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The baryon acoustic oscillation feature can be used as a standard cosmological ruler. In practice, for
subpercent level accuracy on the distance scale, it must be standardized. The physical reason why is
understood, so we use this to develop an algorithm which improves the estimated scale. The algorithm
exploits the fact that, over the range of scales where the initial correlation function is well fit by a
polynomial, the leading order effects which distort the length of the ruler can be accounted for analytically.
Tests of the method in numerical simulations show that it provides simple and fast reconstruction of the full
shape of the BAO feature, as well as subpercent determination of the linear point in the correlation function
of biased tracers with minimal assumptions about the underlying cosmological model or the nature of the
observed tracers. Our results also suggest that, for least squares estimators of the correlation function, half-
integer generalized Laguerre functions are a particularly useful choice.
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I. INTRODUCTION

Baryon acoustic oscillations (BAO) from the early
universe imprint a characteristic feature in the spatial
distribution of matter even at much later times [1,2].
This feature—a peak and dip in the two-point correlation
function on scales of order 150 Mpc (comoving)—has been
used to constrain the background cosmological model via
the distance-redshift relation [3], and there is hope that it
can also be used to constrain the growth of clustering [4].
However, on BAO scales, the evolved two-point corre-

lation function, even of unbiased tracers, differs in shape
from the unbiased linear correlation function [5,6]. The
difference is particularly dramatic near the peak and dip of
the BAO feature, and has motivated a number of algorithms
for “reconstructing” the shape of the BAO feature [7–9].
Most of these involve modifying the positions of the tracer
particles—e.g., dark matter halos in simulations or galaxies
in observations—so as to return them to their “linear
theory” values. These “density field reconstruction”
approaches are effective, but are computationally expensive
and closely tied to an assumed fiducial cosmological
model. More recent algorithms, e.g., the extended fast
action minimization method [10], and the fast semidiscrete
optimal transport algorithm [11], are more computationally
efficient. In what follows, we outline a rather different

approach which is much cheaper and less tied to a
cosmological model. We use the linear point (LP)—the
scale that lies midway between the peak and dip, which
previous work has shown can be used as a standard
cosmological ruler [12–16]—to quantify the accuracy
and precision of our reconstruction algorithm.
Section II describes our method. Section III shows our

results. Section IV discusses how they can be used to set
constraints on the distance scale. Section V summarizes.
Additional technical details are provided in three
Appendices. Some of these details illustrate the power of
using a polynomial basis for describing the shape of ξ, a
point recently made by [17,18] regarding the small-scale
regime which is not the focus of our study.

II. METHODOLOGY

We describe our methodology in three steps. The first
two treat the simplest case, which may be all that is
necessary for dark matter: following [5], these are
sometimes called the “convolution” and “mode-coupling”
terms. We use these to set up notation and outline the
underlying philosophy of the approach. The third adds
complications that may be necessary for treating biased
tracers. What results is a three step algorithm which
begins with fitting any observed correlation function
to Eq. (14).
In Sec. III, we use numerical simulations to validate

our methodology. Hence, all the figures in this section*farnik@sas.upenn.edu
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are for the same background cosmological model as the
simulations.

A. Evolved ξNL as convolution of ξL
Our starting point is motivated by [19,5], and states that

the evolved pair correlation function is related to that
predicted by linear theory (i.e., the initial one multiplied by
a growth factor) by a convolution:

ξNLðsÞ ≈
Z

dr ξLðrÞGðs − rjΣÞ: ð1Þ

The approximate sign here is because we are ignoring what
are sometimes called mode coupling terms that are known
to be small [5,6]. We discuss how to include them later. We
have used G to indicate that the smearing kernel is
Gaussian; Σ is its rms (in Mpc). While its exact value is
not important for the argument which follows, it is useful to
know that Σ2 ≈

R
dkPLðkÞ=3π2, where PLðkÞ is the linear

theory power spectrum [5]. For cosmological models of
current interest, Σ is proportional to the linear theory
growth factor DðzÞ and is substantially smaller than the
BAO scale.
The top panel of Fig. 1 shows the effect of smoothing on

the shape of the correlation function. The most obvious
effect is that smoothing smears out the peak and dip.
Crosses show the peak and dip positions for each smeared
correlation function: they change with smearing scale, but it
is apparent that their average may be more stable. Indeed,
as first noticed by [12], the linear point scale

rLP ≡ rpeak þ rdip
2

ð2Þ

is almost unaffected by the smearing.Wewill also discuss the
inflection point rinfl which is the scale between the peak and
dip where d2ξ=dr2 ¼ 0. The two scales are very close: The
vertical black solid and dashed lines show rLP ¼ 93h−1 Mpc
and rinfl ¼ 93.4h−1 Mpc for the initial unsmoothed ξL. The
stability of rinfl to evolution is easier to understand, but rLP
turns out to be slightly more stable [12].
The smearing is expected to increase with time [e.g., [5]].

The bottom panel shows the linear and inflection points as a
function of smearing scale. For dark matter at z ¼ 0.5 we
expect Σ ¼ 4.6h−1 Mpc, for which Fig. 1 indicates the
measured linear point will be changed to 92.25h−1 Mpc
from the unsmoothed 93h−1 Mpc scale. While this
0.75h−1 Mpc change/shift is much smaller than the amount
by which the peak and dip positions themselves change, it
is comparable to the precision with which the next gen-
eration of sky surveys will measure this scale. This is why
[12] recommended that a 0.5 percent correction be applied
to any measured value (i.e., multiply the measured value by
1.005). Since the shift may depend on tracer particle type—
and we show below that it does—we will not do this.

Rather, our goal is to recover the linear theory (i.e.,
unsmoothed) values of rLP and rinfl from measurements
of the evolved correlation function, assuming Eq. (1) is
accurate. Figure 4 of [15] shows that Eq. (1) indeed
provides a good description of the evolution of the peak
and dip scales in simulations.

B. Analytic (de)convolution

Since ξL is isotropic, Eq. (1) becomes

ξNLðsÞ ¼
Z

∞

0

drr2

Σ3

e−ðr2þs2Þ=ð2Σ2Þffiffiffiffiffiffi
2π

p 2
sinhðrs=Σ2Þ

rs=Σ2
ξLðrÞ: ð3Þ

The terms other than ξL in the integral define a noncentral-
Chi distribution in r=Σ with 3 degrees of freedom, with
noncentrality parameter s=Σ, so it is useful towrite Eq. (3) as

ξNLðsÞ ¼
Z

∞

0

dr
Σ
χ3

�
r
Σ

���� sΣ
�
ξLðrÞ: ð4Þ

Next, suppose that ξL can be well approximated by

ξLðrÞ ¼
Xn
k¼0

akðr=σÞk; ð5Þ

FIG. 1. Effect of smearing on the shape of the correlation
function. In top panel, vertical black solid and dashed lines show
rLP and rinfl in the unsmoothed ξL. Curves show how the shape of
ξ changes as the smoothing increases [Eq. (1)], and crosses show
the peak and dip positions for each smeared correlation function.
Bottom panel shows rLP and rinfl in the smeared correlation
function: rLP is slightly more robust to smearing.
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where σ is set equal to a fiducial value, as this makes all the
ak dimensionless.When inserted in Eq. (4) this polynomial
representation yields ξNL as a sum over moments of the χ3
distribution. If we define x≡ s=Σ then

ξNLðsÞ ¼
Xn
k¼0

ckμkðxÞ; where ck ≡ ak

�
Σ
σ

�
k

ð6Þ

and

μ2n ¼ 2n!!Lð1=2Þ
n ð−x2=2Þ

μ2n−1 ¼ ð2n − 1Þ!!
ffiffiffi
π

2

r
Lð1=2Þ
n−1=2ð−x2=2Þ: ð7Þ

The LðαÞ
β ðzÞ are generalized Laguerre functions, which we

discuss more in Appendix A. For integer β they are simple
polynomials, but otherwise they are complicated functions.
I.e., if ξL is a polynomial of order n, then ξNL will not be a
simple polynomial. That said, Appendix A 1 shows that ξNL
reduces to a simple polynomial in the limit in which the
scales of interest are much larger than σ. This explains why
[13] found that a simple polynomial can provide a good fit
to ξNL.
The results above suggest that we should:
(1) Fit Eq. (6)—rather than a simple polynomial—to the

measured ξNL;
(2) Then use the fitted ck to estimate ak ¼ ckðσ=ΣÞk;
(3) Finally, insert these ak into Eq. (5) to obtain the

deconvolved or reconstructed shape, which we will
sometimes refer to as ξLag (for “Laguerre recon-
structed ξ”).

