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We study the decay of cosmic string loops in the Abelian-Higgs model. We confirm earlier results that
loops formed by intersections of infinite strings formed from random-field initial conditions disappear
quickly, with lifetimes proportional to their initial rest-frame length, linit. We study a population with linit

up to 6000 inverse mass units and measure the proportionality constant to be 0.14� 0.04, independently of
the initial lengths. We propose a new method to construct oscillating nonself intersecting loops from
initially stationary strings and show that by contrast these loops have lifetimes scaling approximately as
l2
init, in line with previous works on artificially created string configurations. We show that the oscillating

strings have a mean-square velocity of v̄2 ≃ 0.500� 0.004, consistent with the Nambu-Goto value of 1=2,
while the network loops have v̄2 ≃ 0.40� 0.04. We argue that whatever the mechanism behind the network
loop decay is, it is nonlinear, can only be suppressed by careful tuning of initial conditions, and is much
stronger than gravitational radiation. An implication is that one cannot use the Nambu-Goto model to
derive robust constraints on the tension of field theory strings. We advocate parametrizing the uncertainty as
the fraction fNG of Nambu-Goto-like loops surviving to radiate gravitationally. None of the 31 large
network loops created survived longer than 0.25 of their initial length, so one can estimate that fNG < 0.1 at
95% confidence level. If the recently reported NANOgrav signal is due to cosmic strings, fNG must be
greater than 10−3 in order not to violate bounds from the cosmic microwave background.

DOI: 10.1103/PhysRevD.104.043519

I. INTRODUCTION

In the traditional picture of cosmic string evolution [1,2],
one models the strings as idealized linelike objects, which
are expected to evolve according to the Nambu-Goto
equation [3–5], with an additional reconnection rule when
strings cross [6–8]. In this model, the most stringent
constraints are provided by the generation of a background
of gravitational waves (GWs) by slowly decaying loops of
cosmic string, currently Gμ≲ 10−10 [9–13] (with μ the
string tension and G Newton’s constant). Indeed, the recent
observations of an excess in the timing residuals of
millisecond pulsars [14] could be accounted for by GWs
from Nambu-Goto strings with tension saturating the
bound [15,16].
On the other hand, simulations of string networks based

on an underlying classical Abelian-Higgs (AH) field theory
[17–24] show that the most important decay channel is the
production of classical scalar and gauge radiations, in

which case the strongest constraints come from a chain of
decays into γ-rays. The observed diffuse γ-ray background
then limits the string tension to be Gμ < 2.7 × 10−11β−2ft ,
where β2ft is the branching fraction of the scalar and gauge
decays into StandardModel particles (most likely the Higgs,
through a portal coupling) [25]. In either case, the amplitude
of Cosmic Microwave Background (CMB) fluctuations
bounds the string tension as Gμ≲ 10−7 [26–28].
The discrepancy is a consequence of the qualitative and

quantitative differences between the descriptions of both
models. In the NG model loops of string are assumed to
decay only by gravitational radiation, which gives them a
lifetime tlife ∼ ðGμÞ−1linit, and considerably enhances the
gravitational signal. On the other hand, in AH simulations,
where the decay channels of the field theory are not
neglected, loops of initial length linit disappear in a time
tlife < linit [17,29].
The mechanism behind the rapid decay of AH string

loops is still not understood. Initial work on string decay
focused on the quantum production of particles by the
classical fields [30–32], which is negligible, and in any case
not relevant for purely classical simulations. Numerical
simulations studied sinusoidal standing waves [33] and
collisions of traveling waves leading to cusps [34] on
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strings wrapping the simulation volume. For sinusoidal
standing waves, the massive radiation power decreases
exponentially with the ratio of the string curvature to the
string width [33], as expected by linear perturbation theory,
demonstrating that this is not the explanation of the energy
loss in collapsing loops.1

Recently, a study of the decay of nonself-intersecting
loops in the Abelian Higgs model was presented [35]. The
loops were created by ingenious initial conditions, which
made them spin and oscillate on trajectories which are
presumably well approximated by the Nambu-Goto equa-
tions. It was shown that the lifetime of these loops scaled as
l2
init. A model of energy loss in terms of radiation from kink

collisions on a Nambu-Goto string was constructed.
Combining this l2

init decay behavior with the standard
NG scenario in which loops radiate GWs at a constant rate,
it was argued that the model supported the NG description
of field theory strings at large times, when GW radiation
eventually dominates over scalar and gauge radiation.
On the other hand, there has been no indication of such

long-lived loops in AH network simulations to date, which
would show up as a slowing of the decay of string length
and a departure from scaling. Scaling is generally quanti-
fied as a linear growth in the mean string separation, which
is very closely followed in the largest numerical simula-
tions to date [23,36], where the curvature to width ratio is
many hundreds. However, even in these simulations there
are few loops as large as the largest of those studied in
Ref. [35], which were of order 103 inverse mass units in
length, and those that are this large are not followed until
they disappear. So, it is conceivable that the difference
between the “artificial” loops and the network loops is one
of size.
In this paper, we examine this possibility by studying

loops created from the same random initial conditions used
in cosmological network simulations [36]. We take the
spacetime to be Minkowski for simplicity, since the issues
we address, those of energy loss and stability of solutions,
appear in all homogeneous backgrounds. The loops are of
similar and larger sizes to those in Ref. [35]. We follow
their evolution until they disappear and record their life-
times, finding no evidence for long-lived loops in this
population. We confirm the rapid energy loss observed in
Ref. [29] and establish the linear relation between lifetime,
tlife, and initial loop length, linit, more quantitatively, as
tlife ¼ ð0.14� 0.04Þlinit. This decay mechanism is clearly
much stronger than gravitational radiation.
We also study artificial loops in field theory, created by

methods similar to those of Ref. [35]. We find that, after
an initial transient period of energy loss, the rest-frame

length, l, of this population of loops decays much more
slowly, with a lifetime scaling as l2

init, as in Ref. [35].
The mean-square string velocities of both types of loops

are also measured, using the estimators developed in
Ref. [36]. Artificial loops have a mean-square velocity
of 0.5, as expected by Nambu-Goto dynamics in a
Minkowski spacetime. On the other hand, the mean-square
velocity of network loops has a wider range of values
around 0.4, lower than the Nambu-Goto prediction.
Our results confirm that it is possible to create field

configurations whose evolution is well approximated by
Nambu-Goto dynamics in the limit of small curvature,
which was perhaps not in doubt. However, our results also
confirm that the loops created by network evolution are
typically not in this category, even at very low curvatures
where the Nambu-Goto approximation is traditionally
expected to apply. Network loops decay more or less as
quickly as allowed by causality independent of their size,
and their lower velocity is also not accounted for in the
Nambu-Goto approximation.
The rapid size-independent decay points toward a non-

linear mechanism, which can transport energy over a large
range of length scales. We outline a model of loop decay
involving interacting massive degrees of freedom on the
string, which can account for both the behavior of the
Nambu-Goto-like strings whose lifetime scales as l2

init and
the network loops whose lifetime scales as linit. Loops
decay slowly if the modes are a small perturbation and
rapidly if they contribute significantly to the energy per unit
length of the string. It remains unclear how the modes are
excited. Some kind of instability is present, which is
perhaps no surprise in a nonlinear field theory, but under-
standing it requires further study.
Without a better understanding, we remain uncertain

what are the important decay channels of a string network.
There is no support from our simulations for the Nambu-
Goto approximation applying to network loops, which
means that the traditional picture of gravitational wave
production by an assumed population of long-lived oscil-
lating loops cannot be used to derive robust constraints on
the tension of field theory strings.
The best that can be done with our current state of

knowledge is to parametrize the uncertainty by allowing a
fraction, fNG, of loops to behave like the artificial loops and
survive to radiate gravitationally. As we have found no long-
lived loops out of the 31 network loops generated by our
random initial conditions, one might infer that this fraction is
bounded above by 0.1 (at 95% confidence level), assuming
our loops are a fair sample. A dedicated study with much
larger statistics is required to obtain firmer limits.

