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We present a purely geometric method for constructing a rank-two Killing tensor in a spacetime with a
codimension-one foliation that lifts the trivial Killing tensors from slices to the entire manifold. The
resulting Killing tensor can be nontrivial. A deep connection is found between the existence of such a
Killing tensor and the presence of generalized photon surfaces in spacetime with two Killing vector fields.
This technique generates Killing tensors in a purely algebraic way, without solving differential equations.
The use of our method is demonstrated for Kerr and Kerr-Newman-NUT-AdS metrics and Kerr-NUT-AdS
multicharge gauged supergravity solution.
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I. INTRODUCTION

Killing vectors explicitly describe the symmetries of a
spacetime manifold equipped with a metric, which are
related to its isometries. They provide a set of integrals of
motion for geodesics and wave operators in field theories.
A natural generalization of Killing vectors is the Killing
tensors associated with other hidden symmetries of space-
time [1] which give conserved quantities of higher order in
conjugate momenta. The first striking example of such a
conserved quantity, quadratic in the particle momentum, is
Carter’s constant [2], found for the Kerr metric. Although
the rotating Kerr solution does not have spherical sym-
metry, the Carter constant is a generalization of the square
of the angular momentum. However, the process of con-
structing nontrivial Killing tensors is much more compli-
cated than that for Killing vectors. Most of the known
results stem from the fact that the Killing tensor equation
simplifies in certain special spacetimes, such as a space
with a warped or twisted product structure [3], a space
admitting a hypersurface orthogonal Killing vector field
[4,5], or special conformal Killing fields [6,7].
In this article, we present a new purely geometric method

for generating Killing tensors in manifolds with foliation of
codimension one, based on lifting the Killing tensors
constructed in slices with an arbitrary second fundamental
from. This approach does not require slices to be orthogo-
nal to the Killing vector field or a spacetime to have the
warped or twisted product structure. We present general
equations for lifting of an arbitrary Killing tensor, which
reduce to the result of Ref. [4] in the case of totally geodesic
slices.

We demonstrate mechanism of the emergence of a
nontrivial Killing tensor in a total manifold from the trivial
ones in slices constructed with the help of the Killing
vectors tangent to them. We completely integrate the
arising equations, find general compatibility and integra-
bility conditions, and prove Theorem 4.2, providing a
generating technique for nontrivial Killing tensors, which
is a purely geometric analog of the method of separation of
variables in the Hamilton-Jacobi formalism.
Furthermore, we investigate the relationship between the

resulting slice structure and the structure of fundamental
photon surfaces introduced in Ref. [8], which are a natural
generalization of photon spheres [9–16]. The concept of
photon spheres and surfaces plays a crucial role in study of
the black hole shadows [17–21], Penrose inequalities
[22–24], uniqueness [25–32], and integrability [33,34]
theorems. The integrability conditions for Killing tensors
ensure the foliation slices to be fundamental photon surfaces
if the generalized photon region inequalities are fulfilled.
This constitutes one of the most important results we obtain
here which generalizes that of Ref. [35] for the case of
stationary spaces without resorting to null geodesic equa-
tions. We hope that the result obtained helps to reveal
fundamental connection between Killing tensors and the
structure of photon surfaces.
We apply this new technique to Kerr, Kerr-Newman-

NUT-AdS, and Kerr-NUT-AdS multicharge gauged super-
gravity [36] solutions, showing that this technique allows
one to obtain Killing tensors [37,38] purely algebraically
without solving any differential equations. For these space-
times, we reveal the nature of Killing tensor hidden
symmetry as arising from isometries in low-dimensional
slices of a smooth foliation.
In Sec. II, we briefly describe the equations for the

Killing vectors and Killing tensors of rank two. In Sec. III,
we consider spacetimes with foliation of codimension one
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and derive the equations governing the interplay between
symmetries in the bulk and in the slices. In Sec. IV, we
describe the generating technique for such spacetimes. In
Sec. V, we reveal the connection between the Killing
tensors and the fundamental photon surfaces. Section VI
provides some examples with axial symmetry. The appen-
dixes contain the proofs of the statements made in the main
text and some generalizations.

II. SETUP

Let M be a Lorentzian manifold of dimension m with
scalar product h·; ·i and Levi-Civita connection ∇.1

Definition 2.1.—A vector field K∶M → TM is called a
Killing vector field if [39]

Sym
X↔Y

fh∇XK;Yig ¼ 0; ∀ X ;Y ∈ TM: ð1Þ

Definition 2.2.—A linear self-adjoint mapping
Kð·Þ∶TM → TM is called a Killing mapping if

Sym
X↔Y↔Z

fh∇XKðZÞ;Yig ¼ 0; ∀ X ;Y;Z ∈ TM; ð2Þ

where the linear mapping ∇XKð·Þ∶TM → TM is defined
as follows:

∇XKðYÞ≡∇X ðKðYÞÞ−Kð∇XYÞ; ∀ X ;Y ∈TM: ð3Þ

One can introduce a Killing tensor as a symmetric form
KðX ;YÞ ¼ hKðXÞ;Yi, which is associated with the con-
servation law quadratic in momenta. Indeed, consider the
functions QKð·Þ∶TM → R and QKð·; ·Þ∶TM ⊕ TM → R
defined as

QKðXÞ≡ hK;Xi;
QKðX ;YÞ≡ hKðXÞ;Yi; ∀ X ;Y ∈ TM: ð4Þ

Proposition 2.1.—Let γ∶R → M be an affinely para-
meterized geodesic, i.e., ∇_γ _γ ¼ 0. Then, the functions QK

and QK induce the conserved quantities along γ:

d
ds

QKð_γÞ ¼ 0;
d
ds

QKð_γ; _γÞ ¼ 0: ð5Þ

Proof.—

d
ds

QKð_γÞ≡ _γhK; _γi

¼ 1

2
· Sym

_γ↔_γ
fh∇_γK; _γig þ hK;∇_γ _γi ¼ 0; ð6aÞ

d
ds

QKð_γ; _γÞ≡ _γhKð_γÞ; _γi

¼ 1

6
· Sym
_γ↔_γ↔_γ

h∇_γKð_γÞ; _γi þ hKð∇_γ _γÞ; _γi

þ hKð_γÞ;∇_γ _γi ¼ 0: ð6bÞ

▪
Proposition 2.2.—Let Kα be a set of n Killing vector

fields. Then, one can define the following trivial Killing
mapping:

