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We present fully general relativistic simulations of the quasicircular inspiral and merger of charged,
nonspinning, binary black holes with charge-to-mass ratio λ ≤ 0.3. We discuss the key features that enabled
long term and stable evolutions of these binaries. We also present a formalism for computing the angular
momentum carried away by electromagnetic waves, and the electromagnetic contribution to black-hole
horizon properties. We implement our formalism and present the results for the first time in numerical-
relativity simulations. In addition, we compare our full nonlinear solutions with existing approximate
models for the inspiral and ringdown phases. We show that Newtonian models based on the quadrupole
approximation have errors of 20%–100% in key gauge-invariant quantities. On the other hand, for the
systems considered, we find that estimates of the remnant black hole spin based on the motion of test
particles in Kerr-Newman spacetimes agree with our nonlinear calculations to within a few percent. Finally,
we discuss the prospects for detecting black hole charge by future gravitational-wave detectors using either
the inspiral-merger-ringdown signal or the ringdown signal alone.
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I. INTRODUCTION

In previous work [1,2], we initiated a systematic program
to study the interactions between charged black holes in full
nonlinear Einstein-Maxwell theory. These explorations are
relevant for gravitational-wave astronomy, exotic astro-
physics, and fundamental physics (such as modified gravity
and beyond-standard-model physics). We first review these
applications in Sec. I A. We summarize the main goals and
results of this work in Sec. I B, and outline the structure of
the manuscript and conventions adopted in Sec. I C.
Readers that are mainly interested in our new results can
skip Sec. I A.

A. Motivation for nonlinear simulations in
Einstein-Maxwell theory

Over the past few years there has been a growing interest
in modified theories of gravity to perform strong-field tests
of general relativity. The data collected by the Event
Horizon Telescope [3] allowed for new tests of gravity
around supermassive black holes, and the observation of
gravitational waves by the LIGO-Virgo collaboration [4]
enabled the first constraints on deviations from Einstein’s
theory in the highly dynamical strong-field regime (see,
e.g., [5–8]). In turn, this latter achievement was made

possible by advancements in the field of numerical rela-
tivity that has been able to produce the accurate gravita-
tional-wave models that are needed to detect these signals
and perform the associated parameter estimations.
Therefore, it should come to no surprise that the scarcity
of simulations of compact binary mergers in modified
theories of gravity [9] severely limits out our ability to use
gravitational-wave observations to place stronger con-
straints. The reason for this shortage is that many models
of modified gravity are “sick” (e.g., lack of well-posedness,
ghosts, etc.; see [10] for a discussion), thereby making
these computations particularly challenging or impossible.
Hence, with the exception of a few cases [11–13], progress
in this direction is usually made by means of order-reduced
approaches, and not solutions of the full theory (see, e.g.,
[14–18]). In contrast to modified gravity, Einstein-Maxwell
theory admits a well-posed initial-value problem, while
sharing other nontrivial properties with modified gravity
(e.g., emission of dipole radiation1). Moreover, some
modified gravity theories reduce effectively to Einstein-
Maxwell in specific limits (e.g., [19]). Therefore, the
inspiral and merger of charged black holes constitutes,
in a sense, the middle ground between traditional general
relativity and modified theories of gravity. Despite these
facts, the nonlinear dynamics of charged binary black holes
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is uncharted territory, with [20–24] being the main works
on the subject.
Studying charged black holes in Einstein-Maxwell

theory not only provides a way to capture some features
of specific modified theories in a controlled environment,
but also simulations of such systems have direct astro-
physical and fundamental physics applications. First,
while black holes are expected to be electrically neutral
[25–29], there is no definitive observational support for
this expectation. Therefore, this assumption must be
tested. Gravitational-wave observations offer a model-
independent way to test this assumption. Second,
“charge” is an umbrella term that applies to different
models in exotic astrophysics and beyond-standard-model
physics, including dark matter with hidden charge and
interacting with dark electromagnetism (e.g., [30–36] or
dark matter with fractional charge [37–46]), as well as
modified theories of gravity with additional vector fields
sourced by a “gravitational” charge [19]. Furthermore,
through a duality transformation, “charge” can also be
interpreted asmagnetic charge. Recently, black holes with
magnetic charge in astrophysics have received some
attention (e.g., [47–51]), with focus on primordial black
holes in [47,48]. Gravitational waves can be used to
directly test whether black holes have any kind of charge.
This was the goal of our previous paper on the subject [2],
where we found that charge-to-mass ratios of up to
λ ¼ 0.32 are compatible with GW150914 [52], assuming
that the role of black hole spins can be neglected. Upper
bounds on black hole charge can be translated to con-
straints on the properties of the dark matter particles in the
aforementioned models or on the parameters of modified
gravity theories [2].
Numerical-relativity simulations of charged black holes

can be used to produce gravitational-wave templates that
include charge (for example, by hybridizing analytical
waveforms with numerical ones, as done in [53–58]).
Since the detection of gravitational waves by the LIGO-
Virgo interferometers relies heavily on matched-filtering
techniques [59–61], extended gravitational-wave template
banks that encode additional physics are necessary for the
parameter estimation [55,62–65]. A phenomenological
model based on numerical relativity with charge can also
be used in Bayesian analyses to directly constrain this
parameter in LIGO-Virgo signals.
Finally, charge provides a way for a black hole to

reach extremality (along with the spin). Thus, nonlinear
studies of charged binary black holes offer new pathways
to investigate cosmic censorship in conditions where
it has never been probed before. For instance, it would
be of interest to tackle the question: “can black holes
be overcharged?”, going beyond previous perturbative
approaches [66,67].

B. Goals of this work

In this paper, we continue our explorations of the
nonlinear interaction of charged black holes by approach-
ing the problem of inspirals and mergers on two different
thrusts. On one side, we present necessary ingredients for
performing long-term and stable numerical relativity sim-
ulations of the quasicircular inspiral of charged binary
black holes. In particular, we discuss how Kreiss-Oliger
dissipation [68] helps (or impedes) these evolutions. We
also describe the formalism that we adopt for our evolutions
detailing some features that have not been included in
previous works (e.g., the computation of the angular
momentum carried away by electromagnetic waves with
the Newman-Penrose formalism, and the contribution of
electromagnetic fields to the quasilocal spin of a black
hole). Using the gravitational waveforms generated by our
simulations, we explore black hole charge detectability by
future ground- and space-based gravitational wave detec-
tors. The second thrust of this work consists of analyzing
existing approximate models for the inspiral of charged
black hole binaries and their remnant black holes, and
comparing them with our nonlinear solutions.
In [2], we presented the first simulations of the quasi-

circular inspiral and merger of charged black holes in full
general relativity with valid initial data. Here, we present
more details about these computations. We focus on
systems with mass ratio q ¼ 29=36, as inferred for
GW150914 [52,69], and restrict the charge-to-mass ratio
λ of the individual black holes to values jλj ≤ 0.3. The mass
ratio is close to unity, so we expect that the conclusions
presented in this work will hold for equal-mass binaries.
We consider three systems: (1) binary black holes with
same charge-to-mass ratio in magnitude and sign, (2) binary
black holes with charge-to-mass ratio equal in magnitude
but oppositely charged, and (3) binary black holes in which
only the primary is charged. In this first exploration, we do
not study cases where the black holes have different
(nonzero) charge-to-mass ratio λ.
For the comparison of our solutions with existing approx-

imations for the inspiral phase, we consider a model that is
based on Newtonian physics coupled with the quadrupole
formula to incorporate radiation reaction. We will refer to
this model with the letters “QA” (quadrupole approxima-
tion). Given its simplicity, this model has been routinely
used to study the merger of charged black holes (e.g.,
[36,44,47–49,70,71]). Prior work on head-on collisions of
charged black hole reported good agreement in some
quantities between these approximate calculations and full
nonlinear simulations [20,21]. Therefore, a goal of this work
is to determine the errors of the Newtonian approximation
when applied to the quasicircular inspiral of charged black
holes.A key result of our study is thatNewtonianmodels can
be successfully applied to obtain order-of-magnitude esti-
mates of observables or to build intuition, but they cannot be
used for precision studies of these mergers.2We are using geometrized units. See Sec. I C.
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A second focus of this paper is on the properties of the
post-merger black hole and its quasinormal modes. This is
especially relevant for LISA, which will detect the ring-
down signal arising from the merger of supermassive black
holes with high signal-to-noise ratio [72]. The quasinormal
modes can be used to test general relativity [73], as their
characteristic frequencies depend on the spin, mass, and
charge of the remnant black hole in a known way. Here, we
consider the method described in [74] to estimate the
remnant black hole spin using conservation arguments, and
we compare it with our nonlinear solutions. As we discuss
later, we find that the quasi-normal-mode properties do not
change much across the simulations considered here. This
is due to the value of the final spin and to the relatively
weak dependence of the quasinormal modes on the charge
for the values of λ we consider.

C. Structure of the paper and conventions

The structure of the remainder of the paper is the
following. In Sec. II, we describe the formalism that we
adopt to perform simulations of the quasicircular inspiral
and merger of charged black holes. In particular, we discuss
how to obtain stable quasicircular inspirals, and highlight
some new features of the approach. Next (Sec. III), we
outline the simplest (Newtonian) model for the quasicir-
cular inspiral of nonspinning, charged binary black holes.
Section IV describes what we can say about the remnant
black hole using results of relativistic calculations and
perturbation theory. In Sec. V, we follow the black holes
through their coalescence: first (Sec. VA) we study the
inspiral and compare the nonlinear solution with the
Newtonian model, then (Sec. V B) we discuss results from
the full simulations, and finally (Sec. V C) we report on the
properties of the remnant black hole. Conclusions and
future directions are collected in Sec. VI.
We adopt geometrized units with G ¼ c ¼ 1, with G

being Newton’s constant and c the speed of light in
vacuum. We also adopt Gaussian units for the electromag-
netic sector. Similarly, we denote the different simulations
adding a superscript and a subscript when we report
physical quantities. For example, eþþ, eþ− , and eþ0 indicate
the eccentricity measured in the evolutions where black
holes have charges with the same signs, with opposite
signs, and only one charged black hole, respectively.3 In
geometrized units, quantities have units of length. Here
we report all the results in units of the Arnowitt-Deser-
Misner (ADM) mass of the system M [75]. We use the
letters a, b, c, d for spacetime indices, and i, j, k for spatial

ones. For everything else, we follow the same conventions
as in [76].

II. METHODS AND FORMALISM

In this section, we describe the methods we adopt for
solving the full nonlinear Einstein-Maxwell equations
(Sec. II A). We discuss our approach to building quasicir-
cular initial data (Sec. II B) and how to achieve long-term,
stable evolutions (Sec. II C). We also describe the formal-
ism and implementation of two new features that have not
appeared in previous simulations: the contribution of the
electromagnetic fields to black-hole horizon properties
(Sec. II D), and the angular momentum carried away by
electromagnetic waves (Sec. II E).

A. Equations and numerical setup

In this paper, we study systems described by the source-
free Einstein-Maxwell equations [77] (electrovacuum4)

Rab −
1

2
gabR ¼ 8πTEM

ab ; ð1aÞ

∇aFab ¼ 0; ð1bÞ

∇a
⋆Fab ¼ 0; ð1cÞ

where Rab is the Ricci tensor associated with the metric
gab, R ¼ Ra

a, Fab ¼ 2A½a;b� is the Maxwell field-strength
tensor, with Aa the electromagnetic four-vector potential,
and �Fab is its Hodge dual, defined by

�Fab ¼ 1

2
ϵabcdFcd; ð2Þ

with ϵabcd being the Levi-Civita tensor. The electromag-
netic stress-energy tensor is given by

4πTEM
ab ¼ FacFbdgcd −

1

4
gabFcdFcd: ð3Þ

We solve the coupled Einstein-Maxwell equations in a
3þ 1 decomposition of the spacetime (for more details, see
Sec. II A in [1], or textbooks on the subject, e.g., [79–81])
and use the Einstein Toolkit [82–84] for the numerical
integration.
The initial data are generated by TwoChargedPunctures,

which solves the Hamiltonian constraint equation using a
Bowen-York approach [85,86]. We developed and tested
TwoChargedPunctures in [1], starting from the widely used
TwoPunctures code [87]. TwoChargedPunctures takes as3For figures reporting different charge-to-mass ratios, we use a

consistent style: red dashed lines with circles are for systems with
both black holes charged with the same sign, blue dotted lines
with squares are for oppositely charged ones, and green dash
dotted lines with triangles are for evolutions in which only one
black hole is charged.

