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Killing tensors and photon surfaces in foliated spacetimes
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We present a purely geometric method for constructing a rank-two Killing tensor in a spacetime with a
codimension-one foliation that lifts the trivial Killing tensors from slices to the entire manifold. The
resulting Killing tensor can be nontrivial. A deep connection is found between the existence of such a
Killing tensor and the presence of generalized photon surfaces in spacetime with two Killing vector fields.
This technique generates Killing tensors in a purely algebraic way, without solving differential equations.
The use of our method is demonstrated for Kerr and Kerr-Newman-NUT-AdS metrics and Kerr-NUT-AdS

multicharge gauged supergravity solution.
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I. INTRODUCTION

Killing vectors explicitly describe the symmetries of a
spacetime manifold equipped with a metric, which are
related to its isometries. They provide a set of integrals of
motion for geodesics and wave operators in field theories.
A natural generalization of Killing vectors is the Killing
tensors associated with other hidden symmetries of space-
time [1] which give conserved quantities of higher order in
conjugate momenta. The first striking example of such a
conserved quantity, quadratic in the particle momentum, is
Carter’s constant [2], found for the Kerr metric. Although
the rotating Kerr solution does not have spherical sym-
metry, the Carter constant is a generalization of the square
of the angular momentum. However, the process of con-
structing nontrivial Killing tensors is much more compli-
cated than that for Killing vectors. Most of the known
results stem from the fact that the Killing tensor equation
simplifies in certain special spacetimes, such as a space
with a warped or twisted product structure [3], a space
admitting a hypersurface orthogonal Killing vector field
[4,5], or special conformal Killing fields [6,7].

In this article, we present a new purely geometric method
for generating Killing tensors in manifolds with foliation of
codimension one, based on lifting the Killing tensors
constructed in slices with an arbitrary second fundamental
from. This approach does not require slices to be orthogo-
nal to the Killing vector field or a spacetime to have the
warped or twisted product structure. We present general
equations for lifting of an arbitrary Killing tensor, which
reduce to the result of Ref. [4] in the case of totally geodesic
slices.
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We demonstrate mechanism of the emergence of a
nontrivial Killing tensor in a total manifold from the trivial
ones in slices constructed with the help of the Killing
vectors tangent to them. We completely integrate the
arising equations, find general compatibility and integra-
bility conditions, and prove Theorem 4.2, providing a
generating technique for nontrivial Killing tensors, which
is a purely geometric analog of the method of separation of
variables in the Hamilton-Jacobi formalism.

Furthermore, we investigate the relationship between the
resulting slice structure and the structure of fundamental
photon surfaces introduced in Ref. [8], which are a natural
generalization of photon spheres [9—16]. The concept of
photon spheres and surfaces plays a crucial role in study of
the black hole shadows [17-21], Penrose inequalities
[22-24], uniqueness [25-32], and integrability [33,34]
theorems. The integrability conditions for Killing tensors
ensure the foliation slices to be fundamental photon surfaces
if the generalized photon region inequalities are fulfilled.
This constitutes one of the most important results we obtain
here which generalizes that of Ref. [35] for the case of
stationary spaces without resorting to null geodesic equa-
tions. We hope that the result obtained helps to reveal
fundamental connection between Killing tensors and the
structure of photon surfaces.

We apply this new technique to Kerr, Kerr-Newman-
NUT-AdS, and Kerr-NUT-AdS multicharge gauged super-
gravity [36] solutions, showing that this technique allows
one to obtain Killing tensors [37,38] purely algebraically
without solving any differential equations. For these space-
times, we reveal the nature of Killing tensor hidden
symmetry as arising from isometries in low-dimensional
slices of a smooth foliation.

In Sec. II, we briefly describe the equations for the
Killing vectors and Killing tensors of rank two. In Sec. III,
we consider spacetimes with foliation of codimension one

© 2021 American Physical Society
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and derive the equations governing the interplay between
symmetries in the bulk and in the slices. In Sec. IV, we
describe the generating technique for such spacetimes. In
Sec. V, we reveal the connection between the Killing
tensors and the fundamental photon surfaces. Section VI
provides some examples with axial symmetry. The appen-
dixes contain the proofs of the statements made in the main
text and some generalizations.

II. SETUP

Let M be a Lorentzian manifold of dimension m with
scalar product (-,-) and Levi-Civita connection V.'

Definition 2.1.—A vector field :M — TM is called a
Killing vector field if [39]

Sym{(V1IC, )} =0,
X<y

VX YyeTM. (1)

Definition 2.2.—A linear self-adjoint
K(-):TM — TM is called a Killing mapping if

mapping

Sym {(VxK(Z),))} =0,

XYV Z

VXYV.ZeTM, (2)

where the linear mapping VyK(-):TM — TM is defined
as follows:

ViK(V)=Ve(KQ)-K(VyY)., Y X.YeTM. (3)

One can introduce a Killing tensor as a symmetric form
K(X,)Y) = (K(X),)), which is associated with the con-
servation law quadratic in momenta. Indeed, consider the
functions Qx(-):TM —» R and Qk(-,-):TM & TM — R
defined as

() = (K, &),

O (X, V)= (K(X),Y), VY X, YeTM. (4)

Proposition 2.1.—Let y:R — M be an affinely para-
meterized geodesic, i.e., V;7 = 0. Then, the functions Q
and Qj induce the conserved quantities along y:

Lo =0 Lorn=0. ()

1

5+ SYm{(VKC.7)} + (. V) = 0. (6a)

rer

'Here we also use the notation Sym{B(X,))} = B(X,)) +
X<y
B(Y,X) and [X,Y] =Vy) - VyX.