We discuss a few technical details associated with Step 1 in
the Appendices. Centering the functions to be fit around a
fiducial scale, so as to avoid numerical inaccuracy, is the
subject of Appendix A 3. How we determine the order of
the polynomial and the range of scales over which to fit is
the subject of Appendix B.
Step 2 makes obvious that the reconstruction depends on

what one chooses for Σ (recall σ is just a fiducial value). So,
one way to proceed is to fit ξNL to Eq. (6) assuming Σ
equals the fiducial value. At a later stage, one can weight
each ‘reconstruction’ by a prior on the fiducial value. We
discuss an alternative approach to determining Σ in
Sec. IV B.
Finally, although we have concentrated on reconstruct-

ing the shape of ξL from the measured ξNL, for LP purposes,
one is most interested in the scale which is midway between
the peak and dip in ξLag, or the inflection point between
them (i.e., where ξ00Lag ¼ 0). Since ξ0NL ¼ ξ0Lag þ ðξNL −
ξLagÞ0 and similarly for ξ00NL, the zeros of ξ0Lag are where

∂ξNLðsÞ
∂ ln s ¼

Xn
k¼0

ak

�∂μkðxÞ
∂ ln x − kxk

�
ð8Þ

rather than where ξ0NL ¼ 0. The zeros of the above equation
give the swhich are the peak and dip scales, from which rLP
can be obtained [Eq. (2)].

C. Illustration and formal uncertainties

Figure 2 illustrates the method. In the top panel, the solid
red curve shows ξL, and the black solid curve shows ξNL of
Eq. (1) with Σ ¼ 4.6h−1 Mpc. A black dashed curve, which
is barely distinguishable in the top panel, shows the result of
fitting a 9th-order Laguerre function to ξNL over the range
60–120h−1 Mpc. The fitting takes as input the values of ξNL
in equally-spaced, adjacent but nonoverlapping bins ofwidth
3h−1 Mpc, and the error covariance matrix associated with a
source density of 6.9 × 10−3 ðMpc−1hÞ3 in a survey volume
of∼50ðh−1 GpcÞ3. We estimate the covariance matrix using
Eq. (2.8) of [15], which is taken from [20].

FIG. 2. Illustration of how Laguerre deconvolution “recon-
structs” the shape of the linear theory correlation function ξL. Top
panel: red solid curve shows ξL and black solid curve shows
the result of convolving it with a Gaussian kernel of width
4.6h−1 Mpc (i.e., ξNL of Eq. (1)). Black dashed curve shows the
9th-order Laguerre function which best-fits ξNL, and grey region
surrounding it shows the associated uncertainty band (see text).
Dashed red curve and pink region shows the deconvolved
correlation function ξLag and its associated error band when
Σ ¼ σ ¼ 4.6h−1 Mpc. The linear theory shape is quite well
reconstructed. Bottom panel: fractional differences between the
Laguerre fit and ξNL (black) and the reconstructed ξLag and true
ξLin (red). Small differences between the Laguerre-fit and ξNL,
and the associated uncertainty bands, are amplified by the
deconvolution.
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In addition to returning the values of the ten fitted
parameters ck, the fitting routine outputs an estimate of the
covariance between the fitted ck. It is standard practice to
use this to derive uncertainty bounds on the best-fit shape,
which we show as a grey band. The black dashed curve
and grey band in the bottom panel show that the fit is
quite good.
The dashed red curve in the top panel shows the result of

setting the fiducial smearing value σ equal to the actual
smearing value Σ, hence setting ak ¼ ck (cf. Eq. (6) in
Eq. (5). The covariance between the fitted ck results in the
one sigma pink band around the red dashed curve. Clearly,
the reconstructed shape is much closer to ξL than was ξNL.
The red dashed curve and associated pink band in the

bottom panel show the fractional difference between this
deconvolved or reconstructed shape and the original linear
theory curve. Comparison with the black dashed curve
in the bottom panel shows that deconvolution amplifies
small inaccuracies in the fit to ξNL. This is consistent with
conventional wisdom: whereas convolution smears out
fine-scale details in the original signal, in the process of
sharpening them again, deconvolution may also amplify
features which are due to noise. E.g., in the middle of
the fitted range, the red dashed curve is like an amplified
version of the black dashed curve, but this correspondence
is not as tight near—i.e., within about Σ—the boundaries
of the fitted region (again, this is as expected for
deconvolution).
For linear point analyses, we are not as interested in the

full shape as we are in rLP and rinfl. In particular, we would
like to know if deconvolution reduces the biases in the
inferred scales (cf. the values associated with 4.6h−1 Mpc
in the bottom panel of Fig. 1). If it does, we would like to
know if it increases the uncertainties on the reconstructed
values. Following, e.g., [15], the uncertainty on rLP from
ξNL is the square root of

σ2LP ¼
X
i;j

∂rLP
∂ci hðci − hciiÞðcj − hcjiÞi

∂rLP
∂cj ð9Þ

where rLP is that nonlinear combination of the ck and μkðxÞ
functions which comes from requiring ξ0NL ¼ 0. The
uncertainty on rLP−recon is given by a similar expression,
except that now we have ak coefficients and the nonlinear
combination is from solving Eq. (8). The analysis for rinfl is
similar.
Prior to deconvolving, we find that rLP−pre ¼ 92.19�

0.15h−1 Mpc; increasing this value by a factor of 1.005 (as
[12] advocate) would bring it to within about 0.35h−1 Mpc
of the linear theory value of 93h−1 Mpc. After deconvolv-
ing, we find rLP−rec ¼ 93.01� 0.14h−1 Mpc; no additional
shift is necessary. Results for rinfl are similarly encourag-
ing. This motivates extending the approach to include
additional complications that may arise when working
with biased tracers.

D. Mode-coupling: Dark matter

For dark matter, Eq. (1) ignores an additive mode
coupling term; a better model for ξNL [see [5]] sets

ξNLðsÞ ¼ ξL ⊗ Gþ ξMCðsÞ ð10Þ

where the first term is the convolution in Eq. (1) and

ξMCðsÞ ≈
∂ξLðsÞ
∂ ln s

ξ̄LðsÞ
3

where
ξ̄LðsÞ
3

¼
Z

s

0

dy
s
y2

s2
ξLðyÞ:

ð11Þ

If ξL is given by Eq. (5) then dξL=d ln r is a polynomial in
kakðr=σÞk. Although ξ̄L is also a polynomial, we should
resist the temptation to use this expression because, in
practice, we do not fit over the full range of r, so there is no
guarantee that our fit works at small r. Instead, we use the
fact that ξ̄NL ≈ ξ̄L, because the volume integral is domi-
nated by the large scales on which linear theory should be a
reasonable approximation (except around the BAO fea-
ture). Therefore we can simply use the measured ξ̄NL for
this term. Hence, to include mode coupling, in Step 1 above
we fit to

ξNLðsÞ ≈
Xn
k¼0

ck

�
μkðxÞ þ kxk

ξ̄NLðsÞ
3

�
with x≡ s

Σ
;

ð12Þ

after which we insert the fitted ck in Steps 2 and 3.

