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We consider warm inflation with a Dirac-Born-Infeld (DBI) kinetic term in which both the non-
equilibrium dissipative particle production and the sound speed parameter slow the motion of the inflaton
field. We find that a low sound speed parameter removes, or at least strongly suppresses, the growing
function appearing in the scalar of curvature power spectrum of warm inflation, which appears due to the
temperature dependence in the dissipation coefficient. As a consequence of that, a low sound speed helps to
push warm inflation into the strong dissipation regime, which is an attractive regime from a model building
and phenomenological perspective. In turn, the strong dissipation regime of warm inflation softens the
microscopic theoretical constraints on cold DBI inflation. The present findings, along with the recent
results from swampland criteria, give a strong hint that warm inflation may consistently be embedded into
string theory.
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I. INTRODUCTION

Warm inflation (WI) [1–3] is an alternative dynamical
realization for conventional cold inflation (CI) [4–8] during
which the inflaton field dissipates its vacuum energy into an
ambient radiation bath, thus eliminating the necessity of a
postinflationary reheating process [9] and leading into
different possibilities for a graceful exit mechanism [10].
Such a nonequilibrium dissipative particle production
process acts to slow the motion of the inflaton field,
allowing the embedding of steeper potentials in the WI
context and helping to solve, for example, the so-called
η-problem [11–13]. In WI the thermal fluctuations play the
dominant role in the formation of the seeds for the large
scale structure (LSS) by producing a quasi scale-invariant
spectrum of primordial curvature perturbations. At the
same time, the shape of the produced spectrum depends
on the field content of the model, leading to signatures able
to make it distinguishable from the one produced in CI
[14–22]. Furthermore, the rich dynamics of WI allows it to
address/alleviate some of long-lasting problems related to

the (post-)inflationary phase in the CI scenarios [23–34]
(see also Refs. [35–37] for related work).
Despite its tremendous success, earlier particle physics

realizations of WI were confronted with two important
difficulties. The first one was that achieving a thermal
radiation bath during inflation can result in potentially large
thermal corrections to the inflaton’s potential, thus, hinder-
ing the slow-roll dynamics. Earlier WI model building
constructions circumventing this problem made use of
models with large field multiplicities [38–41], making
them technically unappealing. This issue was later resolved
with the introduction of a new class of WI model building
realization able to sustain a nearly-thermal bath, yet with a
small number of field species [42]. These type of models
were dubbed “warm little inflaton (WLI)” models. The
second difficulty was that the backreaction of the thermal
radiation bath on the inflaton power spectrum due to a
temperature dependent dissipation coefficient leads to the
appearance of growing/decreasing modes in the scalar of
curvature power spectrum [20]. As a consequence of this,
consistency with the observations could only be achieved in
weak dissipation regimes of WI, thus preventing WI from
going into a strong dissipation regime. However, the strong
dissipation regime of WI is particularly appealing from
both a theoretical and effective field theory point of view. In
particular, the strong dissipation regime of WI can naturally
result in a smaller energy scale inflation with sub-Planckian
field excursions. These are features that have been attract-
ing considerable attention, especially more recently,
e.g., based on the swampland program aiming at finding
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effective field theories which can consistently be embedded
in quantum gravity theories and the role played by WI in
achieving this goal [43–50]. This issue was also partially
addressed recently by building two distinct explicit WI
models, namely the “variant of warm little inflaton”
(VWLI) [13] and the “minimal warm inflation” (MWI)
[51,52], utilizing different field contents in each construc-
tion. In the VWLI, the strong dissipative regime is obtained
by interpolating between decreasing and growing modes,
while in the MWI it is achievable only for some particular
form of potentials, while growing/decreasing modes for the
power spectrum can still exist in both cases.
As far as well-motivated theoretical field theory con-

structions for inflation are concerned, there has been
considerable progress towards this goal in recent years,
with the construction of several concrete string inflation
models for instance (for reviews see e.g., Refs. [53,54] and
references therein), with particular attention given to brane
inflation scenarios.1 Dirac-Born-Infeld (DBI) inflation is
one such string theoretic motivated model in which the
inflaton is interpreted as a modulus parameter of a D-brane
propagating in a warped throat region of an approximate
Calabi-Yau flux compactification [57,58]. Hence, the
effective action for DBI inflation contains a special form
of the DBI kinetic term. The DBI kinetic term introduces
some novel speed limits on the inflaton field velocity and
helps in keeping it near the top of potential, even when it is
too steep, thus resulting in the slow-roll phase through a
low sound speed, instead of from dynamical friction due to
expansion. A low sound speed, smaller than unity, allows
the inflaton field to have a sub-Planckian evolution, even
for steep potentials, thus circumventing the η-problem [59].
Moreover, fluctuations also propagate with a low sound
speed parameter, resulting in both a smaller tensor-to-scalar
ratio and a significant non-Gaussianity, which can poten-
tially be distinguishable from other scenarios [57,58].
Although DBI inflation models were greatly successful,

it was realized that the microscopic bound on the maximal
field variation due to compactification is able to put strong
constraints on the throat volume [60] and bulk volume [61].
These issues, together with the Lyth bound, lead to a model
independent upper bound on the tensor-to-scalar ratio which
turns out to be inconsistent with the stringent observational
lower bound on gravitational waves that are produced by the
inflationary dynamics [62]. Moreover, a viable reheating
process, which typically involves brane/antibrane annihila-
tion (see e.g., Refs. [63–66] for earlier studies on reheating in
brane inflation) is highly constrained due to the overpro-
duction of long-lived Kaluza-Klein (KK) modes [67] (note,

however, that subsequentlyRefs. [68–71] argued thatwarped
KK modes can instead serve as dark matter candidates).
Reference [72] showed that the cold DBI inflation model