@ Qul.7) = 7K. 1
— & Sym (V,K().7) + (K(V3d).)
+(K(7), V;7) = 0. (6b)

Proposition 2.2.—Let IC, be a set of n Killing vector
fields. Then, one can define the following trivial Killing

mapping:

K(X)=aX + > y(X, KKy y? =P, (7)
a,f=1

where a and y* is the set of n(n +1)/2 + 1 independent
constants in M.

Proof-—The Killing mapping is linear with respect to its
argument X, and the Killing equations are linear with
respect to the mapping K. Thus, let us prove Proposition
2.2 for both terms separately. For the first term, the
mapping K is proportional to the identity K(X) = aX.
Then, the Killing equations give

Sm (K@Y, 2)} =0 K@) =0, (8)

For the second term, the mapping K defines a projection
onto the subspace spanned by Killing vector fields /C,, i.e.,
K(X) =y*(X, o) ICs:

Sym {2V, V xKo)(Ky. 2)}

XoVozZ
+ Sym {X()(V.Ko)(Kp. 2)} =0
XYV Z
= X(r) =0, )
where we used Killing equations again. [

Note that the trivial Killing mapping does not give new
conservation laws. Indeed, in this case

Oxlh7) = ali i) + 3 10k, (1), (), (10)

a,p=1

and, hence, the conserved quantity Qg (7, 7) is nothing else
than a combination of the Killing vectors and a constant
coefficient. However, one can show the existence of
manifolds with nontrivial Killing tensors, which are not
associated with the manifold isometries directly.

III. FOLIATION LIFT

Definition 3.1.—A hypersurface S is an image of iso-
metric embedding i:S — M of m — 1 and m-dimensional
pseudo-Riemannian manifolds S and M, respectively.
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A timelike or spacelike hypersurface has a unique unit
normal vector field & ((£, &) = e = 1), while the second
fundamental form o(-,-):7S x TS - R and the mean
curvature are defined as follows:

o(X,Y)=¢e(VxY, &), VX, YETS,
H =Tr(o)/(m - 1). (1)

In this notation, Gauss decomposition reads

where D is the Levi-Civita connection in S (see Ref. [39]
for details).

Definition 3.2.—A foliation F ¢ of the manifold M (with
codimension one) parameterized by Q € R with the lapse
function ¢ is a smooth family of hypersurfaces Sq (slices),
whose union is M, which satisfies the flow equation

d.; Q dg
. 2 — _¢.D 1
79 @& and 70 € - Dgp, (13)

where £ is a unit spacelike or timelike vector field normal to
each slice Sq and D¢ is a gradient vector field defined as
(X, Dp) = Dxgpfor VX € TSq and (&, D) =0 [39].

Furthermore, we will denote quantities associated with
some slice © = const with the corresponding subscript or
superscript, e.g., % and K.

Proposition 3.1.—Let K be a Killing vector field on the
manifold M, foliated by Fq, with the normal ky¢é and
tangent g € T'Sq components, viz. K = KCq + kyé.
Then, from the Killing equations (1) and the definitions
(11) and (13), it follows:

Sym{(DxKq,Y)} = 2¢ky - %(X,Y), (14a)
XY

(Veko,X) =€ (ky-VyIng—X(ky) —%(X,Kq)), (14b)
(VflCQ, & =ce€- VigIng = —e-&(ky), (14c)

for all X,Y € TSq.

As a consequence of Proposition 3.1, the Killing vector
field in M, tangent to all the foliation slices Sq, is also a
Killing vector field in Sq,. In the general case, the projection
Kq is not a Killing vector in the slices of foliation, since the
right side of Eq. (14) does not vanish. An exception is
the case of totally umbilic or totally geodesic slice, where
the projection of any Killing field is a conformal or
ordinary Killing vector field, respectively. Such slices arise
if the field generating the foliation is a (conformal) Killing
field and/or the spacetime has the structure of a warped or
twisted product [39].

Assuming that the tangent component K forms the
Killing vector in all slices Sq, the left side of Eq. (14) is

equal to zero, so either ®c(X, Y) or ky must also be zero. In
the first case, o(X,Y) =0 slices are totally geodesic
hypersurfaces, and Eqs. (14b) and (14c) reduce, respec-
tively, to

(VeKq.X) =€+ (ky - VxIng — X(ky)),
Ve, Ing = ~E(ky). (15)

In the second case of a trivial normal component ky = O,
these equations are

(VeKq, X) = —€-96(X.Kq). Vic,p =0.  (16)

Thus, the generation of the Killing vectors in M from K
with a nontrivial normal component ky is possible in the
case of the totally geodesic slices only. As we will see
further, the case of Killing tensors is more intricate.

