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The quantity T0, the cosmic microwave background (CMB) monopole, is an often neglected seventh
parameter of the standard cosmological model. As well as its variation affecting the physics of the CMB,
the measurement of T0 is also used to calibrate the anisotropies via the orbital dipole. We point out that it is
easy to misestimate the effect of T0 because the CMB anisotropies are conventionally provided in
temperature units. In fact the anisotropies are most naturally described as dimensionless and we argue for
restoring the convention of working with ΔT=T rather than ΔT. As a free cosmological parameter, T0 most
naturally only impacts the CMB power spectra through late-time effects. Thus if we ignore the COBE-
FIRAS measurement, current CMB data only weakly constrain T0. Even ideal future CMB data can at best
provide a percent-level constraint on T0, although adding large-scale structure data will lead to further
improvement. The FIRAS measurement is so precise that its uncertainty negligibly affects most, but not all,
cosmological parameter inferences for current CMB experiments. However, if we eventually want to
extract all available information from CMB power spectra measured to multipoles l ≃ 5000, then we will
need a better determination of T0 than is currently available.
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I. INTRODUCTION

Experimental results in the past couple of decades have
established Λ cold dark matter (ΛCDM) as the standard
model of cosmology. This era of precision cosmology has
been largely driven by studies of the cosmic microwave
background (CMB), which demonstrate that a 6-parameter
model provides a good fit to the data. The basic parameter
set is often written as fΩbh2;Ωch2; θ�; As; ns; τg, which has
been tightly constrained by Planck [1–3] and other experi-
ments [4,5]. Despite this being described as the 6-parameter
ΛCDM model, there is in fact a seventh parameter, namely
T0, the present-day temperature of the photon background,
or the monopole term in the spherical-harmonic expansion
of the CMB sky. This additional parameter is usually
neglected because it is so well measured that it can be
regarded as effectively fixed.
In current cosmological analyses, T0 is given by the

precise measurements available from a combination of
data from COBE-FIRAS [6] and other experiments [7],
yielding

T0;F ¼ ð2.7255� 0.0006Þ K; ð1Þ

which has an uncertainty at the level of 0.02%; for
simplicity we will refer to this as the “FIRAS” temperature.
The Planck 2018 results give values of θ� andΩbh2 that are
constrained to approximately the 0.03% and 0.67% levels,
respectively [3], which begin to approach the precision of
T0;F. In the future, with continuously improving measure-
ments of higher multipoles of CMB power spectra from
ground-based experiments [8–10], and the possibility of
ambitious space-based experiments [11], it will be possible
to approach a cosmic-variance-limited (CVL) measurement
for power spectra to high multipoles, particularly for
polarization, where there are not expected to be significant
small-scale foreground signals. With correspondingly dra-
matic improvements in the derived cosmological parame-
ters, in this paper we assess whether it is reasonable to
continue treating temperature as a constant in the cosmo-
logical analysis or whether we will eventually need a better
measurement of the CMB monopole in order to fully
exploit the constraining power of future experimental data.
Once we start to consider T0 as a variable, the current

way of presenting CMB data in temperature units needs to
be reexamined. This is because, besides being a cosmo-
logical parameter, T0 is also used for the calibration and
presentation of CMB data. The theoretical power spectra
Cl calculated by cosmological codes (e.g., CAMB [12] or
CLASS [13]) are frequently presented in temperature units
[μK2]. This is despite the fact that from the time of the
earliest discussions of CMB anisotropies, theorists tended
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to frame their calculations in terms of fractional perturba-
tions, i.e., ΔT=T. This can be seen in early papers by
Peebles [14], Sachs and Wolfe [15], Silk [16], and Sunyaev
and Zeldovich [17]. Conversely, the results of anisotropy
experiments, including both the measured Solar dipole and
the measured CMB power spectra, are usually expressed in
temperature units. This may seem natural, given that a
Planck distribution is fully described by a temperature;
however, as we discuss later, the calibration of measure-
ments also has to be considered. As measurements became
more precise and the annual variation of the dipole started
being used as the primary calibration source, the fact that
experiments are directly measuring a dimensionless quan-
tity has become more obscured.
To understand T0 as a parameter, it is necessary to

disentangle the role of T0 in the calibration process from T0

in the physics. The situation would be more straightforward
if ΔT=T units were used in presenting data as well as for
discussing theoretical predictions. Our purpose here is to
clarify these issues in order to ultimately decide whether
variations of T0 within a 7-parameter model actually matter.
In this paper we first review the issue of CMB calibration