can be reconciled with the observations, removing the
aforementioned inconsistencies, provided that the strong
dissipation regime of Dirac-Born-Infeld warm inflation
(DBIWI) is achieved. This is also because the WI scenario
violates the Lyth bound. However, the work done in
Ref. [72] made use of a phenomenological dissipation
coefficient, assuming it to be independent of the temper-
ature.2 However, almost all explicit particle physics real-
izations of WI result in an explicit temperature dependent
dissipation coefficient [13,39,40,42,51,75]. Besides this,
pushing WI into the strong dissipation regime is challeng-
ing due, again, to the aforementioned problem related to the
appearance of a growing/decreasing function in the power
spectrum, which tends to lead to results inconsistent with
the observations, e.g., for the spectral tilt [76]. Although
there have been some previous papers considering DBIWI
realizations [72,77,78], none of them made an investigation
of the role of the sound speed on the backreaction of the
radiationperturbations on the inflatonones. Thus, noneof the
earlier references on DBIWI have studied how the growing/
decreasing function in WI gets affected by the sound speed,
which requires a detailed study of the perturbations in
DBIWI. Taken all together, the purpose of this paper is to
cover this issue and to properly understand the primordial
perturbations in DBIWI and the consequences that it brings
to model realizations, as far as the observations constraints
are taken into account.Our results show thatDBIWI is able to
go into the strong dissipation regime for well-motivated field
theory realizations of WI that result in explicit temperature
dependent dissipation coefficients. Our results also shed new
light on the potential use ofDBI type ofmodels in the context
of WI.
The outline of the remainder of this paper is as follows.

In Sec. II, we present the dynamics of DBIWI realization
and investigate the behavior of the dynamical parameters in
the model. Then, in Sec. III, we study the perturbation
equations for the DBIWI and present the backreaction of
the thermal radiation bath on the inflaton perturbations and
scalar of curvature power spectrum. In Sec. IV we discuss
the results obtained for the DBIWI and demonstrate the
effect of a low sound speed on the spectrum of DBIWI.
Finally, in Sec. V, we give a summary of the results and
conclude by discussing the implications of the DBIWI
realization from a model building perspective. Throughout
this paper, we work with the natural units, in which
Planck’s constant, the speed of light and Boltzmann’s

1There are two realizations of brane inflation, namely ultra-
violet (UV) and infrared (IR) models, depending on whether the
brane is moving towards or away from the tip of the throat. In this
paper, we consider an UV model (see Refs. [55,56] for IR
models).

2The stringent observational lower bound on tensor-to-scalar
ratio found in Ref. [62] can be relaxed in other DBI setups
without dissipation, for instance, in multibrane [73] and multi-
field [74] models.
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constant are set to 1 and we also work with the reduced
Planck mass, MPl ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
≃ 2.4 × 1018 GeV.

II. DBIWI BACKGROUND DYNAMICS

The dynamical realization of WI is different from the CI
one due to the presence of radiation and energy exchange
between the inflaton field and the radiation energy density.
Hence, the total energy density of the Universe in WI
contains both the inflaton field and a primordial radiation
energy density, i.e., ρ ¼ ρϕ þ ρr, where ρϕ and ρr are the
inflaton field and the radiation energy densities, respec-
tively. Even when ρr is subdominated at the beginning and
throughout inflation, i.e., ρr ≪ ρϕ, the underlying dissipa-
tion effects generating this radiation energy density are still
able to modify the inflationary dynamics and the perturba-
tions in a nontrivial way in WI. The inflaton field and
radiation energy density form a coupled system in the WI
dynamics due to dissipation of energy out of the inflaton
system and into radiation. In the spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) metric, the back-
ground evolution equations are, respectively, given by

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ −ϒðρϕ þ pϕÞ; ð2:1Þ

_ρr þ 3Hðρr þ prÞ ¼ ϒðρϕ þ pϕÞ; ð2:2Þ

where pϕ and pr are the inflaton and radiation pressures,
respectively, and ϒ is the dissipation coefficient, which in
general can be a function of both the inflaton field ϕ and
temperature T of the produced radiation bath.
In the DBIWI realization, the inflaton is a modulus

parameter of a D-brane moving in a warped throat region
which dissipates its vacuum energy into radiation through
Eqs. (2.1) and (2.2), while its evolution is effectively
governed by the following Lagrangian density,

LDBI ¼ f−1ðϕÞ½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2fðϕÞX

p
� − VðϕÞ; ð2:3Þ

where X ¼ − 1
2
∂μϕ∂μϕ, with VðϕÞ being the potential

function for the inflaton and fðϕÞ is the redefined warp
factor. The form for the warp factor function can be
phenomenologicaly deformed depending on the desired
model construction. For the well-studied anti–de Sitter
throat [57,58] the warp factor function is given by fðϕÞ ¼
f0=ϕ4 with f0 being a positive constant. For definiteness,
this is the form for the warp factor function that we will be
assuming in this work.
Varying the action with respect to the metric, the energy

density ρϕ and the pressure pϕ of the DBI field are given,
respectively, by

ρϕ ¼
_ϕ2

csð1þ csÞ
þ VðϕÞ; ð2:4Þ

pϕ ¼
_ϕ2

1þ cs
− VðϕÞ; ð2:5Þ

where cs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2XfðϕÞp ¼ γ−1 is the sound speed, which

is smaller than unity as a consequence of the nontrivial
kinetic structure of the DBI Lagrangian, with γ similarly
being the Lorentz factor in five dimensions. Inserting
Eq. (2.4) in Eqs. (2.1) and (2.2), the dynamical equation
for the inflaton field in the DBIWI is found to be given by

