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We construct an asymptotically flat Morris-Thorne wormhole solution supported by anisotropic matter
fluid and a vector field which is coupled to gravity in a nonminimal way with broken Abelian gauge
symmetry. In this paper, a specific shape function is considered. We find that the ansatz of vector field
plays a significant role in determining the spacetime geometry of the wormhole. If there exists the
electrostatic potential only, the redshift function could be considered as a constant value, implying the
vanishing tidal force. However, when the vector potential in radial-direction is involved, the r-component
of extended Maxwell equations at the wormhole’s throat is invalid. To solve this issue, a thin shell is
introduced near the throat, dividing the spacetime into two parts. Furthermore, it is proved that the
spacetime geometry of wormhole could be smooth at junction position if the expressions of redshift
function and vector potential are given appropriately. Finally, the energy conditions and the volume
integral quantifier are explored.
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I. INTRODUCTION

In general relativity, wormholes are interesting spacetime
structures bridging two asymptotic regions located in one
universe or multiverse [1], which are solutions of the
Einstein field equations. Actually, the original motivation
of introducing wormholes is to replace the singularity of
Schwarzschild black hole by a “tunnel structure” geometry,
namely, “Einstein-Rosen bridge” (ERB) [2–4].
In the1980s,Morris andThorne introduced the traversable

wormholes, which increase the possibility of spacetime
traveling [5]. Furthermore, Visser has adopted the cut-and-
paste method to construct the traversable wormholes known
for thin-shellwormholes (TSW) [6,7], which are stable under
the linear perturbation [8]. Recently, the traversable worm-
holes have receivedbroad attention in several aspects, such as
the stability analysis from new perturbative method [9–11],
the resolution to the horizon problem in cosmology [12,13],
finding the wormhole solutions from the models beyond the
Einstein gravity [14–19]. According to physical grounds, all
the matter in our universe should satisfy certain energy
conditions. While, the traversable wormholes require the
existence of exotic matters which suffer from the violation of

classical energy conditions, like the weak energy condition
(WEC) [20], the null energy condition (NEC) [21] and the
strong energy condition (SEC) [22]. Thus, it is a valuable
research topic to find the traversable wormholes which
conform to some classical energy conditions, especially
the WEC and NEC. In [23,24], the traversable wormholes
have been constructed in somemodified gravitymodelwhich
belongs to the low-energy effective theory of string, without
needing any form of exotic matter. In addition, inspired by
the ER=EPR conjecture [25,26], [27,28] find the traversable-
wormhole solutions in Einstein gravity with entangled
fermions.
In recent decades, the scalar-tensor theories (ST) play a

vital role in giving the alternative explanation on the origin
of inflation and dark energy [29], and plenty of insightful
physics have been explored in ST [30–34]. However, few
attentions have been drawn on the vector-tensor theories
(VT). Actually, some interesting cosmological phenom-
enology, such as driving the accelerated expansion of
universe at late time [35], explaining the cosmological
constant problem [36] and cosmic inflation [37–40], could
also be achieved by coupling the vector field to the gravity
with broken Abelian gauge symmetry. In order to develop
the phenomenology of VT theories in more areas of
physics, our purpose in this paper is to consider the static
and spherically symmetric Morris-Thorne wormholes for a
type of nonminimally coupled vector-tensor theory with
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Abelian gauge symmetry breaking in four-dimensional
spacetime [41,42] (hereafter, this model is called VTAB
for brief). As shown by [42], the hairy black hole solutions
in VTAB should take inclusion of a nontrivial configuration
of vector potential ArðrÞ besides the electrostatic potential
A0ðrÞ. Thus, it is worthwhile to consider the effects of
ArðrÞ on traversable wormhole solutions. In particular, we
will study the possibility that the matter satisfies the NEC
everywhere, from the throat to infinity when some physical
parameters are appropriately chosen.
This work is structured as follows. In Sec. II, at first, we

briefly introduce a type of vector-tensor theory with broken
Abelian gauge symmetry in four-dimensional spacetime.
Then, the Einstein field equations and extended Maxwell
equations are given in metric ansatz of Morris-Thorne
wormhole geometry. In Sec. III, when vector potential χ
vanishes, an asymptotically flat wormhole solution is
presented. Besides, the NEC, the WEC and volume integral
quantifier are analyzed. The effects of vector potential on
wormhole geometry have been explored in Sec. IV. In
particular, in order to avoid the divergence of redshift
effects at throat of wormhole, we construct a pair of special
piecewise functions for χ and Φ, respectively. Meanwhile,
these piecewise functions make the spacetime continuous at
joining position. Finally, conclusions and discussions are
presented in Sec. V.