4In all our discussion, we assume that the black holes are in
vacuum (see [78] for a discussion on the role of the environment).
We also ignore Schwinger pair-production and any other quan-
tum effects.
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input the locations, charges, bare masses, angular, and
linear momenta of each of the two black holes, and it can
build arbitrary configurations. We start our simulations at
a coordinate distance of 12.1M, with the two black holes
having fixed charge-to-mass ratio λ and mass-ratio 2936.
In this first study, we only explore systems with the two
black holes having the same λ (up to the sign), or with only
one charged black hole. In Sec. II B, we discuss how to
choose the initial data parameters to achieve quasicircular
inspirals.
The evolution of the spacetime is performed with

the Lean code [88], which implements the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formulation of
Einstein’s equations [89,90]. Lean evolves the conformal
factor χconf ¼ γ−1=6, with γ determinant of the 3-metric. We
adopt as spacetime gauges the 1þ log and the Γ-driver
conditions [91,92]. The electromagnetic fields are evolved
with the massless version of the ProcaEvolve [23] code.
The code evolves the electric field Ei, the scalar and vector
potentials ϕ and Ai, along with an auxiliary variable Z that
is used to control the Maxwell constraints. The precise
equations solved by ProcaEvolve are presented in the
Appendix of [23]. These codes are publicly available
as part of the Canuda suite [93,94] and have been
extensively tested and used throughout the years. We
use sixth-order accurate finite differences for the spatial
derivative, and we integrate in time with a fourth-order
Runge-Kutta method.
Apparent horizons are located using AHFinderDirect

[95,96], and their physical properties are measured with
QuasiLocalMeasuresEM, a version of QuasiLocalMeasures
[97] updated to implement the isolated horizon formalism
in full Einstein-Maxwell theory (see Sec. II C in [1]).
This extension is necessary when considering black holes
in the presence of electromagnetic fields, as we discuss in
Sec. II D.
We extract waves via the Newman-Penrose formalism as

implemented in NPScalars_Proca (see Sec. II E) and
recover the gravitational-wave strain with a time integration
using the fixed frequency integration method [98]. We
consider a finite extraction radius of 110.69M. Results are
approximately invariant if we consider different extraction
radii or if we extrapolate the waves to infinity with the
method described in [65].
We work with Cartesian grids with Berger-Oliger adap-

tive mesh refinement as provided by Carpet [99]. We use
two sets of nine nested refinement levels that are centered
on and track the centroid of the black hole apparent
horizons. The resolution of our simulations isM=65, where
M is the total ADM mass, with additional resolutions to
perform convergence study (which we reported in [2]).
The outer boundary is at 1033M and we performed
selected simulations to verify that the location does not
affect the evolution. Some more details on evolution and
grid parameters used in our simulations are reported in
Appendix B.

B. Controlling the eccentricity

In this work, we focus on quasicircular inspirals. When
considering charged black holes, the effect of the electro-
magnetic fields must be taken into account to achieve a
low-eccentricity coalescence. Here, we describe a simple
method to incorporate the effect of charge. This approach
successfully yields quasicircular inspirals for the values of λ
explored in this study.
First, it is useful to summarize how quasicircular

inspirals are obtained in the case without charge. The
simplest way is to start from Newtonian physics. Consider
two point particles with mass m1, m2, and assume that they
are in a circular Keplerian orbit. The orbital angular
velocity Ω of each particle is (restoring the gravitational
constant G)

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þm2Þ

d3

r
; ð4Þ

where mi is the mass of the i-th component, and d the
orbital separation. If we denote the mass-ratio q ¼ m1=m2,
the linear velocity of two particles becomes

v1 ¼
Ωd
1þ q

and v2 ¼ q
Ωd
1þ q

: ð5Þ

In numerical integrations, black holes are assumed to
behave like these point masses, so pi ¼ mivi is the initial
linear momentum assigned to the i-th black hole.
Evolutions initialized with such Newtonian values have
significant residual eccentricity [100], hence high-order
post-Newtonian (PN) expansions are used to compute more
accurately the linear momenta necessary for quasicircu-
larity. When going beyond the Newtonian approximation,
radial contribution to the velocities appear.
Now, let us endow the point particles with charges

q1 ¼ λ1m1, and q2 ¼ λ2m2 (with λ being the charge-
to-mass ratio). In Newtonian physics, both electromagnet-
ism and gravity are central forces, so, from the point of
view of the dynamics, this system is indistinguishable from
one with uncharged bodies but gravitational constant
G̃ ¼ ð1 − λ1λ2ÞG. For this reason, one can incorporate
the effect of charge by rescaling G to G̃. We can use this
fact to achieve low-eccentricity inspirals for charged black
holes. First, we compute the linear momenta needed for a
quasicircular coalescence of the black holes without
charges using the highest order post-Newtonian expansion
available (in our simulations we used 2.5PN). Then, we
rescale these momenta by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ1λ2

p
to introduce the effect

of electromagnetism. This simple method is effective at
keeping eccentricity under control for the values of charge-
to-mass ratio explored here, as we show next.
Following [100], we estimate the residual eccentricity by

fitting the time derivative of the coordinate separation of the
two black holes _d with a function of the form
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_dðtÞ ¼ A0 þ A1tþ B sin ðωtþ φÞ: ð6Þ

In Fig. 1, we show the coordinate separation d and its
derivative _d for the most extreme simulations that we are
considering here. The scale of the amplitude of the
oscillations in the bottom panel already provides an idea
of the (small) amount of residual eccentricity. The very
beginning of the time series is noisy due to the relaxation of
the initial data, so we exclude that part of the simulation.
We perform the fit with the Levenberg-Marquardt
algorithm [101,102] for nonlinear least-square fitting as
implemented in MINPACK. As in [100], we find that fits
are not perfect, so the eccentricities reported should be
considered as estimates. In general, we find that the first
orbit is the one with the most eccentricity. Fitting the
first three orbits we find eþþ ≈ 0.01, eþ− ≈ 0.02, and
eþ0 ≈ 0.01. The eccentricity is significantly reduced if we
consider the next three orbits after the first: eþþ ≈ 2 × 10−3,
eþ− ≈ 4 × 10−3, and eþ0 ≈ 1 × 10−3.
These values of eccentricity found are remarkably small

considering the simplicity of the method employed.
Simulations with higher charge-to-mass ratio, especially
in the case of opposite charges, may have a significant
residual eccentricity. There are at least three ways to
improve our method and further remove the eccentricity.
First, one can adapt iterative eccentricity-reduction

schemes, such as those described in [100,103,104] for
uncharged black holes, to systems with charge.
Alternatively, one can use post-Newtonian methods that
include directly electromagnetic fields to estimate the linear
momenta. The two methods are not mutually exclusive, and

for simulations with extreme charge both may be required
to produce quasicircular inspirals. Finally, one can
always start the evolution from a larger initial separation
and let gravitational and electromagnetic waves circularize
the orbit.

C. Achieving long-term stable evolutions

Performing long-term, stable evolutions of black holes in
vacuum in 3þ 1 dimensions used to be the greatest
challenge in numerical relativity. Through substantial
developments over the past two decades, solving the
Einstein equations in vacuum is considered a solved
problem, and there is considerable knowledge on the topic.
However, simulations of black holes with electromagnetic
fields are still in their infancy. It is not yet clear how much
of the technology developed for vacuum spacetimes carries
over to electrovacuum spacetimes. Being able to perform
long-term and stable evolutions of charged black holes is
therefore not granted. Indeed, the simulations presented in
this work are among the longest and most sophisticated to
date, and presented some challenges. We found that adding
artificial dissipation to all evolved variables in a specific
way is critical for successful simulations. We found that
standard recipes for artificial dissipation that work in the
case of vacuum binary black hole spacetimes lead to
blowups in the case of electrovacuum binary black holes.
Artificial dissipation stabilizes evolutions by

removing high-frequency unstable modes. This approach
has proven necessary to achieve long-term simulations in
many cases (see, e.g., [105–111]). The most common
flavor of artificial dissipation adopted in numerical rela-
tivity is known as Kreiss-Oliger dissipation [68]. This
technique consists of introducing artificial diffusion by
adding a term to the evolution equation of a variable U as
follows (schematically)

∂tU ¼ � � � þ ð−1Þðpþ3Þ=2 ϵ

2pþ1
Δxp∂pþ1

x U; ð7Þ

where � � � indicate the right-hand side of the evolution
equation of U, p is the order of the Kreiss-Oliger
dissipation, Δx is the grid spacing and the numerical factor
ϵΔxp=2pþ1 is the diffusivity, which represents the strength
of the dissipation. Note that although we only add a spatial
derivative in the x direction in Eq. (7), the actual operator
has also corresponding y and z derivatives. For simplicity
of the presentation we do not write these extra terms here.
In the infinite resolution limit, this new term vanishes and
the equations are the ones we started with. However, at
finite resolution, it is important to ensure that the modi-
fication does not affect the convergence order of the
solution. Thus, p is typically chosen to be greater than
the convergence order of the evolution operator. Moreover,
p has to be odd, so that this modification is an even-order
parabolic operator (since pþ 1 is even). In Appendix A,

FIG. 1. First few orbits for the simulations with charge-to-mass
ratio of λ ¼ 0.3. Top panel: (coordinate) separation d of the
centroid of the two black holes as a function of the (coordinate)
time. Bottom panel: time derivative of d, this quantity can be used
to estimate the residual eccentricity with Eq. (6). The initial spike
is due to the initial data relaxation, and is not included in our
analyses. Note that these quantities are not gauge-invariant.
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we present some details on conditions that must be satisfied
for numerical stability.
As in previous works, our simulations quickly crash (in

the first 100M) if we do not add artificial diffusion. Since
our evolutions are sixth-order accurate, we add a seventh-
order (p ¼ 7) dissipation to all evolved variables (i.e.,
including the spacetime and electromagnetic fields and the
gauge variables). The strength of the dissipation is deter-
mined by the coefficient ϵ (see Appendix A for details). We
explored three prescriptions for setting ϵ on different
refinement levels: (1) constant ϵ, (2) proportional to the
local Courant factor Δt=Δx, and (3) “continuous” ϵ
(described below). The rationale behind (1) is to have a
form that respects the local Courant stability condition
independently of Δx as long as the Courant factor is the
same everywhere. It also has increased effective dissipation
in regions with coarser resolution. Numerical stability
requirements often require that different refinement levels
be evolved with different Courant factors, so prescription
(2) amends (1) by modifying ϵ when the Courant factor is
changed to ensure that Courant stability conditions are met
(see Appendix A). While (1) and (2) are commonly used in
numerical relativity, (3) is introduced in this paper and
consists of setting ϵi ¼ ϵnðΔxi=ΔxnÞ−p, where i ¼
1; 2;…; n is the index indicating the refinement level
(larger i indicating finer level), with n the maximum
number of refinement levels, and Δxi the grid spacing of
refinement level i. The above prescription can also be
written as ϵi ¼ ϵ0=ð2i−nÞp, since refinement level grid
spacings differ by factors of 2, i.e., Δxi−1 ¼ 2Δxi. Thus,
the diffusivity entering Eq. (7) for each level becomes
ϵnðΔxi=ΔxnÞ−pΔxpi =2pþ1 ¼ ϵnΔx

p
n=2pþ1. In other words,

this new prescription guarantees that the effective diffu-
sivity is the same everywhere on the grid, ensuring that the
same parabolic diffusion operator is added to the set of
equations on each refinement level. Moreover, the artificial
diffusion again goes to 0 at order p, and thus does not affect
the expected order of convergence of the finite difference
scheme. We call this continuous, because prescriptions (1)
and (2) have jumps in the effective diffusivity across
refinement levels that introduce discontinuities in the
equations. Hence, the parabolic operator added to the
equations depends on the refinement level, which results
in effectively solving a different system of partial differ-
ential equations on different refinement levels. This differ-
ence vanishes in the limit of infinite resolution. To our
knowledge our approach (3) for setting the Kreiss-Oliger
diffusivity on adaptive-mesh-refinement grids has not been
discussed before. We found that this is a crucial ingredient
for long-term and stable numerical evolutions of charged
black holes.
To demonstrate the performance of each of the three

prescriptions for setting ϵ, we consider a high-resolution
simulation of a single charged, nonspinning black hole with
massM ¼ 1 and charge Q ¼ 0.5M. In Fig. 2, we show the