E. Biased tracers: Scale-independent bias

In practice, we only ever observe biased tracers of the
dark matter distribution. If the biased field is linearly
proportional to the matter fluctuation field, δb ¼ bδDM,
where b is a constant, then ξbðrÞ ¼ b2ξDMðrÞ. In this case,
because b does not depend on r, ξb has the same shape as
ξDM. Hence, although the bias b changes the amplitude of
the correlation function, it does not change its shape. In
terms of the polynomial based description of convolution,
this simply means that one determines the combination
b2ck. Therefore, if we are ignoring the mode coupling piece
when reconstructing, then we need make no change to
Steps 1-3.
If we assume ξbNL ¼ b2ξDMNL and that ξDMNL includes mode

coupling (this is the most common assumption, e.g., [3])
then we must replace ξ̄NL → ξ̄NL=b2 to account for the fact
that the observed ξ̄NL already includes a factor of b2. Since
b is not known a priori, we must treat it similarly to Σ, so
reconstruction will depend on both Σ and b. In practice, the
importance of the mode coupling term is tracer-dependent:
e.g., Figs. 5 and 7 of [6] suggest that the mode coupling
only matters for the most biased tracers. In addition, the
smearing for biased tracers differs slightly from that for
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dark matter [21]; this is sometimes called “velocity
bias” [22,23].

F. Scale dependent bias

The analysis is only slightly more complicated if the bias
is scale-dependent. In this case, one expects

ξbL ≈ b210ξL þ 2b10b01R2
b∇2ξL þ b201R

4
b∇2∇2ξL ð13Þ

where b10, b01, and Rb are constants [6], so the evolved
(smeared + mode-coupled) biased correlation function is

ξbNLðsÞ ≈ b210
Xn
k¼0

ckμk

þ 2b10b01ðRb=sÞ2
X
k

ckð2sμð1Þk þ s2μð2Þk Þ

þ b201ðRb=sÞ4
X
k

ckð4s3μð3Þk þ s4μð4Þk Þ

þ ∂ξbL
∂ ln s

ξ̄bNLðsÞ
3b210

; ð14Þ

where μðnÞk ≡ dnμk=dsn and ∂ξbL=∂ ln s in the final (mode-
coupling) term can also be written in terms of the ck. Thus,
scale-dependent bias simply complicates the functions that
multiply the ck coefficients.
Equation (14) is the most general expression that we use

in Step 1 of our reconstruction algorithm. It illustrates the
three bits of prior information about the background or
fiducial cosmology that are needed as one makes the
reconstruction ever more sophisticated. To undo smearing,
one only needs Σ; to include mode coupling as well, one
must know the constant bias parameter b10; and if the bias
is scale dependent, then one additionally needs the combi-
nation ðb01=b10ÞðRb=ΣÞ2. We generically expect Rb=Σ ∼ 1,
so this combination is large if b01=b10 ≫ 1. Although there
is some physical understanding of, e.g., how this ratio
depends on halo mass [24,25], for all the tests that follow,
we always set b01 ¼ 0.

III. RESULTS

We validate our methodology using the dark matter
and halo distributions at z ¼ 0.5 in the ABACUS
simulation suite [26], which provides 20 periodic boxes
each of comoving size 1100h−1 Mpc—an effective
comoving volume of nearly 27h−3 Gpc3—in which the
background cosmology is a flat ΛCDM model with
ðΩcdmh2;Ωbh2Þ ¼ ð0.1199; 0.02222Þ, and ðh; ns; σ8Þ ¼
ð0.6726; 0.9652; 0.83Þ. The associated values of rLP, rinfl
and Σ are 93, 93.4, and 4.6h−1 Mpc.
Reference [26] also provide a suite of 16 additional

simulations having the same cosmological parameters, but
with a different treatment of the small-scale physics. We
refer to these as the Emulator runs, and discuss our analyses
of these runs in Appendix C. Since the 20 ABACUS runs
are expected to be more reliable [26], we only present
results for them in the main text.

A. Initial estimates

The symbols in Fig. 3 show correlation functions
measured in bins that are 3h−1 Mpc wide for dark matter
(left), halos more massive than 8 × 1011h−1 M⊙ (middle),
and halos more massive than 3 × 1013h−1 M⊙ (right) in the
z ¼ 0.5 outputs. We will sometimes refer to these as the
DM, LM, and HM samples. The number densities of
these three types of tracers are 6.9 × 10−3 ðMpc−1hÞ3,
5.5 × 10−3 ðMpc−1hÞ3, and 8.6 × 10−5 ðMpc−1hÞ3 respec-
tively. The halo samples have large-scale bias factors—
measured from the amplitude of their power spectra at
k < 0.05h−1 Mpc—of b10 ¼ 1.3 and 2.6. The less biased
sample is similar to that considered in [12], whereas the
more massive sample is similar to that which hosts the
luminous red galaxies used for BAO measurements.
The dashed lines show the best fits of Eq. (14) with

n ¼ 9 to the mean curve traced out by these measured ξ.
We fit to the correlation function in 3h−1 Mpc bins over the
range 60–120h−1 Mpc, and use the analytic estimate of the
covariance which is described in [15,20] when fitting. (Our
results are unchanged if we use the noisier covariance

FIG. 3. Measured correlation functions for dark matter (left), low mass halos (middle) and massive halos (right) in the z ¼ 0.5 outputs
of the 20 simulations in our ensemble. Light grey curves in each panel show the correlation functions in each realization. The thick black
curve shows the mean of the measurements and the dashed red curve shows the result of fitting Eq. (14) with b01 ¼ 0 to it, over the range
60–120h−1 Mpc. Note the difference in the y-axes: massive halos are more strongly correlated.

LAGUERRE RECONSTRUCTION OF THE CORRELATION … PHYS. REV. D 104, 043530 (2021)

043530-5



matrix measured directly from the 20 simulations.)
Appendix B illustrates how the goodness of fit (e.g.,
χ2=d:o:f:) varies with different choices for the order of
the polynomial and bin size. It also shows that the rLP
values estimated from these fits are robust to reasonable
changes in these choices.
The fits in Fig. 4 all have χ2=d:o:f: ≈1, so using the fitted

parameters ck is meaningful. From these fits, we determine
where ξ0NL ¼ 0 and ξ00NL ¼ 0, and hence find rLP and rinfl.
Table I shows that they are always smaller than the linear
theory value of 93h−1 Mpc, with the largest discrepancy for
the most biased tracers. More biased tracers tend to be more
massive: they assemble their mass from larger scales and
have larger streaming motions. The former potentially
increases the effective smearing scale, and the latter
potentially modifies the mode-coupling term as well, so
mass/bias dependent shifts from linear theory are plausible.
However, with the exception of peaks-theory based models
[21–23] there is currently no first principles derivation of
this mass dependence.