ϕ̈þ 3c2sHð1þQÞ _ϕþ c3sV 0 þ f0

2f2
ð1 − 3c2s þ 2c3sÞ ¼ 0;

ð2:6Þ

while for the radiation energy density it is

_ρr þ 4Hρr ¼ c−1s ϒ _ϕ2; ð2:7Þ

where Q ¼ ϒ=ð3HÞ gives a measure for the strength of the
dissipative processes in WI. Equation (2.6) for the inflaton
background evolution can also be obtained from the
following covariant equation (when taking ϕ as a homo-
geneous field),

c−1s □ϕ − c−3s fðϕÞð∇μ∇νϕÞð∇μϕ∇νϕÞ − V 0

−
f0ðϕÞ
2f2ðϕÞ ðc

−3
s − 3c−1s þ 2Þ ¼ −c−1s ϒuμ∂μϕ: ð2:8Þ

In the slow-roll regime, ϕ̈ ≪ H _ϕ and _ρr ≪ 4Hρr,
i.e., the inflaton is slowly varying and radiation is produced
in a quasistationary way. Both slow-roll conditions hold as
long as

ϵs ≡ d ln cs
dN

¼ _cs
Hcs

≪ 1; ð2:9Þ

with ϵs quantifying the variation of the sound speed, along
with the usual condition that the standard slow-roll param-
eters in WI are small. Then, under the slow-roll approxi-
mation, the background equations reduce to

_ϕ ≃ −
csV 0

3Hð1þQÞ ; ρr ≃
3Q _ϕ2

4cs
; 3H2 ≃

VðϕÞ
MPl

:

ð2:10Þ

To study the model quantitatively, we need to fix the
functionality of the potential and of the dissipation coef-
ficient. In this paper, we consider a monomial power-law
potential for the inflaton,

VðϕÞ ¼ V0

2n

�
ϕ

MPl

�
2n
; ð2:11Þ
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where V0 is the amplitude of the potential and n is a real
number. Moreover, the dissipation coefficient can be very
well parameterized by3

ϒðϕ; TÞ ¼ CϒTcϕpM1−p−c; ð2:12Þ

where Cϒ is a constant, T is the temperature, M is some
appropriate mass scale and both quantities can be associated
with the specifics of the microscopic model parameters
leading to Eq. (2.12) (see, e.g., Refs. [40,42,52,75,81,82]
for some explicit examples of quantum field theory model
derivations for dissipation coefficients used in WI).
The scalar of the curvature power spectrum in WI

[17–20] has a strong dependence on the dissipation ratio
Q and on the temperature over the Hubble parameter ratio,
T=H. One also notes that strictly speaking T=H can also be
considered as a function of Q, once we use the CMB
amplitude value to constrain the scalar power spectrum.
In this case, Q can be considered the relevant quantity

parametrizing the WI dynamics. It is then useful to look at
the dynamical behavior of these quantities during inflation.
In particular, the analysis of their behavior is important to
determine regimes where the spectral tilt of the scalar of
curvature power spectrum increases (leading potentially to
a blue-tilted spectrum) or decreases (and that can lead to a
red-tilted spectrum). Such an analysis is particularly rel-
evant in modeling WI models and constraining them with
the observations [76]. Furthermore, since Q appears
explicitly in the slow-roll parameters of WI, the behavior
ofQ during WI is important for determining regimes where
the dynamics are consistent and can have a graceful exit
[10]. In the case of DBIWI, the slow-roll coefficients also
depend on the sound speed cs; hence, for completeness, we
also study its behavior here. During slow-roll we find that
the dissipation ratio Q, the temperature over Hubble
parameter T=H, and the sound speed cs in DBIWI evolve
with the number of e-folds N, respectively, as

d lnQ
dN

¼ csf½4þ cð1þ c2sÞ�ϵV − cð1þ c2sÞηV − ð2cð1 − c2sÞ þ 4pÞκVg
4 − cþ 4Qþ cc2sQ

; ð2:13Þ

d lnðT=HÞ
dN

¼ csfð6þ c2s þ 5Qþ cð−1þ c2sQÞÞϵV − ð1þ c2sÞð1þQÞηV þ ½pðc2sQ − 1Þ − 2ð1þQÞð1 − c2sÞ�κVg
ð1þQÞð4 − cþ 4Qþ cc2sQÞ ;

ð2:14Þ

d ln cs
dN

¼ csð1 − c2sÞfð−4þ cþ cQÞϵV − ð−4þ cÞð1þQÞηV − 2½4 − cþ ð4þ cþ 2pÞQ�κVg
ð1þQÞð4 − cþ 4Qþ cc2sQÞ ; ð2:15Þ

where ϵV ¼ M2
PlðV 0=VÞ2=2 and ηV ¼ M2

PlV
00=V are the

usual slow-roll inflaton potential parameters and
κV ¼ M2

PlV
0=ðϕVÞ.

We note from Eqs. (2.13)–(2.15) that the denominator of
those expressions is always positive. This is because the
power c in the temperature dependence of the dissipation
coefficient satisfies −4 < c < 4 (see e.g., Refs. [83–85]).
On the other hand, the sign of the numerator in the above
expressions will depend on both the form of the dissipation
coefficient and on the inflaton potential exponent n. As
examples of representative cases of WI models, we can
consider two cases of dissipation coefficient that are well
motivated microscopically: (a) c ¼ 1, p ¼ 0, i.e., a linear in
the temperature dependence for the dissipation coefficient,
ϒ ∝ T, that was first derived in Ref. [42] in the case of the
WLI, and (b) c ¼ 3, p ¼ 0, i.e., a cubic power in the
temperature dependence for the dissipation coefficient,
ϒ ∝ T3, derived recently in Refs. [51,52] in the case of

the MWI. From the Eqs. (2.13)–(2.15) we find that in case
(a) bothQ and T=H are growing functions with the number
of e-folds for n > 1=3 for all cs, while cs initially decreases
for n < 3 when Q ≪ 1, and for Q > 1 it will increase for
n > 13=7 and decreases otherwise. In case (b)Q and cs are
decreasing functions with the number of e-folds whenever
n < 3 and c2s < 1=3 or n > 3 and c2s > 1=3, and increasing
functions with N otherwise, while T=H is in general a
growing function with N. Both cases [(a) and (b)] then
reinforce the WI condition T=H > 1 throughout the infla-
tionary dynamics.

