescope firmly in the region of
geometric optics.

At the beginning, the source’s “primary image” is
outside the telescope’s field of view, and no noticeable
“secondary image” forms yet on the opposite side of the
Sun. At 6 x 10° km from the optical axis, a faint secondary
image emerges, or rather, would emerge if the Sun were
transparent. In reality, light from that secondary image is
yet blocked by the opaque disk of the Sun. When the

>See https://www.vttoth.com/CMS/physics-notes/361 for a
full set of animations.
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FIG. 3.

View of a distant compact source by a telescope approaching the SGL optical axis associated with that source. The telescope is

positioned at 3 x 10° km, 1 x 10° km, and 4 x 10°> km from the optical axis. Note that at 3 x 10° km, the secondary image of the
source is still obscured by the solar disk (shown as a yellow circle). By the time we reach 4 x 10° km, the images become
indistinguishable, even as light amplification increases nearly a hundredfold. For the full animation, see https://www.vttoth.com/CMS/

physics-notes/361.

telescope is at 3 x 10° km from the optical axis (less than
half the solar radius) the primary image becomes clearly
visible within the imaging area. This is the unobstructed
view of the distant source, already amplified by the SGL, so
its peak central brightness is ~1.8 times the brightness of
the unamplified image. The secondary image, now less
faint, is still obscured by the solar disk.

When the telescope is only ~1 x 10° km from the
optical axis, the secondary image emerges from behind
the Sun. Light amplification is becoming significant; the
primary image’s peak brightness is now more than four
times as bright as the unamplified star. When the telescope
approaches within ~2 x 10* km of the optical axis, the
primary and secondary images are already nearly identical
in appearance, at symmetric positions, settling at a distance
from the solar limb that corresponds to the radius of a yet-
to-form Einstein ring. Light amplification is substantial; the
peak brightness that the imaging telescope sees is nearly

20 times the intensity of light from the unamplified star.
Even so, the images remain point-like in appearance: This
is dictated by the diffraction-limited resolution of the
imaging telescope itself.

At this stage, the position of the two images of the point
source is final. As the telescope continues to approach the
optical axis, however, light amplification increases across
several orders of magnitude.

For the purposes of this simulation, we chose to place the
optical axis very near the solar axis of rotation, in order to
keep the contribution of the J, zonal harmonic small.
Figure 4 shows the telescope’s final approach to an optical
axis that is at 5.74° from the solar axis of rotation, which
corresponds to sin f; = 0.1. This yields an astroid PSF that
is relatively small, convenient for visual presentation.

Once the telescope is within a distance comparable to the
size of the astroid caustic (in this case, within 10 meters),
the secondary image begins to widen into an arc. Even

FIG. 4. View of a distant point source by a telescope near the optical axis, at 2 m, 1 m, and positioned on the axis. The optical axis is at
5.74° from the solar axis of rotation, a direction chosen because it representatively shows the development of an Einstein cross during
this final approach. The view is that of a telescope with a 1 m aperture; light amplification is of ((10%). For the full animation, see

https://www.vttoth.com/CMS/physics-notes/361.
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Distance: 202.500 km

FIG. 5.

View of a distant star by a telescope approaching the SGL optical axis, at distances of 1,000 km, ~200 km and ~150 km. The

geometric projection of the start to the image plane would yield a disk with a radius of 200 km. As the imaging telescope approaches this
distance, a full Einstein-ring forms; subsequently, the ring brightens and becomes uniform as the telescope settles on the optical axis.

closer to the optical axis, the arc splits into three distinct
spots of light. As the telescope settles on the optical axis,
these spots migrate to their final positions on the circum-
ference of the Einstein ring, resulting in a fully formed
Einstein cross. (This simulation assumed that the telescope
approaches from one of the principal directions of the
astroid caustic, i.e., one of the cusps. To see what happens
when the telescope approaches from a different angle (see
e.g., [42]).

It is remarkable that all these animation frames are
simply surface density plots of the integral expression given
by Eq. (66), which accurately describes an axisymmetric
gravitational lens dominated by a spherically symmetric
gravitational potential in all regions, both near and far from
the optical axis. We can generate with equal ease, images
seen through a telescope that is positioned as far as a
million kilometers or more from the optical axis or a
telescope that is at the optical axis or its immediate vicinity.