and discuss the problem of using temperature units for
CMB data in Sec. II. In Sec. III, we present a pedagogical
argument for the theoretical role of T0 in a 7-parameter
ΛCDM model (primarily building on the work of
Ref. [18]), and provide constraints on T0 from current
and future CMB power spectra and other data. Next, in
Sec. IV we analyze the impact of the current T0 uncertainty
(from the FIRAS measurement) on cosmological parameter
constraints in current and future CMB experiments. We
conclude in Sec. V.
Throughout the paper, we use a Fisher-matrix formalism

to forecast parameter constraints from CMB data (also
including measurements of the baryon acoustic oscilla-
tions). The method used and conditions set for our
calculations are described in detail in Appendix A. Since
we use several different symbols to refer to various
definitions of the background temperature, we give a table
of definitions for reference in Appendix B. Last, we also
discuss the relationship between T0 and inhomogeneity in
Appendix C. Throughout we adopt a fiducial flat ΛCDM
model with the parameter values in Table I, from Planck
[3,19], which represents the smallest uncertainties we
currently have for parameters in ΛCDM from CMB data
alone. Except where explicitly stated otherwise, all the
parameter uncertainties are given as �1σ, which

corresponds to the 68% confidence interval for a
Gaussian distribution.

II. CALIBRATION AND UNITS

A. Motivation for dimensionless fluctuations

The CMB temperature anisotropy power spectrum Cl
[which is related to the multipole-scaled quantity
Dl ¼ lðlþ 1ÞCl=ð2πÞ] is usually defined as the covari-
ance of the coefficients of the spherical harmonic expansion
of the dimensionless quantity ΔTðn̂Þ=T, where n̂ is the
direction on the sky. The predictions of theoreticalmodels for
the power spectra are also most directly obtained as dimen-
sionless quantities. Indeed, the dimensionless anisotropy
power is directly related to the dimensionless amplitude of
primordial curvature perturbations, As, and for the primary
anisotropies the dimensionless power (unlike the power
in temperature units) satisfies the approximate scaling
relation [20]

l02Cl0 ðt0Þ ≃ l2ClðtÞ ð2Þ

during the evolution of the Universe, where

l0 ≡ l
DAðt0Þ
DAðtÞ

; ð3Þ

for angular diameter distance DAðtÞ from recombination to
the observer at time t. However, in the current convention the
temperature and polarization anisotropy power spectra are
given in temperature units (usually μK2) formeasured results
from CMB experiments and, usually, also for the results of
theoretical calculations. On the other hand the lensing
reconstruction spectrum, Cϕϕ

l , is always provided in dimen-
sionless form.
While conventions can be difficult to change, we

advocate here for the use of dimensionless quantities
exclusively, in both theoretical and experimental studies.
Apart from their simpler theoretical properties described
above, dimensionless quantities are also advantageous from
the standpoint of calibration. All CMB anisotropy experi-
ments use differential measurements, and so they are not
directly sensitive to the value of the temperature monopole
(but see below for further discussion on this point). In a
typical CMB experiment, the detectors measure, in volts,
differences between the brightness of positions on the sky.
These data then need to be calibrated. The most precise

TABLE I. 68% confidence intervals for the 6-parameter base-ΛCDM model from the 2018 Planck TT;TE;EEþ
lowEþ lensing likelihood [3,19]. For all the analyses in this paper, we choose the central values of the below
intervals as the fiducial model, and we adopt the below error bars as the standard uncertainties for reference. Note
that if we use the FIRAS prior in the 7-parameter ΛCDM þ T0 model, we obtain essentially identical results.

Ωbh2 Ωch2 100θ� 109As ns τ

0.02237� 0.00015 0.1200� 0.0012 1.04110� 0.00031 2.100� 0.030 0.9649� 0.0042 0.0544� 0.0073
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calibration is the annual time variation of the dipole, often
referred to as the “orbital dipole.” This is known to
extremely high precision (in velocity, or v=c or ΔT=T
units) because of the complete knowledge of the satellite’s
orbital motion [21]. This calibration then allows the
annually averaged dipole (usually called the “Solar dipole”)
to be extracted from the data, also in dimensionless units. It
should be clear that this argument for the l ¼ 1 mode
applies equally well to all the other multipole coefficients
of the measured CMB sky, so they too are fundamentally
measured in velocity, or dimensionless, units.
To help elucidate the advantages of dimensionless

quantities, it will be useful to consider the calibration of
CMB anisotropy experiments in more detail; here we focus
on the Planck satellite, but we expect the same discussion
to apply generally. The approaches for the calibration of
data from Planck are described in great detail in a series of
papers [21–27]. For clarity of the treatment, we ignore
foregrounds for the moment and assume that only CMB
anisotropy is being observed. Planck measures a signal (a
detector voltage) that (ignoring beam effects, which could
easily be added) is proportional to the intensity difference
between two directions on the sky,