L2 norm of the violation of the Hamiltonian constraint
(excluding the domain interior to the apparent horizon) for
each dissipation prescription. More details about our
numerical setup are provided in Appendix B. The figure
is representative of how our binary charged black hole
simulations evolve, and demonstrates that there is unstable
growth in some variables.5 We verified that this instability
is numerical and not physical, since its onset depends on
the resolution of the simulation: the higher the resolution,
the earlier the instability takes place. This behavior was not
reported in previous studies without charge, suggesting that
the instability first arises in the electromagnetic sector, and
then feeds the gravitational one. Indeed, we observe the
numerical instability starts first in electromagnetic quan-
tities, such as the Gauss constraint. We also found that the
unstable growth of the constraint first occurs near the outer
boundary, suggesting that the approximate outgoing-wave
boundary conditions may be the trigger of the instability.
Finally, we noticed that a fourth-order accurate finite-
difference evolution (with fifth order dissipation) and
constant ϵ does not lead to the same numerical explosions
at the same resolution and within the simulation times we
considered. What is important to note regarding the goals of
this paper is that prescription (3) allows us to perform long
evolutions with constraints converging to zero when the
resolution is increased when adopting sixth-order accurate
finite differences. Studying the interplay between dissipa-
tion, convergence order of the numerical scheme, and
boundary conditions is left for future works.

FIG. 2. Evolution of the L2 norm of the Hamiltonian constraint
(outside the horizon) for the three different Kreiss-Oliger dis-
sipation prescriptions. The “continuous” dissipation prescription
introduced in this work is the only one that allows long-term and
stable simulations with seventh-order Kreiss-Oliger dissipation
and sixth-order accurate finite differences.

5The jumps in the constraints at the beginning of the
simulations are due to an initial pulse in the gauge variables
propagating outwards from the center of the simulation. Every
time this pulse crosses a refinement boundary, it is turned into
constraint-violating modes through refinement level interpola-
tions. This behavior in the constraints is well-known [112].
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For completeness, in Appendix C, we report two for-
mulations that we experimented with to further improve the
stability of the evolutions but did not result in additional
improvements.

D. Contribution of the electromagnetic
fields to the spin of a black hole

The quasi-isolated horizon formalism is widely used
in numerical relativity to determine quasilocal physical
properties (such as mass or angular momentum) of
black holes [113,114]. However, the majority of previous
simulations focused on the case with gravitational fields
only, and, hence, electromagnetic contributions to black
hole quasilocal properties have not been considered.
In [1], we presented the code QuasiLocalMeasuresEM,
an extended version of QuasiLocalMeasures that imple-
ments the formalism for the full Einstein-Maxwell theory
[115]. The main differences with respect to the purely
gravitational case are in the computation of the mass and
the angular momentum of a black hole. The full formalism
also provides a quasilocal way to compute the charge of a
black hole. Here, we focus on spin (for a complete
discussion, see Sec. II C in [1]).
While the expression for angular momentum at infinity

does not depend on electromagnetic fields [116], the
quasilocal formula does [115]. So, to compute the angular
momentum J of a charged black hole, one must calculate
two terms: JGR and JEM (see Sec. II C in [1] for more
details). The computation of JGR is implemented in the
QuasiLocalMeasures thorn of the Einstein Toolkit.
QuasiLocalMeasuresEM computes JEM as well. We find
that this contribution can be a significant fraction on the
total spin. In Fig. 3, we show the ratio between JEM and
the total angular momentum of the remnant black
hole forming in our binary simulations JfinalEM =Jfinal for
the various simulations in our set. The maximum value
in our simulations is with λþþ ¼ 0.3, where we find that
JfinalEM =Jfinal ≈ 3.8%. Figure 3 shows that this ratio depends

quadratically on the charge-to-mass ratio of the final black
hole. A fit confirms quantitatively that this is the case.
TwoChargedPunctures always generates (binary) black

hole initial data with JEM ¼ 0, because of the choice of the
initial electromagnetic fields [1]. Soon after the evolution
starts, the initial data relax to a nonzero JEM on a few light-
crossing times while keeping the total angular momentum
constant. In Fig. 4, we show how the two contributions to
the spin behave for the case of a highly charged, rapidly
spinning black hole withQ ¼ 0.6M and J ¼ 0.6M2. In this
case, after the initial data relax JfinalEM =Jfinal is approximately
11%. Monitoring this quantity also provides a way to
quantify when the initial data has relaxed.

E. Wave extraction

We adopt the Newman-Penrose formalism [117] with
the same conventions as in [23] to extract gravitational
and electromagnetic waves from our simulations. In this
subsection, we review the formalism with focus on the
electromagnetic sector. The Newman-Penrose formalism of
the gravitational sector is a standard topic in the literature
(e.g., [81,118,119]). Details on the numerical implementa-
tion of the calculation of the various quantities presented
below can be found in [23,120].
We consider a null tetrad of complex vectors ka, la, ma

and m�a with null mutual inner products except for
−kala ¼ 1 ¼ mam�

a. We also define the Newman-
Penrose scalars constructed with the Faraday tensor [121]

Φ0 ¼ Fablamb; ð8aÞ

Φ1 ¼
1

2
Fabðlakb þm�ambÞ; ð8bÞ

Φ2 ¼ Fabm�akb: ð8cÞ

Appendix D connects Φ0, Φ1 and Φ2 with the electric and
magnetic fields in flat spacetime and provides physical

FIG. 3. Contribution of the electromagnetic fields to the spin of
the final black hole. The relative importance of the spin due to
electromagnetic fields JEM scales as the charge-to-mass ratio
squared. For details of the formalism, see Sec. II C in [1].

FIG. 4. Various contributions to the angular momentum of a
rapidly spinning and highly charged black hole with J ¼ 0.6M2

and Q ¼ 0.6M. As a result of the choice of the initial electro-
magnetic fields, TwoChargedPunctures [1] generates initial data
with JEM ¼ 0. During the evolution, the initial data relax to a
nonzero JEM while J remains conserved.
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arguments to build intuition on what the different scalars
represent.
In asymptotically flat spacetimes, the Newman-Penrose

scalars have a known fall-off behavior at large spatial
distances (the so-called “peeling theorem” [122])

Φ0 ∼
1

r3
; Φ1 ∼

1

r2
; Φ2 ∼

1

r
; ð9Þ

where the ∼ indicates the asymptotic behavior as r → ∞.
We will use these properties to find which terms are
important for computations at infinity and which are not.
By use of Eqs. (8), we can express the electromagnetic

field tensor as

Fab ¼ 2½Φ1ðk½alb� þm½am�
b�Þ þΦ2l½amb� þΦ0m�

½akb��
þ complex conjugate; ð10Þ

where “complex conjugate” refers to the term in square
brackets, and square brackets next to indices imply anti-
symmetrization. Considering the electromagnetic stress-
energy tensor

4πTEM
ab ¼ FacFbdgcd −

1

4
gabFcdFcd; ð11Þ

we can express this in terms of the Newman-Penrose
scalars [121]

4πTEM
ab ¼ ½Φ0Φ�

0kakb þ 2Φ1Φ�
1ðlðakbÞ þmðam�

bÞÞ
þΦ2Φ�

2lalb − 4Φ�
0Φ1kðambÞ

− 4Φ�
1Φ2lðambÞ þ 2Φ2Φ�

0mamb�
þ complex conjugate; ð12Þ

where the complex conjugate is of the term in square
brackets.
Assuming asymptotically spherical coordinates ðr; θ;φÞ

centered on the Cartesian grid and oriented along the z
direction and t along the normal to the hypersurfaces, we
can choose as null tetrad

ka ¼ 1ffiffiffi
2

p ðeat̂ − ear̂ Þ; ð13aÞ

la ¼ 1ffiffiffi
2

p ðeat̂ þ ear̂ Þ; ð13bÞ

ma ¼ 1ffiffiffi
2

p ðea
θ̂
þ ieaφ̂Þ; ð13cÞ

m�a ¼ 1ffiffiffi
2

p ðea
θ̂
− ieaφ̂Þ; ð13dÞ

with et̂, er̂, eθ̂, eϕ̂ orthonormal noncoordinate basis. Note
that in the coordinate basis, it holds that ma ∼ r.
The energy and angular momentum fluxes per solid

angle carried away by outgoing electromagnetic waves at
infinity are given by

d2E
dtdΩ

¼ lim
r→þ∞

r2Tr
t; ð14aÞ

d2Lz

dtdΩ
¼ lim

r→þ∞
r2Tr

φ: ð14bÞ

Here we focus on the z component of the angular
momentum. These quantities can be expressed in terms
of the Newman-Penrose scalars by use of Eqs. (9) and (12).
The only nonzero contribution to the energy flux arises
from the term jΦ2j2ltlr=2π. Hence,

d2E
dtdΩ

¼ lim
r→þ∞

r2Tr
t ¼ lim

r→þ∞

r2

2π
jΦ2j2: ð15Þ

Considering the fall-off behavior of the Newman-Penrose
scalars in Eqs. (9), the angular momentum flux becomes

lim
r→þ∞

r2Tr
φ ¼ lim

r→þ∞
−
r2

2π
ðΦ�

1Φ2lrmφþΦ1Φ�
2lrm

�
φÞ; ð16Þ

which can be rewritten as

lim
r→þ∞

r2Tr
φ ¼ lim

r→þ∞
−

r2

4π
ðΦ�

1Φ2ir sin θ −Φ1Φ�
2ir sin θÞ

¼ lim
r→þ∞

−
ir3 sin θ

4π
ðΦ�

1Φ2 −Φ1Φ�
2Þ

¼ lim
r→þ∞

r3 sin θℑ½Φ�
1Φ2�

2π
;

where ℑ½z� is the imaginary part of the complex number z.
Therefore, the flux of angular momentum that crosses a
sphere at large radius r is

d2Lz

dtdΩ
¼ 1

2π
r3 sin θℑ½Φ1Φ�

2�: ð17Þ

Here we reach the same conclusion as in [123]: the flux of
angular momentum does not depend only on the radiative
degrees of freedom (encoded in Φ2), but there is also a
Coulombic contribution (encoded in Φ1) [124]. This is a
striking difference compared to gravitational waves, for
which the information contained in the radiative degrees of
freedom, i.e., Ψ4, is sufficient for computing the flux of
angular momentum [125].
We perform a decomposition in spin-weighted spherical

harmonics Ys
lm with spin s ¼ −2;−1, 0
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Φ1ðr; θ;φÞ ¼
X
l≥0

X
−l≤m≤l

ϕlm
1 Y0

lm; ð18aÞ

Φ2ðr; θ;φÞ ¼
X
l≥1

X
−l≤m≤l

ϕlm
2 Y−1

lm; ð18bÞ

Ψ4ðr; θ;φÞ ¼
X
l≥2

X
−l≤m≤l

ψlm
4 Y−2

lm: ð18cÞ

Using the orthogonality relations between spin-weighted
spherical harmonics with the same spin, we can write [80]

dEEM

dt
¼ lim

r→þ∞

r2

4π

X
l;m

jϕlm
2 j2; ð19aÞ

dEGW

dt
¼ lim

r→þ∞

r2

16π

X
l;m

����
Z

t

−∞
dt0ψlm

4

����
2

; ð19bÞ

dLGW

dt
¼ lim

r→þ∞

r2

16π

X
l;m

mℑ

��Z
t

−∞
dt0ψlm

4

�

×

�Z
t

−∞
dt0

Z
t0

−∞
dt00ψl;m�

4

��
: ð19cÞ

The sums on m go from −l to l. In practice, we truncate the
expansion to l ¼ 8 and we use a finite extraction radius.
There is no simple relation between the angular momentum
lost by electromagnetic waves and the multipolar compo-
nents ϕlm

2 and ϕlm
1 when decomposed with the respective

spin-weight, so we implemented directly Eq. (17). We
tested this new diagnostic for the flux of angular momen-
tum against the analytical Michel solution [126,127] (see
Appendix E).