C. Viewing an extended object

The PSF of a lens represents its impulse response; the
image that forms when the light source is a point source. An
extended object can, of course, be considered as a collec-
tion of point sources. The most straightforward method
(though computationally inefficient) of convolving an
extended source with the PSF of the lens is by dividing
the source into point sources and iterating through them.

To demonstrate this, we considered an extended source
in the form of a uniformly illuminated disk, which could
represent a host star. We chose a disk that would be
geometrically projected to an image with a 200 km radius in
the image plane. With the image plane at 650 AU, this
would correspond to a Sun-sized star at ~36 light years.

For computational efficiency, we modeled the extended
source using a simple adaptive mesh implementation,
refining the resolution for regions that are projected close to
the telescope’s location in the image plane. This approach

.. . . . 6
was sufficient to create a series of animation frames,

several of which are shown in Fig. 5.

When the telescope looking at such an extended object is
far from the optical axis, the telescopic image appears
similar to that produced by a point source (see Fig. 3).
However, when the telescope begins to approach the
projected image area corresponding to the extended source,
a very different picture emerges. Instead of developing into
an Einstein cross, the view of the telescope shows a fully
formed Einstein ring. We may think of this Einstein ring as
a collection of a large number of overlapping Einstein
crosses at various orientations, corresponding to the point
sources constituting the extended source. Thus, instead of
being dominated by light from a single pointlike region in
the source, the Einstein ring now contains a mix of light
from many different regions of the extended source.

V. DISCUSSION AND CONCLUSIONS

We studied the optical properties of an extended axi-
symmetric gravitational lens. The gravitational potential for
such a lens can be described using an infinite series of zonal
harmonics. We extended the description of the SGL optical
properties from the strong interference region to all lensing
regimes. The new results can now also describe lensing in
the weak interference region and that in the geometric
optics region.

The expressions that we obtained can be used to describe
the light field that is created by the SGL in its focal region.
It can also be convolved with a representation of an optical
telescope (modeled as a thin lens telescope) to show the
view seen by such a telescope. The results are “actionable”
in the sense that they are reduced to a single integral
expression that can be evaluated in many cases using direct
numerical methods.

®For the full animation, see https://www.vttoth.com/CMS/
physics-notes/360.
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Moreover, when used in conjunction with our earlier
work [45] in which we obtained a closed form expression
of the SGL PSF monopole and quadrupole contribution
(ignoring higher-order zonal harmonics that contribute
little) the new formalism allows us to compute the light
field of the SGL or the view seen by a model telescope
without resorting to numerical integration, and thus not
hindered by the properties of rapidly oscillating integrals.

We put these results to use, in particular, by creating a
series of multiframe animations that show the view of a
point source through a telescope that is approaching the
SGL optical axis from afar. The strength of our formalism is
powerfully demonstrated when we consider that the same
expression can model the (essentially unamplified) view of
a distant object when the telescope is still far from the SGL
optical axis, the emergence of a secondary image from
behind the solar limb, and the eventual widening of these
images into arcs and their transition to form an Einstein
cross around the Sun. We can also simulate light from
extended objects, showing how, even in the presence of
multipole moments, such objects still form an Einstein ring
around the Sun.

Finally, we note that although our focus remains the SGL
that can be represented elegantly using zonal harmonics,
our approach can be readily extended to other gravitational
lenses that can be represented using symmetric trace-free
(STF) tensors [29]. The resulting formalism covers every

gravitational lens that can be described by small deviations
from the spherically symmetric gravitational field of a mass
monopole. Our approach, therefore, is the most compre-
hensive wave-theoretical treatment of gravitational lensing
in a weak gravitational field to date.