III. PERTURBATIONS FOR DBIWI

Let us describe the scalar perturbation equations in
DBIWI. We start with the fully perturbed FLRW metric,

ds2 ¼ −ð1þ 2αÞdt2 − 2a∂iβdxidt

þ a2½δijð1þ 2φÞ þ 2∂i∂jγ�dxidxj; ð3:1Þ

where α, β, γ and φ are the spacetime-dependent metric
perturbation variables. In WI the evolution of field

3See also Refs. [79,80] for some earlier studies also consid-
ering this functional form for the dissipation coefficient in WI.
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fluctuations δϕ, which is effectively described by a sto-
chastic evolution, is determined by a Langevin-like equa-
tion [17,20]. In the case of DBIWI, perturbing the

covariant equation (2.8) around the background, i.e.,
Φðx; tÞ ¼ ϕðtÞ þ δϕðx; tÞ, the corresponding Langevin
equation for δϕ reads

δϕ̈þ 3Hð1þQ − ϵsÞδ _ϕþH2

�
z2 þ 3_f

2Hf
½ð1 − c2sÞð1þQÞ − ϵs� −

1 − 3c2s þ 2c3s
H2

�
f02

f3
−

f00

2f2

�
þ c3sV 00

H2

�
δϕ

þ c2sδϒ _ϕ ¼ c3sðξq þ ξϒÞ þ ½ð3c−2s − 1Þϕ̈þ 3Hð1þQÞ _ϕ�αþ ð _αþ c2sκÞ _ϕ −
3f0

2f2
ð1 − c2sÞð1 − c−2s Þα; ð3:2Þ

which is also supplemented by the first-order pertur-
bation equations for the radiation energy density, δρr,
and for the radiation momentum perturbation, Ψr, given,
respectively, by

δ_ρr þ 4Hδρr ¼
k2

a2
Ψr þ _ρrαþ 4

3
ρrκ þ δQr; ð3:3Þ

and

_Ψr þ 3HΨr ¼ −
δρr
3

−
4

3
ρrαþ Jr: ð3:4Þ

In the Eqs. (3.2), (3.3), and (3.4), we have that

δϒ ¼ 3HQ

�
cδρr
4ρr

þ pδϕ
ϕ

�
; ð3:5Þ

δQr ¼ c−1s δϒ _ϕ2 þ 3H2Qc−3s ð1 − c2sÞ
_f

2Hf
_ϕδϕ

þ 3c−3s ð1þ c2sÞHQ _ϕδ _ϕ

− 3c−3s ð1þ c2sÞHQ _ϕ2α; ð3:6Þ

Jr ¼ −c−1s ϒ _ϕδϕ; ð3:7Þ

where z ¼ csk=ðaHÞ, κ ¼ 3ðHα − _φÞ þ k2χ=a2 and
χ ¼ aðβ þ a_γÞ. Moreover, in Eq. (3.2), ξq;ϒ ≡ ξq;ϒðk; tÞ
are stochastic Gaussian sources related to quantum and
thermal fluctuations with appropriate amplitudes chosen
such as to match the analytical derivation for the scalar of
curvature power spectrum in WI [18]. This leads to ξϒ and
ξq both having zero mean and they satisfying two-point
correlation functions given, respectively, by

hξϒðk; tÞξϒðk0; t0Þi ¼ 2ϒT
a3

δðt − t0Þð2πÞ3δðkþ k0Þ; ð3:8Þ

hξqðk; tÞξqðk0; t0Þi ¼ H2ð9þ 12πQÞ1=2ð1þ 2n�Þ
πa3

× δðt − t0Þð2πÞ3δðkþ k0Þ; ð3:9Þ

where n� represents the statistical distribution state for the
inflaton quanta at the Hubble radius [18] (see also
Appendix B of Ref. [43] for details).
The set of perturbation equations (3.2), (3.3), and (3.4)

are gauge-ready equations. They can be used with any
appropriate gauge choice or also be worked out in terms of
gauge-invariant quantities [86,87]. For instance, they can
be taken in the Newtonian-slicing (or zero-shear) gauge
χ ¼ 0, with the relevant metric equations becoming

κ ¼ 3

2M2
Pl

ðc−1s _ϕδϕ − ΨrÞ; ð3:10Þ

α ¼ −φ; ð3:11Þ

_φ ¼ −Hφ −
1

3
κ: ð3:12Þ

It can also be easily checked that Eq. (3.2) reduces to the
standard Langevin equation in WI [17,20] for cs ¼ 1, i.e.,
ϵs ¼ 0. As is clear from Eqs. (3.2) and (3.3), the term δϒ is
responsible for coupling the inflaton perturbations with
those of the radiation whenever c ≠ 0 and which is known
to lead to a growing mode for the resulting power
spectrum [20].