II. MODEL AND ESTIMATORS

We study the Abelian-Higgs model, as the simplest
gauge field theory with strings. The Lagrangian density for
the Abelian-Higgs model in Minkowski spacetime is

1A claim of massive radiation power from a sinusoidal
standing wave decreasing as a power law with the curvature to
width ratio [17] could be explained by perturbations in the initial
field configuration.
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L ¼
�
Dμϕ

�Dμϕþ VðϕÞ þ 1

4e2
FμνFμν

�
; ð1Þ

where ϕðxÞ is a complex scalar field, AμðxÞ is a vector field,
the covariant derivative is Dμ ¼ ∂μ − iAμ, and the potential
is VðϕÞ ¼ λ

4
ðjϕj2 − ϕ2

0Þ2.
The resulting field equations in the temporal gauge

(A0 ¼ 0) are

ϕ̈ −DjDjϕþ λ

2
ðjϕj2 − ϕ2

0Þϕ ¼ 0; ð2Þ

∂μFμν − e2Imðϕ�DνϕÞ ¼ 0: ð3Þ

The equations have static cylindrically symmetric solu-
tions, Nielsen-Olesen (NO) vortices [37]. The physical
length scales in the solution are the Compton wavelengths
of the scalar and gauge fields,

ws ¼ ð
ffiffiffi
λ

p
ϕ0Þ−1; wg ¼ ð

ffiffiffi
2

p
eϕ0Þ−1; ð4Þ

which set the scales on which the fields exponentially
approach the vacuum. All our simulations are performed
with λ ¼ 2 and e ¼ 1 so that the length scales are equal.
We solve the partial differential equations (3) numeri-

cally, using the prescription presented [36] which uses a
leapfrog method of second order in both lattice spacing and
time step, in cubic lattices, with periodic boundary con-
ditions. We refer the reader to that publication for details of
the discretization procedure, noting here that in preparing
the initial conditions we use a period of diffusive evolution
according to the equations

_ϕ ¼ DjDjϕ −
λ

2
ðjϕj2 − ϕ2

0Þϕ;
F0j ¼ ∂iFij − e2Imðϕ�DjϕÞ: ð5Þ

A. Length and velocity estimators

Our main diagnostics for string dynamics are positions
and velocities extracted from the field configurations. We
use different approaches in order to do so.
One possible way of detecting strings is by searching for

lattice points with a low value of the modulus of the field ϕ.
In most of the volume the field will be in its vacuum
jϕj ¼ ϕ0, except for close to the string core. We use this
estimator to visualize the strings in the simulation, for
which we set jϕthj ¼ 0.2ϕ0 as the threshold.
The main length estimator that we use during this work

estimates the rest-frame length of the string, which takes
into account all its energy components: potential, gradient,
and kinetic. Strings obeying the Nambu-Goto equations
would have a constant rest-frame length.
This length estimate relies on the fact that we can weight

energies by functions that select regions of space occupied

by string. Our choice of the function is the Lagrangian
density, which was shown in [36] to give accurate estimates
for the invariant length and velocity on a string standing
wave. For example, we define the Lagrangian-weighted
potential energy density as

EV;L ¼ −
Z

d3xVðϕÞL̃: ð6Þ

The subscript L denotes that the quantity has been
weighted by the dimensionless Lagrangian

L̃ ¼ L=ϕ4
0; ð7Þ

where L is the Lagrangian (1).
We use Lagrangian-weighted quantities to arrive at a

length estimator

lL ¼ 1

μL

EL − ΔfLL

1þ Δf
: ð8Þ

Here,

μL ¼ −
Z

dxsdys

�
1

2
B2

s þ jDϕsj2 þ VðϕsÞ
�
L̃ ð9Þ

is the Lagrangian-weighted mass per unit length of a static
string. Also,

μLΔf ¼ −
Z

dxsdys

�
1

2
B2

s − VðϕsÞ
�
L̃; ð10Þ

is the Lagrangian-weighted difference between the mag-
netic and potential contributions to the energy, and EL and
LL are the Lagrangian weighted energy and Lagrangian,
respectively. The subscript “s” denotes that the coordinates
are written, and the fields are measured, in the local rest
frame of the string. The constant Δf ≃ 0 as δx → 0 (see
[36] for details).
One shortcoming of lL is that it estimates the total length

of string inside the simulated volume, and it is not easy to
use it to calculate the length of individual loops in the
simulation. There are ways of dealing with this, as shown in
the following section.
Finally, using a similar procedure, one can write down an

estimator for the mean-square velocity [36],

v̄2L ¼ EL þ LL

EL − ΔfLL
; ð11Þ

which is used to estimate the velocities of the loops in the
different simulations.
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III. SIMULATION SETUP AND PROCEDURE

We perform two different types of simulations during
this work. One of them is a string network simulation, in
which we study loops formed by reconnections of ran-
domly generated strings, modeling those formed during the
evolution of a network. The other type of simulation
consists of artificially setting up a string configuration,
which leads to the formation of loops engineered to follow
a particular simple trajectory, likely to be well described by
the Nambu-Goto equation.
In both types of simulations, we want to estimate the

lifetime of a loop. To do so, we record the time at which the
loop is formed, tinit, and its initial length, lL;init. We also
need the time at which the loop disappears or evaporates,
teva. The lifetime of a loop, tlife, is given by

tlife ¼ teva − tinit: ð12Þ

We now describe in detail the procedures of simulating
network loops and artificial loops to obtain their tlife, lL;init,
and v̄L. All quantities with units of length and time are
given in units of ϕ−1

0 .