ΔIνðν; n̂Þ≡ Iνðν; n̂Þ − Iνðν; m̂Þ ≃ dIν
dT

����
m̂
ΔTðn̂Þ ð4Þ

at first order in ΔTðn̂Þ, where m̂ is a (fixed) reference
direction, with Tðm̂Þ≡ T0 and ΔTðn̂Þ≡ Tðn̂Þ − T0, and
Iνðν; n̂Þ is the Planck intensity distribution. When Planck
uses the orbital dipole for calibration, the amplitude of that
dipole, vod=c ¼ ΔTod=T0, is known with very high pre-
cision. Therefore, according to Eq. (4), at first order in
ΔTðn̂Þ we have

vod
c

¼ ΔIν;odðνÞ
T0dIν=dTjm̂

¼ ex0 − 1

x0ex0
ΔIν;odðνÞ
Iνðν; m̂Þ ; ð5Þ

where ΔIν;odðνÞ is the intensity difference corresponding to
the orbital dipole amplitude and x0ðνÞ≡ hν=ðkT0Þ.
Therefore the orbital dipole calibration gives directly, at
the same precision as we know vod=c, the quantity on the
right-hand side of Eq. (5), and not the intensity difference
ΔIν;od=Iν. It is only when we also know T0 (and hence x0)
precisely that the calibration also gives us ΔIν;od=Iν.
Next, when Planckmeasures a CMB fluctuation in some

direction n̂, combining Eqs. (4) and (5) gives, at first order,

ΔTðn̂Þ
T0

¼ ΔIνðν; n̂Þ
ΔIν;odðνÞ

vod
c

: ð6Þ

Thus we can determine the (dimensionless) temperature
fluctuation knowing only the ratio ΔIνðν; n̂Þ=ΔIν;odðνÞ,
which is equal to the (directly measured) corresponding
detector voltage ratio. In particular, we do not need to know

T0, so if the T0 value we adopted was completely wrong we
would still obtain the correct dimensionless ΔTðn̂Þ=T0 for
the fluctuations.
It may beworth adding that for the two highest frequency

channels of Planck, where the CMB anisotropies do not
dominate even at high Galactic latitudes, the calibration
procedure instead uses the brightness of planets. This is
most naturally done in intensity units, i.e., ΔIν rather than
ΔT=T. However, the precision of the planetary calibration
process only reaches the 1% level under the most optimistic
set of assumptions [28] and hence has no bearing on the
details of the much more precise T0 calibration that we are
discussing here.
When we include foregrounds, the total signal is often

written in terms of the Rayleigh-Jeans temperature fluc-
tuation, explicitly (see, e.g., [29])

ΔTRJðν; n̂Þ ¼
x20e

x0

ðex0 − 1Þ2ΔTCMBðn̂Þ þ
X
i

Aiðn̂ÞFiðν; n̂; θÞ;

ð7Þ

where the sum is over foreground components with
amplitudes Ai and frequency dependence Fi, θ is a set
of foreground parameters, and the Rayleigh-Jeans temper-
ature fluctuation is given by

ΔTRJðν; n̂Þ ¼
ΔIνðν; n̂Þc2

2kν2
: ð8Þ

The relation corresponding to Eq. (6) for the Rayleigh-
Jeans temperature fluctuation is

ðex0 − 1Þ2
x20e

x0

ΔTRJðν; n̂Þ
T0

¼ ΔIνðν; n̂Þ
ΔIν;odðνÞ

vod
c

: ð9Þ

Again, the quantity on the right-hand side of this equation
is directly measured when using the orbital dipole for
calibration, and is independent of T0; however, now we
need T0 if we wish to determine the Rayleigh-Jeans
fluctuation. We can nevertheless write Eq. (7) in a form
that is dimensionless and independent of the value of T0 as