A. The scalar of curvature power spectrum

Given the perturbation equations, Eqs. (3.2)–(3.4), the
scalar power spectrum is determined from the comoving
curvature perturbation R,

ΔRðkÞ ¼
k3

2π2
hjRj2i; ð3:13Þ

where “h� � �i” means averaging over different realizations
of the noise terms in Eq. (3.2) (see, for instance
Refs. [17,19,20] for details of the numerical procedure).
Given an appropriate gauge, R is composed of con-
tributions from the inflaton momentum perturbations
Ψϕ ¼ −c−1s _ϕδϕ and from the radiation momentum pertur-
bations Ψr,
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R ¼
X
i¼ϕ;r

ρi þ pi

ρþ p
Ri; ð3:14Þ

Ri ¼ −φ −
H

ρi þ pi
Ψi; ð3:15Þ

with p ¼ pϕ þ pr, ρϕ þ pϕ ¼ c−1s _ϕ2 and ρr þ pr ≃
4ρr=3 ¼ c−1s Q _ϕ2.
An explicit analytic expression for the scalar of curvature

power spectrum can be obtained when neglecting the
coupling between inflaton and radiation perturbations
[i.e., taking c ¼ 0 in Eq. (3.5)] and it was determined
in Ref. [18]. The result in this case is well approximated
by [18]

ΔR ≃
�

H2�
2π _ϕ�

�
2
�
1þ 2nBE þ 2

ffiffiffi
3

p
πQ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ�
p T�

H�

�
; ð3:16Þ

where nBE is the Bose-Einstein distribution and the effect of
sound speed parameter is encoded in the inflaton field
velocity through Eq. (2.10). One should note that in
DBIWI, fluctuations are frozen at the sound horizon, where
cs�k� ¼ a�H�, rather than at the Hubble radius, where
k� ¼ a�H�. In general we can also replace nBE in Eq. (3.16)
by n�, representing the statistical distribution state of the
inflaton at the sound horizon, which might not be neces-
sarily that of thermal equilibrium. The form given by
Eq. (3.16) is typically the result used in most of the recent
literature in WI when the growing function is absent.
We want to first understand the effect of the coupling

between inflaton and radiation perturbations and how a
sound speed cs < 1 might change the results for the power
spectrum in DBIWI. To possibly do something analytical
and to obtain a feeling for these effects, we can start by
considering some simplifying assumptions. Since we are
interested in the strong dissipation regime Q > 1, we can
start by neglecting the contribution of quantum fluctuations
to the power spectrum. For Q > 1, the contribution from
the thermal stochastic fluctuations ξϒ in Eq. (3.2) domi-
nates over that from the quantum fluctuations ξq. Moreover,
we can also analytically solve Eq. (3.2) explicitly by
neglecting the slow-roll order corrections (and likewise
the metric contributions which also give slow-order cor-
rections only). Under these simplifying assumptions, the
authors in Ref. [20] have explicitly shown that the power
spectrum grows with Q� like ΔR ∝ ΔR;c¼0Q3c� , with

ΔR;c¼0 ≃
ffiffiffi
3

p

4π
3
2

H3�T�
_ϕ2
�

Q
1
2�; ð3:17Þ

when taking Q� ≫ 1 in Eq. (3.16). By utilizing the same
techniques developed in Ref. [20], but now adapted to the
perturbation equations in DBIWI, we arrive at the result,
when Q� ≫ 1, that ΔR is now given by

ΔR ≃ ΔR;c¼0

�
Q�
Qc

�
3cc2s�

; ð3:18Þ

whereQc is a function of both c and cs. The result given by
Eq. (3.18) explicitly shows that cs < 1 can compensate for
the result of a growing scalar spectrum amplitude with large
Q and whenever c > 0 (or, likewise, a decreasing ampli-
tude when c < 0). The approximations assumed in
Ref. [20] allow us to solve for the inflaton perturbations
and hence, they help to find an analytical expression for
ΔR; it has been shown in Ref. [19] that these approxima-
tions tend to overestimate the effect of the coupling
between the inflaton and radiation perturbations. By
accounting for the full expressions, i.e., not dropping all
slow-roll order terms in the equations, the dependence of
ΔR on Q� tends to be more suppressed, with a smaller
power in Q�. Hence, the results from the (numerical)
solution for the full perturbation equations shows that
ΔR ∝ Qβ

�, with β < 3c, when cs ¼ 1. This result is also
observed in our analysis shown in the next section, showing
that β < 3cc2s� also holds here in the DBIWI. However, the
effect is still large enough to make the spectrum depart
considerably from the result given by Eq. (3.16). By
explicitly numerically solving the set of perturbations
equations, as in Ref. [19], the result of the coupling
between inflaton and radiation perturbations can be
expressed as an overall correction to Eq. (3.16), which
modifies it to

ΔR ¼
�

H2�
2π _ϕ�

�
2
�
1þ 2nBE þ 2

ffiffiffi
3

p
πQ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ�
p T�

H�

�
GðQ�Þ;

ð3:19Þ
where GðQ�Þ accounts for the effect of the coupling of
the inflaton and radiation fluctuations. Some explicit
forms for GðQ�Þ have been given in the literature, depend-
ing on the form of the dissipation coefficient in WI
[17,19,32,42,43,47,50,76]. In the next section we will give
results for GðQ�Þ in the DBIWI case for some of the most
representative dissipation coefficient forms used in recent
literature and we will also explicitly see how a cs < 1
effectively suppresses the effects of a growing Q� in the
amplitude of the scalar power spectrum. But before going
into that analysis, let us also derive some useful results
concerning the spectral tilt in DBIWI.