A. Network loops

The cubic lattices have N points per side and lattice
spacing δx (and therefore lattice size L ¼ Nδx). In the
initial field configurations of network simulations, only the
scalar field is nonzero, and it is set to be a stationary
Gaussian random field with a power spectrum

PϕðkÞ ¼ Ae−ðklϕÞ2 ; ð13Þ

where A is chosen so that hjϕ2ji ¼ ϕ2
0, and lϕ is the

correlation length, which we vary in different simulations.
Early phases of the simulation contain a considerable

excess energy induced by the random initial conditions. We
therefore smooth the field distribution by applying a period
of diffusive evolution according to Eqs. (5). The diffusion
period starts at the beginning of the simulation at tstart ¼ 50
and ends at the time tdiff ¼ 70. The time step during this
diffusive period depends on the resolution used and is given
by δt ¼ ð2=15Þδx2. After the diffusion period, the network
evolves following the true equations of motion (3), and the
time step used is δt ¼ ð1=5Þδx. It is during this evolution
that the search for loops, and the estimation of their lifetime
and velocity, is carried out.
As we aim to study the full lifetime of loops until their

evaporation, in this work, we let the simulations evolve
farther than half light-crossing time, which is the standard
cutoff time for network simulations with periodic boundary
conditions. Typically, we set the final time of the simu-
lations as three light-crossing times.
Since the lattice’s boundary conditions are periodic, all

strings are closed. The topology of such lattices is the one

of a 3-torus. Hence, strings can wrap it, and topology will
forbid their disappearance. By “loop”, we mean strings
which do not wrap any direction on the torus. We focus on
those runs where the simulation ends by loop decay,
signaled by the total length of string going to zero.
Figure 1 shows the evolution of the rest-frame string

length for a simulation with lϕ ¼ 50 in a box of size N ¼
1024 with δx ¼ 0.25 (and hence, L ¼ 256). The green and
blue lines correspond to simulations where there is no
string left in the box by t ≈ 300 and t ≈ 500, respectively,
indicating that the network has ended in a collapsing loop.
The purple line shows a case in which the length decreases
at approximately the same rate at the beginning, and once it
reaches a scale of about 2L, it stops losing energy. This case
corresponds to that of two strings wrapping the torus.2

Table I contains a summary of the number of simulations
for each case. As it can be seen, the majority of simulations
end in strings that wrap the box. Of the total of 98
simulations with random initial conditions, 45 end in loops,
which completely evaporate.
It is possible that a loop present in the initial state entirely

avoids intersections, for example, the one denoted by the
green line in Fig 1. These loops collapse at the same rate as
the others but are presumably unrepresentative of a scaling
network, since they were created by the initial conditions.
These are more likely to form when the initial correlation
length is large compared with the lattice size, and therefore,
we choose lϕ to avoid this case. Nonetheless, 14 of the 45

FIG. 1. Comparison of the evolution of the invariant length
estimator for simulations ending in a decaying loop formed by
intersections (blue), in a decaying loop which is initially present
and avoids intersections (green) and in strings that wrap around
the periodic lattice (purple). All the cases correspond to simu-
lations with N ¼ 1024, δx ¼ 0.25, and lϕ ¼ 50.

2One cannot always conclude how many strings wrap the torus
directly from the length estimator. Only a spatial visualization of
the network allows that.
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evaporating loops did not undergo an intersection and were
not included in the analysis.
We are interested in loops that are created by reconnec-

tions of network elements and end up decaying. Most of the
string formed by the random field initial conditions is in the
form of one long string [38]. In Fig. 2, we show a typical
situation in the simulations, with one big loop and some
smaller loops that typically evaporate rather fast. We have
mentioned that the lL estimator estimates the total length in
the box, not only of the loop of interest. It is clear now that
it is not a significant problem for these cases because most
of the length is in the main loop. The peaks that can be
observed in the length estimate in Fig. 1 correspond to
those small loops disappearing.

The study of the fate of the main loop needs a record of
the time at which the reconnection takes place, which we
take to be the formation time of the loop, tinit. This is done
by visual inspection of the string points. We call this the
initial length, lL;init. We also need the time at which the
loop disappears or evaporates, teva. Since it sometimes
happens that these loops fragment toward the later times of
their lifetime, we consider the daughter loops as continu-
ations of the parent loop, and therefore, we choose teva to be
the time at which the last one of the daughter loops
disappears; that is, we set teva to be the instant at which
lL ¼ 0. Figure 3 shows the rest-frame length of three
simulations, with N ¼ 1024, δx ¼ 0.25, and lϕ ¼ 50,
ending in collapsing loops. The vertical dashed lines
correspond to the time (tinit) at which the final loop is
formed for each case.
Note that only a posteriori it is known whether a given

simulation will end up in a series of infinite strings or in a
collapsing loop. Once the simulation is run, and it has been
found that it does not end up in an infinite loop, we visualize
the strings to determine the time of formation of a loop.
A typical evolution of a loop formed by the intersection of

strings in the network is shown in Fig. 4, which corresponds
to the loop in the blue line in Figs. 1 and 3. We plot four
different snapshot of the points with jϕj < 0.2ϕ0, taken at
equally time-spaced moments (Δt ¼ 100) between t ¼ 92
and t ¼ 392, from lighter to darker blue. The video corre-
sponding to the full evolution of this loop can be found
in [39].

B. Artificial string configurations

We also study artificially created string configurations.
We aim to obtain loops that live long enough to oscillate in
a Nambu-Goto-like trajectory, as demonstrated to exist
in [35], and compare them with network-produced loops.

TABLE I. Summary of the different runs used to study the
evolution of loops created in networks. The simulations have
been performed in cubic lattices with N points per dimension and
lattice spacing, δx. The initial correlation length was given by lϕ
[see Eq. (13)]. We have performed a number of runs (Runs) of
each type. Of those runs, those that ended up as infinite strings (∞
strings) or where loops were already present in the initial
conditions (ICs) were not included in the lifetime analysis.

lϕ N δx Runs ∞ Strings From ICs From intersection

100 2048 0.25 6 2 4 0
50 2048 0.25 5 3 0 2
50 1024 0.25 15 9 3 3
25 1024 0.25 22 14 2 6
15 1024 0.25 10 5 0 5
10 1024 0.125 10 3 0 7
50 1024 0.125 4 2 2 0
25 1024 0.125 4 0 2 2
15 1024 0.125 22 15 1 6

Total 98 53 14 31

FIG. 2. Typical simulation of loops formed during network
evolution, where there is one big main loop and some smaller
loops, which evaporate quite early in the simulation.