Proposition 3.2.—Let K be a Killing mapping on M,
such that K(-) = Kg +k1(\',)§, where k;{)f is a normal
component and Kg € TSq is a tangent component.
Then, the Killing equations (2) split into the following
parts:

Sym {(DxK%,Y)} = Sym {2¢k% -“%(X,Y)}, (17a)
XeYZ XeYsZ
1
(Ve(KG). &) = Vs Ingp = —Eef(kfv), (17b)
<V5(Kf2),X> = e<k§vvx Ing — VixIng
-5 X - KD)). (7)
(Vx(K5). &) = e-%(X, Kg), (17d)
1
symd (9 (K5).)+ (VoK 1)
XY
+€(QU(X,K5)—kl’f,Vyln(p—kfv-Qa(X,Y))}—O, (17e)
and
(K& Y) = (X.KG), k= e(X. K5),
VeK§ = Ve(KE) — Ka((VeX)g). (18)

forall X,Y,Z € TSq.

Proof.—See Appendix A.

Similar to Killing vectors, in the case of totally geodesic
slices, one can lift the Killing tensor from the slice to the
whole manifold and obtain a nontrivial normal component

kj(\',) . This particular case of totally geodesic slices was
considered, for example, in Ref. [4]. Moreover, if we
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consider the conformal Killing tensors, a similar technique
can be applied in the warped spacetimes [3], where the
foliation slices are totally umbilic [39]. In this paper, we
consider the Killing tensor lift technique for arbitrary slices
(not totally geodesic submanifolds). In this case, the second
fundamental form % is not trivial, and Eqgs. (17) and (18)
imply kX =0 and Kf2 = 0. Then, the family of Killing
mappings Kq:TSq — TSq can be lifted from the slices to
the Killing mapping K(-) = K, 8 + kz(\',>ij in the manifold M
with nontrivial normal components, if the following equa-
tions hold:

=0, K,=0, £&(ki) =0,

X (ki) = 2k5 Vy Ing - 2Vix Ing, (19a)

1
Sym{i- (V:KS.Y) +e-%(X,K) — ks, - %o (X, Y)} =0.
XY

(19b)

IV. GENERATION OF A NONTRIVIAL
KILLING TENSOR

Suppose that the manifold M has a collection n < m — 2
of linearly independent Killing vector fields IC, tangent to
the slices Sq, of the foliation Fg, i.e.,

(Kar€) =0, ([Ka, K], &) = 0. (20)
Then, such vectors /C, are also Killing vectors in the slices
Sq, and a trivial Killing mapping of the form (7) is always
defined. Substituting this mapping into Egs. (19a) and
(19b) and using Egs. (16), we obtain

X(K) = 206, - ) Vy In,
X(y*) =0,

£(ky) = 0.
(21a)

2e(ks, — a) - %0 (X, Y)

@)X,V + 3 XKL (K Y)Y, (21b)

ap=1

for any X,Y € T'Sq. There is always a trivial solution for
these equations:

Er”)=0. (22)

corresponding to the trivial Killing tensor in M. However,
in some cases it can also have nontrivial solutions, which
corresponds to the nontrivial Killing tensor and new
conservation laws. Next, we will try to determine the
necessary and sufficient conditions for the integrability
of these equations and describe the methods for finding the
explicit form of their solutions.

Let us additionally assume that the Gramian matrix
Gup = (K4 KCg) is not degenerate. Then, we can introduce a
basis {/C,, e,} in Sq in such a way that e, € {K,}* with
a=1,...,m—n—1.In this basis, Eq. (21b) can be cast as
the following matrix system:

Qzub =0, Qzau =0, Qzaﬁ = Z g(mgﬁ/) : f(y”/))’ (23)

op=1
where we have introduced the umbilic operator
B(X,Y) = 2e(k, — a) - %6(X.Y) - E)(X.Y). (24)

The equation T, = 0 implies that all foliation slices must
be partially umbilic:

%(X.Y) = h(X.Y) ¥ X.Ye{e). (25

and it is solved by

Ky =a+e % (26)
where 7% is some real function associated with mean
curvature. In the case of strict equality n = m — 2, Eq. (25)
is not a condition for a partial umbilic hypersurface but only
imposes a simple algebraic equation on 4. Furthermore,
we will use the following relation for any arbitrary function
w, constants in each slice X = 0:

Xé(w) = [X,{|(0) = e(Vxé = VX, £)é(w)
=X, V&)é(w) = =VxIng - {(w). (27)

Applying this formula for a and substituting (26) into the
first equation from (21), we find the first compatibility
condition:

X(h® - ¢*) = 0. (28)

Plugging (26) into the second equation from (21a), we can
completely integrate the function a:

Elné(a) = Elnh® = 2eh®, (29)
keeping in mind one more condition from (21):
X(a) =0. (30)

On the other hand, using the nondegeneracy and inverti-
bility of the Gramian matrix, one can express &(y*) from
the last equation of (23) as follows:

n

Er?) = gwgh-ox,, (31)

op=1
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Proposition 4.1.—Let all Killing vector fields /C,, touch all
slices of the foliation So. Then for & € TSSL2

€
QU(’CmICﬂ) 73 EGup- (32)
Proof.—Using Eq. (1), we find

(Vie, Ky, &) + (Vie, K ) = =(VeKoas Kp) = (VeKp, Ko
= _v§<’Ca’,C/J’>- (33)

Since /C, are tangent vector fields, they satisfy involutivity
condition ([KC,, K], &) = 0, and we get

(K Kp) = (Vi K &) = =5 VelKu k). (34)

|

The components “%6(K,,e,) are equal to zero due to

Eq. (21b). As a result, by combining the condition (25) and

Proposition 4.1, the second fundamental form 2 will be
block-diagonal in the basis {K,, e,}:

_le.
%—( 7€ o 0 > (35)
0 he e, ep)

with a mean curvature

—n—-1
élng+uhg’
m—1

QH — —6
~ dim Sg, 2(m—1)

G = det(Gop). (36)

Tr% = —

Note that exactly the same structure of the second funda-
mental form is characteristic of partially umbilic surfaces in
Ref. [8], which represent a generalization of photon spheres
for rotating spacetime [13-16].