ðex0 − 1Þ2
x20e

x0

ΔTRJðν; n̂Þ
T0

¼ ΔTCMBðn̂Þ
T0

þ ðex0 − 1Þ2
x20e

x0

X
i

Aiðn̂Þ
T0

Fiðν; n̂; θÞ: ð10Þ

Here the foreground amplitude parameters will have units
of temperature, so indeed this expression is dimensionless.
Again, we stress that the quantity on the left-hand side is
directlymeasured in terms of the calibration, independently
of T0, according to Eq. (9).
Now finally, if we imagine a hypothetical situation where

our adopted value of T0 is wrong, the measured left-hand
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side of Eq. (10) will not change. However, the T0- (and ν-)
dependent factors multiplying the foreground sum will
change. To the extent that the foreground parameters are
degenerate with this change, we could still recover the
correct CMB fluctuations; however, the foreground param-
eters would be biased from their true values. For a large
enough error in our adopted T0, we expect the shift in T0 to
no longer be degenerate with shifts in foreground param-
eters, so we would have a poor fit, and might not correctly
recover the CMB anisotropies. This is not surprising,
considering that using an incorrect value of T0 means
we might be assuming in error that the CMB dominates (or
does not) over a particular foreground component in some
frequency range. In principle, to the extent that we are
confident about which foreground components are impor-
tant and can place priors on their parameters, Eq. (10)
implies that we could place a constraint on T0 from the
Planck frequency maps alone. However, for this to be
useful, we would need a very precise first-principles
calculation of the foreground parameters. In practice such
parameters will have fairly wide priors and hence any
constraint on T0 from matching foregrounds will be
quite weak.
To summarize, it is the dimensionless CMB fluctuation

ΔT=T0 that is most directly constrained in terms of the
orbital dipole calibration. Ignoring foregrounds, we can
determine ΔT=T0 this way independently of the monopole
T0. In the presence of foregrounds, errors in T0 may bias
the foreground parameters, though in practice the uncer-
tainties in those parameters should far exceed the level of
the FIRAS T0 uncertainty.

B. Conversion to temperature units

If we do wish to give the amplitude of the Solar dipole
and higher multipoles in temperature units, it is necessary
to multiply by a monopole value. Here there are two
slightly different questions that we can ask. The first is
“what is the best we can say about Cl in temperature

units?” If C½D�
l is the measured dimensionless spectrum and

C½T�
l is in temperature units,1 the answer is

C½T�
l ¼ T2

0C
½D�
l ðT0;pÞ; ð11Þ

where p represents the remaining cosmological parameters.

The quantity C½T�
l in Eq. (11) is equivalent to the covariance

of the alms when we directly expand ΔTðn̂Þ [instead of
ΔTðn̂Þ=T] in spherical harmonics. Here the uncertainty in
the FIRAS-derived value T0;F propagates into the uncer-

tainty in C½T�
l via the calibration, as it must. Note that, if we

wish to compare the measured spectra with model pre-
dictions using this conversion method, we must convert
both the predicted spectra and the measured spectra
(despite the fact that the measured spectra are fundamen-
tally dimensionless in nature) into temperature units, taking
account of the uncertainty in T0. In most practical settings,
when we are not considering T0 to be a free parameter,
consideration of the uncertainty in T0 simply means taking
the FIRAS measurement T0;F in Eq. (1).
The second approach to converting the spectra to

temperature units is the answer to the question: “what is
the best we can say about the anisotropy power?” The
answer is now

C½T�
l ¼ T2

cC
½D�
l ðT0;pÞ; ð12Þ

where Tc is a fixed calibration temperature that we select in
order to convert Cl from dimensionless to temperature
units. Since Tc is constant [conventionally the central value
of the FIRAS measurement, Eq. (1), hereafter T̄0;F], the T0

uncertainty does not propagate into the errors inC½T�
l , and so

we know C½T�
l with greater precision than if we had used

Eq. (11). Of course, when using Eq. (12) there is no actual
dependence on the experimental value of the monopole in
the calibration, since one could always divide out the fixed
value of Tc that was used and recover the original
dimensionless measurement. So it is equivalent, but sim-
pler, to stay dimensionless from the start. Another potential
problem with choosing a factor Tc is that a future
measurement of T0 [30,31] might give a different central
value, complicating comparisons.
In practice with current experiments, it makes essentially