KðXÞ ¼ αX þ
Xn
α;β¼1

γαβhX ;KαiKβ; γαβ ¼ γβα; ð7Þ

where α and γαβ is the set of nðnþ 1Þ=2þ 1 independent
constants in M.
Proof.—The Killing mapping is linear with respect to its

argument X , and the Killing equations are linear with
respect to the mapping K. Thus, let us prove Proposition
2.2 for both terms separately. For the first term, the
mapping K is proportional to the identity KðXÞ ¼ αX.
Then, the Killing equations give

Sym
X↔Y↔Z

fhXðαÞY;Zig ¼ 0 ⇒ XðαÞ ¼ 0: ð8Þ

For the second term, the mapping K defines a projection
onto the subspace spanned by Killing vector fields Kα, i.e.,
KðXÞ ¼ γαβhX ;KαiKβ:

Sym
X↔Y↔Z

f2γαβhY;∇XKαihKβ;Zig

þ Sym
X↔Y↔Z

fXðγαβÞhY;KαihKβ;Zig ¼ 0

⇒ XðγαβÞ ¼ 0; ð9Þ

where we used Killing equations again. ▪
Note that the trivial Killing mapping does not give new

conservation laws. Indeed, in this case

QKð_γ; _γÞ ¼ αh_γ; _γi þ
Xn
α;β¼1

γαβQKα
ð_γÞQKβ

ð_γÞ; ð10Þ

and, hence, the conserved quantityQKð_γ; _γÞ is nothing else
than a combination of the Killing vectors and a constant
coefficient. However, one can show the existence of
manifolds with nontrivial Killing tensors, which are not
associated with the manifold isometries directly.

III. FOLIATION LIFT

Definition 3.1.—A hypersurface S is an image of iso-
metric embedding i∶S → M of m − 1 and m-dimensional
pseudo-Riemannian manifolds S and M, respectively.

1Here we also use the notation Sym
X↔Y

fBðX ;YÞg≡ BðX ;YÞ þ
BðY;XÞ and ½X ;Y�≡∇XY −∇YX .
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A timelike or spacelike hypersurface has a unique unit
normal vector field ξ (hξ; ξi≡ ϵ ¼ �1), while the second
fundamental form σð·; ·Þ∶TS × TS → R and the mean
curvature are defined as follows:

σðX; YÞ≡ ϵh∇XY; ξi; ∀X; Y ∈ TS;

H ≡ TrðσÞ=ðm − 1Þ: ð11Þ

In this notation, Gauss decomposition reads

∇XY ¼ DXY þ σðX; YÞ · ξ; ð12Þ

where D is the Levi-Civita connection in S (see Ref. [39]
for details).
Definition 3.2.—A foliation FΩ of the manifoldM (with

codimension one) parameterized by Ω ∈ R with the lapse
function φ is a smooth family of hypersurfaces SΩ (slices),
whose union is M, which satisfies the flow equation

dFΩ

dΩ
¼ φξ and

dξ
dΩ

¼ −ϵ ·Dφ; ð13Þ

where ξ is a unit spacelike or timelike vector field normal to
each slice SΩ and Dφ is a gradient vector field defined as
hX;Dφi≡DXφ for ∀X ∈ TSΩ and hξ;Dφi≡ 0 [39].
Furthermore, we will denote quantities associated with

some slice Ω ¼ const with the corresponding subscript or
superscript, e.g., Ωσ and KΩ.
Proposition 3.1.—Let K be a Killing vector field on the

manifold M, foliated by FΩ, with the normal kNξ and
tangent KΩ ∈ TSΩ components, viz. K ¼ KΩ þ kNξ.
Then, from the Killing equations (1) and the definitions
(11) and (13), it follows:

Sym
X↔Y

fhDXKΩ; Yig ¼ 2ϵkN · ΩσðX; YÞ; ð14aÞ

h∇ξKΩ;Xi¼ ϵ ·ðkN ·∇X lnφ−XðkNÞ−ΩσðX;KΩÞÞ; ð14bÞ

h∇ξKΩ; ξi ¼ ϵ ·∇KΩ
lnφ ¼ −ϵ · ξðkNÞ; ð14cÞ

for all X; Y ∈ TSΩ.
As a consequence of Proposition 3.1, the Killing vector

field in M, tangent to all the foliation slices SΩ, is also a
Killing vector field in SΩ. In the general case, the projection
KΩ is not a Killing vector in the slices of foliation, since the
right side of Eq. (14) does not vanish. An exception is
the case of totally umbilic or totally geodesic slice, where
the projection of any Killing field is a conformal or
ordinary Killing vector field, respectively. Such slices arise
if the field generating the foliation is a (conformal) Killing
field and/or the spacetime has the structure of a warped or
twisted product [39].
Assuming that the tangent component KΩ forms the

Killing vector in all slices SΩ, the left side of Eq. (14) is

equal to zero, so either ΩσðX; YÞ or kN must also be zero. In
the first case, ΩσðX; YÞ ¼ 0 slices are totally geodesic
hypersurfaces, and Eqs. (14b) and (14c) reduce, respec-
tively, to

h∇ξKΩ; Xi ¼ ϵ · ðkN ·∇X lnφ − XðkNÞÞ;
∇KΩ

lnφ ¼ −ξðkNÞ: ð15Þ

In the second case of a trivial normal component kN ¼ 0,
these equations are

h∇ξKΩ; Xi ¼ −ϵ · ΩσðX;KΩÞ;∇KΩ
φ ¼ 0: ð16Þ

Thus, the generation of the Killing vectors in M from KΩ
with a nontrivial normal component kN is possible in the
case of the totally geodesic slices only. As we will see
further, the case of Killing tensors is more intricate.
Proposition 3.2.—Let K be a Killing mapping on M,

such that Kð·Þ ¼ Kð·Þ
Ω þ kð·ÞN ξ, where kð·ÞN ξ is a normal

component and Kð·Þ
Ω ∈ TSΩ is a tangent component.