After we have established the second fundamental form
in (35) and the kfv component in (26), we can write the
umbilic operator

Qzaﬁ = _é(a) : <ga/7’ + % ' §ga[)’) . (37)

Plugging this in and taking into account that fki, =0, we
can recast Eq. (31) into the form

§<€% . ga/)’ _ y(lﬂ> = 0, (38)

where we used the identity G* - £G,;5 = —G5 - EG*. This
gives us a solution for the matrix y* in terms of the new
matrix v*?, which is constant along the normal:

y? = e% -GP — P (39)

with a condition
é(uaﬂ) =0. (40)

Let us find the integrability condition for y®. A
necessary and sufficient integrability condition on y®
follows from the Frobenius theorem. Acting on Eq. (38)
with X and using the last equation in (21), we find the
commutator

. = xe(e im0 (1)

Using Egs. (29) and (27) applied to y* and @, we obtain the
integrability condition”

X (gaﬂ _ Zh% . ggaﬂ) -0 (42)

and its trace (with respect to G,3)

€. _ € _eg . XCP =
X(2h9 Elng lng> —i—zhQ EGup - XG 0. (43)

Finally, a nontrivial Killing tensor can be generated using
the technique from the following theorem.
Theorem 4.2.—Let the manifold M contains a collection
of n < m — 2 Killing vector fields /C, with a nondegenerate
Gramian G,; = (K,. Kp), tangent to the slices Sq, (partially
umbilic if n < m — 2) of the foliation F with the second
fundamental form (35). Then, there is a nontrivial Killing
tensor on manifold M, if the following steps can be
successfully completed.
Step  one.—Check compatibility and
conditions (28) and (42).

Step two.—Obtain a from (29) and check the
condition (30).

Step three.—Define y* from (39) using the conditions
& =0 and Xy = 0.

Step four.—Using the functions found in the previous
steps and Egs. (26), construct a Killing map and the
corresponding Killing tensor:

integrability

K(X) = a(X - (X, £)¢)

+ DX KKy + ki (X6 (44)
af=1

*Note that these conditions can be simplified with respect to 1%
using Codazzi equations (see Appendix B).
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where it is taken into account that X needs to be
projected onto the slice in the first two terms.

In the proof of this theorem, the nondegeneracy of the
Gram matrix plays an important role. Usually, one can
naturally choose a set of linearly independent Killing
vectors such that their Gram matrix is not degenerate
almost everywhere. This nondegeneracy can be violated
in some points where the set of Killing vectors becomes
linearly dependent (i.e., there exist a singular point for
some Killing vector field from the spanned subspace). For
example, consider a stationary axially symmetric spacetime
with Killing vectors 9, and d,. The polar axis is a set of
singular points of the vector field d,, so the Gram matrix is
degenerate on it. Usually, the results for the whole
spacetime can be extended to such singular points by
continuity. Alternatively, this condition can be violated if
the set of Killing vectors contain n — 1 spacelike directions
and one null direction orthogonal to the former ones
(similarly to null surfaces). Nevertheless, in the context
of black holes, wormholes, or naked singularities, as a rule,
we are interested to include a timelike Killing vector in the
basis, assuring the nondegeneracy of the Gram matrix
everywhere except the event horizon. These considerations
may be crucial for null solutions (e.g., pp waves), where the
chosen set of Killing vectors may lead to the degenerate
Gram matrix in the whole spacetime.

V. CONNECTION WITH PHOTON
SUBMANIFOLDS

Consider the case of a manifold with two Killing
vectors spanning a timelike surface (¢ = +1, G < 0). Let
us define a spacelike vector field p € {/C,} with index
a = 1, 2 numbering Killing vectors of the basis® {K,} with
metric Qaﬁ:

pr=(p. 1), Gup®p’ >0, (45)

which is supposed to have constant components. Since the
vector field p has constant components in basis {K,}, itis a
Killing vector field itself. Consider an arbitrary affinely
parameterized null geodesic y with the conserved quantity
(p,7) equal to zero. Insofar as (p,y) = (pK;,7) + (s, 7),
we find that p = —(IKC5,7)/(K,7) and, hence, p can be
called the generalized impact parameter (see [8] for details).
However, one can choose arbitrary parametrization of p* up
to the norm.

*Denote a vector in {K,} in indexless hat notation, for
example, p = p?/C,. In the general case, each vector field /C,
does not have to be timelike or spacelike everywhere. For
example, in stationary axially symmetric spacetime, the timelike
Killing vector field 0, becomes spacelike inside the ergo region,
while the Gramian matrix still almost everywhere has a negative
determinant (except for axis, where d, disappears and G = 0 [8]).