III. QUADRUPOLE APPROXIMATION MODEL

The simplest waveform model for charged binary black
holes is obtained from the Keplerian motion of charged
massive particles in Newtonian physics with the inclusion
of radiation reaction. We indicate this model with the
initials QA (quadrupole approximation). We will also refer
to it as the “Newtonian model”.
Let us consider two point particles with masses m1, m2

and charges q1, q2 on a circular orbit at separation d. The
total energy (kineticþ gravitationalþ electrostatic) of the
system E is

E ¼ −
m1m2

2d
−
q1q2
2d

¼ −ð1 − λ1λ2Þ
m1m2

2d
; ð20Þ

where λi ¼ qi=mi is the charge-to-mass ratio of the i-th
particle.
The system loses energy by emission of gravitational

and electromagnetic waves. In this work, wewill restrict to
circular orbits and only consider dipole and quadrupole
electromagnetic waves, and quadrupole gravitational
waves [36,47]

dEdip
EM

dt
¼ 2

3
ðλ1 − λ2Þ2ð1 − λ1λ2Þ2

m2
1m

2
2

d4
; ð21aÞ

dEquad
GW

dt
¼ 32

5
ð1 − λ1λ2Þ3

m2
1m

2
2M

d5
; ð21bÞ

dEquad
EM

dt
¼

�
m2λ1
2M

þm1λ2
2M

�
2 dEquad

GW

dt
: ð21cÞ

This can be extended to eccentric orbits [47]. The
angular momentum carried away by gravitational and
electromagnetic waves in the dipole and quadrupolar
channels is given by [47]

dJdipEM

dt
¼ dEdip

EM

dt

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − λ1λ2Þ

M
d3

r
; ð22aÞ

dJquadGW

dt
¼ dEquad

GW

dt

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − λ1λ2Þ

M
d3

r
: ð22bÞ

Note that the denominator is the orbital angular velocity
of the binary.
We can derive the equation of motion by taking the

derivative of Eq. (20) and applying the chain rule

dE
dt

¼ ð1 − λ1λ2Þ
m1m2

2d2
dd
dt

: ð23Þ

Therefore,

dd
dt

¼ 2d2

ð1 − λ1λ2Þm1m2

dE
dt

: ð24Þ

To respect energy conservation, dE=dt is given by the total
energy loss via electromagnetic and gravitational radiation
provided by Eqs. (21a), (21b), (21c). The resulting equation
of motion (24) cannot be solved analytically in closed form
for a nonzero charge. Here, we solve it numerically with the
LSODA solver [128] of ODEPACK [129] through the
SciPy interface [130]. The time integration is performed
with a time step that is proportional to the orbital separa-
tion. We continue the integration up to d ¼ 5M, which is an
average radius of the Innermost Stable Circular Orbit
(ISCO) for neutral particles around Kerr-Newman black
holes (more on this in Sec. IVA).
The solution of Eq. (24) provides the time evolution of

the orbital separation. Then, using Eqs. (21), (22), we can
compute the energy and angular momentum lost by
gravitational and electromagnetic waves. We can also
compute the gravitational-wave strain in the quadrupole
approximation [70,131] measured at distance r from the
binary

rhþ ¼ 4ð1 − λ1λ2Þ53
m1m2

M
1
3

ðπfGWÞ23 cosϕGW; ð25aÞ
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rh× ¼ 4ð1 − λ1λ2Þ53
m1m2

M
1
3

ðπfGWÞ23 sinϕGW: ð25bÞ

The frequency of the gravitational waves fGW is twice
the orbital frequency,

fGWðdÞ ¼
1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − λ1λ2ÞM

d3

r
: ð26Þ

Defining ωGWðdÞ ¼ 2πfGWðdÞ, the phase of the gravita-
tional waves ϕGW is

ϕGW ¼ ϕ0 þ
Z

d

d0

ωGWðRÞ
_dðRÞ dR; ð27Þ

where ϕ0 is an arbitrary initial phase and _dðRÞ is the time
derivative of d evaluated at orbital separation R, which can
be computed from Eq. (24).
Finally, we note that the computational requirements of

the QA model are negligible compared to numerical-
relativity simulations [as Eq. (24) is a single ordinary
differential equation]. In certain limits, the equations can be
even solved analytically [36].

IV. THE REMNANT BLACK HOLE

The properties of the remnant black hole that forms
following a binary black hole merger are key to testing
general relativity [73,132,133]. Perturbation theory applies
to the post-merger black hole, and it is well established that
perturbed black holes settle by undergoing characteristic
damped oscillations. This is known as quasi-normal-mode
ringing. In general relativity, the complex frequency of
these oscillations is completely determined by the black
hole mass, spin, and charge.
In this section, we first present the details of an existing

method to estimate the spin of the remnant black hole
forming following mergers of charged black holes. Next,
we discuss quasinormal modes. The two discussions are
closely related as the quasinormal modes depend on the
properties of the black hole.6

For the values of charge-to-mass ratios λ considered in
this work, the quasinormal modes are primarily determined
by the spin of the final black hole, because λ is not large
enough to matter. However, the final spin depends on the
charge of the binary components. Even when the total
charge is zero, e.g., the two black holes have equal and
opposite charges, the final spin is expected to be different
from the uncharged case, allowing, in principle, to dis-
tinguish the two scenarios.

A. Remnant black hole spin model

A simple way to estimate the spin of the remnant black
hole forming following the merger of two black holes on a
quasicircular orbit is to invoke conservation arguments (this
method is sometimes known with the acronym BKL [137],
from the names of the authors). The approach aims to be
10% accurate [137], and while it was first applied to Kerr-
Newman black holes in [74], the performance of the
approximation has not been tested in the case of charged
black hole inspirals. Therefore, it is unknown if the
accuracy goal is met for more generic cases. Here we
use our quasicircular inspiral calculations to gauge the
accuracy of the BKL approach.
The basic assumption of the method is that during an

inspiral the black-hole orbital separation shrinks due
emission of gravitational waves until the ISCO is reached,
at which point the two black holes plunge. During the
plunge, little angular momentum is lost, so one can estimate
the spin of the remnant black hole by studying the ISCO.
Consider the merger of two nonspinning black holes

with mass m1, m2 and charge q1, q2. The total mass and
charge of the system are

M ¼ m1 þm2; Q ¼ q1 þ q2: ð28Þ

Given that the energy lost via gravitational waves is of order
of a few percent of M (smaller than the target accuracy of
10%), the BKL method assumes that the total mass is
conserved. Therefore, the final black hole has mass M.
Attempts to include energy loss in the uncharged case were
made [138], but we will not consider this here. Charge is
exactly conserved, so the final black hole must have charge
Q. To determine the remnant black hole spin parameter a,
one invokes angular momentum conservation. The BKL
model postulates that the final angular momentum Ma is
exactly the same as the orbital angular momentum at the
onset of the plunge. This quantity is then estimated by
considering themotion in the spacetime of the remnant black
hole of a test particle with mass μ and charge q given by

μ ¼ m1m2

M
; q ¼ q1q2

Q
; ð29Þ

where μ and q are the reduced mass and charge of the binary
system (namely, the mass and charge of the equivalent
effective one-body problem).
Let LM;a;Q be the ISCO angular momentum of a test

particle with mass μ and charge q in a Kerr-Newman
spacetime with mass M, spin a, and charge Q, then the
BKL approach sets

Ma ¼ LM;a;QðrISCOÞ: ð30Þ

If l ¼ LM;a;QðrISCOÞ=μ is the test particle specific angular
momentum, then we have

6Another way in which the two discussions are linked is
that the study of geodesic motion can be used to estimate
the quasi-normal-mode frequencies from the light-ring
properties [134–136].
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a ¼ νlM;a;QðrISCOÞ; ð31Þ

where ν ¼ μ=M ¼ ðm1m2Þ=M2 is the symmetric mass
ratio. Equation (31) determines the spin a of the final
black hole. It is straightforward to extend the method to
consider spinning binaries by adding the contribution
of the individual spins to the total angular momentum in
Eq. (30), but we will not do this here, because our
numerical relativity simulations of charged binaries do
not involve spin.
To solve Eq. (31), we need to compute the specific

angular momentum of the test particle with charge q in a
circular orbit at radius rISCO. We do this in the standard way
by defining an effective radial potential VeffðrÞ.
In Boyer-Lindquist coordinates ðt; r; θ;ϕÞ, the line

element ds2 of a Kerr-Newman black hole with mass M,
spin a, and charge Q is given by [139,140]

ds2 ¼ −
Δ − a2sin2θ

ρ2
dt2 þ ρ2

Δ
dr2 þ ρ2dθ2

− 2asin2θ
ðr2 þ a2 − ΔÞ

ρ2
dtdϕ

þ ðr2 þ a2Þ2 − Δa2sin2θ
ρ2

sin2θdϕ2; ð32Þ

with

ρ2 ¼ r2 þ a2 cos2 θ; ð33aÞ

Δ ¼ r2 − 2Mrþ a2 þQ2: ð33bÞ

The electromagnetic vector potential is

A ¼ −
Qr
ρ2

ðdt − asin2θdϕÞ: ð34Þ

For Kerr-Newman black holes, Veff is given by [74,141]

Veff ¼
gttl̃

2 þ 2gtϕl̃ ε̃þgϕϕε̃2 − Δ
grrΔ

; ð35Þ

with

l̃ ¼ lþ qAϕ; ð36aÞ

ε̃ ¼ ε − qAt; ð36bÞ

where ε and l are the specific energy and specific angular
momentum, respectively. The properties of the ISCO are
found solving the following equations simultaneously:

VeffðrISCOÞ ¼ 0; ð37aÞ
dVeff

dr
ðrISCOÞ ¼ 0; ð37bÞ

d2Veff

dr2
ðrISCOÞ ¼ 0; ð37cÞ

for rISCO, εðrISCOÞ and lðrISCOÞ.
For the estimate of the spin, we are particularly interested

in lðrISCOÞ. Once that is known, we use a root-finding
method to solve numerically Eq. (30) and find the spin of
the final black hole.