Then, the Killing equations (2) split into the following
parts:

Sym
X↔Y↔Z

fhDXKZ
Ω; Yig ¼ Sym

X↔Y↔Z
f2ϵkZN · ΩσðX; YÞg; ð17aÞ

h∇ξðKξ
ΩÞ; ξi ¼ ϵ∇Kξ

Ω
lnφ ¼ −

1

2
ϵξðkξNÞ; ð17bÞ

h∇ξðKξ
ΩÞ; Xi ¼ ϵ

�
kξN∇X lnφ −∇KX

Ω
lnφ

−
1

2
XðkξNÞ − ΩσðX;Kξ

ΩÞ
�
; ð17cÞ

h∇XðKξ
ΩÞ; ξi ¼ ϵ · ΩσðX;Kξ

ΩÞ; ð17dÞ

Sym
X↔Y

�
h∇XðKξ

ΩÞ;Yiþ
1

2
h∇ξKX

Ω;Yi

þϵðΩσðX;KY
ΩÞ−kXN∇Y lnφ−kξN ·

ΩσðX;YÞÞ
�
¼0; ð17eÞ

and

hKX
Ω; Yi ¼ hX;KY

Ωi; kXN ¼ ϵhX;Kξ
Ωi;

∇ξKX
Ω ¼ ∇ξðKX

ΩÞ − KΩðð∇ξXÞjjΩÞ; ð18Þ

for all X; Y; Z ∈ TSΩ.
Proof.—See Appendix A.
Similar to Killing vectors, in the case of totally geodesic

slices, one can lift the Killing tensor from the slice to the
whole manifold and obtain a nontrivial normal component

kð·ÞN . This particular case of totally geodesic slices was
considered, for example, in Ref. [4]. Moreover, if we
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consider the conformal Killing tensors, a similar technique
can be applied in the warped spacetimes [3], where the
foliation slices are totally umbilic [39]. In this paper, we
consider the Killing tensor lift technique for arbitrary slices
(not totally geodesic submanifolds). In this case, the second
fundamental form Ωσ is not trivial, and Eqs. (17) and (18)
imply kXN ¼ 0 and Kξ

Ω ¼ 0. Then, the family of Killing
mappings KΩ∶TSΩ → TSΩ can be lifted from the slices to

the Killing mapping Kð·Þ ¼ Kð·Þ
Ω þ kð·ÞN ξ in the manifold M

with nontrivial normal components, if the following equa-
tions hold:

kXN ¼ 0; Kξ
Ω ¼ 0; ξðkξNÞ ¼ 0;

XðkξNÞ ¼ 2kξN∇X lnφ − 2∇KX
Ω
lnφ; ð19aÞ

Sym
X↔Y

�
1

2
· h∇ξKX

Ω;Yiþ ϵ · ΩσðX;KY
ΩÞ− ϵkξN · ΩσðX;YÞ

�
¼ 0:

ð19bÞ

IV. GENERATION OF A NONTRIVIAL
KILLING TENSOR

Suppose that the manifoldM has a collection n ≤ m − 2
of linearly independent Killing vector fields Kα tangent to
the slices SΩ of the foliation FΩ, i.e.,

hKα; ξi ¼ 0; h½Kα;Kβ�; ξi ¼ 0: ð20Þ

Then, such vectors Kα are also Killing vectors in the slices
SΩ, and a trivial Killing mapping of the form (7) is always
defined. Substituting this mapping into Eqs. (19a) and
(19b) and using Eqs. (16), we obtain

XðkξNÞ ¼ 2ðkξN − αÞ∇X lnφ; ξðkξNÞ ¼ 0;

XðαÞ ¼ 0; XðγαβÞ ¼ 0; ð21aÞ

2ϵðkξN − αÞ · ΩσðX; YÞ

¼ ξðαÞhX; Yi þ
Xn
α;β¼1

ξðγαβÞhX;KαihKβ; Yi; ð21bÞ

for any X; Y ∈ TSΩ. There is always a trivial solution for
these equations:

kξN ¼ α; ξðαÞ ¼ 0; ξðγαβÞ ¼ 0; ð22Þ

corresponding to the trivial Killing tensor in M. However,
in some cases it can also have nontrivial solutions, which
corresponds to the nontrivial Killing tensor and new
conservation laws. Next, we will try to determine the
necessary and sufficient conditions for the integrability
of these equations and describe the methods for finding the
explicit form of their solutions.

Let us additionally assume that the Gramian matrix
Gαβ ¼ hKα;Kβi is not degenerate. Then, we can introduce a
basis fKα; eag in SΩ in such a way that ea ∈ fKαg⊥ with
a ¼ 1;…; m − n − 1. In this basis, Eq. (21b) can be cast as
the following matrix system:

ΩΣab¼0; ΩΣαa¼0; ΩΣαβ¼
Xn
σ;ρ¼1

GασGβρ ·ξðγσρÞ; ð23Þ

where we have introduced the umbilic operator

ΩΣðX; YÞ ¼ 2ϵðkξN − αÞ · ΩσðX; YÞ − ξðαÞhX; Yi: ð24Þ

The equation ΩΣab ¼ 0 implies that all foliation slices must
be partially umbilic:

ΩσðX; YÞ ¼ hΩhX; Yi ∀ X; Y ∈ feag; ð25Þ

and it is solved by

kξN ¼ αþ ϵ
ξðαÞ
2hΩ

; ð26Þ

where hΩ is some real function associated with mean
curvature. In the case of strict equality n ¼ m − 2, Eq. (25)
is not a condition for a partial umbilic hypersurface but only
imposes a simple algebraic equation on hΩ. Furthermore,
we will use the following relation for any arbitrary function
ω, constants in each slice Xω ¼ 0:

XξðωÞ ¼ ½X; ξ�ðωÞ ¼ ϵh∇Xξ −∇ξX; ξiξðωÞ
¼ ϵhX;∇ξξiξðωÞ ¼ −∇X lnφ · ξðωÞ: ð27Þ

Applying this formula for α and substituting (26) into the
first equation from (21), we find the first compatibility
condition:

XðhΩ · φ3Þ ¼ 0: ð28Þ

Plugging (26) into the second equation from (21a), we can
completely integrate the function α:

ξ ln ξðαÞ ¼ ξ ln hΩ − 2ϵhΩ; ð29Þ

keeping in mind one more condition from (21):

XðαÞ ¼ 0: ð30Þ

On the other hand, using the nondegeneracy and inverti-
bility of the Gramian matrix, one can express ξðγαβÞ from
the last equation of (23) as follows:

ξðγαβÞ ¼
Xn
σ;ρ¼1

GασGβρ · ΩΣσρ: ð31Þ
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Proposition 4.1.—Let all Killing vector fields Kα touch all
slices of the foliation SΩ. Then for ξ ∈ TS⊥Ω

ΩσðKα;KβÞ ¼ −
ϵ

2
· ξGαβ: ð32Þ

Proof.—Using Eq. (1), we find

h∇Kα
Kβ; ξi þ h∇Kβ

Kα; ξi ¼ −h∇ξKα;Kβi − h∇ξKβ;Kαi
¼ −∇ξhKα;Kβi: ð33Þ

Since Kα are tangent vector fields, they satisfy involutivity
condition h½Kα;Kβ�; ξi ¼ 0, and we get

ΩσðKα;KβÞ≡ ϵh∇Kα
Kβ; ξi ¼ −

ϵ

2
· ∇ξhKα;Kβi: ð34Þ

▪
The components ΩσðKα; eaÞ are equal to zero due to

Eq. (21b). As a result, by combining the condition (25) and
Proposition 4.1, the second fundamental form Ωσ will be
block-diagonal in the basis fKα; eag:

Ωσ ¼
�− 1

2
ϵ · ξGαβ 0

0 hΩ · hea; ebi

�
ð35Þ

with a mean curvature

ΩH ≡ 1

dim SΩ
TrΩσ ¼ −

ϵ

2ðm − 1Þ · ξ lnGþm − n − 1

m − 1
hΩ;

G≡ detðGαβÞ: ð36Þ

Note that exactly the same structure of the second funda-
mental form is characteristic of partially umbilic surfaces in
Ref. [8], which represent a generalization of photon spheres
for rotating spacetime [13–16].
After we have established the second fundamental form

in (35) and the kξN component in (26), we can write the
umbilic operator

ΩΣαβ ¼ −ξðαÞ ·
�
Gαβ þ

ϵ

2hΩ
· ξGαβ

�
: ð37Þ

Plugging this in and taking into account that ξkξN ¼ 0, we
can recast Eq. (31) into the form

ξ

�
ϵ
ξðαÞ
2hΩ

· Gαβ − γαβ
�

¼ 0; ð38Þ

where we used the identity Gαλ · ξGλβ ¼ −Gλβ · ξGαλ. This
gives us a solution for the matrix γαβ in terms of the new
matrix ναβ, which is constant along the normal:

γαβ ¼ ϵ
ξðαÞ
2hΩ

· Gαβ − ναβ; ð39Þ

with a condition

ξðναβÞ ¼ 0: ð40Þ

Let us find the integrability condition for γαβ. A
necessary and sufficient integrability condition on γαβ

follows from the Frobenius theorem. Acting on Eq. (38)
with X and using the last equation in (21), we find the
commutator

½X; ξ�γαβ ¼ Xξ

�
ϵ
ξðαÞ
2hΩ

· Gαβ

�
: ð41Þ

Using Eqs. (29) and (27) applied to γαβ and α, we obtain the
integrability condition2

X

�
Gαβ −

ϵ

2hΩ
· ξGαβ

�
¼ 0 ð42Þ

and its trace (with respect to Gαβ)

X

�
ϵ

2hΩ
· ξ lnG − lnG

�
þ ϵ

2hΩ
· ξGαβ · XGαβ ¼ 0: ð43Þ

Finally, a nontrivial Killing tensor can be generated using
the technique from the following theorem.
Theorem 4.2.—Let the manifoldM contains a collection

of n ≤ m − 2 Killing vector fieldsKα with a nondegenerate
Gramian Gαβ ¼ hKα;Kβi, tangent to the slices SΩ (partially
umbilic if n < m − 2) of the foliation FΩ with the second
fundamental form (35). Then, there is a nontrivial Killing
tensor on manifold M, if the following steps can be
successfully completed.

Step one.—Check compatibility and integrability
conditions (28) and (42).

Step two.—Obtain α from (29) and check the
condition (30).

Step three.—Define γαβ from (39) using the conditions
ξναβ ¼ 0 and Xγαβ ¼ 0.

Step four.—Using the functions found in the previous
steps and Eqs. (26), construct a Killing map and the
corresponding Killing tensor:

KðXÞ ¼ αðX − ϵhX ; ξiξÞ

þ
Xn
α;β¼1

γαβhX ;KαiKβ þ ϵkξNhX ; ξiξ; ð44Þ

2Note that these conditions can be simplified with respect to hΩ
using Codazzi equations (see Appendix B).

KILLING TENSORS AND PHOTON SURFACES IN FOLIATED … PHYS. REV. D 104, 044009 (2021)

044009-5



where it is taken into account that X needs to be
projected onto the slice in the first two terms.

In the proof of this theorem, the nondegeneracy of the
Gram matrix plays an important role. Usually, one can
naturally choose a set of linearly independent Killing
vectors such that their Gram matrix is not degenerate
almost everywhere. This nondegeneracy can be violated
in some points where the set of Killing vectors becomes
linearly dependent (i.e., there exist a singular point for
some Killing vector field from the spanned subspace). For
example, consider a stationary axially symmetric spacetime
with Killing vectors ∂t and ∂ϕ. The polar axis is a set of
singular points of the vector field ∂ϕ, so the Gram matrix is
degenerate on it. Usually, the results for the whole
spacetime can be extended to such singular points by
continuity. Alternatively, this condition can be violated if
the set of Killing vectors contain n − 1 spacelike directions
and one null direction orthogonal to the former ones
(similarly to null surfaces). Nevertheless, in the context
of black holes, wormholes, or naked singularities, as a rule,
we are interested to include a timelike Killing vector in the
basis, assuring the nondegeneracy of the Gram matrix
everywhere except the event horizon. These considerations
may be crucial for null solutions (e.g., pp waves), where the
chosen set of Killing vectors may lead to the degenerate
Gram matrix in the whole spacetime.

V. CONNECTION WITH PHOTON
SUBMANIFOLDS

Consider the case of a manifold with two Killing
vectors spanning a timelike surface (ϵ ¼ þ1, G < 0). Let
us define a spacelike vector field ρ̂ ∈ fKαg with index
α ¼ 1, 2 numbering Killing vectors of the basis3 fKαg with
metric Gαβ:

ρα ¼ ðρ; 1Þ; Gαβρ
αρβ > 0; ð45Þ

which is supposed to have constant components. Since the
vector field ρ̂ has constant components in basis fKαg, it is a
Killing vector field itself. Consider an arbitrary affinely
parameterized null geodesic γ with the conserved quantity
hρ̂; _γi equal to zero. Insofar as hρ̂; _γi ¼ hρK1; _γi þ hK2; _γi,
we find that ρ ¼ −hK2; _γi=hK1; _γi and, hence, ρ can be
called the generalized impact parameter (see [8] for details).
However, one can choose arbitrary parametrization of ρα up
to the norm.