In addition, we will introduce a vector % in {/C,}
orthogonal to p:
=Gl (11)=—(p.p). (t.p)=0. (40
where €4 is the two-dimensional Levi-Civita tensor. By the
definition of Ref. [8], a timelike hypersurface tangent to
two Killing fields (IC, € T'Sg) is the fundamental photon
surface, if it is umbilic for all vectors from the orthogonal
complement of the field p (we also require the compactness
of its spatial section):

%

(2, X)

2.3) = h2(2,3),  %(X.Y) = h2(X,Y),
07

(47)

for VX, Y € {e,}, where {e,} is a basis of the orthogonal
complement to {/C,} in the slice introduced in Sec. IV.

Proposition 5.1.—The fundamental photon surface is a
partially umbilic surface with a second fundamental form of
the form (35), with the following connection between h®
and G

paMaﬁpﬁ =0,

1 1
M(l/f = W : éga/} - g(l[)’ - 2]’179 : éln g : g(l/)" (48)

Proof.—Using Proposition 4.1, the second fundamental
form ©s(%,%) reads

A A 1 X a 1
To(8.1) = —5 7 {Guy = ! (25% + 7€, §€7ﬂ>

1
= Ep"pﬁ(—égaﬁ +Gep - $InG). (49)

Substituting this expression into the first equation in (47),
we find (48). =

If the surface under consideration is totally umbilic
M, =0, it is obviously a fundamental photon surfaces
for any p. Since totally umbilic surfaces usually exist in
spherically symmetric solutions (both static and nonstatic)
or nonrotating solutions with NUT charge [16], and they
have been considered in detail in a number of works
[13,35], we will focus on the case M, # 0.

Consider the foliation F generating a nontrivial
Killing tensor in accordance with Theorem 4.2, and ask
the question whether its slice is a fundamental photon
surface. First of all, we need to solve the quadratic
equation (48) for p and check the condition (45). It has
a nontrivial solution if the eigenvalues of the matrix M,
have different signs, that is, M = det(M,4) < 0. Then the
solution for p reads as
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Mt V=M

M (50)

Condition (45) is satisfied if the following inequality holds:

j:z(ngMll - gllMIZ) V-M —2911 -M
+M11'g'TI‘(M) > 0, (51)

where Tr(M) = My G?% = =2 — (2h%)~ - £InG.
Equation (51) defines the so-called photon region
[20,21], which arises as a flow of fundamental photon
surfaces [8]. However, it has not been proven that the
expression (50) for p is constant in every slice. To under-
stand it better, let us act on Eq. (48) with X:

1 1

X{Maﬂ}papﬁ+2MaﬂX(pa)pﬂ:0' (52)

Consider the first term. We rewrite the second integrability
condition with lowered indices:

1
X (m : ‘ggaﬂ>
1

=X —_
ga/} + 2]’[9

(fgap : Xgﬂ[)’ + fgﬂp . Xgﬂa) : gp/l (53)

and plug it into the first term in (52) to get the following
expression:

X{Mptppf =X {Zhg “EGup — Gap — ok {IngG- gaﬂ}ﬂaﬂﬁ

1 1

1
R e R G R e )

1
N {/’LQ ' fg()t/) ’ Xg/l/} : gM —XIngG- g“ﬁ +

where we have used £InG = G% - §G,p and XG5 - g =
—G,5 - XG* . After subtracting Eq. (48) multiplied by X In G
from (54), the quantity 4 can be factored out:

.(48)

1
X{Ma/}}papﬁEq Zhig . p/}./\/’/gap”, (5521)
Nﬂa = ‘fgpi : ngp}L ' gaﬂ - ggpa : Xgpll . gﬁ/l
=G5 XG" G+ XInG - EInG- G,y
—EING-XGop — XInG - EG,p. (55b)

Raising the second index, the matrix A 4% can be repre-
sented as follows:

N =B —%tr(B)ﬂ,

B = (tr(a)1 —a)b + (tr(b)1 —b)a, (56a)

b= gﬁ}, . nga’ a = égﬂy . QJ’“. (56b)

Since a and b are 2 x 2 symmetric Hermitian matrices, they
can be decomposed into a Pauli basis. Then the matrix B
reads

1 1
TN £G,, - XG" - Gy — 5 ¢{Ing- Xga/}}ﬂ”/)ﬂ, (54)

B— %tr(a)tr(b)]] —aib{oiol}

= Gtr(a)tr(b) —~ 2a,-bj5ff>ﬂ, (57a)

1 ) 1 .
a= Etr(a)ﬂ + a;o’, b= Etr(b)ﬂ +bis'.  (57b)
We find that the matrix B is proportional to the identity
matrix, so the matrix N\ is identically zero. As a result, the

first term in (52) is zero, leaving us with the second term

MyX(p*)pP =0,X(p") = (X(p),0).  (58)

Substituting the general solution (50) for p into this
equation, we obtain the condition X(p)v—-M =0. As
we restrict our choice with M < 0, the expression X(p)
must be zero, so p is effectively constant for each slice.
Finally, we have the following theorem.

Theorem 5.2.—Let F o be a foliation of the manifold M
with nontotally umbilic slices S with compact spatial
section satisfying all conditions of Theorem 4.2 for
dim{/C,} = 2. Then any subdomain Upg C Sq, such that
the inequality (51) holds for all p € Upg is a fundamental
photon surface.