B. Quasinormal modes

Following merger, the remnant black hole settles by
undergoing quasi-normal-mode ringing, i.e., damped oscil-
lations with specific frequencies ω and decay times τ
[142].7 During the ringdown phase, the Newman-Penrose
scalar Ψ4 looks like

Ψ4ðt; rÞ ∼
X
lmn

AlmðrÞe−t=τlmn sinðωlmntÞ; ð38Þ

with l, m being the multipolar mode numbers and n the
overtone number; A, τ, and ω are the characteristic
amplitude, the decay time, and the frequencies of the
quasinormal modes. These values depend on the mass,
spin, and charge of the black hole in a known way [73,133].
In this work, we are interested in exploring the charge
information contained in the ringdown waveforms. In
particular, we test whether it is possible to tell whether a
merging binary had charge by looking at the post-merger
signal alone.
For Schwarzschild and Kerr black holes, the values of

ωlmn and τlmn are tabulated [143,144] or available in
public codes, like the one we use here—QNM [145]. For
generic Kerr-Newman solutions, while the problem has
been solved [146], such tables are not publicly available.
However, since the simulations in our set have relatively
small charge-to-mass ratio, we can work in the small charge
limit and we can use the equations provided in [44] for the
l ¼ 2, m ¼ 2, n ¼ 0 quasinormal mode (which typically
dominates [147,148]). As shown in [44], for a Kerr-
Newman black hole with charge-to-mass ratio λ and
dimensionless spin χ, the first correction to ω220 and
τ220 with respect to the uncharged values ωλ¼0

220 and τλ¼0
220 is:

δω220

ωλ¼0
220

¼ λ2
�
−0.2812 − 0.0243χ þ 0.3506

ð1 − χÞ0.505
�
; ð39aÞ

δτ220
τλ¼0
220

¼ −λ2
�
0.1075þ 0.08923χ þ 0.02314χ2

þ 0.09443χ3 −
0.07585

ð1 − χÞ1.2716
�
; ð39bÞ

7Here we are considering relatively small charge, so we will
only be focusing on the gravitational quasinormal modes.
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with δω220 ¼ ω220 − ωλ¼0
220 and δτ220 ¼ τ220 − τλ¼0

220 . In this
work, we use QNM [145] to compute ωλ¼0

220 and τλ¼0
220 and

Eq. (39) to compute the quasinormal modes for our charged
remnants.
We can plug a representative remnant black hole spin

value χ¼0.67 in Eq. (39) to gain some insight on the effect
of charge, which yields δω220=ωλ¼0

220 ≈λ2=3, and δτ220=τλ¼0
220≈

λ2=10. For the values of λ treated in our simulations, if we
assumed that all black holes had the same final mass and
spin, then the deviations from the Kerr quasinormal modes
are at most at the percent level. The deviations are maxi-
mized for larger λ, so one would expect that the simulation
with λþþ is the easiest to constrain. However, if onewanted to
tackle the question “Can we tell from the ringdown if the
binary was charged?” the problem is more complicated and
one needs to consider the interplay between mass, spin, and
charge. We discuss this in Sec. V C 2.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we describe the results from our black
hole binary simulations through the inspiral, merger and
ringdown phases. We start by analyzing the inspiral
(Sec. VA). We compare the nonlinear solutions with the
QA model, finding that the Newtonian approach always
overestimates observable quantities by 20–100%. Next,
we present our numerical-relativity simulations up to
merger (Sec. V B), discussing properties of the emission
(Sec. V B 1) and detectability of charge by future
gravitational wave observatories (Sec. V B 2). Finally,
we explore the ringdown phase (Sec. V C), testing the
BKL approach (Sec. V C 1) and discussing quasinormal
modes (Sec. V C 2).

A. Inspiral

Here, we focus on the inspiral part of our calculations
and we assess the performance of the Newtonian model
within the quadrupole approximation (QA). Since high-
order PN and/or effective-one-body waveforms including
electromagnetic fields are not yet available, this model is
the most widely used to study inspirals of charged black
holes (e.g., [36,44,47–49,70,71]).
To compare numerical-relativity simulations with the

Newtonian model, we consider a set of quantities of
interest. To keep our results gauge-independent, we
analyze these quantities between reference gravitational-
wave frequencies f0, f1, and f2, which we choose as
follows: Mf0 ¼ 9.61 × 10−3, Mf1 ¼ 1.76 × 10−2, and
Mf3 ¼ 3.84 × 10−2, where M is the detector-frame
ADM mass. The frequency Mf0 corresponds to approx-
imately 28 Hz for a binary with source-frame ADM mass
65 M⊙ (detector-frame mass of approximately 70.6 M⊙).
These three frequencies are motivated by the LIGO
sensitivity band with f0 corresponding to the onset of
the latest stage of the inspiral, f1 to the intermediate phase

prior to plunge, and f2 to the plunge. Previous studies used
the Newtonian model for LIGO-Virgo mergers, so our
analysis here gauges how this approximate method per-
forms and allows us to estimate the level of its accuracy.
Since our numerical-relativity simulations scale with the
total mass of the systemM, we can target both stellar-mass
and supermassive black hole binaries. In Table I we show
what frequencies correspond to our reference frequencies
f0, f1, f2 for different choices of M. The table shows that
this work is relevant to LIGO-Virgo as well as LISA
sources [72]. In Sec. V B 2, we discuss charge detectability
by LISA.
We designate by tf the coordinate time at which the

gravitational-wave frequency is f, and using our nonlinear
simulations we compute the error of the QAmodel in gauge
invariant quantities within the time intervals ½tf0 ; tf1 � and
½tf0 ; tf2 �. The quantities we consider are: gravitational-
wave phase, energy and angular momentum lost through
emission, number of gravitational-wave cycles NGW, and
the signal-to-noise ratio (SNR) between fmin and fmax
(which are of particular interest to estimate charge detect-
ability [44]). The latter two quantities are computed as (see
e.g., [131,149])

NGW ¼
Z

fmax

fmin

fGW
_fGW

dfGW; ð40aÞ

SNR2 ¼ 4

Z
fmax

fmin

jh̃ðfÞj2
SnðfÞ

df; ð40bÞ

with h̃ Fourier transform of the strain and SnðfÞ the
power spectral noise density of the detector. In the rest
of the discussion, we focus on advanced LIGO at design
sensitivity.
Before discussing the quantitative differences between

the numerical relativity (NR) and QA models, we first
provide a qualitative description. Figure 5 shows the plus
polarization of the l ¼ 2, m ¼ 2 mode obtained with NR
and the Newtonian model for a representative charge black
hole binary with λþ− ¼ 0.1. The two waveforms shown in

TABLE I. Reference frequencies Mf0 ¼ 9.61 × 10−3,
Mf1 ¼ 1.76 × 10−2, andMf3 ¼ 3.84 × 10−2 for different values
of the detector-frame mass M. This study targets both LIGO-
Virgo and LISA sources. The choice ofM ¼ 70.6 M⊙ is inspired
by GW150914 [69]. The evolution from f0 to f1 is still not in the
most relativistic part of the inspiral. On the other hand, f2 is
reached in the latest stages of the merger, following which the
black holes plunge.

Frequency M¼30M⊙ M¼70.6M⊙ M¼ 104 M⊙ M¼ 107 M⊙

f0 65 Hz 28 Hz 0.195 Hz 0.195 mHz
f1 120 Hz 51 Hz 0.357 Hz 0.357 mHz
f2 260 Hz 111 Hz 0.780 Hz 0.780 mHz
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the figure are aligned at tf0 , when they both have the same
gravitational-wave frequency f0. As the plot demonstrates,
the QA model provides a decent approximation to the NR
signal up to t − tf0 ≈ 400 M. Shortly after that time, the
black holes merge in the NR simulation. Merger is never
captured in the QA model, and the Newtonian simulation
is stopped when the separation is of order of the ISCO (as
in [70]). Also, there is substantial dephasing before the
frequency-alignment time. A major difference between
the two models is that the relativistic simulation predicts a
faster merger, because it includes all nonlinear terms. As
we will discuss later, this is the fundamental reason why
the QA model overestimates all the interesting physical
quantities.
We further emphasize this point in Fig. 6, where we

report the frequency of the gravitational waves in the two
models as a function of time. It is clear that the frequency

evolves faster in the nonlinear calculation. As a result, the
QA computations spend more time inspiraling, so this
model overestimates all relevant quantities, as it over-
estimates the time from tf0 to tf1 and tf2 . This is exactly
what happens at the quantitative level, too. Table II reports
the relative error of the Newtonian calculations with respect
to the NR simulations. For each quantity ϒ, the error is
computed as

relative error ¼ ϒQA −ϒNR

ϒNR : ð41Þ

No absolute value is taken: a positive error means that the
Newtonian approximation overestimates ϒ. The ranges of
error reported are across all NR simulations we performed
for this work. As the values in the table demonstrate, the
listed quantities are always overestimated by order 20%
or more. However, we note that the QA model always
captures the correct order of magnitude in the amplitude up
until a couple of cycles prior to peak gravitational-wave
amplitude in the nonlinear calculations. Hence, for the
values of λ considered here, the model can be used for
rough estimates.8

B. Up to merger

Our simulations capture all nonlinear effects that take
place during the late inspiral and merger. So, we can study
interesting quantities that are not accessible with approxi-
mate methods. In Fig. 7, we show the coordinate distance of
the two black hole centroids as a function of the coordinate
time for four representative NR simulations. This figure
complements the top panel of Fig. 1. It can be seen that our
Newtonian expectations are met: the system that merges
faster is the one with opposite charge, due to the additional
electrostatic attraction and loss of energy due to dipole
electromagnetic emission. Next, we have the one with only
one charged black hole, due to additional loss of energy in
the electromagnetic emission. Finally, the system with
black holes with the same charge is the last to merge, as
it has to fight against additional electrostatic repulsion.
An important first finding is that for a fixed binary mass

corresponding to GW150914, the SNR and the number of
in-band gravitational-wave cycles depend very weakly on
the charge: ≲3%. This is in spite of the different evolutions
depicted in Fig. 7. This result will likely change if we
consider low-mass binaries, which have a much longer
inspiral that can be significantly affected by the presence of
charge earlier in the inspiral.

FIG. 5. Plus polarization of the gravitational-wave strain
produced by oppositely charged binary black holes with λþ− ¼
0.1 as extracted from the Newtonian (QA, blue, dash-dotted line)
and full numerical-relativity simulation (NR, orange, solid line).
The two waveforms are aligned a tf0 , which is when the
gravitational wave frequency is f0 ¼ 9.61 × 10−3 M−1. The
main difference is that the fully relativistic simulations predict
a faster merger, as they include all nonlinear terms.

FIG. 6. Gravitational-wave frequency evolution for the New-
tonian model and for the fully general-relativistic simulation. The
two simulations are aligned at tf0 , when the gravitational-wave
frequency is f0. Table I reports the values of f0, f1 and f2.

8In [150,151] it was shown that when adopting the quadrupole
formula to estimate gravitational waves, but with the fluid
distribution computed based on general relativistic simulations,
the errors are of order 20% in the amplitude. Here, we show the
performance of the quadrupole approximation when not coupled
to trajectories from numerical relativity simulations is signifi-
cantly worse.
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1. Properties of the emission

In this subsection, we explore some properties of the
electromagnetic and gravitational emission. We find that
in our simulations several quantities of interest scale with
λ2. This scaling is expected to be exact in the limit where
the charge has a negligible contribution to the dynamics,
and it will likely stop to be valid for larger values of λ,
where the self-gravity of the electromagnetic fields
becomes more important. Even if we do not expect these
relations to hold, they are still useful because the charge-
to-mass ratios explored here are up to 0.3, which is a
considerable amount of charge (corresponding to 30% of
the maximum value allowed for a general-relativistic
black hole).
First, we notice that the energy and angular momentum

lost in gravitational-wave emission depend only weakly on
the value of λ for the cases considered in our set. This is
shown in the top panel of Fig. 8, where we plot the total
energy lost by gravitational waves for the various simu-
lations we performed.

Next, it is interesting to study which modes dominate the
emission. We focus on the λ ¼ 0.3 simulations, and begin
with the electromagnetic sector. Based on Newtonian
arguments, we expect that in black hole binaries with
opposite charge, most of the emission will be dipolar. By
contrast, for simulations with like charge we expect no
dipole, overall reduced emission, mostly in the quadrupole.
Finally, the case with only one charged black hole (which
has a nonzero dipole) should lie in between. The bottom
panel of Fig. 8 shows the total energy carried away by
electromagnetic waves starting at the reference frequency
f0 until peak gravitational wave amplitude, and demon-
strates that the aforementioned intuition is correct.
Moreover, the figure shows that the energy emitted scales

TABLE II. Summary of relative errors for key quantities across all our simulations. The relative error for a quantity ϒ is computed as
ðϒQA −ϒNRÞ=ϒNR, where ϒQA is the quantity in the quadrupole approximation and ϒNR in the simulations. The relative error is with
sign: positive error means that the Newtonian approximation overestimates the quantity. In all cases the quadrupole approximation
overestimates the quantities. The values of the reference frequencies is reported in Table I. GW and EM indicate gravitational and
electromagnetic waves, respectively. When it comes to loss of angular momentum due to electromagnetic waves, the QA model only
includes the dipolar channel, which is identically zero in the þþ case. Hence, we do not report this error for this quantity.