In addition, we will introduce a vector τ̂ in fKαg
orthogonal to ρ̂:

τα ¼ Gαλϵλβρ
β; hτ̂; τ̂i ¼ −hρ̂; ρ̂i; hτ̂; ρ̂i ¼ 0; ð46Þ

where ϵλβ is the two-dimensional Levi-Civita tensor. By the
definition of Ref. [8], a timelike hypersurface tangent to
two Killing fields (Kα ∈ TSΩ) is the fundamental photon
surface, if it is umbilic for all vectors from the orthogonal
complement of the field ρ̂ (we also require the compactness
of its spatial section):

Ωσðτ̂; τ̂Þ ¼ hΩhτ̂; τ̂i; ΩσðX; YÞ ¼ hΩhX; Yi;
Ωσðτ̂; XÞ ¼ 0; ð47Þ

for ∀X; Y ∈ feag, where feag is a basis of the orthogonal
complement to fKαg in the slice introduced in Sec. IV.
Proposition 5.1.—The fundamental photon surface is a

partially umbilic surface with a second fundamental form of
the form (35), with the following connection between hΩ

and Gαβ:

ραMαβρ
β ¼ 0;

Mαβ ≡ 1

2hΩ
· ξGαβ − Gαβ −

1

2hΩ
· ξ lnG · Gαβ: ð48Þ

Proof.—Using Proposition 4.1, the second fundamental
form Ωσðτ̂; τ̂Þ reads

Ωσðτ̂; τ̂Þ ¼ −
1

2
τατβ · ξGαβ ¼ −ραρβ

�
1

2
ξGαβ þ Gλγϵλα · ξϵγβ

�

¼ 1

2
ραρβð−ξGαβ þ Gαβ · ξ lnGÞ: ð49Þ

Substituting this expression into the first equation in (47),
we find (48). ▪
If the surface under consideration is totally umbilic

Mαβ ¼ 0, it is obviously a fundamental photon surfaces
for any ρ. Since totally umbilic surfaces usually exist in
spherically symmetric solutions (both static and nonstatic)
or nonrotating solutions with NUT charge [16], and they
have been considered in detail in a number of works
[13,35], we will focus on the case Mαβ ≠ 0.
Consider the foliation FΩ generating a nontrivial

Killing tensor in accordance with Theorem 4.2, and ask
the question whether its slice is a fundamental photon
surface. First of all, we need to solve the quadratic
equation (48) for ρ and check the condition (45). It has
a nontrivial solution if the eigenvalues of the matrix Mαβ

have different signs, that is,M≡ detðMαβÞ < 0. Then the
solution for ρ reads as

3Denote a vector in fKαg in indexless hat notation, for
example, ρ̂ ¼ ραKα. In the general case, each vector field Kα
does not have to be timelike or spacelike everywhere. For
example, in stationary axially symmetric spacetime, the timelike
Killing vector field ∂t becomes spacelike inside the ergo region,
while the Gramian matrix still almost everywhere has a negative
determinant (except for axis, where ∂ϕ disappears and G ¼ 0 [8]).
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ρ ¼ −M12 �
ffiffiffiffiffiffiffiffiffiffi
−M

p

M11

: ð50Þ

Condition (45) is satisfied if the following inequality holds:

� 2ðG12M11 − G11M12Þ
ffiffiffiffiffiffiffiffiffiffi
−M

p
− 2G11 ·M

þM11 · G · TrðMÞ > 0; ð51Þ

where TrðMÞ ¼ MαβGαβ ¼ −2 − ð2hΩÞ−1 · ξ ln G.
Equation (51) defines the so-called photon region
[20,21], which arises as a flow of fundamental photon
surfaces [8]. However, it has not been proven that the
expression (50) for ρ is constant in every slice. To under-
stand it better, let us act on Eq. (48) with X:

XfMαβgραρβ þ 2MαβXðραÞρβ ¼ 0: ð52Þ

Consider the first term. We rewrite the second integrability
condition with lowered indices:

X

�
1

2hΩ
·ξGαβ

�

¼XGαβþ
1

2hΩ
· ðξGαρ ·XGλβþξGβρ ·XGλαÞ ·Gρλ ð53Þ

and plug it into the first term in (52) to get the following
expression:

XfMαβgραρβ ¼ X

�
1

2hΩ
· ξGαβ − Gαβ −

1

2hΩ
· ξ lnG · Gαβ

�
ραρβ

¼
�
X

�
1

2hΩ
· ξGαβ

�
− XGαβ − X

�
1

2hΩ
· ξGλρ

�
· Gλρ · Gαβ −

1

2hΩ
· ξGλρ · XðGλρ · GαβÞ

�
ραρβ

¼
�

1

hΩ
· ξGαρ · XGλβ · Gρλ − X lnG · Gαβ þ

1

2hΩ
· ξGρλ · XGρλ · Gαβ −

1

2hΩ
· ξ lnG · XGαβ

�
ραρβ; ð54Þ

where we have used ξ lnG ¼ Gαβ · ξGαβ and XGλδ · Gλρ ¼
−Gλδ · XGλρ. After subtracting Eq. (48) multiplied by X lnG
from (54), the quantity hΩ can be factored out:

XfMαβgραρβ ¼Eq: ð48Þ 1

2hΩ
· ρβN βαρ

α; ð55aÞ

N βα ≡ ξGρλ · XGρλ · Gαβ − ξGρα · XGρλ · Gβλ

− ξGρβ · XGρλ · Gαλ þ X lnG · ξ lnG · Gαβ

− ξ lnG · XGαβ − X lnG · ξGαβ: ð55bÞ

Raising the second index, the matrix N β
α can be repre-

sented as follows:

N ¼ B −
1

2
trðBÞ1;

B ¼ ðtrðaÞ1 − aÞbþ ðtrðbÞ1 − bÞa; ð56aÞ

b ¼ Gβγ · XGγα; a ¼ ξGβγ · Gγα: ð56bÞ

Since a and b are 2 × 2 symmetric Hermitian matrices, they
can be decomposed into a Pauli basis. Then the matrix B
reads

B ¼ 1

2
trðaÞtrðbÞ1 − aibjfσiσjg

¼
�
1

2
trðaÞtrðbÞ − 2aibjδij

�
1; ð57aÞ

a ¼ 1

2
trðaÞ1þ aiσi; b ¼ 1

2
trðbÞ1þ biσi: ð57bÞ

We find that the matrix B is proportional to the identity
matrix, so the matrix N is identically zero. As a result, the
first term in (52) is zero, leaving us with the second term

MαβXðραÞρβ ¼ 0; XðραÞ ¼ ðXðρÞ; 0Þ: ð58Þ

Substituting the general solution (50) for ρ into this
equation, we obtain the condition XðρÞ ffiffiffiffiffiffiffiffiffiffi

−M
p ¼ 0. As

we restrict our choice with M < 0, the expression XðρÞ
must be zero, so ρ is effectively constant for each slice.
Finally, we have the following theorem.
Theorem 5.2.—Let FΩ be a foliation of the manifold M

with nontotally umbilic slices SΩ with compact spatial
section satisfying all conditions of Theorem 4.2 for
dimfKαg ¼ 2. Then any subdomain UPS ⊆ SΩ such that
the inequality (51) holds for all p ∈ UPS is a fundamental
photon surface.4

4In the case of a not compact spatial section, the slice is not a
fundamental photon surface by definition [8]. However, the
theorem can be generalized for such not compact surfaces.
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In particular, the region UPR ⊆ M, such that the inequal-
ity (51) holds for any point p ∈ UPR, is a photon region.
This theorem generalizes the connection between the
existence of Killing tensors of this type and photon
surfaces or spherical null geodesics, which was noted in
Refs. [33–35]. Unfortunately, in the opposite direction, the
theorem is not true, since the existence of fundamental
photon surfaces does not guarantee the existence of the
Killing tensor. As a counterexample, one can suggest a
Zipoy-Voorhees metric [40], where the fundamental photon
surfaces exists [15] but there is no nontrivial Killing tensor
[41]. Nevertheless, the existence of fundamental photon
surfaces can serve as a sign that the Killing tensor can be
presented in the corresponding metric, and it is advisable to
check the conditions of consistency and integrability.