B. Deconvolved/reconstructed estimates

For the reconstruction results which follow, we set
b01 ¼ 0, and we used the correct value of b10 for the
mode-coupling piece (we show results using the incorrect
value shortly). The red curves in the three panels of Fig. 4

show the result of inserting the ck obtained from fitting
the dashed curves in Fig. 3 into Eq. (5), and setting the
smearing scale Σ to the fiducial value. Propagating the
errors on the fitted ck to the ak used in Eq. (5) yields
the pink bands (which show the 1- and 2σ uncertainties).
The solid black curve, same in all the panels, shows the
linear correlation function. Our reconstructed shape is
obviously much closer to linear theory than are the original
measurements, although it tends to push the peak to larger
and the dip to smaller scales. Nevertheless, Table I shows
that the rLP and rinfl scales in the reconstructed correlation
functions are considerably closer to their linear theory
values, and the trend with mass has been removed. Note in
addition that the reconstruction procedure does not increase
the uncertainty on the inferred scales.

C. Comparison with standard reconstruction

We close this section with a direct comparison of our
Laguerre reconstruction with a more traditional algorithm.
For this, we have used what Ref. [27] refer to as the
standard reconstruction of the dark matter signal for these
same 20 ABACUS simulations. (Similar results for the LM
and HM samples are not available.)
In Fig. 5, the smooth black curve shows linear theory,

symbols with error bars show ξNL and red curve surrounded
by pink bands shows our Laguerre reconstruction ξLag

FIG. 4. Linear theory correlation functions reconstructed from the fits to the nonlinear correlations shown in the previous figure. Red
curve shows the reconstruction when using: the fiducial value of smearing, the correct value of b10 when modeling the mode coupling
term, and no correction for scale dependent bias (i.e., b01 ¼ 0). Pink bands show the result of propagating the 1- and 2-standard
deviation uncertainties on the fits to the reconstruction, as described in the main text. Dashed grey curves show reconstructions when the
smearing is assumed to be larger or smaller by 10%. Black curve, same in each panel, shows the actual linear theory shape. This shape is
quite well reconstructed, especially in between the peak and dip scales.

TABLE I. Linear point and inflection scales (in h−1 Mpc) in the pre- and post-reconstruction correlation functions,
estimated by fitting 9th-order Laguerre-based functions to the z ¼ 0.5 two-point correlation functions (bins of width
3h−1 Mpc over the range 60–120h−1 Mpc) of dark matter, low mass halos and high mass halos in an effective
comoving volume of nearly 27h−3 Gpc3. Laguerre reconstruction brings rLP and rinfl closer to their linear theory
values without inflating the errors.

Tracer b10 rLP−pre rLP−rec rinfl−pre rinfl−rec

DM 1 92.43� 0.24 92.98� 0.21 92.78� 0.26 93.42� 0.22
LM 1.3 92.24� 0.27 93.06� 0.22 92.57� 0.28 93.35� 0.24
HM 2.6 92.06� 0.46 92.97� 0.39 92.45� 0.49 93.49� 0.41
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(same as left hand panel of Fig. 4). The dashed curve is
from Ref. [27] (provided in 5h−1 Mpc bins), and the dotted
curve shows the result of normalizing it to have the same
value as linear theory at 70h−1 Mpc. These show the
correlation function measured on the reconstructed density
field. It is apparent that our simpler Laguerre-based
reconstruction is closer to the linear theory shape over a
wider range of scales.
However, what really matters is the distance scale that

one estimates from these (dashed or dotted) curves. The
standard procedure involves fitting a ΛCDM template to
the (dashed or dotted) curves. Instead, we will treat them
similarly to how we treat ξLag. Namely, we fit a 9th-order
simple polynomial to the dotted curve. Although this has
χ2=d:o:f: ¼ 9.4, indicating a bad fit, the associated rLP is
92.86� 0.32h−1 Mpc. This is a ∼0.5% improvement on
rLP−pre (cf. Table I), even though rLP was not used to
calibrate this standard reconstruction algorithm.
Although rLP−rec from our simpler Laguerre-based

reconstruction is slightly more accurate (Table I), the peak

and dip positions in ξLag are slightly shifted in opposite
directions with respect to linear theory. These shifts nearly
cancel out for rLP, but may have a greater impact on more
traditional estimators of the distance scale. Leveraging the
improved Laguerre-reconstructed shape for other distance
scale estimators is interesting, but is beyond the scope of
this work.
Finally, we note that the CPU time and memory of all of

the more traditional reconstruction algorithms [7–11]
increases with the number of objects (in the simulation
or survey), in some cases dramatically. In contrast, since
Laguerre reconstruction boils down to fitting a curve to the
measured correlation function, the associated computa-
tional timescales with the number of bins (as opposed to
number of particles). Therefore, CPU time/memory
requirements are minuscule.

IV. REALISTIC CONSTRAINTS

Both the Laguerre and standard density field reconstruc-
tions depend on input parameters. E.g., ξLag depends on an
assumed smoothing scale Σ and, if one wants to account for
mode-coupling, a bias factor b10. (Accounting crudely for
scale-dependent bias would require one additional param-
eter, b01.) Likewise, standard reconstruction assumes a
fiducial cosmology and bias prescription. The previous
section (Table I and Fig. 5) showed that both work well if
the fiducial choice is good: for ξLag, this means we used the
correct Σ and b10 and simply set b01 ¼ 0.
In real datasets, the appropriate Σ and b10 to use are not

known perfectly. Accounting for this will almost certainly
increase the error bars in Table I, and may even bias the rLP
values, for both the Laguerre and standard reconstructions.
This raises the question of how to incorporate such
systematic uncertainties on the reconstruction in a prin-
cipled way. In the Laguerre context, this is straightforward:
We first study the dependence on Σ, and then on both Σ
and b10.

FIG. 6. Degeneracy between assumed smearing scale and rLP and rinf in the reconstructed correlation functions, obtained from the
Laguerre-fits to the symbols shown in the previous figure. Solid line close to the bottom of each panel shows the linear point measured in
Laguerre fits, and crosses show the values in the associated reconstructions. The horizontal dashed lines show rLP and rinf in the linear
theory ξL. The agreement shows that our algorithm provides estimates of the distance scale that are robust to expected uncertainties in the
smearing scale.

FIG. 5. Comparison of our Laguerre reconstruction of the shape
of the dark matter correlation function with a more traditional
reconstruction from Ref. [27]: dashed curve shows their “stan-
dard” reconstruction, and dotted curve shows the result of
normalizing it to have the same value as linear theory at
70h−1 Mpc.
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A. Dependence on assumed smearing scale

For Laguerre reconstruction, the assumed smearing scale
affects the transformation from ck to ak [Eq. (6)]. The
dashed grey curves in Fig. 4 show the result of changing the
smearing scale by�10%: larger Σ results in a reconstructed
ξ that is more sharply peaked. Figure 6 explores this further
for dark matter (left) as well as low and high mass halos
(middle and right). The bar along the bottom of each panel
shows rLP−pre of Table I: the linear point estimated from the
nonlinear correlation function (i.e., where ξ0NL ¼ 0 and
ξ00NL ¼ 0 in Fig. 3). The vertical dashed line—same in all
three panels—shows the expected smearing scale for the
dark matter. This is the value one would use as the fiducial
smearing. The symbols show how the rLP and rinfl values
from the corresponding reconstructed ξLag depend on the
assumed smearing scale. If one overestimates the smearing,

then one reconstructs too much, so rLP in the reconstruction
is pushed to larger scales. However, this is a small effect:
varying our guess for the smearing scale by �20% relative
to the fiducial value only changes the reconstructed values
by �0.5%. As uncertainties on the amount of smearing are
smaller than this, Fig. 6 shows that our algorithm provides a
simple and robust method of reconstructing the distance
scale that only depends weakly on the assumed background
model. (In practice, one would marginalize over a prior
distribution of Σ values that would be survey specific.)