Concluding, we emphasize that the analytical expressions
derived in this paper are presented in terms of physically
observable quantities and, as such, they are directly suitable
for realistic data analysis. To that extent, we can use them to
process, e.g., time-series brightness data available from the
OGLE’ and MACHO® projects, the upcoming Roman Space
Telescope,’ or other microlensing projects that may benefit
from the improved modeling. In addition, the results
presented in this paper offer a solution for establishing a
local reference frame that can be used to achieve the required
navigational precision for future missions to the SGL focal
region for high-resolution exoplanet imaging [46]. The
corresponding efforts are under way; results, when avail-
able, will be published elsewhere.
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APPENDIX: CONSIDERING LIMITING CASES

Given the complex structure of the results obtained, it is natural to consider limiting cases of the results obtained in this
paper for B(x) and B(x, x;) that are given by (42) and (66), correspondingly. The obvious such cases are those for very
small deviations p from the optical axis, namely p/r = 6 < /2r,/r, those for very large deviations p/r = 0> /2r,/r
and those in between. Below, we will consider each of these cases and will establish correspondence of our results to those

studied previously.

1. Small deviations from the optical axis

We begin with the case of when the deviations from the optical axis are small. In the case when p/r =0 < \/2r,/r,

expression for a(x,n;) given by (53) behaves as

+%(n§ ‘X)/r)3 1/2

(A1)

lima(x, n;) = lim V/7k7 Ve
6—0 6—0

= \/2nkr, + (’)(

7https://en. wikipedia.org/wiki/Optical_Gravitational_Lensing_Experiment

*https:// en.wikipedia.org/wiki/MACHO_Project
9https://roman. gsfc.nasa.gov/
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Similarly, we determine the behavior of the phase shift §¢ from (54)

ggg&ﬂ(x,ng)——khj%{;(n:'x)<\/ (3mex/r) + 222 San >/r>

1 2 2, > J, R%sin" B cos[n(¢: — ¢y)] }
+2r,In —(ng-x)/r —|——+ ( x)/ >—|—2rg =
<\/(2 ) e N TR T

\ /2rgr

(A2)

2 - " 2
:—k{ $<pcos<¢§-¢>+m;%< j_) s cosilgs = )] 1, 1n "2+ O )}

As aresult, expressions from the complex amplitude of the EM wave, B(x) from (42), and its Fourier transform, B(x, X;)
from (66), take familiar forms

B(X) _ e—ikrgln2rg/? /Zﬂ'ki’g
1 [2r -~ R \".,
X ), dg[)é exp {—zk (pcos(gb,: @) + 2r9r27 <\/m> sin”f; cos|n (e —¢s>]>], (A3)
= 9

which was originally obtained in [29,45] and

1 [ /20 (u(x,x;00) b d
B(X,Xl'): —ikryIn2r,/F 277:/(]‘ 95, / d¢§< 1(”(X X 115)2 ))

u(X,x;,ng)1d
X exp {—ik\/27<pcos (e — &) + \/TZ <\/T> sin" 3, cos|n (¢, _¢s)]>:|, (A4)

which was obtained in [30,42]. Therefore, the expressions that we obtained for the complex amplitude of the EM field B(x),
and its Fourier transform corresponding to the EM field on the sensor behind a thin lens, B(Xx, X;), are identical to those that
we derived earlier [29,30].

a. Behavior outside the cusps

Next, we examine behavior of §¢ from (54) in the region just outside the caustics. We realize that the term with the
multipoles in this region will have a negligible value compared to the leading term in that expression and thus it may be
omitted, yielding

Spo(x,ng) = —k{%?ﬁcos(qﬁé - ) (\/(%9005(455 _ d)))z n ZT:G + %Qcos((pé - ¢))

+2r,In (\/(%6(:05(456 _ ¢))2 + ZT’:Q I %Gcos(qﬁg — qﬁ)) + O(J,,)}. (AS)

This is the phase of the EM wave in the case of a monopole gravitational field, familiar to us from [31].
As aresult, expressions from the complex amplitude of the EM wave B(x) from (42) and its Fourier transform, B(x, x;),
from (66) take the form

044013-16



GRAVITATIONAL LENSING BY AN EXTENDED MASS ... PHYS. REV. D 104, 044013 (2021)

B(x) = %Azﬂ dpea(x,ng) exp —ik{%?ﬁcos((;ﬁg - ) <\/<%6'cos(¢§ - c}")))2 + % + %Hcos(% - 45))
+2r,In <\/<%900s(¢,§ - ¢))2 + 27}:9 + %9005((1)5 - (,b)) H , (A6)
and

1 2
Bxex) = 52 [ dpatng
X exp [—ik{;?@ cos(gp: — @) <\/<;Gcos(¢§ _ ¢)>2 + @ + 19008((155 - f/)))
I3 2
+2r,In <\/(%9cos(¢§ — ¢)>2 + % + %Hcos(qbg - ¢)> } .