“In the case of a not compact spatial section, the slice is not a
fundamental photon surface by definition [8]. However, the
theorem can be generalized for such not compact surfaces.
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In particular, the region Upr C M, such that the inequal-
ity (51) holds for any point p € Upg, is a photon region.
This theorem generalizes the connection between the
existence of Killing tensors of this type and photon
surfaces or spherical null geodesics, which was noted in
Refs. [33-35]. Unfortunately, in the opposite direction, the
theorem is not true, since the existence of fundamental
photon surfaces does not guarantee the existence of the
Killing tensor. As a counterexample, one can suggest a
Zipoy-Voorhees metric [40], where the fundamental photon
surfaces exists [15] but there is no nontrivial Killing tensor
[41]. Nevertheless, the existence of fundamental photon
surfaces can serve as a sign that the Killing tensor can be
presented in the corresponding metric, and it is advisable to
check the conditions of consistency and integrability.

VI. AXTALLY SYMMETRIC MANIFOLDS

Consider a Lorentzian manifold M with the metric tensor
ds? = —f(dt - wd¢)2 + Adr? + pdo* + ydg?, (59)

where all metric components depend on r and € only and
the foliation F with timelike slices r = Q. Generally,
this metric possesses two Killing vectors C; = 0, and
KC; = 0,,. One can find that the second fundamental form of
these slices has the form (35), and other quantities are

1
é - j‘_1/28}“7 hQ = _51_1/2 * 8;‘ 11’1[}7
1/@? =y w
p=a7  GP = < & ) (60)
4 ® 1

In this case, the number of Killing vector is one less than
the slice dimension, so the boundary n > m — 2 saturates
and the condition (25) just imposes a relation on 4. The
compatibility and integrability conditions (28) and (42)
take the form

1
0,Inp

Dg(A-0,Inp) =0, 89<Q“ﬁ+ a,g“ﬂ>:o. (61)

Equation (29) can be solved as follows:
a:Ag'ﬂ+Bg, (62)

where the arbitrary functions Ay and By depend on 6 only,
obeying the condition dga = 0. As a result, we have one
more necessary condition for the case in this section: The
function f must be of the form

p(r,0) = p1(0)p,(r) + B3(0), (63)

where f3;,3 are some functions of the corresponding
variables. From Eq. (26), the normal component is

kfv = By. Next, we can define the matrix y:

7 = ~pAg- G — 0. (64)

The integrability condition guarantees that y* always
satisfies Eqgs. (21) for some v depending only on 6.
On the other hand, we have to find a v*/ that makes the
equation 9,y = 0 true. Therefore, we can omit the 6-
dependent part in y* to some constant matrix instead of
looking for v*#. Combining everything together, we get the
final Killing tensor in the holonomic basis:

K =ag® + Y yPKLKY — pATISSL. (65)
a.p=t.¢

The compatibility and integrability conditions, as well as
the condition on the function f, are invariant under the
multiplicative transformations of the form

A=A =u(r)i, p—=p =v(0)p. (66)
If B possesses the aforementioned form (63), one can
simplify the integrability condition by the substitution
G*¥ = G% . §,/p. Then, the integrability condition is
90,6 = 0, which is solved by G* = G%(r) + G (6).
This generalizes the result of Ref. [42], where a similar
condition was obtained from the separability of the
Hamilton-Jacobi equation. In our case, we have also
included the f,(0) term. Furthermore, the compatibility
condition and the function form (63) lead to the form of
A= A,.(r)p/B, where A, is an arbitrary function of r.

A. Example: Kerr solution

The metric for Kerr solution in the Boyer-Lindquist
coordinates reads

b
ds? = —f(dt — wd)* + T dr? + Xdo® + Af~' sin’ 0,

(67)
A — asin?0
f= azsm , > = 2 + d%cos?0,
—2Marsin’6 5
a):m, A:r(r—ZM)+a (68)

In the Kerr metric, # = r? + a® cos® @ and 1 = /A satisfy
the compatibility condition. One can explicitly verify that
G satisfies the integrability equation. In this case, a = r?,
Ag = 1,and k§, = By = —a? cos® 0 (here we have fixed the
multiplicative integration constant, which appears due to
the linearity of Killing equations). The part of y* inde-
pendent on @ reads

o gt < (a* +1r*)? a(a®>+ r2)>
4 a(a®* +r?) a? i

(69)
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Finally, we get a, y”/", and k}'i,, which correspond to the
well-known nontrivial Killing tensor for Kerr solution

a=r, k5, = —a? cos? 0,
2, 2y 2, 2
yaﬂ:A—l((a +r7)° ala +r)>. (70)
a(a®>+r?) a?