FIG. 3. Evolution of the Lagrangian-weighted length estimator
for three simulations with N ¼ 1024, δx ¼ 0.25, and lϕ ¼ 50.
Different colors stand for individual realizations, and the time of
formation of the loop is represented with dashed vertical lines.
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Our method for constructing oscillating loops is slightly
different from Ref. [35], as we form strings which are
initially stationary and allow their self-intersection to
generate the loop. This avoids the need to boost the strings
after the diffusive phase.
The initial string curves are specified as piecewise smooth

functions andmapped to cells of the lattice.Adjacent cells are
separated by plaquettes fPg, whose links are all set to π=2,
thus generating a flux of 2π through the plaquette. All other
links are set to zero, and the scalar field, ϕ, is set to the
vacuum expectation value everywhere. The configuration is
then cooled down by evolving the system under a diffusive
phase (5) for five time units. The time step used is the same as
one the for network simulations.
The two ingredients we use to set up the configuration of

these artificial initial conditions are sinusoidal and saw-
tooth standing waves wrapped around the simulation box.
The sinusoidal standing wave lying on the ðx; zÞ plane, with
amplitude A, had coordinates ðX; ZÞ given by

X ¼ A cosð2πZ=LÞ: ð14Þ

The sawtooth string lying in the ðx; yÞ plane with amplitude
A had coordinates

X ¼

8>><
>>:

A
h

Y
ðL=4Þ − 1

i
; 0 ≤ Y ≤ L=2

−A
h

Y
ðL=4Þ − 3

i
; L=2 < Y < L

: ð15Þ

We first experimented with configurations consisting of
two straight lines interacting with two sawtooth strings, but

we observed that in those cases after recombination we
ended up having a double antiparallel straight line, which
immediately annihilated.
In order to get oscillating, or longer lasting loops, instead

of using kinks, we started combining segments of strings
with sinusoidal waves on them. These also led to double
lines, and if we tried to increase the amplitude of the
standing wave, the recombinations happened much earlier
than desired, and there was no long-lasting loop left.
Finally, we obtained the desired object by carefully

combining both types of standing waves. One example of
such a configuration is shown in Fig. 5. In this example,
both sawtooth strings have amplitudes A ¼ 0.5L and lie in
the ðx; yÞ plane at different values, Z ¼ L=10 and
Z ¼ 9L=10, respectively. The kinks are oriented in oppo-
site directions, and thus, they will move in opposite
directions. The two sinusoidal strings, in turn, lie in the
ðx; zÞ plane at Y ¼ L=3 and Y ¼ 2=3L, are set in antiphase,
and have a lower amplitude A ¼ 0.1L. The magnetic flux
that runs through the strings is set up in such a way that
when intersection happens, the desired loop is created. In
order to achieve this, the flux flows in opposite directions
through the pairs of strings. In the case of the sawtooth
strings, for the upper string in Fig. 5, the magnetic flux runs
in the y direction, while in the lower string in the −y
direction. Similarly, in the standing wave on the left-hand
side, the direction is z and for the one on the right-hand
side −z.
This initial configuration leads the corners on the

sawtooth to resolve into two kinks traveling with the speed
of light in opposite directions, separated by straight seg-
ments of string oriented parallel to the y axis. The
sinusoidal waves oscillate approximately as a classical

FIG. 4. Sequence of snapshots of the evolution of the loop
represented by the blue line in Figs. 1 and 3. Lighter blue
corresponds to earlier times and darker to later times. The first
time step corresponds to t ¼ 92, and the steps are taken at equally
timed steps with Δt ¼ 100.

FIG. 5. Initial configuration to create artificial loops: two
sawtooth strings with kinks oriented in opposite directions with
A ¼ 0.5L and two strings with sinusoidal standing waves with
A ¼ 0.1L.
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standing wave on a nonrelativistic stretched string. At some
point, the straight segments on the sawtooth strings collide
with the sinusoidal standing waves, and two loops are
created from the intersection: one inner loop and an outer
one (due to the periodic boundary conditions). We have
found that loops last longer if the initial conditions are
chosen such that the collisions do not happen at the same
moment. This manner of preparing loops prevents the loop
from disappearing due to the double-line annihilation and
allows them to oscillate.
In Fig. 5, it can be seen that the distance between strings

is maximized so that the size of the inner loop is as large as
possible. Nonetheless, in the case of the sinusoidal waves,
the distance between them needs to be carefully chosen so
as to avoid possible early intersections with the sawtooth
strings. For the same reason, the amplitude of the sinusoidal
waves cannot be as high as for the sawtooth strings.
The length of the string is estimated by the Lagrangian-

weighted length estimator. As before, the length that the
estimator gets is not only the length of the loop under study
but all the length in the simulation. In the network case, we
saw that most of the length was in the main loop. That is not
the case here, since the two loops formed are roughly of the
same length. Therefore, we approximate the length of the
loop as lL=2. Since the two loops formed are very similar,
it may happen that one loop disappears a bit earlier than the
outer loop. We obtain teva by visual inspection and take it to
be the time of disappearance of the inner loop. In Fig. 6, we
can see the situation shortly after the artificial loops have
formed.
Before studying the evolution of these loops, we perform

a preliminary test on the length estimator for lattices with
individual standing waves and sawtooth strings with

amplitudes A ¼ 0.5L. Figure 7 shows the evolution over
a period of oscillation of the invariant length estimator for a
simulation of a single oscillating standing wave for a
simulation with N ¼ 1024 and δx ¼ 0.125 (green line).
The purple line corresponds to a similar simulation of a
single sawtooth string. This figure shows that the invariant
length is well conserved for both cases, though small
variations (below 10%) are present for the standing wave.
Figure 8 includes several snapshots of the typical

evolution of an artificially prepared loop. In this case,
the loop was simulated in a lattice withN ¼ 1024 and δx ¼
0.125 (therefore, a box of sides L ¼ 128). We plot half of
an oscillation period, going from lighter blue to darker blue,
also including intermediate steps separated by Δt ¼ 4.
These loops evade successfully the typical double-line
collapse and start rotating and oscillating. The video

FIG. 6. Simulation of the artificially created loops: typically,
there are two loops created of roughly the same length, one of
which wraps around the simulation volume.

FIG. 7. Evolution of the length estimator for standing waves
starting in a sawtooth curve (purple) and sinusoidal curve (green),
both with A ¼ 0.5L [see Eqs. (14) and (15)], over one period.

FIG. 8. Time sequence of half an oscillation of an artificially
prepared loop shown for a box with length L ¼ 128, taken from a
N ¼ 1024 simulation with δx ¼ 0.125. Line colors go from
darker to lighter, and the time step is Δt ¼ 4.
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corresponding to the formation and full evolution of this
loop can be found in [39].

IV. RESULTS

In this section, we present the results of the two sets of
simulations performed, both for loops coming from net-
work evolution and from artificially created loops.
The network simulations were performed in periodic

lattices of different number of points N and lattice spacings
δx, which we summarize in Table I. The initial configu-
rations (13) have a variety of initial correlation lengths, lϕ.
We performed a number of runs of each type (varying
the initial random configuration) and studied the fate of the
loops in each case. Resolution tests can be found in the
Appendix.
Just over half of the simulations ended in infinite strings.