B. The spectral tilt ns in DBIWI

From Eq. (3.19) and also using Eqs. (2.13)–(2.15), we
can explicitly find expressions for the spectral tilt ns,

ns − 1 ¼ d lnΔRðkÞ
d ln k

≃
d lnΔRðkÞ

dN
; ð3:20Þ

which in the weak and strong dissipation regimes of
DBIWI are given, respectively, by
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ðns − 1ÞjQ�≪1 ¼
cs�
4 − c

f−½10þ 7c2s� − cð3þ 2c2s�Þ�ϵV
þ ½−1þ ð7 − 2cÞc2s��ηV
þ ½ð14 − 4cÞð1 − c2s�Þ − p�κVg; ð3:21Þ

and

ðns − 1ÞjQ�≫1

¼ −
cs�

2ð4þ cc2s�ÞQ�
f½18 − cð1 − c2s�Þ�ϵV

þ ½2þ cþ ð−14þ 5cÞc2s��ηV
þ 2½cð1 − c2s�Þ þ 2ð−7þ pÞ þ 7ð2þ pÞc2s��κVg
þ cs�
4þ cc2s�

fð4þ cþ cc2s�ÞϵV − cð1þ c2s�ÞηV

− ½2cð1 − c2s�Þ þ 4p�κVg
G0ðQ�Þ
GðQ�Þ

: ð3:22Þ

Note that in the case of the primordial inflaton potential of
the form Eq. (2.11), we have in Eqs. (3.21) and (3.22) that

ϵV ¼ 2n2M2
Pl

ϕ2�
; ð3:23Þ

ηV ¼ 2nð2n − 1ÞM2
Pl

ϕ2�
; ð3:24Þ

κV ¼ 2nM2
Pl

ϕ2�
: ð3:25Þ

In deriving the Eqs. (3.21) and (3.22) for ns we have also
considered that in WI that T�=H� ≫ 1 (in particular,
T�=H� ≫ 1 can be explicitly verified in the examples to
be considered in the next section). Finally, in the regime
T�=H� ≪ 1 and Q� ≪ 1 we recover the cold inflation
standard result, ns − 1 ¼ −6ϵV þ 2ηV . We can note from
Eq. (3.22) that when cs� ≪ 1 (in the absence of the growing
mode, G0ðQÞ → 0) we have that ns − 1 ∝ −1=Q and the
spectral tilt will tend to be red-tilted for large Q. However,
in the presence of the growing mode, the last term in
Eq. (3.22) dominates at large Q and it will tend to drive the
spectrum to be blue-tilted (for G0ðQÞ > 0). To better
illustrate the latter case, let us consider a few relevant
WI dissipation terms that have commonly been used in the
literature, namely, (a) the linear in the temperature dis-
sipation coefficient [42], with c ¼ 1, p ¼ 0; (b) the cubic in
the temperature dissipation coefficient, with c ¼ 3, p ¼ 0
(e.g., from Ref. [51]), and (c) the dissipation coefficient
with c ¼ 3; p ¼ −2 (see, e.g., Refs. [40,41]). For definite-
ness, we will also consider the example of a primordial
potential with a quartic inflaton potential (n ¼ 2), which
has been the primordial potential mostly considered with
these dissipation coefficients in WI. We will also assume
that the growing mode function is well described by a
polynomial function in the dissipation ratio Q, with the

leading term for Q ≫ 1 of the form GðQÞ ∝ Qβ. Let us see
the results for each of these three cases separately.

1. Case (a)

For case (a), with c ¼ 1, p ¼ 0, we obtain for Eq. (3.22)
that

ðns − 1ÞjQ�≫1 ≃
−2cs�½ð17þ c2s�Þ − 2βð5þ c2s�Þ�

ð4þ c2s�ÞQ�ðϕ�=MPlÞ2
: ð3:26Þ

Hence, for cs� ≪ 1 we have that the spectral tilt will turn
blue, i.e., ns − 1 > 0, if β > 1.7, while for cs� ¼ 1, the
spectral tilt is blue forβ > 1.5.We recall that for this case [42]
we have that β ≃ 2.315 (for cs� ¼ 1), thus, for large Q this
dissipation coefficient with a quartic inflaton potential will
always disagree with the observations. But from Eq. (3.18),
we expect that β will decrease proportional to c2s . Thus, we
need at least c2s� ≲ 1.7=2.315 ∼ 0.7 for the model to be able
to sustain a large dissipation DBIWI regime and to have a
red-tilted scalar of curvature power spectrum consistent with
the observations. This expectation will be confirmed by our
numerical results shown in Sec. IV.

2. Case (b)

For case (b), with c ¼ 3, p ¼ 0, we obtain for Eq. (3.22)
that

ðns − 1ÞjQ�≫1 ≃
−2cs�½ð23þ 31c2s�Þ − 2βð−1þ 3c2s�Þ�

ð4þ 3c2s�ÞQ�ðϕ�=MPlÞ2
:

ð3:27Þ
Hence, for cs� ≪ 1 we have that the spectral tilt (different
from the previous case) will always be red, since in this
case ns − 1 ∝ −ð23þ 2βÞ. When cs� ¼ 1, we see from
Eq. (3.27) that ns − 1 ∝ −ð54 − 4βÞ and the spectral tilt is
thus blue for β > 13.5. But in this case [76] we have that
β ≃ 4.33 (for cs� ¼ 1), hence for large Q this dissipation
coefficient with a quartic inflaton potential can quite
robustly sustain a red-tilted spectrum. In fact, the effect
of having a cs� < 1 here can potentially make the spectrum
too red tilted to be consistent with the observations, since a
value of cs� < 1 would make the exponent β smaller and
lead to a redder spectrum. This is confirmed by our
numerical results shown in Sec. IV. Since this type of
dissipation coefficient already leads to quite satisfactory
results when compared to the observations [51], even in the
strong dissipation regime of WI, it does not benefit from a
DBIWI construction (at least in the context of monomial
chaotic inflaton potentials).