B. Dependence on smearing scale and halo bias

The impact of b10—which affects the strength of our
correction for mode-coupling—is also straightforward to
assess. The crosses in Fig. 7 show the result of including the
mode-coupling term but not dividing by the factor of b210,
so that the strength of this term is overestimated, for the
high mass halo sample. This pushes rLP in the reconstruc-
tions to too high values. The open solid circles show the
other extreme in which the mode-coupling term is omitted
altogether. Evidently, accounting for mode-coupling mat-
ters little. This is attractive, since ignoring mode coupling
allows one to be more agnostic about the underlying model.
Finally, Fig. 8 illustrates how rLP in the reconstructions

depends on both bias and smearing scale (results for rinfl are
similar). In both panels, the correct value rLP ¼ 93h−1 Mpc
can be recovered along the white region approximately
defined by b10 − btrue ≈ 0.7ðΣ=½h−1 Mpc� − 4.6Þ. Note that
the color scheme we have chosen shows variations in rLP of
�0.5% around the fiducial value. Evidently, 20% mises-
timates of the bias and smearing scale only affect rLP at the
0.5% level.

FIG. 7. Linear point for massive halos (b ¼ 2.6) pre- (solid
line) and post-reconstruction (filled symbols) when we ignore
mode-coupling altogether (open symbols), or we overestimate its
value by a factor of b210 (crosses).

FIG. 8. Dependence of rLP in the reconstructed correlation function on assumed values of bias and smearing scale, if we ignore scale
dependence of bias. Black curve in each panel shows b vs Σfid=ðb=bfidÞ, the locus along which one should read off rLP values so as to get
more realistic uncertainties on rLP. We set Σfid ¼ 4.6h−1 Mpc, bfid ¼ 1.3 (left) and 2.6 (right). If Σfid is also unknown then this will shift
the curves to the left or right, potentially broadening the error estimate further.
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In practice, one would quantify the effects of such
systematics on the accuracy and precision of the distance
scale estimate by marginalizing over some prior distribu-
tion of Σ and b10 values. The priors are likely to be
correlated. E.g., the clustering strength is proportional to
bσ8, whereas the smearing scale is proportional to σ8. Since
b ¼ ðbσ8Þ=σ8 ∝ σ−18 whereas Σ ∝ σ8, one might expect
realistic uncertainties on rLP to be associated with averag-
ing along a curve, b ∝ Σ−1, in the b − Σ plane.
The “observers’” version of the “theorists’” discussion

above is as follows. Suppose one used the observed PobsðkÞ
to estimate a smearing scale Σb. This will be wrong because
Pobs carries bias factors (hence the subscript b) and is
nonlinear, whereas the actual smearing scale Σ should use
PLinðkÞ of the dark matter. Since the integral which defines
Σ down-weights nonlinear scales (by a factor of 1=k2), the
nonlinear value should not be too different from that
in linear theory, so we expect Σ ¼ Σb=b to be a reasonable
approximation. This makes b—the same parameter
which affects the normalization of the mode-coupling
contribution—the only unknown. As a result, the two
dimensional plane of unknown parameters (b vs Σ)
becomes a one-dimensional curve: b=bfid ¼ ðΣb=bÞ.
The thick black curve in each panel of Fig. 8 shows

b ¼ Σfid=ðb=bfidÞ: this is the direction along which one
should read-off rLP values so as to get more realistic error
bars, if Σb=b is indeed equal to Σfid ¼ 4.6h−1 Mpc when b
is equal to the correct value bfid ¼ b10. To put it another
way, if one has a given range of input smearing scale or bias
in mind, one can bracket the uncertainty this would produce
in rLP by reading off the black curves. The symbols in
Fig. 9 show the results of this exercise for the massive halo
sample. They show how rLP and rinf in the reconstructed
ξLag change as one moves along the thick black curve
shown in the right hand panel of Fig. 8. The colored bands
show the error bars in Table I which assume b (and Σ) are

known perfectly. Some symbols lie outside these bands
illustrating how accounting for uncertainties in the param-
eters used to reconstruct can broaden the errors on the
inferred distance scale.
If Σb=bfid does not equal Σfid exactly, then this will shift

the thick black curve (to the left or right) in the b − Σ plane.
Therefore, allowing for uncertainties in the Σb=bfid ≈ Σfid
assumption will further degrade the constraints. While this
shifting and associated degradation will be survey-specific,
because lines of fixed rLP run approximately perpendicular
to the black curves in each panel, the degradation in
constraining power may not be crippling. Thus, although
assuming perfect knowledge of the input parameters
required for reconstruction (whether Laguerre or full
density field) leads to underestimates of the true uncer-
tainties on the inferred distance scale, at least for Laguerre
reconstruction, making more realistic estimates is
straightforward.

C. Relation to previous LP analyses

Before ending this section, it is worth contrasting our
methodology with previous LP analyses [12–15], which fit
ξNL to a simple polynomial and then multiply the rLP−pre
derived from it by a factor of 1þ ϵ with ϵ ¼ 0.005. For the
discussion which follows, it is useful to distinguish
between the step which multiplies rLP−pre by 1þ ϵ and
the decision to set ϵ ¼ 0.005.
We begin by noting that both the simple-polynomial and

our current Laguerre-based methods are motivated by the
fact that Eq. (1) is a good approximation. Next, we note
that there is no a priori reason for fitting a simple
polynomial to ξNL. Hence, our Step 1 which fits to
Laguerre functions is essentially no different from previous
LP-related work. What is different is that we have a reason
for fitting with Laguerres rather than simple polynomials.
However, regardless of motivation, the estimate of rLP
which results from this choice should not—and we have
checked that it does not—depend on what family of curves
we choose to fit (provided they return acceptable fits). In
this respect, both our methodology and the LP approach are
agnostic about the (in principle unknown) shape of the dark
matter correlation function. We turn therefore to Steps 2
and 3 of Laguerre reconstruction.
In effect, the factor of 1þ ϵ in previous LP work is a

crude way of correcting for the fact that rLP in ξNL differs
from that in ξL because the shape of ξNL differs from that of
ξL. In this respect, its goal is to undo the effects of the
convolution in Eq. (1) (illustrated in Fig. 1), and whatever
else causes the shapes of ξNL and ξL to differ. The goal
of Steps 2 and 3 in our algorithm here is analogous. The
assumption that the convolution is with a Gaussian singles
out Laguerre functions because they are the ones for
which the deconvolution problem is trivial. So, by using
Laguerres, we make more explicit use of the Gaussian
assumption than previous LP work.

FIG. 9. Degeneracy between assumed bias factor b10 and rLP
and rinf in the reconstructed correlation functions, as one moves
along the black curve shown in right hand panel of Fig. 8. Pink
and grey bands show the uncertainties quoted in Table I, which
assume that b10 and Σ are known perfectly: accounting for the
fact that they are not broadens the uncertainty on the distance
scale.
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The only remaining question is what to use for Σ when
deconvolving, and this is analogous to choosing a value of
ϵ, both conceptually, and statistically (because, once Σ is
fixed, the formal uncertainty on rLP both pre- and post-
reconstruction is unchanged). While this connection
between ϵ and Σ is not necessary for the LP approach,
by tying Σ to the Gaussian convolution kernel, our
Laguerre reconstructions provide some intuition into what
ϵ means, at least in the context of ΛCDM models.
Perhaps the only real difference between Laguerre

reconstruction and multiplication by a corresponding
1þ ϵ is that if the evolved correlation function does not
show a peak or a dip, then the usual LP approach cannot
estimate rLP. However, even if the Laguerre fit to ξNL does
not show a peak or dip, the reconstructed ξL may, so a
distance scale estimate may still be possible.
Nothing in the discussion so far singles out the value