In some other simulations, the loops were already present in
the initial conditions (ICs) and did not undergo an inter-
section before evaporating.
In 31 of the 98 simulations, large loops were created by

intersections of the network, which were taken as the best
model of loops created by a scaling network evolution. For
these loops, we recorded the initial length of the strings,
lL;init, the time they were formed, and the time where they
disappeared to estimate their lifetime, tlife (12). Figure 9
shows the relation between the size of the loops and their
decay rate, represented as the lifetime divided by lL;init. We
use blue markers for lattices with (N ¼ 1024, δx ¼ 0.125),
red for (N ¼ 1024, δx ¼ 0.25), and green for (N ¼ 2028,
δx ¼ 0.25). Different shapes stand for different initial
correlation lengths.
First, we observe that we obtain some rather large loops

of lL;init of up to 6000 inverse mass units. Secondly, we
observe that, as expected from previous works on field
theory simulations [29,36], loops formed at randomly
generated networks do not live for a long time in com-
parison to their initial lengths.
Loops that are initially larger live longer, as expected, but

when we normalize their lifetimes with the initial lengths,
we see no change in the trend of the decay rate. In fact, for
all loops simulated in this work, the points representing the
decay rate tend to cluster around a constant value, regard-
less how large they are. Therefore, we find that for this kind
of loops the decay rate scales approximately as ∝ lL;init for
all initial sizes of loops. We compute the proportionality
constant by averaging over all cases, giving 0.14� 0.04,
represented as a gray dashed line in the figure, together
with the 1-σ band.
This contrasts with the scaling reported in [35], i.e.,

∝ l2
L;init, presented for loops artificially created by colliding

four straight strings wrapping the simulation volume. In
order to understand this difference, we perform a series of
simulations with artificially created initial conditions (as
explained above) to show that our model and numerical

setup allow for long lasting loops. We performed a series of
runs to check for parameters and resolution tests, which can
be found in the Appendix, resulting in the choice of
δx ¼ 0.125. We have performed eight production runs,
where loops were created with a pair of sawtooth strings
intersecting with a pair of sinusoidal strings with amplitude
A (see Sec. III B). Four of the simulations had initial
standing wave amplitudes of A ¼ 0.1L and four initial
amplitudes of A ¼ 0.075L. The lattice sizes used were
N ¼ 768, 1024, 1280, and 1536.
We show the evolution of the length estimator for the

simulations with standing wave amplitudes of A ¼ 0.1L in
the upper panel of Fig. 10. The color varies with the size of
the lattice: N ¼ 768 (green), N ¼ 1024 (blue), N ¼ 1280
(orange), and N ¼ 1536 (purple). As the figure shows, all
cases have a similar behavior.
At the beginning, the length estimator remains constant

for all cases, while the standing waves self-intersect, and
the loop starts to oscillate. Then, the loops are formed after
which they lose approximately half their energy, indepen-
dent of their size. Afterward, the length decays much more
slowly. Loops of different initial lengths show different
decay rates. The larger the loop is, the smaller the decay
rate is.
We consider the formation time of the loops, tinit, to be

just after the end of the burst of energy loss following
intersection and determine the initial length of the loops
(lL;init) as the length at that point. The disappearance time
of the loops is estimated by visual inspection, shown by the
dashed vertical lines in Fig. 10. The difference between the
two is the lifetime, tlife.

FIG. 9. Scatter plot of the lifetimes of loops from network
simulations for the whole set of lattice sizes, (N ¼ 1024,
δx ¼ 0.125) (blue), (N ¼ 1024, δx ¼ 0.25) (red), and
(N ¼ 2028, δx ¼ 0.25) (green). Different markers correspond
to different correlation lengths in the initial conditions. The
horizontal dashed line represents the overall mean value of the
lifetime, and the shaded region represents the 1-σ band.
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The similarities of all cases are more clearly shown in the
middle panel of Fig. 10, where we plot the invariant length
normalized to lL;init. All cases follow similarly shaped
curves, from the beginning, through the formation of the
loops, the loss of half of their energy, and the subsequent
smooth evolution, from t=lL;init ≈ 0.41 (N ¼ 768), 0.42
(N ¼ 1024), 0.42 (N ¼ 1280), and 0.42 (N ¼ 1536). This

figure shows clearly the slowing of the decay with
increasing initial length.
The bottom panel shows the same simulations but with

the time normalized in such a way that the curves are
aligned at loop formation and the disappearance of the
inner l oop at tlife; i.e., we plot the normalized length versus
ðt − tinitÞ=tlife. The collapse onto a single curve is
remarkable.
The dependence of the loop lifetime on its initial length

is seen in Fig. 11, where we plot the normalized lifetime
against the initial lengths of the loops. The left upper corner
of Fig. 11 contains the points representing artificial loops.
Blue markers correspond to loops prepared from standing
waves with A ¼ 0.1L and orange markers for A ¼ 0.075L.
For comparison with Fig. 9, we also include the collection
of loops obtained from network simulations in gray.
In order to determine how the lifetime depends on the

initial length, we fit the four points for each amplitude
using the following function:

tlifeϕ0 ¼ αðlL;initϕ0Þβ; ð16Þ

where we have restored the dimensionful quantity, ϕ0, for
clarity. We find α ¼ ð3.0� 0.4Þ × 10−3 and β ¼ 2.22�
0.06 (for A ¼ 0.1L) and α ¼ ð3.0� 0.3Þ × 10−3 and β ¼
2.16� 0.05 (for A ¼ 0.075L). The fit is shown as a dashed
line in Fig. 11.
The lifetime scaling power law index β is close to the

value reported in [35] for loops consisting of straight

FIG. 10. Evolution of the loop length estimator corresponding
to artificial loops created from standing waves with amplitude
equal to A ¼ 0.1L. Each color represents different sizes for the
lattices, green for N ¼ 768, blue for N ¼ 1024, orange for
N ¼ 1280, and purple for N ¼ 1536. Dashed vertical lines
represent the moment where the inner loop disappears. The
top panel shows the unnormalized evolution of the length
estimator. The middle panel shows the length estimator normal-
ized to its value lL;init at the beginning of the phase of slow decay,
and the bottom panel shows the normalized evolution but with the
time variable shifted and scaled so that the loop formation and
disappearance coincide.

FIG. 11. Loop lifetime versus initial loop lengths for loops
constructed from collisions between kinky strings and standing
waves with amplitudes A ¼ 0.1L (blue) and A ¼ 0.075L
(orange). Each marker represents different sizes for the lattices,
triangles for N ¼ 768, squares for N ¼ 1024, diamonds for
N ¼ 1280, and stars for N ¼ 1536. Dashed lines are the fits
of the data points by expression given in Eq. (16). The points
corresponding to loops created from intersections of infinite
strings are also included (gray).
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segments and kinks. The coefficient α is similar in
magnitude. The construction and simulation of long-lasting
loops is a therefore good consistency check. The decrease
in energy of our loops is less episodic than those of
Ref. [35], indicating that energy loss is not just occurring
when kinks collide.
We also studied the velocity of the loops, both formed in

the network and those created artificially, using the velocity
estimator described in Eq. (11).
For loops formed during the network evolution, Fig. 12

shows the typical behavior of the mean-square velocity v̄2.
The three colors correspond to three different runs, all with
lϕ ¼ 15, N ¼ 1024, and δx ¼ 0.25. The vertical lines show
when the loop was formed. The horizontal gray dashed line
shows the expectation from Nambu-Goto dynamics, which
is that v̄2 ¼ 0.5 averaged over one oscillation, in
Minkowski spacetime. It is very clear that the network
loops’ average velocity is rather lower in all cases.
To make a more quantitative statement, we averaged the

mean-square velocity of each loop from its formation until
its disappearance. The result can be seen in Fig. 13, where
we have plotted the time-averaged mean-square velocity of
each of the 31 loops created by network dynamics. The
errors shown are the standard deviations from the time
average. The dashed line corresponds to the average of all
the velocity values, and the gray area corresponds to the
standard deviation of the mean 0.40� 0.04. There is
clearly a wide spread of the values of velocities, both from
the calculation of the average velocity of a single loop and
also from simulation to simulation. All (but one) of the
loops are far from saturating the value predicted by Nambu-
Goto dynamics.