3. Case (c)

It is useful to compare case (b) with the results for
case (c), when c ¼ 3; p ¼ −2, in which case the dissi-
pation coefficient depends on the temperature but also
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on the inflaton amplitude. In this case, we obtain for
Eq. (3.22) that

ðns− 1ÞjQ�≫1≃
−2cs�½3ð5þ c2s�Þ− 2βð7þ 3c2s�Þ�

ð4þ 3c2s�ÞQ�ðϕ�=MPlÞ2
: ð3:28Þ

Here, we have that for cs� ≪ 1 the spectral tilt is such that it
will turn blue when β > 15=14 ≃ 1.07, while for cs� ¼ 1,
the spectral tilt is blue already for β > 0.9. In this case we
still have β ≃ 4.33 (for cs� ¼ 1), thus for large Q the
spectrum will always be quite blue tilted. This agrees with
the previous results for this type of WI model [41,76],
which have shown that this dissipation coefficient, within
the monomial chaotic inflaton potential models, can only
be consistent with the observational data4 when Q� ≪ 1,
i.e., in the weak dissipation regime of WI. In this regime
of Q� ≪ 1, the growing mode is not an issue, since
GðQ�Þ → 1. As in case (a). with a linear temperature
dissipation coefficient, this model can benefit from a
DBIWI realization by exploring the effect of a small cs
value, which will help to suppress the growing mode by
decreasing β. However, this is expected to only happen for
a smaller value for cs than the one shown for the case (a),
c2s� ≲ 0.2. This case also illustrates the importance in
deriving the full dependence of the dissipation coefficient
in both the temperature and the inflaton field amplitude.
Despite cases (b) and (c) have exactly the same temperature
dependence, the fact that the dissipation coefficient in
(c) has an explicit dependence on ϕ implies that an
agreement with the observational value for the tilt of the
scalar power spectrum can only be achieved in the weak
dissipation regime of WI (for the standard case of cs� ¼ 1),
while in (b) we can robustly support the strong dissipation
regime of WI, even with the presence of the growing mode
(which in that case is benign).

C. Non-Gaussianities in DBIWI

Before ending this section. Let us briefly comment on
the expected non-Gaussianities in DBIWI. In the DBIWI
realization, non-Gaussianities may be generated by both
nonequilibrium dissipative effects and by a low sound
speed. It was shown in Ref. [14,15] that non-Gaussianities
produced by temperature dependent dissipation coeffici-
ents are larger than temperature independent dissipation
coefficients due to the backreaction of radiation bath and
coupling of the inflaton to the radiation field perturbations.
However, we qualitatively expect that for low sound
speeds, cs� < 1, a suppressing effect (as seen for the scalar
of curvature power spectrum) will also work in the case
of the nonlinear parameter fNL. Moreover, the non-

Gaussianity parameter for WI in the strong dissipation
regime is roughly less than 10, i.e., jfWarm

NL j ≤ 10, for
temperature dependent dissipation coefficients [14,15].
Furthermore, the non-Gaussianity produced by cold DBI
inflation is inversely proportional to the square of the sound
speed, i.e., fNL ≃ 35

108
ðc−2s − 1Þ. Hence, the corresponding

non-Gaussianity parameter in cold DBI inflation is fNL ≃ 3
for cs� ¼ 0.3, which is not very large. Therefore, depending
on how these two non-Gaussianity sources contribute to the
non-Gaussianity parameter (where they can either counter-
balance or enforce each other) we may obtain large or small
non-Gaussianities in DBIWI [72,89]. Nonetheless, a com-
prehensive analysis is needed to find how large the non-
Gaussianity will be in the DBIWI realization.

IV. RESULTS

To demonstrate the effect of cs on the power spectrum in
the DBIWI realization [more precisely on the function
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FIG. 1. The growing function GðQ�Þ as defined by Eq. (4.1).
(a) Linear in T dissipation coefficient (b) Cubic in T dissipation
coefficient.

4From the Planck Collaboration [88], the result for the
spectral tilt is ns ¼ 0.9658� 0.0040 (95% CL, Planck TT;TE;
EEþ lowEþ lensingþ BK15þ BAO þ running) at pivot scale
k� ¼ 0.05 Mpc−1.
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GðQ�Þ] we have considered the quartic monomial inflaton
potential (n ¼ 2) and focused our studies on the two
representative more recent cases of WI dissipation coef-
ficients, namely,ϒ ¼ CϒT andϒ ¼ CϒT3=M2. Results for
other cases of monomial inflaton potential are found to be
very similar to the quartic one, so we refrain from showing
those other cases (with expected similar results) here. The
growing function GðQ�Þ is determined by the numerical
evaluation of the perturbation equations and obtaining the
scalar of curvature power spectrum (3.13), with GðQ�Þ
defined as

GðQ�Þ ¼
ΔR;c≠0

ΔR;c¼0

; ð4:1Þ

where ΔR;c≠0 is the solution for the scalar of curvature
power spectrum with the explicit coupling of the inflaton
perturbations with the radiation ones in Eq. (3.2), and
ΔR;c¼0 is the solution when this coupling is explicitly
dropped from the equation. We should note that during the
numerical analysis, although we dropped the metric

perturbations,—which is justified in an appropriate gauge
and in the strong dissipation regime—we take into account
the effect of first order slow-roll parameters, i.e., ϵV , ηV , κV ,
etc., in Eq. (3.2) to obtain the precise behavior for the
growing function. The results for the linear and cubic
dependencies in temperature for the dissipation coefficient
are shown in Fig. 1. The results shown in Fig. 1 indicate
that for cs ≲ 0.1 the growing functionGðQ�Þ can indeed be
taken as GðQ�Þ ≈ 1.
As shown in the previous section, we may obtain a red-

tilted spectral index in the strong dissipation regime even if
cs� has intermediate values, not necessarily for values of
cs� ≪ 1. This is because as cs� < 1, it can already suffice to
suppress the growing mode enough to allow for a red-tilted
spectrum (even for large Q values). Thus small, but still
reasonable values for cs� can work to allow the spectrum in
DBIWI to be red-tilted in the strong dissipation regime.
Hence, it is useful to obtain the exact functionality of
GðQ�Þ for future analysis. In this regard, we present the
following fitting functions to the curves shown in Fig. 1,