ϵ ¼ 0.005 as being special. This choice was calibrated by
[12] from a set of ΛCDM simulations with CMB-motivated
values of the cosmological parameters, and σ8 ∼ 0.8 at
z ¼ 0, because it provided a corrected rLP value that was
within 0.5% of the linear theory value at all z. Figure 2 of
[16] shows that ϵ ¼ 0.005 works well—in the sense that it
corrects rLP to within 0.5% of the linear theory value—for a
wide range of cosmological parameters. Indeed, multiply-
ing the rLP−pre values in Table I by 1.005 does bring them to
within 0.5% of linear theory (although the systematic trend
with halo mass remains).
Since Σ depends on cosmology and redshift, the corre-

spondence between ϵ and Σ in the preceding paragraphs
shows that the choice ϵ ¼ 0.005 corresponds to a crude
marginalization over the interesting range of Σ values, with
the associated degradation in precision yielding a system-
atic uncertainty of 0.5%. And indeed, as Fig. 6 shows, a
0.5% systematic arising from uncertainties on the correct
value of Σ is reasonable. In effect, marginalizing over Σ and
b10 values in Fig. 8 allows one to make a slightly more
careful estimate of the distance scale and its uncertainties.

V. DISCUSSION

On BAO scales, the relation between the linear theory
correlation function ξL and the biased and nonlinearly
evolved ξbNL is understood to be quite well approximated
by the sum of a convolution term and a “mode-coupling”
term [Eqs. (1), (10), and (11)]. We show that if ξL can be
approximated by a polynomial [Eq. (5)], then ξbNL can be
written analytically using associated Laguerre functions
[Eqs. (6), (12), and (14)]. This motivates a three-step
algorithm (Sec. II. B) which approximately reconstructs
the original shape of ξL from the measured one (Figs. 3
and 4). We use the linear point scale, rLP of Eq. (2), to
quantify the accuracy and precision of the reconstruction.
Each step of our algorithm uses some prior informa-

tion about the background cosmology: depending on the

desired level of sophistication, a smearing scale, constant
bias factor, and scale dependent bias factor must be
assumed (Eq. (14) and related discussion). Our tests
indicate that, for a wide variety of tracers, only the
smoothing scale is required (Fig. 7 and related discussion).
If the required prior information is known precisely, then
our algorithm recovers rLP to subpercent precision, even for
highly biased tracers (Fig. 6 and Table I).
In practice, the required prior information is not

known perfectly. We show that the rLP estimated from the
Laguerre reconstructed correlation function is not strongly
dependent on the assumed values: 20% variations in the
smearing scale and bias factor change rLP by less than 0.5%
(Figs. 6 and 8). Our analysis shows how to include such
systematic uncertainties when quantifying the precision of
the distance scale estimate, with minimal assumptions about
the background cosmology or the nature of the bias of the
observed tracers (Fig. 9 and associated discussion).
As the prior information which our Laguerre reconstruc-

tions require is similar to that used by more traditional
reconstruction algorithms [7–11], ourmethodology provides
a simple, cheap and accurate sanity check of these more
elaborate and computationally expensive schemes. A direct
comparison of the shapewe reconstruct with that returned by
one of these more traditional algorithms is encouraging
(Fig. 5). In future work, we intend to explore the synergies
between our Laguerre reconstructions of the correlation
function shape and more traditional estimates of the BAO
distance scale. For instance, Laguerre reconstruction pro-
vides a straightforward way of estimating the degradation in
constraining power which results when the parameters on
which reconstruction depends are not perfectly well known
(Figs. 6 and 8 and associated discussion).
Although our tests were performed using distances that

were not perturbed by redshift space distortions, they
should apply essentially without change to the redshift
space monopole (the smearing scale and bias factors will be
slightly modified, but the overall structure will not). This is
the subject of work in progress. In the meantime, as our
algorithm is simple, computationally cheap and accurate,
we hope it will be useful in next generation BAO datasets.
Finally, although all our analysis used correlation func-

tions which were estimated in bins, our results suggest
useful synergy with recent “least squares” estimators which
do not require binning [28,29]. These expand the correla-
tion function in a set of basis functions, and our work shows
that generalized half-integer Laguerre functions are a
particularly interesting choice for BAO studies. We intend
to explore this synergy in future work.
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APPENDIX A: GENERALIZED LAGUERRE
FUNCTIONS

Equation (7) of the main text uses half-integer general-
ized Laguerre functions. We describe some of their relevant
properties below.

1. Explicit expressions

Starting from Lð1=2Þ
0 ¼ 1, Lð1=2Þ

1 ¼ ðx2 þ 3Þ=2,

Lð1=2Þ
−1=2ð−x2=2Þ ¼

ffiffiffi
2

π

r
erfðx= ffiffiffi

2
p Þ

x
and

Lð1=2Þ
1=2 ð−x2=2Þ ¼ ðx2 þ 1ÞLð1=2Þ

−1=2ð−x2=2Þ þ
e−x

2=2

π=2
; ðA1Þ

the others can be generated from

βLðαÞ
β ðzÞ ¼ ðαþ 2β− 1− zÞLðαÞ

β−1ðzÞ− ðαþ β− 1ÞLðαÞ
β−2ðzÞ:

ðA2Þ

Thus, the μk of Eq. (7) are

μ1ðxÞ ¼ ðxþ 1=xÞE1ðxÞ þ E2ðxÞ
μ2ðxÞ ¼ 3þ x2

μ3ðxÞ ¼ ðx3 þ 6xþ 3=xÞE1ðxÞ þ ðx2 þ 5ÞE2ðxÞ
μ4ðxÞ ¼ x4 þ 10x2 þ 15

μ5ðxÞ ¼ ðx5 þ 15x3 þ 45xþ 15=xÞE1ðxÞ
þ ðx2 þ 3Þðx2 þ 11ÞE2ðxÞ

μ6ðxÞ ¼ x6 þ 21x4 þ 105x2 þ 105

μ7ðxÞ ¼ ðx7 þ 28x5 þ 210x3 þ 420xþ 105=xÞE1ðxÞ
þ ðx6 þ 27x4 þ 185x2 þ 279ÞE2ðxÞ

μ8ðxÞ ¼ x8 þ 36x6 þ 378x4 þ 1260x2 þ 945

μ9ðxÞ ¼ ðx9 þ 45x7 þ 630x5 þ 3150x3 þ 4725xþ 945=xÞ
× E1ðxÞ þ ðx8 þ 44x6 þ 588x4 þ 2640x2 þ 2895Þ
× E2ðxÞ; ðA3Þ

where E1ðxÞ≡ erfðx= ffiffiffi
2

p Þ and E2ðxÞ≡
ffiffiffiffiffiffiffiffi
2=π

p
e−x

2=2.
When x ≫ 1 then E1ðxÞ → 1, E2ðxÞ → 0 and 1=x ≪ 1
so the μk become linear combinations of simple
polynomials.

2. Relation to simple polynomials

In previous LP analyses, simple polynomials have been

used to fit correlation functions. For integer n, LðαÞ
n is just a

polynomial of order n, so one can also express xn as a linear
combination of Laguerres:

xn

n!
¼

Xn
j¼0

ð−1Þj
�
nþ α

n − j

�
LðαÞ
j ðxÞ: ðA4Þ

Therefore, if one has fit ξNL to a simple polynomial, it is
straightforward to transform those coefficients into those
which would result from fitting to nth order Laguerre
polynomials instead. Hence, provided one accounts for the
covariances between the fitted coefficients, the shape of the
best fitting function will be the same. In the main text we
instead fit to n half-integer Laguerre functions, because
these are the functions which are singled out by Gaussian
convolution, and for which the covariance matrix of the
fitted coefficients can be easily used to provide error bands
on the deconvolution/reconstruction.