In the region outside the caustic we can take the two integrals (A6) and (A7) using the method of stationary phase. In both
of these expressions, we are dealing with the same phase d¢((x,n:) given by (AS5). The phase is stationary when
dépo(x.n;)/¢e = 0. This condition yields two solutions ¢ — ¢ = 0 and ¢ — ¢ = x. Computing d*S¢py(x. ng)/dqﬁg for
both cases we obtain

27 (u(x. x;. ;) d))

(A7)

JZ(SgoO(X n§> 1 2 27‘ 1
COP0%0e) —ki0 ([(20) + 24 20) +O(2). A8
e Lé_d) —u (2 ) + 214 L) o) (A8)

d*5epo(x, )
d(ﬁg

1 \2 2r, 1
— ko[ (50) +2——0 ). A
. 7 ( <2 > + = 73 )—l—(')(rg) (A9)

Now we consider behavior of the expression for a(x,n;) given by (53)

(Vaor+%+10))"
a(X.ng)|y._yo = Vak? e : (A10)
1 +%
Jeor +3-10)"|"”
a(x.ng)|y g = VkF ( - . 0)2 d ) : (A1)

These expressions may be evaluated in two different regions, namely
(1) the region just outside the cusp, but still within the strong interference region, and
(2) the region at a significant distance from the optical axis in the regions of weak interference and that of geometric
optics.
These expressions are identical to those obtained in [25,41].

b. Larger deviations from the optical axis (but outside the caustic)

Consider studying the region at larger distances outside the caustic, but still within the strong interference region. In this
case, p/r =0 < \/2r,/r, yielding an appropriate small parameter //2r,/r. We will use this parameter to simplify the
results obtained above. Under these conditions expressions (A10) and (A11) behave as
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r, 371/2
(/402 +3+10)
lim  (a(x,n¢)|4._p0) = lim  VzkF
¢/ lpe—¢=0 2
0/+/2r,/r—0 0/+/2r,/r—0 (L1o)? + 2
3 0 7 0 2
= \/2mkr,q 14> +35 +O(r;, 0 } Al2
i rg{ 4. /27,7 32( 2rg/7) (. &) (A12)

lim  (a(x,mg)|y,_4—,) = Lm  Vazk?
0/\/2r, 70 o 0/1/2r, 70 (L) 42
3 0 7 0 2
2mkr,q 1 —— + +O(r?, 6° } Al3
i 9{ 42,7 32< 2rg/;> (ry 07) (AL3)

The second derivative of the phase is computed from (A8) and (A9) as

. Iy 1
o) (o) e 3e) v )

—k\/ma{w—\/ﬁ % /?> +O(r§,e3)}, (A14)

2
)— lim {—k?@( <19) +#—19> +0(r§))}
pe—tb=r 0/1/2r, /70 2 P2

d?5¢py(x,n
lim < @0 ‘ ¢)
0/+/2r,/r—0 d(ﬁf

lim (dzéfﬂo(X, ng)

0/+/2ry/r—0 d(bé
1 0 1 0 2
= —k\/2r, 7031 - = + < + O(r;.0° } Al5
v { 2\/2r,/7 8 < 2rg/7’> (r5.6%) (A13)
This allows us to compute

1 27 21,7\ 2 1 70 1 70 \2
—a(X,ng)y [ = 1+= — O(r2,6%) ¢, Al6
27ra(x ) 7 =0 < 270 ) { 2 2rq7’+ 16 (,/2@7’) + (rg )} ( )

1 27 V21 P\ 1 70 1 70 \?
—a(xX,ng)y [—0 = 1-= — O(r2,6%) ¢. Al7
e g, = () |17 e yams) +0000) A7