no difference which calibration approach we take as far as
the higher multipoles (l ≥ 2) are concerned, since the
FIRAS uncertainty is negligible compared to other errors.
However, for the Solar dipole, folding in the FIRAS error
does make a substantial contribution to the total uncer-
tainty. In this case, when quoting the results in velocity
units the Planck Collaboration papers never include the
FIRAS error. However, the situation is not always con-
sistent when it comes to presenting the uncertainty of the
Solar dipole in temperature units and choosing whether to
add the FIRAS uncertainty in quadrature [21,26,27,32,33].
Nevertheless, in their latest results [33,34] the collaboration
does include the FIRAS uncertainty in the temperature-
units dipole. The resulting inflation of uncertainties should
be taken into account when comparing different dipole
measurements. In summary, Planck uses both approaches
listed above for converting the dipole amplitude to temper-
ature units. While neither approach is wrong (since they
provide answers to slightly different questions), we con-
sider that the second approach of choosing fixed Tc,
without combining the FIRAS error, is the more appro-
priate one. This is because it correctly reflects the

1Appreciating that it is unorthodox for the units to change the
meaning of a variable, here we put the label in square brackets to
indicate that we are explicitly referring to a particular choice of
units.
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dimensionless nature of the dipole measurement and more
accurately summarizes our current knowledge of the Solar
dipole uncertainty.
Although when comparing the results of higher multi-

poles in present-day experiments with theoretical calcu-
lations it makes essentially no difference whether one uses
temperature units or dimensionless quantities, there are
situations in which this distinction can be crucial. In
particular, when considering a 7-parameter ΛCDMþ T0

model, with variable background temperature, we should
calculate the theoretical dimensionless power spectra by
varying T0 along with the usual cosmological parameters,
but we should not include the T0 variation in the calibration
of the power spectra. In other words, we should use
Eq. (12) instead of Eq. (11). If we used Eq. (11) (and
did not similarly scale the calibration of the measured
spectra we compare with), the variation of T0 would cause
an additional change of the overall amplitude of the power
spectra, which would lead to a strong degeneracy between
T0 and As. In addition, the fact that the lensing spectrum
Cϕϕ
l is always presented in dimensionless form can lead to

an artificially strong lensing constraint [18]. As seen in
Fig. 1 using a Fisher-matrix analysis (see Appendix A for

more details), the incorrect calibration method leads to a
much larger uncertainty on As, due to the T0-As degeneracy,
and a significantly smaller uncertainty on T0, due to the
artificial effect on lensing. Indeed, the incorrect-calibration
error on As is dominated by that of T0 at large lmax, as
expected given the T0-As degeneracy.
This issue with the temperature calibration of theoretical

CMB power spectra was a problem [35,36] in Refs. [11,37],
and affected the results in the latter reference since it found
that the uncertainty on As increased substantially when
including T0 as a parameter. It was also a problem in version
1 of Ref. [18], which led to an unrealistically tight predicted
constraint on T0 from CMB anisotropies.
In summary, since the CMB power spectra are most

naturally dimensionless in theory and are also measured
directly in ΔT=T units, there is no compelling need to
present the spectra in temperature units. The current
convention is simply one of convenience. For clarity of
the physical meaning of the quantities being calculated and
measured and for the sake of uniformity across power
spectra, it would be better to present all future results as
dimensionless quantities. In the rest of this paper, for all our
analyses, we will follow Eq. (12), the second approach,
whenever we need to calculate Cl in temperature units to
meet the current convention.

III. T0 IN COSMOLOGICAL MODELS

With the clarification of temperature calibration in
Sec. II, it is clear that when we discuss changing T0 in
a 7-parameter ΛCDM model, we should only consider its

impact on the dimensionless CMB power spectra C½D�
l in

Eq. (12). The investigation of the effects of varying T0 on
the CMB power spectra goes back at least to the paper by
Hu et al. in 1995 [38] and was further developed about
12 years later [39,40], with the constraining power of CMB
power spectra on T0 first explored using Planck anisotropy
data in Sec. 6.7.3 of Ref. [2]. However, it is only through
the recent papers by Ivanov et al. [18] and Bose and
Lombriser [41] that the role of T0 as a cosmological
parameter has been more fully explored.