II. GENERAL SETUP OF WORMHOLE IN
VECTOR-TENSOR THEORY WITH ABELIAN

SYMMETRY BREAKING

First, let us briefly review on the vector-tensor theory in
four-dimensional spacetime as in [42]. Its action is set as

S ¼ 1

2κ2

Z ffiffiffiffiffiffi
−g

p
d4x

�
R − 2Λ −

1

4
F2

þ βGμνAμAν þ Lfluid

�
ð1Þ

in which Gμν is the standard Einstein tensor, β is the
physical constant measuring the strength of nonminimal
coupling between vector field and Einstein tensor, which
indicates that the Uð1Þ symmetry is broken in presence of
this nonminimal coupling term. In general case, the exotic
matter violating classical energy conditions is needed is
introduced in order to keep up the geometry of traversable
wormholes. Thus, we involve an extra matter content which
has the form of an anisotropic fluid. From (1), the Einstein
field equation is given by

Rμν −
1

2
gμνRþ Λgμν ¼ Tð0Þ

μν þ TðAÞ
μν ð2Þ

Tð0Þμ
ν ¼ diagf−ρ;Pr;Pt;Ptg ð3Þ

TðAÞ
μν ¼ 1

2

�
gβαFνβFμα −

1

4
gμνF2

�
þ βZμν

Zμν ¼
1

2
A2Rμν þ

1

2
RAμAν − 2AαRαðμAνÞ

−
1

2
∇μ∇νA2 þ∇α∇ðμðAνÞAαÞ − 1

2
∇α∇αðAμAνÞ

þ 1

2
gμνðGαβAαAβ þ∇α∇αA2 −∇α∇βðAαAβÞÞ ð4Þ

in which the energy-momentum tensor Tð0Þ
μν is derived from

the Lfluid, ρ is the energy density, while Pr and Pt represent
the pressures in the radial direction and transverse direc-
tion, respectively. The equation of motion for vector field,
namely the extended Maxwell equations, reads

∇μFμν þ 2βAμGμν ¼ 0: ð5Þ

We assume Aμ has the following ansatz

Aμdxμ ¼ aðrÞdtþ χðrÞdr: ð6Þ

We consider the static and spherically symmetric metric
in four-dimensional spacetime, with the following ansatz as
in [42],

ds2 ¼ −eΦðrÞdt2 þ dr2

1 − bðrÞ
r

þ r2ðdθ2 þ sin2 θdϕ2Þ: ð7Þ

where ΦðrÞ is the redshift function for an infalling
observer, and bðrÞ represents the spatial shape function
of the wormhole geometry. In order to avoid the presence of
an event horizon, the redshift functionΦðrÞ should be finite
everywhere. Two asymptotic spacetime regions are con-
nected by the throat of wormhole which is located at the
minimum radial coordinates r0, with the condition that
bðr0Þ ¼ r0. Moreover, the flaring-out condition of worm-
hole geometry requires the shape function bðrÞ to satisfy

b − b0r
2b2

> 0 ð8Þ

which reduces to b0ðr0Þ < 1 at the throat of wormhole.
Besides, to avoid the coordinate singularity in region
r > r0, the restriction is given by

1 −
bðrÞ
r

> 0 ð9Þ

After substituting ansatz (6) and (7) into Einstein field
equations (2) and the extended Maxwell equations (5), the
following independent differential equations are given

0 ¼ χ

r2
ðΦ0rðr − bÞ − bÞ ð10Þ
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0 ¼ 2rðb − rÞa00 þ ð4bþ ðb0 − 4ÞrÞa0 þ 4βb0a ð11Þ

ρ ¼ e−Φ

4r4
ðr2ððb − rÞra02 − 2βa2b0Þ − 2eΦðβχ2ðb − rÞð3rb0 − 2b − 2rÞ þ 4βrχχ0ðb − rÞ2 − 2r2b0ÞÞ ð12Þ