This behavior is in clear contrast with the artificial loops,
as shown in Fig. 14. In the figure, we have shown the length
and velocity estimators for a pair of artificial loops, formed
with a wave of amplitude of A ¼ 0.1L. The horizontal gray
line shows the Nambu-Goto prediction for the time-aver-
aged mean-square velocity in Minkowski spacetime. The
mean-square velocity of the loops oscillates around the
prediction, consistent with Nambu-Goto behavior. The fact
that there are two loops accounts for the “beating” of the
oscillation, with a node around t ¼ 450.

FIG. 12. Velocity estimator plot for loops formed from network
evolution. The colors correspond to three different runs with
lϕ ¼ 15, N ¼ 1024, and δx ¼ 0.25. The vertical lines show the
moment of formation of the loop. The dashed gray horizontal line
is the expected time-averaged mean-square velocity of a Nambu-
Goto loop in Minkowski spacetime.

FIG. 13. Time-averaged mean-square velocities for all loops
created by network dynamics (left panel) and by the artificial
procedure (right panel). The error bars show the standard
deviation over the lifetime of the loop. The dashed line corre-
sponds to the average of all the velocity values, and the gray area
corresponds to the standard deviation of the mean.

FIG. 14. Length and mean-square velocity for an artificial loop
formed from the collision of a pair of sawtooth standing waves
with amplitude A ¼ 0.5L and a pair of sinusoidal standing waves
with A ¼ 0.1L, as described in Sec. III B. The length is expressed
as a fraction of its initial length. The dashed gray horizontal line is
the expected time average of the mean-square velocity for a loop
following Nambu-Goto dynamics.
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Figure 13 also shows, in purple, the average values of the
velocities for artificially created loops. The time average is
very close to the Nambu-Goto predicted value, with very
little variation between simulations. The average value of
all the simulations is 0.500� 0.004.
In summary, if we compare these artificial loops with the

ones created in the network, the difference in behavior is
clear. Even though network loops analyzed in this work are
generally larger than our artificial loops, they decay much
faster (with respect to their length); i.e., the lifetime of
network loops exhibit a linear scaling with respect their
initial length, as opposed to a quadratic lifetime of artificial
loops. Besides, the velocities of network loops are lower
than the ones expected from a Nambu-Goto behavior.
Artificial loops seem to follow closely the Nambu-Goto
behavior in velocity, though they slowly lose energy.

V. A MODEL FOR LOOP DECAY

In this section we outline a model which can explain the
decay of string loops by the nonlinear interaction of degrees
of freedom living on the string with massive radiation in the
full space. Such modes are known to exist: They are the
dilatational or “sausage” modes of a Nielsen-Olesen vortex
[40], and they are also known to couple to massive radiation
[41,42]. At Bogomol’nyi coupling, the mass of dilatational
modes is approximately 0.75 of the mass of the propagating
modes [40].
We suppose that the extra degrees of freedom on the

string contribute energy per unit length, e, and pressure, p,
such that the mass per unit length, μ, and tension, T, are

μ ¼ μ0 þ e; T ¼ μ0 − p; ð17Þ

where μ0 is the energy per unit length of the straight static
string solution. We suppose that the rest-frame string length
is l, so that the total energy is E ¼ μl. The rate of change
of the total energy is then

_E ¼ _elþ μ _l: ð18Þ

If these extra degrees of freedom are indeed the dilatational
modes, then they can interact and excite massive radiation.
It is known that the energy loss rate of a two-dimensional
vortex with the dilatational mode excited is proportional to
the square of the excitation energy [42]. This behavior has
also been observed in numerical simulations of kinks in a
1þ 1 dimensional field theory [43], which also possess
dilatational modes (see, e.g., [44]). One can therefore infer
that the energy loss rate per unit length of a string is
proportional to the square of the energy per unit length,

Prad ¼ −
κ

ϕ0

e2; ð19Þ

where κ is a dimensionless coupling constant, and the
expectation value of the field ϕ0 sets the scale. This is
consistent with a picture of the interaction and energy loss
as due to scattering in 1þ 1 dimensions.
Hence, the rate of loss of the total energy is

_E ¼ −
κ

ϕ0

e2l: ð20Þ

Some fraction, f, of the energy will be lost from the extra
degrees of freedom and therefore (1 − f) from the string
itself. The energy per unit length in the extra degrees of
freedom can also change due to the change in the string
background on which the modes propagate. From energy-
momentum conservation on the string world sheet, one can
estimate

_e ≃ −
_l
l
ðeþ pÞ; ð21Þ

and so one can write

_e ≃ −ðeþ pÞ
_l
l
− f

κ

ϕ0

e2: ð22Þ

Hence,

ðμ0 − pÞ _l ≃ −ð1 − fÞ κ

ϕ0

e2l: ð23Þ

A. Lifetime proportional to length squared

Let us first suppose that energy in the extra degrees of
freedom is much less than that of the string background,
e ≪ μ0, and p ≪ μ0. Then, we can neglect the fraction f,
and the invariant length of the string decays as

_l ¼ −
κ

ϕ3
0

e2l: ð24Þ

We also suppose that the equation of state of the extra
degrees of freedom is p ¼ 0, consistent with their being
nonrelativistic massive modes. Hence, the energy per unit
length of the extra degrees of freedom increases with
decreasing l, as

e ¼ e0ðl0=lÞ: ð25Þ

We can then write

_l ¼ −
κe20
ϕ3
0

�
l0

l

�
2

l; ð26Þ

which has the solution
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l2 ¼ l2
0

�
1 −

2κe20
ϕ3
0

t

�
: ð27Þ

We then suppose that the initial energy in the degrees of
freedom is associated with the initial curvature of the string,
so assuming that the string curvature is of order l−1,

e0 ¼ ϵϕ0=linit; ð28Þ

we can solve the equation for l, obtaining

l2 ¼ l2
0

�
1 −

2κϵ2

ϕ0l2
init

t

�
: ð29Þ

Thus, the lifetime of the loop is

tlife ¼
ϕ0l2

init

2κϵ2
; ð30Þ

which is proportional to the square of the length, as
observed. One can write the decay of the length in the form

l
linit

¼
�
1 −

t − tinit
tlife

�1
2

: ð31Þ

This prediction is compared with a simulation of artificial
loops in Fig. 15. In view of the simple approximations, and
the fact that the string is contained in two loops, the fit
is good.
The decay law (31) generalizes the model of Ref. [35],

which models the energy loss as due to the collision of
kinks. A kink is just one kind of perturbation raising the
energy of the string. A single kink can be expected to
increase the energy of the string by δE ∼ ϕ0, and so with nk

kinks, the string has initial extra energy per unit length
e0 ∼ nkϕ0=linit, scaling in the sameway as Eq. (28). Hence,
the decay law (31) applies to kinky strings as well, at least
when averaged over many kink collisions.