A. The role of Tγ

The temperature of the background photons, Tγ , is a
function of time or redshift, with Tγðz ¼ 0Þ ¼ T0. One can
consider several different quantities to trace the evolution of
the cosmological model, including scale factor a, redshift z,
cosmological (or proper) time t, and Hubble parameter H.
As a dynamical variable, Tγ plays a similar role, and can be
used as an alternative quantity to set the timescale. One can
imagine different observers living in a particular Friedmann
universe but observing the CMB at different times [20,42],
with the observed T0 as one way of fixing the epoch.
Tγ also traces the overall radiation content of the

Universe, which includes other light species that evolve

FIG. 1. Predicted uncertainties on the power spectrum ampli-
tude parameter As and the CMB monopole temperature T0 using
lensed TT, TE, and EE power spectra. Including noise at the level
of the Planck experiment, we show the relative error estimate for
T0 and As with respect to the maximum l, with both the correct
[Eq. (12)] and incorrect [Eq. (11)] temperature calibration
procedures (as described in Sec. II) for the 7-parameter ΛCDMþ
T0 model. The horizontal black dashed lines give the uncertainty
in As derived from the actual 2018 Planck TT;TE;EEþ lensing
likelihood and the uncertainty from the FIRAS T0 measurement.
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in the same way as photons, often parameterised with Neff .
Important epochs, such as nucleosynthesis or recombina-
tion, are set by a comparison between fundamental physical
quantities (e.g., particle number densities, masses, and
couplings) and the radiation content in the background
cosmological model, which is set by Tγ. This “clock” can
be made manifestly dimensionless (see Ref. [43]) by
defining the quantity Θ ¼ kTγ=mpc2, the ratio of thermal
energy to proton mass.
In the ΛCDM model, the expansion history of the

Universe is determined by the energy densities of baryons
ρb, cold dark matter ρc, radiation ρr, and dark energy ρΛ,
most of which vary with time. To relate the densities at a
specific epoch with the present-day cosmological param-
eters Ωbh2, Ωch2, and T0, we have, for example,

ρb ¼ ρb;0a−3 ¼ ρb;0ðT0=TγÞ−3 ∝
Ωbh2

ðT0=T̄0;FÞ3
T3
γ : ð13Þ

We can set ω̃b ¼ Ωbh2ðT0=T̄0;FÞ−3, where T̄0;F (the central
value of the FIRASmeasurement; seeAppendixB) is used to
allow easy comparison between the 6- and 7-parameter
ΛCDM models, such that when T0 ¼ T̄0;F, then
ω̃b ¼ Ωbh2. According to Eq. (13), ρb ∝ ω̃bT3

γ , and, sim-
ilarly, we can define ω̃c ¼ Ωch2ðT0=T̄0;FÞ−3, so that
ρc ∝ ω̃cT3

γ . The radiation density ρr is sufficiently described
byTγ andNeff (we takeNeff ¼ 3.046 here). Therefore, when
we use Tγ as the timescale, the expansion history H of the
early Universe can be written as a function of ω̃b, ω̃c, and Tγ

only, with dark energy negligible at early times.
The redefined present-day cosmological parameters ω̃b

and ω̃c can be used as alternatives to Ωbh2 and Ωch2 in a 7-
parameter extension ofΛCDMwith T0 as a free variable. In
fact, ω̃b and ω̃c in ΛCDMþ T0 play a similar role to Ωbh2

and Ωch2 in 6-parameter ΛCDM. Using a Fisher-matrix
analysis with TT, TE, and EE power spectra (as described
in Appendix A), we can see in Fig. 2 that with negligible
instrumental noise and perfect removal of foreground
signals (i.e., the CVL assumption) the constraints we
obtain for ω̃b are essentially the same in the two models.
Although still quite similar, there is some noticeable
difference for ω̃c, due to the effects of lensing. As seen
in Fig. 2, the ω̃c constraints for the two models begin to
differ at lmax ≃ 1000 and then start to converge again at
lmax ≃ 4000. This behavior can be explained by the
transition between different lensing effects: lensing
smoothing, which dominates out to l of a few thousand,
and extra small-scale power, which dominates the spectra at
higher l, as diffusion damping wipes out the primary power
spectra [44]. The parameter ω̃c exhibits much stronger
degeneracy with T0 in the lensing-smoothing regime than
does ω̃b, thereby weakening the constraining power
of ω̃c in ΛCDMþ T0. This degeneracy is removed in
the small-scale lensing power regime, providing additional

constraining power for ω̃c, independent of T0. While the
uncertainty on ω̃c is clearly impacted by opening up T0 as a
free parameter, since the difference between the ω̃c con-
straints of the two models is relatively small in such a CVL
setting, we can for the most part regard ω̃c as a replacement
for Ωch2 in a 7-parameter ΛCDMþ T0 model. For the
other four standard cosmological parameters, namely
fθ�; As; ns; τg, the forecast errors for each parameter only
increase slightly by changing T0 from a constant to a free
parameter under the CVL assumption.