Pr ¼
e−Φ

4r3
ð8βraa0ðr − bÞ þ ðr − bÞð4βeΦχ2 þ r2a02Þ − 4βa2bÞ ð13Þ

Pt ¼
1

4

�
rPr þ bρ
r − b

þ 3Pr þ 2rP0
r

�
¼ e−Φ

8r4ðr − bÞ
�
eΦb3χ

2
ðχ − 2rχ0Þ þ r2b

�
a2

4
ð4þ 3b0 þ 4rΦ0Þ

þ eΦ
�
2b0 þ χ2 þ 7

4
χ2b0 − 5rχχ0

�
þ r2a0ð2ra0Φ0 þ a0b0 − 7a0 − 4ra00Þ þ rað2a0b0 þ 4ra0Φ0 − 3a0 − 4ra00Þ

�

þ rb2
�
−
a2

2
ð3þ 2rΦ0Þ − 1

4
eΦχð3b0χ þ 6χ − 16rχ0Þ þ raða0 þ 2ra00 − 2ra0Φ0Þ þ r2a0ð3a0 þ 2ra00 − ra0Φ0Þ

�

þ r3ðeΦχð2rχ0 − b0χÞ − a2b0 þ 2raðra00 þ a0 − a0b0 − ra0Φ0Þ þ r2a0ð2ra00 þ 4a0 − a0b0 − ra0Φ0ÞÞ
�

ð14Þ

In this work, we restrict our attention to the asymptoti-
cally flat solutions, thus Λ ¼ 0 in (12)–(14). Besides, as
indicated in [42], the asymptotically flat solutions with a
nontrival configuration of Aμ could be obtained only if
β ¼ 1

4
. Hereafter, we will set β ¼ 1

4
throughout the

whole paper.

III. ASYMPTOTICALLY FLAT SOLUTIONS I:
A SPECIFIC SHAPE FUNCTION WITH χ = 0

Following the sprit of [43], we will consider a type of
specific shape function in this work

bðrÞ
r0

¼ c

�
r
r0

�
α

þ 1 − c ð15Þ

Since our attention is concentrated on the asymptotically
flat solutions, i.e., bðrÞ

r jr→∞ ¼ 0, the condition α < 1 is
imposed. Besides, the conditions (8) and (9) imply the
following inequalities

cα < 1 ð16Þ

cα

�
r
r0

�
α

< 1 − cþ c

�
r
r0

�
α

<
r
r0

ð17Þ

In Fig. 1, some typical c, α parameters are given to make
(16)–(17) hold. Substituting (15) into (11), one yields to

a ¼ Q
r
; ð18Þ

which is the standard Coulomb potential. According to the
works [42,44], it is necessary to indicate the following facts

about the chargeQ. Since theUð1Þ symmetry is broken due
to the nonminimal coupling term βGμνAμAν. Thus the Q is
not a conserved quantity any more. And here we have to
consider this quantity in the grand canonical ensemble, in
which the system can exchange the charge particles with
the exterior and the numbers of charges is variable (the
conjugate variable of charge, i.e., the chemical potential μ,
is constant). It is straightforward to observe that the
Eq. (10) will be trivial when χ ¼ 0. And then, we consider
a constant redshift function, i.e., ΦðrÞ ¼ Φ0, in order to
simplify the problem. For this case, the metric becomes

ds2 ¼ −dt2 þ dr2

1 − cð rr0Þα−1 − ð1 − cÞ r0r
þ r2ðdθ2 þ sin2 θdϕ2Þ ð19Þ

Note that here the factor e−2Φ0 is absorbed into dt2 through
the redefinition of time coordinate. From (19), one could

FIG. 1. The aim of this figure is to show that the conditions (8)
and (9) for the specific shape function (15) is not difficult to be
satisfied by choosing some representative parameters according
to the inequalities (16) and (17).
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analyze the embedding diagram of wormhole geometry
into the Euclidean space. Without loss of generality, an
equatorial slice θ ¼ π=2 at a fixed time t ¼ const are
considered. Then the metric (19) reduces to

ds2 ¼ dr2

1 − cð rr0Þα−1 − ð1 − cÞ r0r
þ r2dϕ2; ð20Þ

which could be embedded into a 3-dimensional Euclidean
space with cylindrical symmetry, namely

ds2E ¼ dz2 þ dr2 þ r2dϕ2: ð21Þ

By matching (20) with (21), the embedded surface zðrÞ is
obtained as

dz
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1 − cð rr0Þα−1 − ð1 − cÞ r0r
− 1

s
ð22Þ

We could evaluate the integral (22) numerically for specific
parameters, and the corresponding profile of zðrÞ is shown
in Fig. 2.
Plugging (15) and (18) into (12)–(14), respectively,