B. Lifetime proportional to length

We now suppose that there are two components to the
extra degrees of freedom, ea and eb. They could, for
example, be short-wavelength and long-wavelength modes.
We assume that one of these is excited by the curvature

of the string, as before, but that the other is saturated at a
constant value e, which is of order μ0. This will lead to a
reduction in the velocity of waves on the string, cs, to

c2s ¼ 1=ð1þ e=μ0Þ: ð32Þ

Then,

ea ¼ ϵaϕ0=l; eb ¼ ϵbμ0: ð33Þ

Staying with the assumption that the pressure of the extra
degrees of freedom is negligible, the decay of the string
length then goes as

μ0 _l ¼ −ð1 − fÞ κ

ϕ0

eaebl ¼ −ð1 − fÞκϵaϵbμ0: ð34Þ

If we assume that the fraction of the energy lost by the extra
degrees of freedom is constant, we arrive at a decay law
linear in time,

_l ¼ −κ̃ϵaϵb; ð35Þ

where we have absorbed 1 − f into the constant κ̃. There is
evidence for a saturated eb, as the mean-square velocity of
the network loops is observed to be around 0.4, less than
the Minkowski spacetime value of 0.5 for a NG string. This
indicates that the square of the propagation speed of waves
on the string is around 0.8, and hence, e=μ0 ≃ 0.25.
There is a significant variability in the decay rates of

individual loops, which presumably reflects the way that
the initial conditions perturb the strings, but the saturation
of the energy of the extra degrees of freedom seems to be
generic. That this saturation always seems to occur for
network loops points toward the presence an instability,
whose nature deserves further investigation.

VI. CONCLUSIONS

In this paper, we have investigated the dynamics of
Abelian-Higgs loops, focusing on their lifetime and their
decay mechanisms. This characterization has deep impli-
cations on the properties of networks of cosmic strings, in
particular, both the cosmic ray and gravitational wave
power of such networks depends strongly on the properties
of the loops. The GW predictions and bounds obtained for

FIG. 15. Comparison between the length decay obtained from
the simulation of an artificial loop (the same as in Fig. 14) and
theoretical prediction from Eq. (31). We approximate the string
configuration by a single loop decaying when the second loop in
the simulation disappears.
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cosmic strings are generally obtained by studying the
Nambu-Goto dynamics of strings, and the question lies
whether string loops in a field theory follow such dynamics,
or they have different decay channels.
We have studied both the length and the velocity of the

loops, created in two different ways. On the one hand, we
have formed a network of strings from cooled random
fields and followed the dynamics of loops created by
network evolution. On the other, we have set up initial
conditions carefully tuned to create long-lived oscillating
loops, which we term “artificial” loops.
For the randomly created loops, we have simulated about

100 different cases (with different random seeds, initial
correlation lengths, and lattice resolutions). Only about
one-third of those cases resulted in loops created by
intersection of other loops, which we consider to be more
representative of the typical loop created by a scaling string
network. We term these “network” loops. About half of the
simulations ended with strings wound around the lattice,
which had periodic boundary conditions. In about one-
sixth, the loops present in the initial state evaporated
without intersection.
All randomly created loops decayed rapidly, shrinking

either to zero size or to strings wrapping the simulation
volume within a time of order, linit, their initial length. The
lifetime of network loops, as defined above, is proportional
to linit, with a proportionality constant of 0.14� 0.04. The
lifetimes show no tendency to increase with the initial
length. These results are consistent with scaling network
simulations [36] and with previous studies of decaying
loops [29], extending them to loop sizes up to around 6000
inverse mass units.
The mean-square velocity for the network loops is

observed to be 0.40� 0.04, lower than the value 0.5 for
a loop following Nambu-Goto dynamics in Minkowski
spacetime.
Our artificial loops were created by the collision of two

pairs of wrapping strings with either a sawtooth or
sinusoidal initial shape. This set of loops behaved quite
differently: their lifetime was proportional to the square of
their initial length, in line with the results of [35], who
studied artificial loops created by the collision of moving
straight strings. The mean-square velocity of these loops
was 0.500� 0.004, very close to the prediction of Nambu-
Goto dynamics. The collision and reconnection of the
strings resulted in the loss of about half the energy in the
initial state, independent of the ratio of the string length to
the string width, which is contrary to the “traditional”
picture, where energy is lost only from a few inverse mass
units around the site of the self-intersection.
The fact that we are able to simulate loops obeying

approximate Nambu-Goto dynamics and loops which
rapidly lose energy by radiation leads us to conclude there
is an intrinsic difference between network loops and
artificial loops.

We propose a model to explain the difference, in terms of
the excitation of degrees of freedom on the string, which
could be dilatational modes. If the degrees of freedom are
only weakly excited, the decay rate of loop length is
inversely proportional to the length, leading to a quadratic
dependence of the lifetime on the initial length. If the
modes are strongly excited, with energy per unit length
comparable with that of the background string solution, the
decay rate of loop length is independent of the length, and
the loop lifetime depends linearly on the initial length.
There is evidence for excitations with energy of the order of
20% of the background string from the lower mean-square
velocity of network loops. The fact that the extra degrees of
freedom are consistently excited by the collapse of initially
smooth field configurations indicates the presence of an
intrinsic instability in the background of an evolving string.
The nature of this instability is somewhat mysterious.

Some clues are available from the available simulations, in
that if loops are somehow prevented from collapsing, either
by spinning (in the artificial loop case) or by wrapping, the
instability seems to shut off. We also note that a massive
mode propagating in the effective 1þ 1 dimensional
spacetime of an oscillating string can undergo parametric
resonance. A dedicated study is necessary to investigate. As
radiating dilatational modes can also be excited on 1þ 1
dimensional kinks [43], the same effect may also be found
in 2þ 1 dimensional simulations of a real scalar field
theory with a spontaneously broken Z2 symmetry, for
which simulations will be less demanding.
It may be the case that most of the network loops behave

as the loops found in this work, but there could be a fraction
of them that are well described by Nambu-Goto dynamics,
a fraction which is sufficiently small that we were not lucky
enough to create one. To accommodate this uncertainty in
modeling of observational signals of strings, we propose a
parameter fNG, the fraction of loops in a network following
Nambu-Goto dynamics, which can be used to quantify and
recalculate the bounds on cosmic strings from cosmic rays
or gravitational waves. Using the “rule of three” statistics
on our sample, fNG < 0.1 at a 95% confidence level, a
bound which includes zero.
There are significant physical implications of the scarcity

of Nambu-Goto-like loops in a field theory string network.
For example, if the recent NANOgrav report of a possible
stochastic gravitational wave background at frequencies
around 1 yr−1 [14] is due to cosmic strings [15,16] with
string tension Gμ ∼ 10−10, their fields cannot couple sig-
nificantly to the StandardModel, as therewould be toomuch
gamma ray production to be consistentwith observation [25].
If the strings are almost completely decoupled from the
Standard Model, they could have larger string tension, in the
range 10−10f−1NG ≲ Gμ ≲ 10−7. The upper bound on Gμ
comes from the CMB [27] and is purely gravitational.
Hence, fNG ≳ 10−3 is required for hidden sector field theory
strings to account for the NANOgrav signal.
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APPENDIX: RESOLUTION TESTS

We have performed a series of tests to check for the effect
of lattice spacing on the decay of string loops in our
simulations. In the case of the loops formed from the
evolution of a network, we compare loops by coarse
graining the field configuration of the simulation with
the finest lattice spacing. In the case of artificial loops, the
strings are automatically prepared around the “seed” curve
in a field configuration appropriate to the resolution, and
coarse graining is not needed.