GðQ�Þ ¼ 1þ AcQα� þ BcQ
β
�; ð4:2Þ

where the coefficients α, β, Ac and Bc are given in the
Table I for the two representative values of c (i.e., for a
linear and a cubic in T dissipation coefficients, as obtained
in the LWI and MWI models, respectively) and also for
three representative values for cs (at the effective Hubble
radius crossing).
When these results are applied to the cubic in the

temperature form for the dissipation coefficient (c ¼ 3,
p ¼ 0) for values of cs < 1, we get that ns ≃ 0.95 and even

TABLE I. The coefficients α, β, Ac and Bc in growing function
GðQ�Þ with different values for c and cs.

c cs� α β Ac Bc

1 1 1.364 2.315 0.335 0.0185
0.6 0.694 1.114 0.311 0.187
0.3 0.395 0.448 0.205 0.127

3 1 1.946 4.330 4.981 0.127
0.6 1.975 2.684 0.475 0.083
0.3 0.815 0.939 0.478 0.368

TABLE II. Numerical values of the parameters and the relevant cosmological quantities obtained for the case of a quartic inflaton
potential (n ¼ 2) with a linear in T dissipation coefficient (c ¼ 1, p ¼ 0) and for cs� ¼ 0.1, when GðQ�Þ ¼ 1, and for cs� ¼ 0.3, when
GðQ�Þ is given by Eq. (4.2).

cs� Q� ns r N� jΔϕj=MPl Cϒ Tend (GeV) V0 ðGeVÞ4 ϵV� ηV� V1=4
� =MPl

f0

0.1 1.03 0.9651 1.13 × 10−5 62.1 3.36 0.0067 2.67 × 1013 3.94 × 1059 0.68 1.02 1.56 × 10−5 3.30 × 1017

10.25 0.9628 3.00 × 10−7 61.0 1.42 0.023 1.08 × 1013 3.27 × 1059 3.80 5.71 6.31 × 10−6 2.14 × 1018

102.51 0.9625 3.88 × 10−9 60.0 0.46 0.076 3.68 × 1012 3.69 × 1059 35.55 53.33 2.16 × 10−6 1.71 × 1019

0.3 1.03 0.9672 3.33 × 10−5 62.4 5.85 0.0088 3.27 × 1013 1.27 × 1059 0.23 0.34 1.91 × 10−5 3.15 × 1017

10.30 0.9667 5.70 × 10−7 61.5 2.44 0.027 1.09 × 1013 7.24 × 1058 1.30 1.95 6.39 × 10−6 2.91 × 1018

103.16 0.9684 3.49 × 10−9 60.3 0.79 0.074 3.08 × 1012 3.40 × 1058 12.31 18.47 1.80 × 10−6 4.73 × 1019
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smaller values5 for ns the larger Q� is and the smaller cs� is
[as already anticipated from the discussion given for case
(b) in Sec. III B 2] showing that the spectrum is already
outside the two-sigma range in the red-tilted side of the
observational values for ns. This indicates that for this form
of a cubic dissipation coefficient, the model is not expected
to benefit from a DBIWI realization, as already discussed
before. Let us then next focus on the linear dissipation
coefficient WI model of Ref. [42]. Some explicit examples
of results obtained in this case are given in Table II for the
quartic inflaton potential and with a linear in T dissipation
coefficient. As it is clear, for Q� > 10, the tensor-to-scalar
ratio is smaller than 10−7, hence, the model is able to
resolve the aforementioned inconsistency in the cold DBI
inflation [62] and discussed in the Introduction section.

V. CONCLUSIONS

We studied the effects of a low sound speed on the
dynamics of perturbations equations of WI inspired by
string motivated models that include relativistic D-brane
motion. We numerically solved the coupled inflaton and
radiation field perturbation equations for the first time in
the case of a noncanonical kinetic term in DBIWI. We
found that a low sound speed is able to suppress the
growing function that always appears in the scalar power
spectrum of WI whenever the dissipation coefficient
exhibits an explicit dependence with the temperature of
the radiation bath. As a consequence of this suppression
effect seen in DBIWI, the restrictions for constructing a WI

realization in the strong dissipation regime Q ≫ 1 are
considerably relaxed. We have also complemented these
results with the ones derived from the analytical expres-
sions for the spectral tilt. Based on our results, as the low
sound speed will push WI models into the strong dis-
sipation regime, the severe inconsistency problems seen in
DBI cold inflation, e.g., due to an upper bound on the
tensor-to-scalar ratio arising from compactification con-
straints and a lower bound from observations, can all be
resolved due to large dissipation. We have explicitly shown
that among the most common dissipation coefficients that
have been derived from well-motivated particle physics
realizations and applied to the WI context, the dissipation
coefficient with a linear dependence on the temperature is
the case that can mostly benefit from a DBIWI realization.
Hence, these type of models are able to soften all theoretical
and observational constraints, while predicting very small
tensor-to-scalar ratio and potentially significant non-
Gaussianity, making them falsifiable in near future.
From a model-building perspective, the present work,

along with the previous results on swampland conjectures
in WI [47], gives a strong hint that WI may consistently
be embedded in string theory utilizing the physics of the
brane. Besides, phenomenologically realizing WI in the
strong dissipation regime is a significant step towards
achieving such goal. Therefore, the last step is building
an explicit model describing how D-brane may be able to
dissipate its energy into radiation field. This, and other
implications of our results, are certainly worthwhile to
explore further in future studies.
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