ρ ¼ e−Φ0

8r5
ð2Q2ðr0 − rÞ þ 2Q2cr0

��
r
r0

�
α

− 1

�

− αQ2cr0

�
r
r0

�
α

þ 8αcr30e
Φ0

�
r
r0

�
αþ2
�

ð23Þ

Pr ¼ −
e−Φ0

4r4
Q2 ð24Þ

Pt¼
e−Φ0

32r5ðr−r0þcr0ð1−ð rr0ÞαÞÞ
�
8Q2r2

−4cQ2r20þ12Q2rr0ðc−1Þþ2Q2r20ðc2þ1Þ

þcr0

�
r
r0

�
α
�
Q2

�
ðα−4Þðc−1Þr0−ðα−2Þcr0

�
r
r0

�
α
�

−12rþ8αeΦ0r2r0

�
1þc

��
r
r0

�
α

−1

����
: ð25Þ

From the expressions (23)–(25), the variation of ρ; Pr; Pt
with respect to r in some representative parameters are
displayed in Fig. 3. It is worthwhile noting that the energy
density ρ will change from positive values to the negative
ones as one increases theQ. In particular, let us consider the
null energy condition (NEC) and weak energy condition
(WEC) respectively for this wormhole solution. It is well
known that the WEC is defined by TμνUμUν ≥ 0,
i.e., ρ ≥ 0& ρðrÞ þ PrðrÞ ≥ 0, in which the Uμ should
be a timelike vector. Meanwhile, the NEC satisfies
TμνKμKν ≥ 0, i.e., ρðrÞ þ PrðrÞ ≥ 0, with Kμ being a null
vector. From ρ − r and ðρþ PrÞ − r curves in Fig. 3, we
see that the WEC and NEC hold in case of small Q, while
both them are broken as Q increases. In other words, it
means that the wormhole could exist without introducing
the exotic matter when Q is small.
In case of the large Q, the total amount of exotic matter

could be evaluated by “volume integral quantifier” [45–47],
which is defined as

IV ¼ 2

Z
rc

r0

ðρþ PrÞr2 sin θdrdθdϕ ð26Þ

where rc is the radius beyond which ρþ Pr has a positive
value. One can check that the value of ρþ Pr is finite at
r ¼ r0. Thus, whenQ is large, the wormhole solution could

FIG. 2. The embedding diagram of wormhole geometry along
the equatorial plane θ ¼ π=2 at a fixed time. The left panel is the
configuration of zðrÞ solved from the (22). While the right one is
the corresponding 3-dimensional diagram emerged from zðrÞ by
sweeping through a 2π rotation around the z-axis.

FIG. 3. Plot the variation of ρ; Pr; Pt; ρþ Pr with respect to the
r at fixed r0;ϕ0; c; α in different Q.
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be constructed with small quantities of exotic matter, which
keeps up the flaring-out geometry near the throat.

IV. ASYMPTOTICALLY FLAT SOLUTIONS II: A
SPECIFIC SHAPE FUNCTION WITH χ ≠ 0

In case of χ ≠ 0, Eq. (10) is a nontrivial equation. It
implies the following equation

Φ0rðr − bÞ − b ¼ 0 ð27Þ

However, the (27) is invalid at the wormhole’s throat
r ¼ r0. Thus, for making (10) hold in all ranges of
½r0;∞Þ, we assume χðrÞ with the form that

χ ¼
�

0; ðr0 ≤ r < r1Þ
χþðrÞ; ðr ≥ r1Þ

ð28Þ

in which r1 should satisfy r1 > r0 and χþ is an undeter-
mined function. Combining (10) with (28) that

ΦðrÞ ¼
� Φ−ðrÞ; ðr0 ≤ r < r1Þ

ΦþðrÞ ¼
R
∞
r

bðr0Þ
r0ðr0−bðr0ÞÞ dr

0; ðr ≥ r1Þ:
ð29Þ

Here the boundary condition ΦþðrÞjr→∞ ¼ 0 is imposed to
guarantee that the spacetime is asymptotically flat at
infinity.
For the undetermined function χ, we expect it to be

continuous at least in first derivative at junction position
r ¼ r1. Meanwhile, the value of χ should not be divergent
at infinity. Thus, throughout this section, we consider
wormholes with the following χ function