B. Example: Plebanski-Demianski solution

Consider a more complicated case of the general
Plebanski-Demianski class of stationary axially symmetric
solutions of type D to the Einstein-Maxwell equations with
a cosmological constant. The ds® metric is read from the
conformally transformed in Boyer-Lindquist coordinates:

dr’  do?
Q%ds® = Z(Ar, +A_9>
PS4 arPhosin?0— A 2)dg ()
+ % (Ay — a(Z+ ay)Aysin’ 0)dtdep
_ % (A, — a*Agsin® 0)dr?, (72)

where we have defined functions

Ay =1—a,cosf— a,cos’ 6,

A,:b0+b]r+b2r2—|—b3r3—|—b4}’4, (73)

Q=1-A(N+acosO)r,
T =7+ (N +acosh)?,
x = asin’0 — 2N(cos 0 + C), (74)

with the following constant coefficients in A, and A,:
a, =2aMl — 4aN</12(k +p) + %) ;
a, = —a* <ﬂz(k +p) + %>,
by =k +p, (75)
by =-2M,

‘ A
by =3 +4MNA= (a>+3N?) </12(k+/)’) +§> . (76)

by==22 <%— (a*—-N?) (Mﬂ—N(lz(k—l—ﬂ) +%>>> ;

by=-— </12k+%> : (77)

2(92 A
_VAMNE=SNPH5) 0 gy 8
1+ 312N (a® - N?) ’ @

o=\ a*+ N> (78)

Generally, the coordinates ¢ and » range over the whole R,
while 0 and ¢ are the standard coordinates on the unit two-
sphere. Seven independent parameters M, N, a, a, 5, A, and
C can be interpreted as the physical charges in the
following way: M and N are the mass and the NUT
parameter (magnetic mass), respectively, a is the Kerr-like
rotation parameter, 3 = e*> + g*> comprises the electric e
and magnetic g charges, a is the acceleration parameter, A
is the cosmological constant, and the constant C defines the
location of the Misner string.

The first step is to check the compatibility and integra-
bility conditions (28) and (42). The first one holds if
a-a = 0, 1.e., either the acceleration « or the rotation a are
zero. Indeed, as shown in Ref. [37], the general PD solution
with acceleration possesses a conformal Killing tensor but
not the usual one. In the case a = 0, the second condition
does not hold. So, furthermore, we will consider the
solution with zero acceleration a = 0, which corresponds
to the dyonic Kerr-Newman-NUT-AdS solution.

For the second step, we pick up the r-dependent part
from = X/A, for a:

p)
ﬁ:—:>a:r2, AgZAg,
Ag
K = By = —A;' (N + acos 6)2. (79)
Similarly, for the third step, the r-dependent part for y* is
defined as
P2 aP
aff A:l , 80
4 <aP a’ > (80)

where P =3+ ay = > + a* —2aCN + N?. In the last
fourth step, this gives us the nontrivial Killing tensor for the
Kerr-Newman-NUT-AdS metric.

C. Example: Kerr-Taub-NUT-AdS multicharge
gauged supergravity solution

Here we construct the Killing tensor for the metric given
by Chong, Cvetic, Lu, and Pope in Ref. [36]. The solution
was obtained by starting out with the four-dimensional
Kerr-Taub-NUT metric, dimensionally reducing it to three
dimensions with respect to time, and then lifting back after
dualization. The metric is given by

A, A,
ds? = — i (adt + uyuydg)? + T (adt + ryryde)?
d 2 d 2
+W(Ar n A” ) (81)
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where

W=rir,+ujuy, ri=r+2Ms?, u;=u+2Ns?, (82)

A, =r+a*=2Mr+ e*riry(rirn +a*), (83)
A, = —u?+a® =2Nu+ eujuy(ujuy —a?).  (84)

Here s; = sinh §;, and §; is the magnetic charge, 6, is the
electric charge, N is the NUT parameter, a is the rotation
parameter, and e is the gauge parameter. The cosmological
constant A is given by A = —e?.

The first step is to check the compatibility conditions

(28) for the foliations r = Q, which reads as
2w =0 (85)

and is carried out identically for a given W. For the second
step, we pick up the r-dependent part from = W/A,
for a:

w
ﬁz—:>a:r1r2, AHZAM, kfv:Bg:—Mluz. (86)

A,

Similarly, for the third step, the r-dependent part for y* is
presented as

2.2
_ r]r2 aryry
y“ﬁ:A,1< > 87

aryrp Cl2 ( )

Note that the symmetry between u and r implies that there
is another suitable foliation u = Q with

2,2
—uju; aulu2>

— & _ aff _ A—1
a=upup, kN__rer’ V/—Au 2
auiuy —da

(88)

However, both foliations generate the same Killing tensor
coinciding with one obtained in Ref. [38].

VII. CONCLUSIONS

We have presented a purely geometric method of
generating a Killing tensor in spacetimes with foliation
of codimension one. For spacetimes foliated by arbitrary
slices, we have derived general [ift equations (17) relating
the Killing tensor with its projection onto them and their
orthogonal complement. This result includes the case of
totally geodesic slices considered in Ref. [4] as a particular
case. It has been demonstrated that not totally geodesic
slices allow the simplification of the lift equations in the
form (19) as well. Using these equations, one can try to lift
a trivial Killing tensor defined in such slices into a non-
trivial Killing tensor in the bulk. For slices tangent to
Killing vectors, the lift equations can be simplified to the

form (21). In this case, the foliation must satisfy some
consistency (28) and integrability (42) conditions, which
we have derived explicitly. Furthermore, we have resolved
the lift equations presenting the solution in terms of the
integrals.

Finding a foliation suitable for integrability and con-
sistency conditions can be challenging. However, we have
found that the existence of a foliation that satisfies the
integrability conditions ensures that the slices represent
fundamental photon surfaces if the corresponding inequal-
ities hold. This generalizes the result of Ref. [35] to the case
of arbitrary stationary spaces. In the opposite direction, the
existence of fundamental photon surfaces does not guar-
antee the existence of the Killing tensor but may serve as an
indication that the Killing tensor may exist. Therefore, it is
recommended to check the consistency and integrability
conditions for fundamental photon surfaces. This makes the
search for fundamental photon surfaces even more impor-
tant for studying the integrability of geodesic motion.