VI. AXIALLY SYMMETRIC MANIFOLDS

Consider a Lorentzian manifoldM with the metric tensor

ds2 ¼ −fðdt − ωdϕÞ2 þ λdr2 þ βdθ2 þ γdϕ2; ð59Þ
where all metric components depend on r and θ only and
the foliation FΩ with timelike slices r ¼ Ω. Generally,
this metric possesses two Killing vectors K1 ¼ ∂t and
K2 ¼ ∂φ. One can find that the second fundamental form of
these slices has the form (35), and other quantities are

ξ ¼ λ−1=2∂r; hΩ ¼ −
1

2
λ−1=2 · ∂r ln β;

φ ¼ λ1=2; Gαβ ¼ 1

γ

�
ω2 − γf−1 ω

ω 1

�
: ð60Þ

In this case, the number of Killing vector is one less than
the slice dimension, so the boundary n ≥ m − 2 saturates
and the condition (25) just imposes a relation on hΩ. The
compatibility and integrability conditions (28) and (42)
take the form

∂θðλ ·∂r lnβÞ¼ 0; ∂θ

�
Gαβþ 1

∂r lnβ
∂rGαβ

�
¼ 0: ð61Þ

Equation (29) can be solved as follows:

α ¼ Aθ · β þ Bθ; ð62Þ
where the arbitrary functions Aθ and Bθ depend on θ only,
obeying the condition ∂θα ¼ 0. As a result, we have one
more necessary condition for the case in this section: The
function β must be of the form

βðr; θÞ ¼ β1ðθÞβ2ðrÞ þ β3ðθÞ; ð63Þ

where β1;2;3 are some functions of the corresponding
variables. From Eq. (26), the normal component is
kξN ¼ Bθ. Next, we can define the matrix γ:

γαβ ¼ −βAθ · Gαβ − ναβ: ð64Þ

The integrability condition guarantees that γαβ always
satisfies Eqs. (21) for some ναβ depending only on θ.
On the other hand, we have to find a ναβ that makes the
equation ∂rγ

αβ ¼ 0 true. Therefore, we can omit the θ-
dependent part in γαβ to some constant matrix instead of
looking for ναβ. Combining everything together, we get the
final Killing tensor in the holonomic basis:

Kμν ¼ αgμν þ
X

α;β¼t;ϕ

γαβKμ
αKν

β − βAθλ
−1δμrδνr: ð65Þ

The compatibility and integrability conditions, as well as
the condition on the function β, are invariant under the
multiplicative transformations of the form

λ → λ0 ¼ uðrÞλ; β → β0 ¼ vðθÞβ: ð66Þ

If β possesses the aforementioned form (63), one can
simplify the integrability condition by the substitution
Gαβ ¼ G̃αβ · β1=β. Then, the integrability condition is
∂θ∂rG̃

αβ ¼ 0, which is solved by G̃αβ ¼ G̃αβ
r ðrÞ þ G̃αβ

θ ðθÞ.
This generalizes the result of Ref. [42], where a similar
condition was obtained from the separability of the
Hamilton-Jacobi equation. In our case, we have also
included the β1ðθÞ term. Furthermore, the compatibility
condition and the function form (63) lead to the form of
λ ¼ λrðrÞβ=β1, where λr is an arbitrary function of r.

A. Example: Kerr solution

The metric for Kerr solution in the Boyer-Lindquist
coordinates reads

ds2 ¼ −fðdt − ωdϕÞ2 þ Σ
Δ
dr2 þ Σdθ2 þ Δf−1 sin2 θdϕ2;

ð67Þ

f ¼ Δ − a2sin2θ
Σ

; Σ ¼ r2 þ a2cos2θ;

ω ¼ −2Marsin2θ
Δ − a2sin2θ

; Δ ¼ rðr − 2MÞ þ a2: ð68Þ

In the Kerr metric, β ¼ r2 þ a2 cos2 θ and λ ¼ β=Δ satisfy
the compatibility condition. One can explicitly verify that
Gαβ satisfies the integrability equation. In this case, α ¼ r2,
Aθ ¼ 1, and kξN ¼ Bθ ¼ −a2 cos2 θ (here we have fixed the
multiplicative integration constant, which appears due to
the linearity of Killing equations). The part of γαβ inde-
pendent on θ reads

γαβ ¼ Δ−1
� ða2 þ r2Þ2 aða2 þ r2Þ
aða2 þ r2Þ a2

�
: ð69Þ
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Finally, we get α, γαβ, and kξN , which correspond to the
well-known nontrivial Killing tensor for Kerr solution

α ¼ r2; kξN ¼ −a2 cos2 θ;

γαβ ¼ Δ−1
� ða2 þ r2Þ2 aða2 þ r2Þ
aða2 þ r2Þ a2

�
: ð70Þ

B. Example: Plebanski-Demianski solution

Consider a more complicated case of the general
Plebanski-Demianski class of stationary axially symmetric
solutions of type D to the Einstein-Maxwell equations with
a cosmological constant. The ds2 metric is read from the
conformally transformed in Boyer-Lindquist coordinates:

Ω2ds2 ¼ Σ
�
dr2

Δr
þ dθ2

Δθ

�

þ 1

Σ
ððΣþ aχÞ2Δθ sin2 θ − Δrχ

2Þdϕ2 ð71Þ

þ 2

Σ
ðΔrχ − aðΣþ aχÞΔθ sin2 θÞdtdϕ

−
1

Σ
ðΔr − a2Δθ sin2 θÞdt2; ð72Þ

where we have defined functions

Δθ ¼ 1 − a1 cos θ − a2 cos2 θ;