χþ ¼ exp

�
−

Cχ

ðr − r1Þ2
�
; Cχ > 0: ð30Þ

In Fig. 4, we display the shape of χ function in radial
direction (28). In (29), without loss of generality, we choose
a specific value α ¼ 1

2
. And the Φþ could be integrated

analytically

ΦþðrÞ ¼ ln

�
r
r0

�
þ 1

c − 2
ln

	
1 −

ffiffiffi
r
r0

q 

2

	
1 − cþ

ffiffiffi
r
r0

q 

2ðc−1Þ ð31Þ

Similarly, we also expect Φ− to be continuous at least in
first derivative at r ¼ r1. At the same time, the value of Φ−
is finite in regions ½r0; r1�. Thus, a specific ansatz for Φ− is
chosen as

Φ−ðrÞ ¼ ϕ1 sin
r
r0

þ ϕ2: ð32Þ

Combine (31) with conditions Φ−ðr1Þ ¼ Φþðr1Þ and
Φ0

−ðr1Þ ¼ Φ0þðr1Þ, the undetermined coefficients ϕ1;ϕ2

are calculated as

ϕ1 ¼
 
r0
r1

−
r0

r1 þ
	
c − 1 − c

ffiffiffi
r1
r0

q 

r0

!
sec

r1
r0

ð33Þ

ϕ2 ¼ ln

�
r1
r0

�
þ 1

c − 2
ln

	
1 −

ffiffiffi
r1
r0

q 

2

	
1 − cþ

ffiffiffi
r1
r0

q 

2ðc−1Þ

−

 
r0
r1

−
r0

r1 þ
	
c − 1 − c

ffiffiffi
r1
r0

q 

r0

!
tan

r1
r0

ð34Þ

As shown by Fig. 5, the redshift function ΦðrÞ is continu-
ous at joining position.
Although the functions χ,Φ and their first derivatives are

continuous at junction position r ¼ r1, there is no guar-
antee that the spacetime geometry is smooth at the junction
point. Thus, it is necessary to evaluate the junction
condition [48] at hypersurface r ¼ r1. Specifically, we
introduce a static hypersurface, namely the so-called thin-
shell, at r1, which connects the interior solution (denoted by
subscript “-”) and the exterior solution (denoted by sub-
script “+”). The intrinsic coordinates of the thin-shell are

FIG. 4. The shape of function χðrÞ are plotted in different Cχ .
FIG. 5. Plot the function of ΦðrÞ under the ansatzes (29),
(31), (32).
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denoted as xa ¼ ðt; θ;ϕÞ. Therefore, the 4-velocity of the
thin-shell could be easily obtained as uμ ¼ ð1; 0; 0; 0Þ, and
the unit normal vector pointing into the hypersurface of the
thin-shell is nν ¼ ð0; 1ffiffiffiffiffiffi

1−b
r

p ; 0; 0Þ. Furthermore, the vielbein

eμa is defined as eμa ¼ ∂xμ
∂xa, which satisfies nμe

μ
a ¼ 0.

Accordingly, the projection tensor is γμν ¼ gμν − nμnν,

whose tangential components γab ¼ eμaeνbγμν correspond
to the induced metric of thin-shell, namely

ds2 ¼ γabdxadxb ¼ −eΦðr1Þdt2 þ r21dθ
2 þ r21 sin

2 θ: ð35Þ

The junction condition for this vector-tensor theory has
been derived by the work [44], which is

�
Kab −Kγab þ β

�
1

2
γabA2Kþ 1

2
γabnρ∇ρA2 − A2Kab − γabnαAα∇βAβ þ 2eμaeνbnαA

α∇fμAνg

− eμaeνbn
ρ∇ρAfμAνg − eμaeνbAμAνK

��
�
¼ −Sab ð36Þ

in which Kab ¼ eμaeνbKμν with the extrinsic curvature tensor Kμν defined by Kμν ¼ 1
2
ð∇μnν þ∇νnμÞ. Besides, the

convention fXg� denotes fXg� ¼ Xjγþab − Xjγ−ab . Thus, if the spacetime geometry is smooth at junction position, the energy-

momentum tensor will vanish. After expanding (36) explicitly, the following two independent equations are deduced