Finally, the phase d¢((x) from (AS5) for the two solutions takes the form

2r 0 1 0 2
_ 1<y 2 N YN
5(p0(x)|¢:_¢=0 = —2krg{ln - + T + 1 ( 2Vg/7’) +O(r;.J,.0 )} = 6¢in(x), (A18)

bro 6 1/ 6 \°
_ g 2 3 — S2
2700 lpe—por = _2krg{ln P a4 < 2rg/?) + Ol Jn 6 )} = ez (A19)

Therefore, expressions for the complex amplitude of the EM wave, B(x) from (A6), and its Fourier transform, B(x, X;)
from (A7) take the form
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29 >2} 1095 (x)=8) + O(r2), (A20)

and

1 1 1 i AR
B(x.x,) = 1 ( @%)2{1 N >0 _ +l ( 50 ~)2} (ZJlA(Mm(X,le) 2d)>ei(5@in(x)+%)
2 P50 2r, /7 4\ 2r,/F ftin (X, X;) 7 d
1
2

1 1 1 g
( 2~rgll)z{1 1 ~+1( >0 > }<2JA(MSC(X Xll)zd)>ei(5¢sc(x)—j{) +0O(r2), (A21)
P30 2r,[F 4\ 2r,[F fse (X, X;) 5d

where phases 5, /sc are from (A18)—(A19) and spatial frequencies iy (X;, X) and itsc(X, X;) from (62) are given as

ﬁin/sc(xv Xi) = \/ﬁﬁvsc + 2lA/in/sc’?i COS<¢ - ¢z) + '7,27 (A22)

and frequency Zin/sc(X) from (55) has the from

Din/sc(X) k\/%(l + 29 +1 ( 29 >2+(’)( 2 93)> (A23)
i X - — -~ r ’ ’
¥in/so P 2r /7 2\\/2r,[F g

where the ‘4 and ‘—’ signs are for incident ‘in” and scattered ‘sc’ waves, correspondingly, and also 8 = p/7. Clearly, these
expressions are identical to those obtained in [25,31,41].

2. Large deviations from the optical axis

We now consider the region at a significant distance from the optical axis in the regions of weak interference and that of
geometric optics. In the case p/r = 60> ,/2r,/r, expression (A10) behaves as below

; 1/2
( (19)2+2—ﬂ+19)3
lim a(x,ng)ly, 4= lim kP
2r,/r0>—0 2r,/r0*>—0 ( ) 7
2

—va{o+ o)

37 1/2
(Vdor +%-10)
lim a(x,ng)ly,_y—p, = lim Vrki = nk?{(

32 4 5/2
2r,/r6*—0 2r,/r0*=0 (1 9)2 3, ?) 92 + O( g/ )} (AZS)
g g 1 + T!/
2 7
This allows us to compute
27 7
_a(X,n ) T V2ﬂkr9< = > —r— 1 +O(r2)’ (A26)
225 N 100 o~ 28 702 )\ k7621 + iy g
1 27 324 | ox ry r,
2 N [ow) T2V \ 2k~ 712 = O(ry). A27
2”a<x ") 1605114, 2” (’”) ¢ 2kry  F10* T F(1 —cosb) +0(ry) (A27)

Finally, the phase ¢ (x) from (A5) for the two solutions takes the form
1. 1 \2 2r, 1 1 \2 2r, 1
800 (%) |- g0 = —k{2r6'< <29) +;g+29) +2rgln< (29> +?9+29> +(’)(J,,)} =6pin(x),  (A28)
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1 1 \?2 2r, 1 1 \2 2r, 1
5(p0(X)|¢5_¢:” = —k{—§79< <§6) +Ty—§9> —|—2rgln< <§9> +Tg—§€> + O(Jn)} = 5(pSC<X) (A29)

Expressions for 5gjq /sc from (A28)—(A29) may be further simplified taking into account that in this region 6 > /2r//r.
Taking this fact into account we have

Sin(x) = —k{rg(l +21n6) +%?92 + O(rg)}, (A30)
2r
5¢so(X) :krg{l —21nr—9+(’)( )} (A31)

After combining these results with the Q(7) from (38), we obtain phases of the incident and scattered waves with the same
structure as was in (23)—(24) of [24], as expected.