Δr ¼ b0 þ b1rþ b2r2 þ b3r3 þ b4r4; ð73Þ

Ω ¼ 1 − λðN þ a cos θÞr;
Σ ¼ r2 þ ðN þ a cos θÞ2;
χ ¼ asin2θ − 2Nðcos θ þ CÞ; ð74Þ

with the following constant coefficients in Δθ and Δr:

a1 ¼ 2aMλ − 4aN

�
λ2ðkþ βÞ þ Λ

3

�
;

a2 ¼ −a2
�
λ2ðkþ βÞ þ Λ

3

�
;

b0 ¼ kþ β; ð75Þ

b1¼−2M;

b2¼
k

a2−N2
þ4MNλ−ða2þ3N2Þ

�
λ2ðkþβÞþΛ

3

�
; ð76Þ

b3¼−2λ
�

kN
a2−N2

−ða2−N2Þ
�
Mλ−N

�
λ2ðkþβÞþΛ

3

���
;

b4¼−
�
λ2kþΛ

3

�
; ð77Þ

k ¼ 1þ 2MNλ − 3N2ðλ2β þ Λ
3
Þ

1þ 3λ2N2ða2 − N2Þ ða2 − N2Þ; λ ¼ α

ω
;

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ N2

p
: ð78Þ

Generally, the coordinates t and r range over the whole R,
while θ and ϕ are the standard coordinates on the unit two-
sphere. Seven independent parametersM,N, a, α, β,Λ, and
C can be interpreted as the physical charges in the
following way: M and N are the mass and the NUT
parameter (magnetic mass), respectively, a is the Kerr-like
rotation parameter, β ¼ e2 þ g2 comprises the electric e
and magnetic g charges, α is the acceleration parameter, Λ
is the cosmological constant, and the constant C defines the
location of the Misner string.
The first step is to check the compatibility and integra-

bility conditions (28) and (42). The first one holds if
α · a ¼ 0, i.e., either the acceleration α or the rotation a are
zero. Indeed, as shown in Ref. [37], the general PD solution
with acceleration possesses a conformal Killing tensor but
not the usual one. In the case a ¼ 0, the second condition
does not hold. So, furthermore, we will consider the
solution with zero acceleration α ¼ 0, which corresponds
to the dyonic Kerr-Newman-NUT-AdS solution.
For the second step, we pick up the r-dependent part

from β ¼ Σ=Δθ for α:

β ¼ Σ
Δθ

⇒ α ¼ r2; Aθ ¼ Δθ;

kξN ¼ Bθ ¼ −Δ−1
θ ðN þ a cos θÞ2: ð79Þ

Similarly, for the third step, the r-dependent part for γαβ is
defined as

γαβ ¼ Δ−1
r

�
P2 aP

aP a2

�
; ð80Þ

where P ¼ Σþ aχ ¼ r2 þ a2 − 2aCN þ N2. In the last
fourth step, this gives us the nontrivial Killing tensor for the
Kerr-Newman-NUT-AdS metric.

C. Example: Kerr-Taub-NUT-AdS multicharge
gauged supergravity solution

Here we construct the Killing tensor for the metric given
by Chong, Cvetic, Lu, and Pope in Ref. [36]. The solution
was obtained by starting out with the four-dimensional
Kerr-Taub-NUT metric, dimensionally reducing it to three
dimensions with respect to time, and then lifting back after
dualization. The metric is given by

ds2 ¼ −
Δr

a2W
ðadtþ u1u2dϕÞ2 þ

Δu

a2W
ðadtþ r1r2dϕÞ2

þW

�
dr2

Δr
þ du2

Δu

�
; ð81Þ
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where

W¼ r1r2þu1u2; ri¼ rþ2Ms2i ; ui¼uþ2Ns2i ; ð82Þ

Δr ¼ r2 þ a2 − 2Mrþ e2r1r2ðr1r2 þ a2Þ; ð83Þ

Δu ¼ −u2 þ a2 − 2Nuþ e2u1u2ðu1u2 − a2Þ: ð84Þ

Here si ¼ sinh δi, and δ1 is the magnetic charge, δ2 is the
electric charge, N is the NUT parameter, a is the rotation
parameter, and e is the gauge parameter. The cosmological
constant Λ is given by Λ ¼ −e2.
The first step is to check the compatibility conditions

(28) for the foliations r ¼ Ω, which reads as

∂2
ruW ¼ 0 ð85Þ

and is carried out identically for a given W. For the second
step, we pick up the r-dependent part from β ¼ W=Δu
for α:

β¼ W
Δu

⇒α¼ r1r2; Aθ¼Δu; kξN ¼Bθ¼−u1u2: ð86Þ

Similarly, for the third step, the r-dependent part for γαβ is
presented as

γαβ ¼ Δ−1
r

�
r21r

2
2 ar1r2

ar1r2 a2

�
: ð87Þ

Note that the symmetry between u and r implies that there
is another suitable foliation u ¼ Ω with

α¼ u1u1; kξN ¼−r1r2; γαβ ¼Δ−1
u

�
−u21u22 au1u2
au1u2 −a2

�
:

ð88Þ

However, both foliations generate the same Killing tensor
coinciding with one obtained in Ref. [38].

VII. CONCLUSIONS

We have presented a purely geometric method of
generating a Killing tensor in spacetimes with foliation
of codimension one. For spacetimes foliated by arbitrary
slices, we have derived general lift equations (17) relating
the Killing tensor with its projection onto them and their
orthogonal complement. This result includes the case of
totally geodesic slices considered in Ref. [4] as a particular
case. It has been demonstrated that not totally geodesic
slices allow the simplification of the lift equations in the
form (19) as well. Using these equations, one can try to lift
a trivial Killing tensor defined in such slices into a non-
trivial Killing tensor in the bulk. For slices tangent to
Killing vectors, the lift equations can be simplified to the

form (21). In this case, the foliation must satisfy some
consistency (28) and integrability (42) conditions, which
we have derived explicitly. Furthermore, we have resolved
the lift equations presenting the solution in terms of the
integrals.
Finding a foliation suitable for integrability and con-

sistency conditions can be challenging. However, we have
found that the existence of a foliation that satisfies the
integrability conditions ensures that the slices represent
fundamental photon surfaces if the corresponding inequal-
ities hold. This generalizes the result of Ref. [35] to the case
of arbitrary stationary spaces. In the opposite direction, the
existence of fundamental photon surfaces does not guar-
antee the existence of the Killing tensor but may serve as an
indication that the Killing tensor may exist. Therefore, it is
recommended to check the consistency and integrability
conditions for fundamental photon surfaces. This makes the
search for fundamental photon surfaces even more impor-
tant for studying the integrability of geodesic motion.
We apply this technique to Kerr, Kerr-Newman-NUT-