We apply this technique to Kerr, Kerr-Newman-NUT-
AdS, and Kerr-NUT-AdS multicharge gauged supergravity
solutions, where the Killing tensor arises purely algebrai-
cally without any differential equations having been solved.
In the latter case, the discrete symmetry of the supergravity
solution allows one to construct the nontrivial Killing
tensor using two different foliations.

The question of the relationship between fundamental
photon surface and the Killing tensor of an arbitrary nature
(regardless of whether it is trivial in slices or not) remains
open. As the key directions of further study, one can
suggest a more general analysis of the compatibility and
integrability conditions for the original system of differ-
ential equations (17). The presented approach can be
generalized to the case of conformal Killing vector and
tensor fields, which is also one of the directions for further
research.
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APPENDIX A: PROOF OF PROPOSITION 3.2

Proof.—Let us introduce here arbitrary tangent vectors
X,Y,Z € TSy and a normal vector & € (TSg)™*. In this
proof, we will make use of the identity following from the
self-adjointness of mapping K:

(KS.Y) = (X.KR)., Ky =c(X.Kb). (Al
Now, consider the lhs of Killing equations (2) projected
onto TSq and & separately:
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(VeK(8).€) =
= (Ve(Kq). &) +

= 2€v1<§ Ing + e£(k3,),

(VxK(£), &) + (VeK(X), &) + (VeK(£), X) =

= 2¢-

(Ve(Kg + k5i€). €) -

(Vx(Kg + k5yé). &) —
— (V:X, K, + K3 8) +
= (Vx(K§).&) +

— (VX Kg) —

(V£ K5 + ki &)
+(Ve(k3)E. &) — (Ve K5)
(A2a)

(Vx&. Ko + k&) +
+ (Ve(Kg + k3y8). X) —
+ (Vi(k§)E.8) — (Vx&.K3) +
(VX K&) + (V(K3,),

(Ve(K§ + kxé). &)

(V& K+ kyé)

+ (Ve(Kg), &) + (Ve(ky)E, &)
X) + K5 (V€. X) — (V& KS)

(X, K§) + eX (ki) + 26Vix In g — 2eki Vy In g + 2(V:(K,), X),

(A2b)

SYym{(VxK(Y).&) +(VxK(£).¥) + (VK (X). ¥)} = Sym{(Vy(K§ + K} £). &) = (VY. Ko+ k&) + (Vx (K5 +K38).Y)

XY

—(Vx& KG+hyé) +(V

(KG+KNE). Y) = (VX K + kyé)}

= Sym{ (Vi (K§).&) + (Vx(k})é.£) - (VxY K58) — (VX K} E)

+(Vx(K§). Y) + k5 (VxE.Y) +

(Ve(K§),Y) +ky(Ve, Y)

—(Vx&.K§) = (VxV Kg) — (VX KE)}
= Sym{2(Dx(K%,),Y) —2ekXVyIng +2¢-%(X, K}) = 2eks, - %o (X, Y)
XY

+(Ve(KG).Y) -

Z)} = Sym {{Vx(K4+kyé).Z) -

Sym {{VxK(Y),

XeoYoZ XeYZ

= Sym {(Vx(K§),Z) +

XeYZ

= Sym {(DxK}.Z)
XeYoZ

where  we used (V:(k¥)E &) = e(V(X,K5)E &) =
(VeX,K5) + (X, V:(K5)) in Eq. (A2b). By virtue of
Killing equations, each final expression is equal to zero. m

APPENDIX B: CODAZZI EQUATION

In order to simplify and generalize the calculations, we
will introduce a matrix notation as follows. First of all, we
choose an arbitrary basis in the subspace spanned by
Killing vectors e, € {KC,} and define new matrices

P=¢(a) 92 (eqep). M=(K,.ep).
In particular, Egs. (31) will be written in the form

I =¢&(a)- (MT)P- M,

r=¢(r*). (B1)

&) P=M'TM, (B2)

Acting as before in Sec. IV and calculating the derivative of
&(a) - P, we obtain integrability conditions for P in matrix
form:

—2ek% - %6(X,Y)},

(VX Kg)}, (A2¢)
(VxY, K& +k%&)}
(VxY,K§) -

(Vx(ky$). Z) - (VxY.k58)}

(A2d)

(D,P)=Q"+Q. Q=PM DM, (B3)
where (DZM)(lﬁ = <DZIC(X’ €/3>
Dy(P(eq. ep)) — P(Dzey,. ep)
integrability condition, Codazzi

Ric(X, &) take the form

and (DZP>(1/3 =
—P(eq. Dzep). Using the
equations [39] for

“Ric(X,&) =3 -Tr(PDxIn M)

=

+ Dy Inh® - {Tr(P) + m—-2}. (B4)

Choosing the basis e, = K, (i.e., M3 = G,p), Codazzi
equations read as

Ric(X,£) :%.ggaﬁ . XGb +§.Xlngo -EInG

+3€h9{(n—m+2)-Xln(p—%-Xlng}. (B5)
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