Therefore, expressions from the complex amplitude of the EM wave B(x) from (A6) and its Fourier transform, B(x, x;),
from (A7) take the form

ry ei(ﬁr];sc(x)—%) + (’)(,%)7 (A32)

B(x) = ¢!pn(x)+5) 4 "9
(x) = ’ +?(l—cose)

and

2J 1 (uin(x, x;) 3 d) (6 ()2) ry 2J; (use(x,X;) 3 d) .
HoPin(X)T7 E sc(X)—F) A
B(x.x;) = ( e + 1 —cos0) \ ee(x. %) 1d e P+0(ry),  (A33)

where phases 8j, /¢ are from (A28)—-(A29) and spatial frequencies uin(X,X;) and ugc(x, X;) from (62) are given as

uin/sc(xv X;) = \/Vizn/sc + 2in/sclli cos(¢ — ¢;) + ’7,2’ (A34)

and frequencies v, /sc(X) from (55) have the form

Vin(x )_k(9+29> _k9(1+m_27rcgose)+0(r§,e4)), (A35)
Veo(X) = kzr; _ke<ﬁ+0(r§,e“)>. (A36)

These results are identical to those obtained in [24,31,41].

3. Complete description in the area outsize the cusps

At this moment, we can give a complete description of the EM field in the region outside the cusp. We have established
earlier that the amplitudes given by expressions (A10) and (A11) behave as below

(V6o + 2 +130)°|

a(X,n§)|¢5_¢:0 = k7 \/—__—_. N (A37)
( N ) 1172

a(X,ng)|y,—pn = Vakr \/W . (A38)
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Together with the appropriately approximated (A8) and (A9), this allows us to compute

8r,

1 2r 11+ +1
—a(x,ng) =-+——+0(r), (A39)
27 “\/ 16w pe—d=0 2 (1 +%)i !
1 2 141+ |

T 702
—a(X,ng)y | — =4+ 0(r). (A40)
20 N 100Gl ggr 2 (14 Syt !

Finally, the phase 8¢(x) from (A5) for the two solutions takes the form

1. 1 \2 2r, 1 1 \2 2r, 1
5¢0(x)|¢§_¢0:—k{2r9< <29) +;g+29>+2rgln< <29> +?5’+29>+O(J,Z)}55(pm(x), (A41)

1. 1 \2 2r, 1 1 \?2 2r, 1

Therefore, expressions from the complex amplitude of the EM wave B(x) from (A6) and its Fourier transform, B(x, x;),
from (A7) take the form

8r 8r

1+-2+1 I+-1

Bx) = VT eman LV T T s 1 o) (A43)
2 8rg\1 2 8yt 9
(14 568" (145"
and
8r,
L4+ 1 in(X,X;) 5
B(x,x;) = 1 v (211 (uin(x, le) 2 d)> (B0 (x)+5)
2 (14 Uin(X. X;) 7 d

8r,
1+2-1 g
LA <2f 1 (usc (X, le) zd>> (09D 1 O(2), (A44)
2 (1 —|—;Tr,§’)1 usc(X.X;) 7d

where phases 5pj, sc are from (A28)—-(A29) and spatial frequencies uin(X,X;) and ugc(x, X;) from (62) are given as

”in/sc(xa Xi) = \/Vizn/sc + 2Vin/sc’?i COS<¢ - ¢z) + 77127 (A45)

and frequency vin/sc(X) from (55) has the form

1 8r
Vinse(X) = kE <\/92+79j:9>, (A46)

where the positive and negative signs are for incident (in) and scattered (SC) waves, correspondingly. As we mentioned
earlier, these results are identical to those obtained in [24,31,41]. However, the results reported in this paper allow us to
generalize the description of the gravitational lensing phenomena and use the same expression in all the regions of interest,
thus providing the most comprehensive wave-optical treatment applicable for a wide class of realistic astrophysical lenses,
especially those with an axisymmetric mass distribution.
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