AdS, and Kerr-NUT-AdS multicharge gauged supergravity
solutions, where the Killing tensor arises purely algebrai-
cally without any differential equations having been solved.
In the latter case, the discrete symmetry of the supergravity
solution allows one to construct the nontrivial Killing
tensor using two different foliations.
The question of the relationship between fundamental

photon surface and the Killing tensor of an arbitrary nature
(regardless of whether it is trivial in slices or not) remains
open. As the key directions of further study, one can
suggest a more general analysis of the compatibility and
integrability conditions for the original system of differ-
ential equations (17). The presented approach can be
generalized to the case of conformal Killing vector and
tensor fields, which is also one of the directions for further
research.
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APPENDIX A: PROOF OF PROPOSITION 3.2

Proof.—Let us introduce here arbitrary tangent vectors
X; Y; Z ∈ TSΩ and a normal vector ξ ∈ ðTSΩÞ⊥. In this
proof, we will make use of the identity following from the
self-adjointness of mapping K:

hKX
Ω; Yi ¼ hX;KY

Ωi; kXN ¼ ϵhX;Kξ
Ωi: ðA1Þ

Now, consider the lhs of Killing equations (2) projected
onto TSΩ and ξ separately:
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h∇ξKðξÞ; ξi ¼ h∇ξðKξ
Ω þ kξNξÞ; ξi − h∇ξξ; K

ξ
Ω þ kξNξi

¼ h∇ξðKξ
ΩÞ; ξi þ h∇ξðkξNÞξ; ξi − h∇ξξ; K

ξ
Ωi

¼ 2ϵ∇Kξ
Ω
lnφþ ϵξðkξNÞ; ðA2aÞ

h∇XKðξÞ; ξi þ h∇ξKðXÞ; ξi þ h∇ξKðξÞ; Xi ¼ h∇XðKξ
Ω þ kξNξÞ; ξi − h∇Xξ; K

ξ
Ω þ kξNξi þ h∇ξðKX

Ω þ kXNξÞ; ξi
− h∇ξX;K

ξ
Ω þ kξNξi þ h∇ξðKξ

Ω þ kξNξÞ; Xi − h∇ξξ; KX
Ω þ kXNξi

¼ h∇XðKξ
ΩÞ; ξi þ h∇XðkξNÞξ; ξi − h∇Xξ; K

ξ
Ωi þ h∇ξðKX

ΩÞ; ξi þ h∇ξðkXNÞξ; ξi
− h∇ξX;K

ξ
Ωi − h∇ξX; k

ξ
Nξi þ h∇ξðKξ

ΩÞ; Xi þ kξNh∇ξξ; Xi − h∇ξξ; KX
Ωi

¼ 2ϵ · ΩσðX;Kξ
ΩÞ þ ϵXðkξNÞ þ 2ϵ∇KX

Ω
lnφ − 2ϵkξN∇X lnφþ 2h∇ξðKξ

ΩÞ; Xi;
ðA2bÞ

Sym
X↔Y

fh∇XKðYÞ;ξiþh∇XKðξÞ;Yiþh∇ξKðXÞ;Yig¼Sym
X↔Y

fh∇XðKY
ΩþkYNξÞ;ξi− h∇XY;K

ξ
ΩþkξNξiþh∇XðKξ

ΩþkξNξÞ;Yi

− h∇Xξ;KY
ΩþkYNξiþh∇ξðKX

ΩþkXNξÞ;Yi− h∇ξX;KY
ΩþkYNξig

¼Sym
X↔Y

fh∇XðKY
ΩÞ;ξiþh∇XðkYNÞξ;ξi− h∇XY;k

ξ
Nξi− h∇ξX;kYNξi

þh∇XðKξ
ΩÞ;YiþkξNh∇Xξ;Yiþh∇ξðKX

ΩÞ;YiþkXNh∇ξξ;Yi
− h∇Xξ;KY

Ωi− h∇XY;K
ξ
Ωi− h∇ξX;KY

Ωig
¼Sym

X↔Y
f2hDXðKξ

ΩÞ;Yi−2ϵkXN∇Y lnφþ2ϵ ·ΩσðX;KY
ΩÞ−2ϵkξN ·ΩσðX;YÞ

þh∇ξðKX
ΩÞ;Yi− h∇ξX;KY

Ωig; ðA2cÞ

Sym
X↔Y↔Z

fh∇XKðYÞ; Zig ¼ Sym
X↔Y↔Z

fh∇XðKY
Ω þ kYNξÞ; Zi − h∇XY; KZ

Ω þ kZNξig

¼ Sym
X↔Y↔Z

fh∇XðKY
ΩÞ; Zi þ h∇XðkYNξÞ; Zi − h∇XY; KZ

Ωi − h∇XY; kZNξig

¼ Sym
X↔Y↔Z

fhDXKY
Ω; Zi − 2ϵkZN · ΩσðX; YÞg; ðA2dÞ

where we used h∇ξðkXNÞξ; ξi ¼ ϵh∇ξhX;Kξ
Ωiξ; ξi ¼

h∇ξX;K
ξ
Ωi þ hX;∇ξðKξ

ΩÞi in Eq. (A2b). By virtue of
Killing equations, each final expression is equal to zero. ▪

APPENDIX B: CODAZZI EQUATION

In order to simplify and generalize the calculations, we
will introduce a matrix notation as follows. First of all, we
choose an arbitrary basis in the subspace spanned by
Killing vectors eα ∈ fKαg and define new matrices

P≡ξðαÞ−1 ·ΩΣðeα;eβÞ; M≡hKα;eβi; Γ≡ξðγαβÞ: ðB1Þ
In particular, Eqs. (31) will be written in the form

ξðαÞ ·P¼MTΓM; Γ¼ ξðαÞ · ðMTÞ−1P ·M−1: ðB2Þ
Acting as before in Sec. IVand calculating the derivative of
ξðαÞ · P, we obtain integrability conditions for P in matrix
form:

ðDZPÞ ¼ QT þQ; Q ¼ PM−1DZM; ðB3Þ

where ðDZMÞαβ ≡ hDZKα; eβi and ðDZPÞαβ ≡
DZðPðeα; eβÞÞ − PðDZeα; eβÞ − Pðeα;DZeβÞ. Using the
integrability condition, Codazzi equations [39] for
RicðX; ξÞ take the form

ϵ

hΩ
· RicðX; ξÞ ¼ 3 · TrðPDX lnMÞ

þDX ln hΩ · fTrðPÞ þm − 2g: ðB4Þ

Choosing the basis eα ¼ Kα (i.e., Mαβ ¼ Gαβ), Codazzi
equations read as

RicðX;ξÞ¼ 3

4
·ξGαβ ·XGαβþ3

2
·X lnφ ·ξ lnG

þ3ϵhΩ
�
ðn−mþ2Þ ·X lnφ−

1

2
·X lnG

�
: ðB5Þ
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