Relative error f0 → f1 f0 → f2

½ðϒQA −ϒNRÞ=ϒNR� þþ þ− þ0 þþ þ− þ0

Time 22%–26% 15%–24% 20%–24% 26%–29% 18%–27% 24%–27%
Phase 20%–32% 18%–30% 17%–30% 20%–32% 18%–30% 17%–30%
GW cycles 24%–26% 15%–25% 21%–25% 24%–26% 15%–25% 21%–25%
GW energy 47%–48% 34%–47% 42%–47% 56%–59% 42%–56% 52%–56%
EM energy 42%–44% 59%–76% 70%–76% 47%–51% 76%–99% 91%–98%
GW angular momentum 45%–48% 35%–45% 41%–46% 54%–57% 42%–54% 51%–55%
EM angular momentum � � � 57%–70% 53%–58% � � � 71%–87% 65%–69%
GW150914-like SNR 13%–23% 23%–26% 21%–23% 20%–28% 65%–69% 19%–21%

FIG. 7. Coordinate distance of the two black holes as a function
of the coordinate time for three representative cases with charge-
to-mass ratio of λ ¼ 0.2, along with the case with no electro-
magnetic fields. Note that this is not a gauge-independent plot.

FIG. 8. Top: total energy radiated away in gravitational waves
(between frequencies f0 and fpeak) as a function of λ for the
different cases we simulated. Bottom: total energy radiated away
in electromagnetic waves EEM as a function of λ. We find that the
energy scales as the charge squared for the cases considered in
this work. The simulation that radiates the most is the one with
opposite charges because its electric dipole is the largest. In the
same-charge case, the emission is dominated by the electric
quadrupole and it is still significant. The angular momentum lost
by waves behaves similarly.
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with the charge-to-mass ratio squared. When computing the
mode-by-mode contributions to the electromagnetic emis-
sion, we find that for the λþ− case, l ¼ 1 dominates over all
other modes and constitutes 98% of the energy lost. For λþþ
the l ¼ 2 mode is the main channel through which energy
is carried away, and 98% is lost in this way. In the λþ0 case
both dipole and quadrupole are important, the first con-
tributing 78%, and the second 20%. Higher order modes
constitute less than 2% contribution. In all of our simu-
lations the l ¼ 2 mode accounts for 98% of the energy lost
by gravitational waves. If we considered angular momen-
tum instead of energy, we arrive at similar conclusions.
The bottom panel in Fig. 8 demonstrates that the emitted

electromagnetic energy scales as λ2. That is not the only
quantity that does so. We find that several quantities scale
the same way, including EEM, JEM, EEM=EGW, and
JEM=JGW. We observe an example of this in Fig. 9 which
shows EEM=EGW, and JEM=JGW vs λ. As remarked at the
beginning of this subsection, while we find the scaling with
λ2 for several quantities, it is possible that some of this
relationships will fail for larger values of the charge.
In [44] it was estimated that for equal-mass mergers and

black holes endowed with opposite charges,

Eþ−
EM=E

þ−
GW ≈ 2λ2: ð42Þ

Using our results, which strictly speaking do not apply to
the equal mass case but should be close enough, we find

Eþ−
EM=E

þ−
GW ≈ 1.6λ2: ð43Þ

Thus, in spite of the simple derivation in [44], the
expression provided finds the correct order of magnitude
in the numerical coefficient.

If we consider charge in its traditional meaning of electric
charge, we can talk about electromagnetic luminosity
emitted. For the simulations with λ ¼ 0.3, the peak electro-
magnetic luminosity varies from 2.7 × 10−5 to 8.6 × 10−5,
corresponding to ≈1057 erg s−1 (regardless of the value of
M). ForM ¼ 65 M⊙, themaximum electromagnetic energy
emitted is≈1053 erg, which is much smaller than the energy
emitted through gravitational waves. This possibly explains
the near perfect scaling with λ2 of several quantities we
reported. How this electromagnetic energy is converted to
potentially observable photons has to be modeled and it is
highly dependent on the environment. In standard astro-
physical conditions, the diluted plasma would not allow
these waves to propagate [78].

2. Charge detectability

In this subsection, we use our simulation results to
estimate black hole charge detectability by future gravita-
tional wave detectors. To do this, we follow [2] and
compute the mismatch between two signals h1 and h2.
This quantity determines the minimum SNR needed to
distinguish h1 and h2, which we denote as SNRðh1; h2Þ,
and is given by [63,152–155]

SNRðh1; h2Þ ¼
1ffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mismatchðh1; h2Þ

p : ð44Þ

Note that the SNR threshold value of Eq. (44) corresponds
to a 68% confidence level for distinguishability. We
compute the mismatch as [2,155,156]

mismatchðh1; h2Þ ¼ 1 −maxOðh1; h2Þ; ð45Þ

with the maximum evaluated with respect to time-shifts,
polarization angles, and mass shifts. We maximize over
mass shifts to include the possible degeneracy between
mass and charge (see [2] for a detailed discussion). This
operation is allowed because our simulations scale with the
total massM. In Eq. (45), Oðh1; h2Þ is the overlap between
h1 and h2:

Oðh1; h2Þ ¼
ðh1; h2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1; h1Þðh2; h2Þ

p ; ð46Þ

with ðh1; h2Þ being the noise-weighted inner product
between the two signals in the frequency domain h̃1ðfÞ
and h̃2ðfÞ, which is given by [157]

ðh1; h2Þ ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃⋆2ðfÞ
SnðfÞ

df; ð47Þ

where SnðfÞ is the power spectral density of the detector
noise, and the asterisk indicates complex conjugation. In
the subsequent analysis we consider the following detectors

FIG. 9. Ratio between electromagnetic and gravitational energy
and angular momentum lost via emission of radiation from tf0 to
merger. The configuration with the strongest electromagnetic
emission is the one with opposite charges, as the dipole is the
most effective as emitting.
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at design sensitivity: Advanced LIGO, A+ [158], Voyager
[159], Einstein Telescope [160], and Cosmic Explorer
[161] and we set fmin ¼ 25 Hz and fmax ¼ 1024 Hz.9

Note that here we are not including the effects of spins,
mass-ratios, and eccentricity parameters that introduce
degeneracies that make the detection of charge more
difficult. Nonetheless, the key result of this subsection
will hold at a more qualitative level even when the addi-
tional parameters are included: for a GW510914-like event,
future instruments are expected to detect signals with a
SNR significantly larger than the one needed to detect
charge at the level of λ ≈ 0.1. For precision studies, more
accurate simulations that include also the other parameters
are needed.
Before we discuss the results, we highlight possible

pitfalls in numerically evaluating Eq. (47). There are
multiple steps to go from what the simulations output to
Eq. (47). In particular, Fourier transforms have to be
computed and the time series have to be windowed and
zero-padded to avoid aliasing and spectral leakage. Since
the simulations we are considering produce similar wave-
forms (up to time, phase, and mass shifts), small differences
in how the two waves are preprocessed can contribute
significantly to the value of the mismatch. First, it is
important to trim the end of the two waveforms where
the strain is practically zero and ensure that they have the
same duration after the peak. If this is not done, and the
signals have different durations after merger, applying a
window has a different effect and introduces a systematic
uncertainty. Second, in some cases the fixed frequency
integration may leave small residual drifts at the very end of
the waveform. These depend on the simulation, so one must
check that all the waves are well behaved. In case they are
not, one can adjust this by cropping the signal or by
changing the parameters of the window function or of the
integration method. Improperly considering one of these
effects may lead to systematic errors.
We now discuss the results of our study by focusing on

the λþ− case, which is relevant to constraining the dipole
emission. In Fig. 10, we report the value of the SNR needed
to distinguish uncharged binary waveforms from binary
black holes with charge-to-mass ratio λþ− ¼ 0.1 (circles),
0.2 (stars), or 0.3 (diamonds) for a GW150914-like event.
For smaller values of λþ− , the mismatch computed from our
simulations is limited by their numerical error, so higher
resolution evolutions would be needed.
First, we note that there is not much variation of the SNR

for distinguishability across the different detectors,

regardless of the significant variation in sensitivity. The
reason for this result is that for the computation of the
mismatch the overall noise curve does not matter: it is how
the noise is distributed in different frequencies that matters
the most. The difference in sensitivity is reflected in how
easy or not it is to achieve such SNRs. Second, the values
needed to detect λþ− ≥ 0.1 are already achievable today
(GW150914 had a network-SNR of approximately 25 [69],
but its noise curve was not the one at deign sensitivity).
Given their improved sensitivity, future detectors will
immediately be able to detect this amount of charge. To
estimate what limits on charge future detectors will place,
one not only needs better simulations, but one needs to
include the effects of spin and eccentricity.
Next, we discuss what charge-to-mass ratio LISAwould

be able to detect for million solar mass binaries. As already
mentioned, we are free to rescale the mass of our binaries to
place them in the LISA band, which we assume ranges
from 0.1 mHz to 1 Hz. Despite the scale freedom, there is
one obstacle to doing a complete analysis using our
simulation data as Fig. 11 demonstrates. In the plot, we
show the LISA sensitivity curve [164] and we schemati-
cally show with dashed lines the gravitational wave
spectrum from our simulations when the mass is rescaled
using two different values. In the case of a 107 M⊙ binary,
our simulation signal is entirely in the LISA band. On the
other hand, at least part of the inspiral is missing for
∼104−6 M⊙ binaries.10 Despite this obstacle, we know that
for the case with opposite charge, the mismatch will
increase if we included the inspiral, due to the presence
of dipole emission. Hence, if we use our data to find what is
the minimum SNR needed to distinguish waveforms of
charged binaries from those generated by uncharged
binaries, we will find an upper bound on that (if we

FIG. 10. Signal-to-noise ratio required to distinguish wave-
forms from mergers of charged black holes from ones without
charge for different detectors assuming their design sensitivity.
The expected SNR for a GW150914-like event future detectors is
significantly larger than the one needed to constrain λþ− < 0.1.
See Footnote 9 for details on the detector sensitivity curves used.

9When available, we use the sensitivity curves implemented in
LALSimulation [162] via PyCBC [163]. The functions used
are part of the pycbc. psd module and are: aLIGODesignSensi-
tivityP1200087, aLIGOAPlusDesignSensitivityT1800042, Ein-
steinTelescopeP1600143, and CosmicExplorerP1600143. For
Voyager we obtained the sensitivity curve from LIGO Document
T1500293-v11.

10One could extended our simulation data with some approxi-
mate waveforms, like the one from the Newtonian model, and
recompute the quantities with the entire signal. However, this
goes beyond the scope of the current work.
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included the entire in-band inspiral waveform the minimum
SNR for distinguishability would only decrease).
Figure 12 shows the upper bound on the minimum SNR

needed to distinguish waveforms generated by charged
binaries from those generated by uncharged binaries for
different charge configurations as a function of the
detector-frame mass Mdetector. LISA is expected to detect
binaries with SNR much higher than the one in Fig. 12, so
it will be able to detect or place constraints on small values
of λþ− for multiple systems. These results are not surpris-
ing. In [44,71] it argued that LISA will constrain the
dipole moment at the level of the 10−4, considering only
the inspiral.
We can understand the shape in Fig. 12 by considering

that the inspiral has the most important contribution to the
mismatch, so, it is the lower frequencies that matter the
most. Recall that Fig. 11 shows schematically the power
spectrum of the gravitational waves. Roughly speaking,
there is more power in the lower frequencies than the higher
ones because more time is spent there. Increasing the binary
mass from the minimum value considered here amounts to
sliding the spectrum in Fig. 11 from the right to the left.
When we are considering masses for which the signal lies
to the right-hand-side of the plot, we find that there is more
noise in the higher frequencies of the signal than the lower
ones. This is the optimal condition to separate an uncharged
waveform from a charged ones, because it is the lower
frequencies that contain the most information. Hence, the
signal to noise for the detection is the lowest. Now, when
we consider masses for which the signal lies on the left-
hand-side of Fig. 11, initially not much changes in the
signal-to-noise ratio. This is because the frequencies with
the most information are the ones with the lowest noise.
The scenario changes when we approach the minimum of
the sensitivity curve, at that point, the way noise is
distributed across frequency changes, and we see in

Fig. 12 an increase in the signal-to-noise ratio, which
reflects the fact that we are removing sensitivity in the
lower frequencies to put it in the higher ones (that have less
information). The trend continues when we increase further
the mass scale and we climb up the sensitivity curve on the
left side. Here, we are giving more weight to high
frequencies, which cannot distinguish the two waves well,
so we need more signal-to-noise ratio for distinguishability
of two signals.
A natural question that arises next is the following: how

far can LISA detect the minimum SNR required to
distinguish charge? Computing the SNR with Eq. (40b),
we can find what is the maximum distance at which the
SNR is larger than the threshold. This distance is plotted in
Fig. 13. For some mass ranges, LISA will essentially
distinguish a charged binary with λþ− up to 0.1 everywhere
it can detect black hole binaries. It is important to note that
plot provides only a lower limit on this maximum distance,
especially for lower masses, where we do not include the
long inspiral part of the waveform.