B. Recombination physics and T0

During the major events of the early Universe (such as
nucleosynthesis and recombination), the physical processes
are largely determined by the number densities of electrons
and baryons, as well as the energy density of cold dark
matter, together with the expansion history (which at very

FIG. 2. Forecast constraints on ω̃b and ω̃c as a function of the
maximum multipole considered. We specifically give the fore-
casts with negligible instrumental noise (i.e., the cosmic-variance
limit, described in Appendix A) from a combination of CMB TT,
TE, and EE power spectra for several different assumptions. The
blue curve shows the constraints for a 7-parameter ΛCDM model
with T0 as a free variable. The red curve shows the constraints for
a 7-parameter ΛCDM model, with T0 having a FIRAS prior [i.e.,
following Eq. (1)]. The green curve shows the constraints for the
standard 6-parameter ΛCDM model, where ω̃b ¼ Ωbh2 and
ω̃c ¼ Ωch2. The green curve completely overlaps with the red
curve, which means that when applying the FIRAS prior, there is
no discernible difference for ω̃b and ω̃c between the 6- and 7-
parameter models. The blue curve basically follows the red curve
for ω̃b, while there is some noticeable difference between the two
curves for ω̃c. This difference can be explained by the impacts of
lensing smoothing and small-scale lensing power (see text).
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early times is predominantly driven by the radiation
component). With the known average mass of a baryon,
we can use ρb as a proxy for the associated number density,
so that ρb ∝ ω̃bT3

γ , ρc ∝ ω̃cT3
γ , and Tγ are the only relevant

background quantities in theΛCDMmodel determining the
progress of decoupling of particle interactions. From such a
qualitative argument, it is already clear that all the physical
processes in the early Universe are set by ω̃b and ω̃c,
without explicit dependence on T0. Indeed this notion that
recombination depends only on physics local to last
scattering was the basis of the use of effective models,
with varying T0, to calculate CMB spectra in models with
large underdensities in Ref. [45]. Nonetheless, we will now
offer a more detailed discussion of the process of recombi-
nation and the epoch of last scattering (since they are of
utmost importance to CMB power spectra) as examples to
further illustrate the idea.
Cosmological recombination is described by a set of

coupled first-order differential equations for the free
electron fraction Xe, the electron temperature Te,

2 and
the photon phase-space density, with respect to proper time
t [47–50]. Using the differential relation

dt ¼ dt
da

da
dTγ

dTγ ¼ −
1

HTγ
dTγ; ð14Þ

which does not explicitly depend on T0, we can rewrite the
governing differential equations for recombination in terms
of Tγ [18]; it is then clear that the recombination history
XeðtÞ is determined only by the parameters ω̃b, ω̃c, and Tγ ,
along with physical constants.
The differential Thomson optical depth for recombina-

tion is given by

_τrec ¼
dτrec
dt

¼ cσTnHðTγ; ω̃bÞXeðTγ; ω̃b; ω̃cÞ; ð15Þ

where c is the speed of light, σT is the Thomson cross
section, and nH is the number density of hydrogen atoms,
which can be converted to ρb with a fixed helium fraction.
We use the subscript “rec” to distinguish the optical depth
coming from the recombination process from the small
optical depth coming from the reionization parameter τ in
ΛCDM. The optical depth for recombination out to some
specific epoch is then simply

τrec ¼
Z

t0

t
_τrecðt0Þdt0 ¼

Z
Tγ

T0

1

T 0
γH

_τrecðT 0
γÞdT 0

γ;

¼ cσT

Z
Tγ

T0

nHðT 0
γ; ω̃bÞXeðT 0

γ; ω̃b; ω̃cÞ
T 0
γHðT 0

γ; ω̃b; ω̃cÞ
dT 0

γ; ð16Þ

where t0 is the current proper time.