1. Networks

We aim to establish the effect of the lattice spacing, δx,
on the lifetime of a loop created during the evolution of a
network. We run a simulation which ends with an evapo-
rating loop using the finest resolution δx ¼ 0.125 in a box
with N ¼ 1024 lattice points per side. Then, visualizing the
simulation box, we establish the instant at which the final
string loops are formed. We then rerun the simulation and
store the field values for thewhole simulation box at 10 time
units before the loop is formed. The field values are then used
to create the initial conditions of the boxes with lattice
spacings δx ¼ 0.25 and δx ¼ 0.5 and points N ¼ 512 and
N ¼ 256, by averaging over adjacent sites [36].
We run these simulations and compare the outcomes, as

shown in Figs. 16 and 17.
Figure 16 shows the evolution of the string network

length, lL, for a simulation with lϕ ¼ 25. Each color
represents a different lattice resolution, blue for
δx ¼ 0.125, red for δx ¼ 0.25, and yellow for δx ¼ 0.5.
As explained before, the initial field configurations of δx ¼
0.5 and δx ¼ 0.25 are obtained at the moment at which the
loop is created for δx ¼ 0.125, and so, their lines start later
(in this case at t ≈ 250). It shows the general behavior we
have seen for most of the resolution tests performed. It can
be seen how the lifetime of the loop decreases when the
resolution gets lower, which means a faster decay of loops

if the resolution is reduced. For δx ¼ 0.25, this difference
with δx ¼ 0.125 exists, but it is not substantial. For
δx ¼ 0.5, the differences become somewhat bigger, but
are still within around 5% of the lifetime at δx ¼ 0.125.
Figure 17 shows another simulation, with lϕ ¼ 15, and

where the loop is formed at t ≈ 180. The colors correspond
to the same cases as in Fig. 16. This figure also shows some
differences in the length decay of the resolution δx ¼ 0.5.
In the early stages of the evolution, the loop evolved at the
lowest resolution loses length more rapidly, as expected.
However, at around t ≈ 270, this behavior suddenly
changes, and the loop in the simulation with δx ¼ 0.5
becomes the longest lasting loop. This behavior is not
typical.
Figure 18 shows a sequence of snapshots that illustrates

why this abrupt change happens on the decay. The figure
shows the positions of strings obtained by scanning the

FIG. 16. Evolution of the loop length estimator for correlation
length lϕ ¼ 25. Each color represents a different resolution,
yellow for δx ¼ 0.5, red for δx ¼ 0.25, and blue for δx ¼ 0.125.

FIG. 17. Evolution of the loop length estimator for correlation
length lϕ ¼ 15. Each color represents a different resolution,
yellow for δx ¼ 0.5, red for δx ¼ 0.25, and blue for δx ¼ 0.125.
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lattice and computing the winding number in each plaquette
[45]. Those plaquettes with nontrivial winding numbers are
the ones pierced by strings, and those positions are the ones
shown in the figure. From top to bottom, with time units
t ¼ 262, 268, and 274, respectively, we can see how for
resolutions δx ¼ 0.125 and δx ¼ 0.25 the loop splits in
two. However, this fragmentation process does not happen
for δx ¼ 0.5, and therefore, it takes more time for the loop
to fully decay.
In summary, the resolution tests that we have performed

indicate similar evolutions of the length estimators. The
lifetimes of the loops obtained from all different resolutions
are within 5%. We decided to be somewhat conservative

and taking into account our numerical resources opted to
perform simulations with δx ¼ 0.25 and δx ¼ 0.125.

2. Artificial strings

The study of the loops created by the mechanism
described in Sec. III B also requires resolution checks. In
this case, there is no need to coarse grain, since we control
the formation of the loop.
Figure 19 shows the evolution of the length estimator for

the different resolutionswe have tested. Each color refers to a
different resolution and lattice size (ensuring all configura-
tions are equivalent), yellow for (N ¼ 256, δx ¼ 0.5), red for
(N ¼ 512, δx ¼ 0.25), green for (N ¼ 768, δx ¼ 0.167),
blue for (N ¼ 1024, δx ¼ 0.125), and orange for
(N ¼ 1280, δx ¼ 0.1). The dashed vertical line is used to
show the moment at which the inner loop disappears.

FIG. 19. Evolution of the loop length estimator, lL, for
different resolutions. Dashed vertical lines represent the moment
where the inner loop disappears. Each color represents a different
resolution, yellow for δx ¼ 0.5, red for δx ¼ 0.25, green for
δx ¼ 0.167, blue for δx ¼ 0.125, and orange for δx ¼ 0.1.

FIG. 18. Sequence of snapshots corresponding to the change of
behavior in Fig. 16 around t ≈ 270, showing how the loop
fragmentation is avoided at δx ¼ 0.5. Starting from the top, each
snapshot corresponds to t ¼ 262, 268, and 274. The colors
represent, once again, different lattice spacing, blue for
δx ¼ 0.125, red for δx ¼ 0.25, and yellow for δx ¼ 0.5

FIG. 20. Lifetime of the inner loops versus spatial resolution for
artificially created loops.
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This figure shows that the length decreases faster for
δx ¼ 0.5 than for the other resolutions. As explained in the
main test, we aim at configurations that avoided a double-
line collapse. However, this resolution is too low to avoid it,
and the loop decays without oscillating. Resolutions of
δx ¼ 0.25 and higher succeed in avoiding the double-line
collapse.
However, comparing the resolutions which avoid the

collapse, we observe that the loops in resolutions δx ¼ 0.25
and δx ¼ 0.167 decay faster than in higher resolutions,
whereas for δx ¼ 0.125 and δx ¼ 0.1 the decay is

practically identical. In this case, the collapse of the inner
loops only differs by eight time steps.
The convergence can be seen in Fig. 20, which shows the

lifetime of the inner loop for each resolution. The dashed
horizontal gray line refers to the lifetime of the finest
resolution, δx ¼ 0.1, we have tested. The lifetime increases
as the resolution increases, until we observe that the
lifetime of the loop at resolution δx ¼ 0.125 is quite similar
to that at δx ¼ 0.1.
In view of these results, and our numerical resources, we

decided to perform simulations with δx ¼ 0.125.
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