3. Centered Laguerre functions

The Laguerre reconstruction algorithm is designed to be
used over the range of scales of order 100h−1 Mpc which
are close to the BAO feature, the amplitude of which is
small. However, for x ≫ 1, the μkðxÞ can be large, and
the best-fitting coefficients can have different signs, so
the small amplitude of the correlation function at BAO
scales is the result of large cancellations. Therefore, to
avoid numerical inaccuracies, it is preferable to work with
centered values.
We do so by subtracting a fiducial scale rfid from all r

before fitting the model. I.e., we replace Eq. (5) with

ξLðrÞ ¼
Xn
k¼0

ak

�
r − rfid

σ

�
k
: ðA5Þ

Integrating this over the Gaussian smearing kernel yields

ξNLðsÞ ¼
Xn
k¼0

ak

�
Σ
σ

�
k
νkðxÞ; ðA6Þ

where

νkðxÞ ¼
Xk
l¼0

k
l

�
−
rfid
Σ

�
k−l

μlðxÞ ðA7Þ
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and the μlðxÞ are the ordinary (noncentered) moments that
appear in Eq. (6).
Since the νk are just linear combinations of the μk, the

result of fitting Eq. (A6) to the data must yield the same
best-fit curve as when rfid ¼ 0. In particular, this means that
rLP−pre and rLP−rec should not—and we have checked that
they do not—depend on the choice of rfid. The only
difference is that the coefficients of the fit are now better
behaved, and the covariance matrix of the fitted coefficients
is more stable.
Therefore, in practice, having initially estimated rLP−rec

using some rfid, we set rfid ¼ rLP−rec and rerun the fitting
routine. While this again makes no difference to the shape
of the resulting best fit curve, the coefficients of the
associated reconstructed ξLag are now more intuitive. As
ξLag is now a simple polynomial centered on rLP−rec, only
the lowest order terms contribute when r − rLP−rec ≪ σ, as
Fig. 10 illustrates. Symbols with error bars show the
measured ξNL, the dotted red curve shows the best fit to
it with n ¼ 9 in Eq. (A6), the dashed red curve shows the
reconstruction, ξLag (Eq. (A5), and the solid black curve

shows the linear theory ξLin. The dotted and dashed blue
curves show the result of truncating the sums in Eqs. (A6)
and (A5) at n ¼ 5. Evidently, the higher-order terms matter
little between the peak and dip scales, suggesting that
working with centered values is sensible.
To make the point that the coefficients of the centered

functions are intuitive, Fig. 11 shows k!ck. Except for c0,
which shifts the curve vertically without affecting its shape,
the even coefficients are much closer to zero than the odd
ones, indicating that ξLag is approximately an odd function
around rLP−rec. The fact that scaling by k! makes the odd
coefficients approximately the same, but oscillating in
sign, indicates that the odd function is approximately
sinusoidal close to rLP−rec, as is readily apparent from
looking at the shapes of ξLag and ξLin (by coincidence
ðrpk − rdipÞ=π ≈ Σ, so no further scaling was necessary to
see this correspondence).

APPENDIX B: MEASUREMENT DETAILS

As discussed extensively in [13], we must make a
number of choices when fitting a polynomial to the
measurements: these include the order of the polynomial
to be fit, the range over which to fit, and the bin size (hence
the number of bins to be fit). We discuss the bin size first.

1. Dependence on bin width

If the unbinned function is a polynomial, then correcting
for the bin size is straightforward. To see this, let ξ0ðrÞ
denote the correlation function in bins of vanishingly small
size. Then the correlation function in logarithmic bins of
width ϵ is

ξϵðrÞ ¼
Vþξ̄ðrþÞ − V−ξ̄ðr−Þ

Vþ − V−
; ðB1Þ

where V� ¼ ð4π=3Þr3�, r� ¼ rð1� ϵ=2Þ and

ξ̄ðrÞ ¼ 3

r3

Z
r

0

dx x2ξ0ðxÞ: ðB2Þ

If we parametrize ξ0 using a polynomial,

ξ0ðrÞ ¼
Xn
i¼0

airi; ðB3Þ

then

ξϵðrÞ ¼
Xn
i¼0

ai
3

3þ i
r3þi
þ − r3þi

−

r3þ − r3−
¼

Xn
i¼0

airi½1þ ciðϵÞ�;

ðB4Þ
since the term involving ratios of the rþ and r− factorizes
into the product of ri and a function of ϵ. From this it is
obvious that extrema and inflection points of ξϵ will not,

FIG. 11. Best-fit coefficients of the centered functions: even
coefficients are much smaller than odd ones, indicating that ξLag
is approximately an odd function around rLP−rec.

FIG. 10. Contribution of the first six terms to the correlation of
the dark matter pre- and post-reconstruction (dotted and dashed
cyan curves), when using centered functions (Eqs. (A6) and (A5)
with rfid ¼ rLP−rec) and σ ¼ Σ ¼ 4.6h−1 Mpc). Red curves show
the sum of all ten terms. Centering ensures that the lower order
terms dominate on scales between the peak and dip; this is
particularly evident post-reconstruction.
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in general, coincide with those of ξ0. The bias will depend
on ϵ, but also on the shape of ξ0 (i.e., on the ai). (E.g., if ξ0
has a feature—a peak or dip—that is narrower than ϵ then
wide bins are more likely to lead to a bias.)
However, if we fit the measured correlation function to

ξϵðrÞ ¼
Xn
i¼0

biri; ðB5Þ

then the fitted coefficients bi are related to the intrinsic
coefficients ai we want by

ai ¼
bi

1þ ciðϵÞ
: ðB6Þ

This shows that if ξ0 is well described by a polynomial,
then it is straightforward to correct for the bias induced by
non-zero ϵ (i.e., logarithmic bins). Keeping only the leading
order terms in ϵ yields

ci ¼
ϵ2

24
ið3þ iÞ; ðB7Þ

the scaling with ϵ2 rather than ϵ is why, in practice, the bin
size effect is small. For linear rather than logarithmic bins,
Eq. (B4) remains valid, but now ϵ ¼ Δr=r for some
constant Δr. As a result, the ci depend on r. While this
makes it more complicated to reconstruct the ai from the bi,
correcting the bias is still possible.
In practice, our bins are sufficiently small that these

corrections are not necessary, but we have included
this analysis to illustrate another useful property of a
polynomial parametrization of ξ. See [17] for why poly-
nomials are useful in the small-r limit.

The discussion above shows that it would be useful to
have an estimator of the correlation function which does
not require binning. Such estimators have recently become
available [28,29]. These parametrize the correlation func-
tion in terms of basis functions. Our work suggests that, in
the BAO context, half-integer generalized Laguerre func-
tions are a particularly useful choice.