S0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðr1Þ=r1

p
16r21

ð3r21aðr1Þ2e−Φðr1ÞðΦ0þ −Φ0
−Þ − 3ðr1 − bðr1ÞÞðr1ðΦ0þχ2þ −Φ0

−χ
2
−Þ − 4ðχ2þ − χ2−ÞÞ ð37Þ

Si
j ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðr1Þ=r1

p
16r1

ð3r1aðr1Þ2e−Φðr1ÞðΦ0þ −Φ0
−Þ þ 8r1ðΦ0þ −Φ0

−Þ − 3ðr1 − bðr1ÞÞðχ2þΦ0þ − χ2−Φ0
−ÞÞ ð38Þ

From the expressions (37)–(38), it is easy to see that both
S0
0 and Si

j vanish when Φ and χ are continuous in first
derivatives at r ¼ r1. Thus, the spacetime geometry is
smooth at the junction position.
After substituting (28)–(32) into the (12)–(14), the

variation of ρ; Pr; Pt; ρþ Pr with respect to r in some
representative parameters could be shown in Fig. 6 and

Fig. 7 respectively. Thus, when χðrÞ is turned on, WEC and
NEC are broken in both smallQ and largeQ. Similar to the
case of χ ¼ 0, the total amount of exotic matter in Fig. 6
and Fig. 7 could be evaluated by integral (26), which are
finite due to the fact that the value of ρþ Pr is convergent
at r ¼ r0.

FIG. 6. Plot the variation of ρ; Pr; Pt; ρþ Pr with respect to r in
small Q, with different Cχ . Here, the r0; r1; α; c are chosen as
1; 2; 1

2
; 1
2
respectively.

FIG. 7. Plot the variation of ρ; Pr; Pt; ρþ Pr with respect to r in
large Q, with different Cχ . Here, the r0; r1; α; c are chosen as
1; 2; 1

2
; 1
2
respectively.
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V. CONCLUSIONS AND DISCUSSION

In this paper, we have constructed an asymptotically flat
Morris-Thorne wormhole in 4-dimensional spacetime,
which is supported by anisotropic fluid and a vector field
coupled to gravity in a nonminimal way with broken
Abelian gauge symmetry. Throughout our discussion, the
shape function bðrÞ is chosen as the specific function (15).
Meanwhile, the solution of ΦðrÞ is associated to the ansatz
of vector field AμðrÞ. First, we suppose the vector field has
the form Aμdxμ ¼ aðrÞdt, which implies that there exists
the electrostatic potential only. Then, in order to simplify the
calculations, the redshift function ΦðrÞ is considered as a
constant value, namely a wormhole solution without tidal
force. Under these conditions, as shown in Fig. 3, it is easy
to observe that the WEC and the NEC hold in all ranges of r
whenQ is small but are broken near the r0 as the value ofQ
increases. Besides, when the NEC and the WEC are
violated, we find that the total amount of exotic matter is
finite according to the volume integral quantifier (26).
Furthermore, if the vector potential in r-direction is

turned on, i.e., Aμdxμ ¼ aðrÞdtþ χðrÞdr, the redshift
function will be determined by the r-component of
extended Maxwell equations (10). Since this equation is
invalid at the wormhole’s throat r ¼ r0, in order to let (10)
hold in all ranges of ½r0;∞Þ, χðrÞ is assumed to possess the
expression as (28) to keep continuity in first derivative at
junction position r ¼ r1. Correspondingly,ΦðrÞ behaves as
the piecewise functions (29). In r ≥ r1, ΦðrÞ is determined
by solving Eq. (27). Whereas, Eq. (27) is trivial in r0 ≤
r ≤ r1 since χðrÞ vanishes in this region. Thus, in order to

keep ΦðrÞ finite in r0 ≤ r ≤ r1 and continuous at junction
position r1, the specific function (32) is chosen. Besides, by
evaluating the Israel junction condition, we prove that the
spacetime geometry is smooth at the junction position r1 if
ΦðrÞ and χðrÞ are continuous for their first derivatives.
Finally, in case of χ ≠ 0, as displayed in Figs. 6 and 7, both
the WEC and the NEC are broken whatever the value of Q.
For the future research, it is interesting to mention the

following extended topics. In this work, we have ignored
the effects of cosmological constant. Thus, it is worthwhile
to construct the static, asymptotically AdS Morris-Thorne
wormhole in the vector-tensor theory when Λ is involved.
Besides, as in the work [49], our work could be generalized
to study the Lorentzian wormholes in cosmic inflation
which takes consideration of the nonminimal coupling
between the vector field and the gravity with broken
Abelian gauge symmetry [37,38].
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