FIG. 11. Schematic representation of how we can use our
simulations for LISA sources. We are free to vary the mass, but in
many cases our simulations do not cover the entirety of the signal,
and part of the inspiral is missing. Since the inspiral is the most
constraining part of the signal, when we compute the minimum
SNR for distinguishability of charged binary waveforms from
uncharged binary ones, we are providing an upper bound.

FIG. 12. Upper limit on the minimum SNR needed to distin-
guish waveform from charged binaries with different λþ− from
uncharted systems. This is an upper limit because most of the
masses do not include the entirety of the inspiral. Given that
the inspiral is most constraining, including it would decrease the
SNR needed.

FIG. 13. Lower limit on the maximum luminosity distance DL
in gigaparsec (or max redshift z) at which LISA can detect a
charged binary with λ of 0.1 as function of the source-frame mass
Msource.

NUMERICAL-RELATIVITY SIMULATIONS OF THE … PHYS. REV. D 104, 044004 (2021)

044004-17



We can ask the same question for the case λþþ ¼ 0.3 at
the mass-scale for which we have the entire signal in LISA
band (≈107 M⊙). We find that LISA will be able to detect
charge up to redshift of about 1, which would translate to a
constraint on the α parameter of Moffat’s Scalar-Vector-
Tensor gravity [19] of α≲ 0.1 (see also [2]).

C. Properties of the remnant black hole and ringdown

Here we study the properties of the remnant black hole
forming following the merger of charged binaries. We
discuss the accuracy of the method presented in Sec. IVA
to estimate the remnant black hole spin (Sec. V C 1), and
we explore the quasinormal modes from the ringdown
phase (Sec. V C 2).

1. Remnant black hole properties

In this subsection, we discuss the physical properties
of the charged binary black hole merger remnants
in our numerical-relativity simulations as computed via
QuasiLocalMeasuresEM. Then, we compare the remnant
black hole spin found in the simulations with the expect-
ations of the BKL approximation described in Sec. IVA.
Before presenting our results, let us consider what one

might expect qualitatively. Following the discussion in
Sec. II B, we know that, in Newtonian physics, the orbital
angular momentum scales as

ffiffiffiffi
G

p
. Next, consider conser-

vation of angular momentum, and assume (as in the BKL
method) that the spin of the final black hole is determined
by the angular momentum at the innermost-stable circular
orbit of the remnant black hole. We would expect the final
spin χfinal with respect to the uncharged case χfinal00 to
increase as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ1λ2

p
for the case with opposite charge

(where the ISCO of the remnant black hole is the same as in
the uncharged case11), and to decrease faster thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ1λ2

p
for the other two cases, where the ISCO is

reduced compared to the uncharged case, resulting in
additional emission of angular momentum.
In Fig. 14 we show how these properties change with

respect to their values in the uncharged case. First, we find
that the final mass of the remnant is almost independent of
the charge configuration, with subpercent variations. In
particular, the λþ− remnant looks almost identical to the one
from the uncharged simulation: spin, charge, and mass are
the same to within 1%. Moreover, in that case, the angular
momentum is essentially independent of λ, against the
expectations from the Newtonian argument. In general, we
find that the final properties of the black hole depend

weakly on the charge configuration, with the largest
variation being about 4% in the spin of the λþþ ¼ 0.3 case.
Interestingly, the cases with like charge follow the
Newtonian scaling

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ1λ2

p
as shown in Fig. 14 with

the black solid lines.
In Sec. IVA, we described a simple way to estimate the

spin of the remnant using conservation arguments. We now
compare the method with our simulations. The top panel of
Fig. 15 shows that the method estimates the value of the

FIG. 14. Mass (top panel) and spin (bottom panel) of the
remnant black hole computed with the isolated horizon formalism
[115,165,166] as implemented in QuasiLocalMeasuresEM [1],
compared to the one in a merger with no charge (Mfinal

00 ≈ 0.96 M,
afinal00 ≈ 0.66 M). The solid black lines in the bottom panel
indicate the Newtonian scaling

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λ1λ2

p
.

FIG. 15. Dimensionless spin of the remnant black hole in the
numerical relativity simulations (colored lines) and estimated
with the method of Sec. IV (black lines with crossed markers). In
the top panel, we compare the actual numerical values, in the
bottom panel we rescale the values by the value measured in the
simulation without charge or the estimated value in absence of
charge (simulation data is normalized with the value obtained
from the uncharged simulation, and BKL estimates are normal-
ized with the value obtained assuming no charge).

11Although the ISCO of the remnant black hole in the charged
case with opposite charges is practically unaffected by charge (for
the range of λ in this work), since the total charge is approx-
imately zero, the effective innermost stable orbit of the binary (the
orbital separation at plunge) must be affected to some extent,
especially for larger values of λ even when the component black
holes have exactly opposite charges.
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final dimensionless spin with an error of 3% in the
uncharged case. This method does not include energy loss.
Including it would not improve accuracy, as the dimension-
less spin would be overestimated as opposed to under-
estimated. In the bottom panel of Fig. 15 we normalize the
final spin to the value of the uncharged case with simu-
lations normalized with the values obtained from the
simulations, and the BKL values are normalized with the
value obtained applying the method in absence of charge.
This removes the normalization as a possible parameter and
allows us to test if the method captures the correct trend
(and only gets the normalization wrong). In practice, this
corresponds to testing whether removing trends arising
from the normalization makes the black lines in the bottom
panel of Fig. 15 overlap with the colored ones. We observe
that the method indeed works well for the cases with like
charge or with only one charged black hole, but over-
estimates the final spin in the other cases. The approach
does not capture the fact that the spin of the final black hole
in the λþ− numerical relativity simulations is essentially
independent of charge. However, the method is still
accurate to within a few per cent.

2. Quasinormal modes

Here we discuss the ringdown phase and address how
challenging it is to tell if a binary black hole is charged from
the ringdown phase alone.
Since the frequency and decay time of the quasinormal

modes depend only on mass, spin, and charge, we can use
the values reported in Fig. 14 to compute ω220 and τ220 with
Eqs. (39) and the QNM code [145]. The top panel of Fig. 16
shows the relative difference of the computed value
ðω220 − ω00

220Þ=ω00
220, where ω

00
220 is the ringdown frequency

computed with QNM using the mass and spin of the remnant
black hole from the simulation without charge, while ω220

is the ringdown frequency using Eqs. (39). The maximum
difference we find is 0.9% in the λþ− ¼ 0.3 case. Therefore,
to be able to distinguish the ringdown from a merger of
charged black holes from one with no charge, the param-
eters have to be estimated better than the percent level. For
a given value of λ, even higher accuracy is needed to be able
to distinguish the three charged scenarios.
It is interesting to understand why the simulation with

opposite charge, in which the remnant has the least amount
of total charge for a fixed λ, is the one with largest
difference with respect to the uncharged case: In Fig. 15,
we see that for the case with opposite charges χfinal=χfinal00 ≈
1 regardless of the value of λ. Combining this information
with the fact that the remnant black hole hasQ=M ≪ 1, we
deduce that the only difference between the uncharged case
and the case with λþ− ¼ 0.3 must be in the mass of the final
black hole. The difference in mass alone is responsible for
the observed difference in the ringdown frequencies.
It is also interesting to understand why the case with

same charge is not the easiest to distinguish, despite that the

remnant black hole mass in this case has λ ≈ 0.3, and is the
one with the most different spin (Fig. 15) compared to the
uncharged case. Interestingly, in the λþþ case, charge,
angular momentum and mass conspire so that the remnant
black hole appears to have a quasi-normal-mode frequency
that matches that from an uncharged binary. To analyze this
case, it is convenient to separate the effects of charge, and
mass and spin. The fundamental properties of the quasi-
normal modes, ω220 and τ220, depend on the triplet
ðMfinal; χfinal; QfinalÞ. We can hold some of these parameters
fixed to the case with no charges to understand what is the
dominant contribution to the deviation of ω220 and τ220
from their corresponding values in the absence of charge.
The results are reported in the middle and bottom panels
of Fig. 16, where we report ω220. The same results hold
for τ220.
In the middle panel we vary only the charge, and fix the

mass and spin to the value they obtain in the simulation
with no charge Mfinal

00 and χfinal00 . Here we find that binaries
with opposite charge have remnant black holes that behave
almost exactly like the uncharged one (there is no differ-
ence in the quasinormal modes). This tells us that for this
specific configuration the deviation in ω220 is not because
of charge, but that the mass and spin are the parameters that
primarily control the quasi-normal-modes properties. This
is not unexpected: oppositely charged binaries are those

FIG. 16. Relative difference between the analytical 220 quasi-
normal-mode frequency for the merger remnants in our evolu-
tions and the simulation with uncharged black holes. In the
middle panel, we remove the effects of mass and spin and fix the
values to the ones they have in the uncharged case. In the bottom
panel, we remove the contribution of the charge described by
Eqs. (39): the frequency becomes more different. The same
happens with the decay time, but the variation with respect to the
uncharged case is even smaller.
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with the smallest remnant black hole charge, so it is natural
that this parameter will contribute the least if mass and
angular momentum are the same. On the other hand, the
case with like charges is the most different from the
uncharged ones, with relative increase in ω220 of 2.6%.
The bottom panel of Fig. 16 shows what happens when

we completely ignore the contribution of charge to the
quasinormal modes. First, we find the confirmation that
here is where the simulations λþ− acquire the differences of
up to ≈1% shown in the top panel of Fig. 16. Second, in the
like charges case, we also find that charge introduces
differences in the mass and angular momentum of the
remnant black hole that drive the change in the quasinormal
mode in the opposite direction compared to the ones shown
in the middle panel. Therefore, when we consider the
complete triplet of mass, spin, and charge (“summing”
middle and bottom panels), we find that their effects almost
cancel each other, so that the corresponding quasinormal
modes are close to the uncharged binary case.
Hence, we conclude that for the λ explored here, to

distinguish the quasinormal modes of the final black hole
from the ones of an uncharged black hole, one needs
exquisite accuracy. The task becomes even harder when
one includes the other parameters which we kept fixed in
our simulation (mass-ratio, spin, and eccentricity), which
will introduce additional degeneracies. The accuracy
needed is also of the same order as that of the fitting
functions in Eqs. (39), and for the highest values of λ
adopted here, it is also of the same order as the errors due to
the truncation of the expansion in λ, which may affect the
result. In our simulations, the ringdown signals are essen-
tially indistinguishable from one another, and we cannot
identify the quasi-normal-mode parameters at the accuracy
needed to tell them apart. To sum up, values of charge up to
λ ∼ 0.3 could be challenging to detect using the ringdown
phase alone.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we continued our program of exploring the
nonlinear dynamics of black holes in Einstein-Maxwell
theory. In Sec. II, we described our theoretical and
numerical approach, emphasizing new features and for-
malism that have not been treated before, including: how
to prepare quasicircular initial data for charged black hole
binaries (Sec. II B), how to perform long-term and stable
evolutions of quasicircular inspirals of charged black
holes (Sec. II C), the electromagnetic contribution to
horizon properties of black holes (Sec. II D), and the
computation of the angular momentum carried away by
electromagnetic waves with the Newman-Penrose formal-
ism (Sec. II E).
We compared the results of our nonlinear simulations

with approximate approaches for the inspiral (Sec. VA) and
the ringdown (Sec. V C). For the systems considered, our
work shows that Newtonian models based on the

quadrupole approximation find the correct order of mag-
nitude in a set of gauge-invariant quantities, but have errors
Oð20%Þ or larger, and hence they cannot be used in
precision studies of mergers of charged black holes or
accurate parameter estimation. Similarly, estimates of the
spin of the remnant black hole based on conservation of
angular momentum and energy arguments are accurate up
to few percent. Hence, a key result of this work is extending
what was found in [20]: these arguments can be used to
build intuition and make order-of-magnitude estimates in
the case of quasicircular mergers, too.
Furthermore, we discussed properties of the emission