2. Other sample-dependent choices

Reference [13] shows that the optimal choices for
estimating the BAO scale depend on the dataset (tracer
number density and survey volume) but that, typically, one
is only interested in the range that is within about
20h−1 Mpc on either side of the BAO feature, and the
polynomial should have order n ≥ 5. E.g., in [14] n ¼ 5
was sufficient, but in [15] n ¼ 8.
We have repeated the tests described in Ref. [13] and

verified that the same choices which apply when fitting an
nth order polynomial also apply for the Laguerre functions
which we describe and use in the main text. These suggest
that the range 75–115h−1 Mpc is nearly optimal. However,
because reconstruction is basically deconvolution, one
wants the edges of the fitted region to be as far from the
scales of interest as possible—certainly more than one
smearing scale from the peak and dip scales. We have
found that fitting over the range 60–120h−1 Mpc produces
no significant difference in the estimated rLP−pre, but
returns significantly better reconstructions. All the results
in this paper use this 60–120h−1 Mpc range.
The fitting uses the full covariance matrix of the errors on

the measurements. As we note in the main text, we use an
analytic estimate of this which includes both Poisson/

FIG. 12. Dependence of goodness-of-fit and estimated rLP on bin size (left to right) for a 7th-order (top) and 9th-order (bottom) μn
function (dashed) fit to ξNL of the dark matter (symbols with error bars).
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discreteness and cosmic variance contributions. The cosmic
variance contribution requires a fiducial power spectrum
and an estimate of the bias factor, but our results are not
very sensitive to these choices. E.g., there is no significant
change to our results if we multiply the fiducial power
spectrum by a smearing function expð−k2σ2Þ or not, where
σ is the fiducial value described in the main text. (We have
also compared, but do not show, results obtained using only
the diagonal elements of this matrix with those which use
the full matrix.) Figures 12 and 13 show the results. In each
figure, comparison of the top and bottom panels shows that
going to 9th-order in μn almost always returns χ2=d:o:f:
closer to unity than just 7th order (we set the number of
degrees of freedom equal to the number of bins minus the
number of parameters to be fit), and that bins of width
3h−1 Mpc are the most reliable.
Therefore, in the main text we use the fits based on the

full covariance matrix when fitting terms up to μ9 to
measurements in bins of width 3h−1 Mpc (i.e., the central
panel in the bottom row of each figure). Note, however, that
the different choices explored in this Appendix only shift
rLP by less than the size of the quoted error bar. Hence, the
demonstration in the main text that rLP shifts systematically
with halo mass is robust against reasonable changes in the
details of the fitting procedure.

APPENDIX C: THE ABACUS+EMULATOR
SIMULATION SET

The main text shows results that are based on an analysis
of 20 realizations of the ABACUS simulation set. However,
the ABACUS suite includes 16 additional realizations of
the same cosmological model that we will refer to as the
Emulator set. The only difference between the two sets is

the choice of force-softening: the original 20 simulations
use Spline softening, whereas the Emulators use Plummer
softening. Ref. [26] argue that, although spline softening is
more accurate, the difference should be irrelevant for BAO
studies. Indeed, in their BAO work, [27] use a combined
Abacusþ Emulator sample to arrive at an effective volume
of 48ðh−1 GpcÞ3.
To enable a more direct comparison of our analysis with

that in [27], we here perform all the analyses described in
the main text on the combined Abacus and Emulator
sample. Table II shows the results. (The fits have similar
χ2=d:o:f: to those in the main text.) The most noteworthy
difference with respect to the Abacus-only results in Table I
is that the estimated rLP scale in the combined Abacusþ
Emulator suite shows much larger shifts from linear theory
and a stronger dependence on halo mass.
The final column in Table II shows that, despite the

bigger shifts with respect to linear theory, our recon-
struction algorithm still works well. In fact, comparison
with the middle panel of Fig. 2 in [27] shows that our
reconstructed precision of ∼0.15% for the DM is compa-
rable to that for the traditional, more elaborate, recon-
struction schemes.

FIG. 13. Same as previous figure but for high mass halos.

TABLE II. Same as Table I in the main text, but now for rLP
only, in the combined Abacusþ Emulator sample, an effective
comoving volume of nearly 48h−3 Gpc3.

Tracer b10 rLP−pre rLP−rec

DM 1 92.19� 0.12 93.03� 0.11
LM 1.3 92.15� 0.13 93.08� 0.13
HM 2.6 91.23� 0.26 92.97� 0.24
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Figure 14—similar to Fig. 5 of the main text—
compares our Laguerre reconstruction with the standard
reconstruction provided by [27]. The agreement with the
linear theory shape is impressive. While this is reassuring,
our reconstruction works well because the mode-coupling
piece plays a significant role: in Fig. 15 open symbols,
which assume no mode-coupling, are further from linear
theory than the filled symbols. This is a qualitative differ-
ence with respect to the results in the Abacus-only
simulations (compare Fig. 7).
Presumably, these significant differences are due to

differences in the shapes of PðkÞ and ξðrÞ. (Indeed, the
dashed and dotted curves in Fig. 14 show that the tradi-
tional standard reconstruction algorithm returns rather
different shapes for the two sets.) Figure 16 shows that
although PðkÞ for the dark matter is in good agreement over
scales relevant to BAO studies k < 1h=Mpc (consistent
with Figs. 4–7 in [26]), the HM samples in the Emulator
suite have slightly more power than their Abacus

counterparts, especially at k≳ 0.3h=Mpc. The shaded
bands show the scatter; the difference between the two
simulation sets is difficult to explain with cosmic variance.
We also find that the comoving number density of the

HM sample in the emulator set is about 0.96× that in
ABACUS, consistent with the small differences shown in
Fig. 2 of Ref. [26]. It is well known that there is a close
connection between halo abundances and clustering [30].
Hence, because we define our samples using a fixed mass
cut, we expect the Emulator sample to be slightly more
strongly clustered. Presumably this is what accounts for the
small (few percent) approximately constant offset around
k ∼ 0.1h=Mpc; differences in scale-dependent bias must
contribute to the larger discrepancy at larger k. The LM
sample shows a similar level of discrepancy, both in terms
of abundance and clustering strength.
The question is: Do these small differences matter?

Figure 17 shows that the correlation functions of the two
HM samples appear to have slightly different shapes,
although the error bars (shown for Abacus-only) suggest
that the difference may just be consistent with cosmic
variance. Since the rLP methodology is supposed to be

FIG. 14. Same as Fig. 5, but for the combined Abacusþ
Emulator sample, and we only show the standard reconstruction
after normalizing to match linear theory at 70h−1 Mpc. Dashed
and dotted curves show the contributions from the individual
Abacus and Emulator simulation sets.

FIG. 15. Same as Fig. 7 but for the high mass halos in the
combined Abacusþ Emulator set. Our reconstruction algorithm
still works well, provided that we include the mode-coupling term
(filled symbols). Ignoring mode-coupling (open symbols) is
substantially closer to linear theory, but not as close as in Fig. 7.

FIG. 16. Comparison of evolved power spectra PNLðkÞ in the
Abacus and Emulator simulation sets shows good agreement for
the dark matter, but can differ by up to ten percent for our massive
halo (HM) sample. Error bars show the measured rms scatter due
to shot-noise and cosmic variance.

FIG. 17. Evolved correlation functions ξNLðrÞ of the HM
samples in the Abacus and Emulator simulation sets. Thick
curves show the ensemble-averaged value of each set.
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insensitive to shape differences arising from k2-bias, it is
possible that the Abacus and Emulator simulation sets each
give consistent estimates of rLP, but combining their
correlation functions leads to a bias (for the same reason
that one can estimate the distance scale from blue and red
galaxies separately, but one should not work with a curve
that is the average of the two correlation functions).
With this in mind, we performed all the analyses

described in the main text on the Emulator-only simula-
tions. The HM Emulator-only sample returns rLP ¼
90.76� 0.46h−1 Mpc, compared to 92.06h−1 Mpc for

the Abacus-only sample in the main text. In fact, a careful
look at Fig. 17 shows that, even by eye, one would have
guessed that the Emulator rLP would be shifted to smaller
scales (the peak and dip scales are both smaller). The
difference is substantially larger than the error bars,
which we believe account for cosmic variance between
the Abacus and Emulator suites. Therefore, we do not
understand the origin of these differences. However,
we do know that the Abacus spline-softening is more
accurate [26]. This is why, in the main text, we only show
results based on the more accurate Abacus simulations.
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