(Sec. V B) and estimated the detectability of charge by
future gravitational wave observatories (Sec. V B 2), focus-
ing in particular on LISA. Finally, we studied the quasi-
normal modes (Sec. V C 2), finding that it may be
challenging to extract charge information from the ring-
down alone.
There are multiple possible extensions of this work. On

the nonlinear side, including spin and increasing the
charge-to-mass ratio would allow the exploration of a
region of the parameter space never considered before.
On the side of approximate calculations, the next step in
complexity after Newtonian physics is developing 1PN
models. Such waveforms are currently available [167,168].
These models are important in the effort of generating
gravitational-wave templates.
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APPENDIX A: COURANT STABILITY OF
KREISS-OLIGER DISSIPATION

Kreiss-Oliger dissipation is described by Eq. (7), which
we rewrite here for convenience

∂tU ¼ � � � þ ð−1Þðpþ3Þ=2 ϵ

2pþ1
Δxp∂pþ1

x U: ðA1Þ
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This technique has a free a parameter ϵ that controls the
strength of the dissipation. This cannot be chosen arbitrar-
ily, as we show in this Appendix.
A finite-difference discretization transforms Eq. (7) to

∂tU ¼ � � � þ ð−1Þðpþ3Þ=2 ϵ

2pþ1
Δxp

Dpþ1U
Δxpþ1

; ðA2Þ

whereDpþ1U is determined by the finite-difference stencil.
For an explicit time integration scheme, this operator alone
leads to a Courant stability condition of the form

Δt
Δx

ϵ

2pþ1
≤ Λ; ðA3Þ

where Λ is typically a fixed number that is determined by
the details of numerical integration method.12 Given that in
our case we add dissipation to hyperbolic partial differential
equations, condition (A3) can be recast to read

ϵ ≤
Λ
μ
; ðA4Þ

where μ is the Courant factor Δt=Δx. For the Einstein-
Maxwell equations in standard finite-difference implemen-
tations, this quantity is typically chosen such that μ ≤ 0.5
for numerical stability. Since we are working with an
adaptive-mesh-refinement computational grid with subcy-
cling in time, there are multiple values of Δt and of Δx, so
condition (A3) can be met in some parts of the grid but not
in others. Failure to satisfy the condition can result in
numerical instabilities that spoil the simulation. It should be
noted that the Courant condition (A4) is necessary but not
sufficient for stability. This means that the scheme can be
unstable even when Eq. (A4) is satisfied. For example, an
ill-posed initial boundary value problem or other numerical
instabilities could cause simulations to crash.

APPENDIX B: PARAMETERS OF THE
NUMERICAL EVOLUTION

In this Appendix, we report the parameters used for our
simulations, including the test described in Sec. II C.
Our simulations are on a grid with outer boundary at

1033 M and nine refinement levels with refinement boun-
daries located at 2iM, where i is the number of level. Our
standard coarsest-level resolution is ≈4 M and the high-
resolution runs are with 25% smaller grid spacing
(≈3.2 M). Of the nine refinement levels, five have the
same time step, the other levels had Courant factor fixed to
Δt=Δx of 0.4. This choice reduces the maximum time step

on the grid and prevents some numerical instability that
would otherwise arise. We set κ (defined in Appendix A in
[23]) to 9.9 M−1 and verified that changing this parameter
does not produce significant differences. We set the η
parameter in the evolution of the shift vector (as defined in
Eq. (13) in [88]) to 1.5 M−1. These parameters lead to
instability unless κ ≲ 1.5=Δtmax (same for η), so we
adjusted the time-stepping in our evolutions to ensure that
this condition is met. We use fifth order prolongation in
space and second in time. We tested selected cases with
seventh order spatial prolongation and found no significant
differences. All our derivatives are obtained with sixth-
order finite difference.
The test described in Sec. II C was performed with the

high-resolution grid and otherwise the same parameters
described above. The tests showed that the instabilities
arise unless we choose the continuous prescription for the
dissipation. In the unstable cases, we found that simulations
with higher resolution become unstable earlier compared to
the ones at lower resolution.
In Fig. 17, we report how resolution and extraction radii

affect the resulting waveform. The differences between the
various signals are small, indicating the error due to the
finite resolution and finite extraction radius does not affect
the results presented in this paper.

APPENDIX C: ALTERNATIVE FORMULATIONS

In our efforts to improve and stabilize our simulations,
we tested two additional formulations for the evolution of
the electromagnetic fields. We found that improvements
arising from either of these formulations is subdominant
compared to the role of the dissipation (see Sec. II C).

FIG. 17. Real part of the l ¼ 2, m ¼ 2 strain extracted from
different radii or different resolutions (Δxfinest ¼ M=65 and
Δxfinest ¼ M=81, respectively) from the simulation with
λþ− ¼ 0.3. The three waveforms agree well, indicating that the
error due to the finite resolution or the finite extraction radius
is small.

12The case with p ¼ 1 using standard centered second-order
accurate finite differences is a textbook example of stability
analysis for a standard diffusion equation with constant coef-
ficients. In this case, and for a three-dimensional Cartesian grid
with equal grid spacing in the all spatial directions, Λ ¼ 1=6.
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First, we followed [170] and implemented a generalized
Lorenz condition. If Aa is the electromagnetic four-poten-
tial, the Lorenz gauge is ∇aAa ¼ 0, while its generalized
version is ∇aAa ¼ ξnaAa, with ξ damping parameter. In
[170], it was found that with a suitable choice of ξ, this
condition reduces spurious gauge modes that arise from
interpolation at the refinement level boundaries. While this
is important for general-relativistic magneto-hydrodynamic
simulations in which matter crosses refinement levels, in
our evolutions we did not find significant improvements.
A second formulation we tested was motivated by the

parabolized Arnowitt-Deser-Misner formalism of general
relativity [171,172]. This consists of adding an extra
parabolic term to the evolution of the electric field, which
is 0 when the Gauss constraint is satisfied,

∂tEi ¼ � � � þ ϵEγ
ij
∂jCE; ðC1Þ

with CE as the Gauss constraint and ϵE strength of the
parabolic term. With this modification, the evolution of the
constraint looks like

∂tCE ¼ � � � þ ϵEγ
ij
∂i∂jCE; ðC2Þ

which is parabolic diffusion operator. The indented result is
to further dissipate violations of the constraint from
perturbations with high wave number. In our tests, this
formulation did not result in noticeable improvements over
our new method for setting the Kreiss-Oliger dissipation
parameter presented in Sec. II C.

APPENDIX D: NEWMAN-PENROSE SCALARS IN
FLAT SPACETIME AS FUNCTION OF
ELECTRIC AND MAGNETIC FIELDS

In this Appendix, we provide expressions for the
electromagnetic Newman-Penrose Φ0, Φ1, and Φ2 in terms
of the electric and magnetic fields in (asymptotically) flat
spacetime. We consider both coordinate and orthonormal
bases. These expressions can be used to quickly compute
the Newman-Penrose scalars for a given electromagnetic
field. (For a similar discussion, see Appendix A in [173]
noting that a different convention is used for the normali-
zation of the tetrad.)
In flat spacetime and given the spherical coordinates

ðr; θ;φÞ, consider the coordinate basis ð∂r;∂θ; ∂ϕÞ, and an
orthonormal basis ðer̂; eθ̂; eϕ̂Þ so that for a vector v we
have that

v ¼ vr̂er̂ þ vθ̂eθ̂ þ vφ̂eφ̂; ðD1aÞ

v ¼ vr∂r þ vθ∂θ þ vφ̂∂φ; ðD1bÞ

with

vr̂ ¼ vr; vr̂ ¼ vr; ðD2aÞ

vθ̂ ¼ rvθ; vθ̂ ¼
1

r
vθ; ðD2bÞ

vφ̂ ¼ r sin θvφ; vφ̂ ¼ 1

r sin θ
vφ: ðD2cÞ

The electromagnetic field strength can be written in terms
of the orthonormal tetrad components of the electric and
magnetic fields as follows:

Fab ¼

0
BBBBB@

0 −Er̂ −rEθ̂ −r sinθEφ̂

Er̂ 0 rBφ̂ −r sinθBθ̂

rEθ̂ −rBφ̂ 0 r2 sinθBr̂

r sinθEφ̂ r sinθBθ̂ −r2 sinθBr̂ 0

1
CCCCCA
:

ðD3Þ

The Newman-Penrose scalars are, as computed by
Eqs. (8) and using Eq. (D3)

Φ0 ¼
1

2
ð−Eθ̂ þ Bφ̂ − iðEφ̂ þ Bθ̂ÞÞ; ðD4aÞ

Φ1 ¼
1

2
ðEr̂ þ iBr̂Þ; ðD4bÞ

Φ2 ¼
1

2
ðEθ̂ þ Bφ̂ − iðEφ̂ − Bθ̂ÞÞ: ðD4cÞ

Alternatively, expressing Eqs. (D4) in terms of the vector
components in the coordinate basis:

Φ0 ¼
1

2

�
−
Eθ

r
þ Bφ

r sin θ
− i

�
Eφ

r sin θ
þ Bθ

r

��
; ðD5aÞ

Φ1 ¼
1

2
ðEr þ iBrÞ; ðD5bÞ

Φ2 ¼
1

2

�
Eθ

r
þ Bφ

r sin θ
− i

�
Eφ

r sin θ
−
Bθ

r

��
: ðD5cÞ

For completeness, we also report the null tetrad of Eq. (13)
is (in the coordinate basis)

ka ¼ 1ffiffiffi
2

p ð1;−1; 0; 0Þ; ðD6aÞ

la ¼ 1ffiffiffi
2

p ð1; 1; 0; 0Þ; ðD6bÞ

ma ¼ 1ffiffiffi
2

p
�
0; 0;

1

r
;

i
r sin θ

�
; ðD6cÞ

GABRIELE BOZZOLA and VASILEIOS PASCHALIDIS PHYS. REV. D 104, 044004 (2021)

044004-22



m�a ¼ 1ffiffiffi
2

p
�
0; 0;

1

r
;−

i
r sin θ

�
: ðD6dÞ

APPENDIX E: MICHEL’S SOLUTION

Michel’s rotating magnetic monopole solution [126] is a
simple model for pulsar and black hole magnetospheres
(for a rigorous description, see [127], noting that
Heaviside-Lorentz units are used, and many formulas differ
by a factor of 4π with what is reported here). Our interest in
Michel’s monopole is motivated by the fact that it is a
simple solution with stationary flow of energy and angular
momentum in flat spacetime that can be used to test
Eq. (17) and its numerical implementation.
In an orthonormal basis, the nonzero components of

electric and magnetic fields of Michel’s monopole are [127]

Eθ̂ ¼ Bφ̂ ¼ −
q
r
ω sin θ; ðE1aÞ

Br̂ ¼
q
r2
: ðE1bÞ

A four-vector potential that produces such configuration is
given by

Aμ̂ ¼
�
qω cos θ; 0;−

q
r
ω sin θ; q tan

θ

2

�
: ðE2Þ

Notice that Aφ̂ → þ∞ when θ → π, but the resulting
magnetic field is well-behaved, as shown in Eq. (E1b).
We can compute the Newman-Penrose scalarsΦ1 andΦ2

with Eqs. (D4):

Φ1 ¼
i
2

q
r2
; ðE3aÞ

Φ2 ¼ −
q
r
ω sin θ: ðE3bÞ

As expected, Φ1 and Φ2 follow the peeling behavior of
Eqs. (9). Next, we can use Eq. (15) to compute the total
power that crosses a sphere or radius r

dEEM

dt
¼ 2

3
q2ω2: ðE4Þ

We can also compute the flux of angular momentum along
the z direction radiated with Eq. (17)

dLz
EM

dt
¼ 2

3
q2ω: ðE5Þ

Hence, we find the relation

dEEM

dt
¼ ω

dLz
EM

dt
: ðE6Þ

This is a well-known relation for pulsar and black hole
magnetospheres.
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