There are two common approaches for defining the
epoch of last scattering t� (or similarly z� or T�). The first
approach is to define it to correspond to the peak of the
visibility function gðtÞ ¼ _τrec expð−τrecÞ (e.g., Ref. [51]).
The peak condition dgðt�Þ=dt ¼ 0 yields

d_τrecðt�Þ
dt

¼ _τ2recðt�Þ: ð17Þ

Recasting this in terms of Tγ , we obtain a precise definition
of the last-scattering temperature T�. Since both dt=dTγ

and _τrec are independent of T0, then T� is only a function of
ω̃b and ω̃c, without any explicit T0 dependence.
The second approach is to define the last-scattering

epoch to correspond to the time back to when the optical
depth reaches unity, i.e., τrecðt�Þ ¼ τrecðT�Þ ¼ 1 (e.g.,
Refs. [3,12,52]). In this case, at least in principle, τrec
does depend on T0 through the lower bound of the
integration in Eq. (16); however, this dependence is
extremely weak, since Xe (excluding the effect of reioni-
zation) is only of order 10−4 at the current epoch, thereby
giving negligible contribution to τrec during the late-time
evolution of the Universe [20]. We numerically assessed the
degree of this weak T0 dependence, finding that with either
a fixed integrand in Eq. (16) or a fixed θ� value (detailed
definition of the parameter θ� is given in Sec. III D),

3 a 15%
change of T0 around T̄0;F leads to no discernible change in
T�. For all practical purposes, we can therefore consider T�
to be independent of T0 in Eq. (16). In practice, both these
definitions of the last-scattering epoch yield almost the
same results, with the calculated results for T� (or z�) under
the two approaches coinciding within 5 × 10−4 in a fiducial
model near the current measurement of cosmological
parameters [52]. We adopt the second approach in this
paper for the definition of the last-scattering epoch to allow
for later comparison with Planck results.
Using a Markov-chain Monte Carlo (MCMC) method

with the 2018 Planck TT;TE;EEþ lensing likelihood
in a 7-parameter ΛCDMþ T0 model, we find that
T� ¼ 2970.9þ0.8

−1.0 K, which is constrained extremely well,
to 0.03%. This is consistent with the ΛCDM T� value, as
expected based on the above physical arguments that T�
depends only on conditions local to last scattering; how-
ever, it contradicts the claim of a changing temperature at
last scattering in the ΛCDMþ T0 model made in Ref. [53].
Coincidentally the uncertainty of T� is comparable to that
of the FIRAS result on T0 in Eq. (1). In contrast to this, we

2Te is very close to Tγ at early times, differing only at the level
of 10−7 during recombination [46].

3We briefly compare the two methods used to assess the impact
of T0 on T� in Eq. (16). Since T0 only appears as the lower bound
of the integration, the obvious method is to fix the integrand while
varying T0, which corresponds with changing the current
observation epoch in the same Friedmann model. However, as
discussed in Sec. III D, it is more physical to fix θ� when we
analyze the impact of T0 under CMB power spectra constraints,
so we actually performed the check using both methods.
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find z� ¼ 936� 60, with a relatively large uncertainty.
Such great uncertainty is mainly due to the weak constraint
on T0 from CMB power spectra, which will be further
discussed in Sec. III C. In the standard 6-parameter ΛCDM
model, the relative uncertainty on z� is the same as that on
T�. Nevertheless, we can see that, when allowing T0 to be a
free parameter, the physics more directly constrains the
value of T� than z� from recombination. As established in
Fig. 2, ω̃b and ω̃c are constrained by CMB power spectra to
almost the same accuracy in a 7-parameter ΛCDMþ T0

model as Ωbh2 and Ωch2 are in 6-parameter ΛCDM. With
the current Planck likelihood, ω̃b and ω̃c are constrained to
the percent level (see the dashed lines in Fig. 2), in contrast
to the 0.03% accuracy for T�. Compared to the baryon and
cold dark matter densities, the temperature at last scattering
is much more tightly constrained, since the last-scattering
epoch T� (or z� in ΛCDM) is generally a weak function of
cosmological parameters [54].
With T� as an extremely well measured quantity, then the

baryon and cold dark matter densities at last scattering,
ρbðT�Þ ∝ ω̃bT3� and ρcðT�Þ ∝ ω̃cT3�, are in fact relatively
well constrained by CMB power spectra. Some of the
papers in the literature discussing T0 as a free parameter
seem to suggest that T0 directly impacts recombination
[11,39,53]. This is mainly due to directly varying T0

without considering ω̃b and ω̃c as new variables. If one
simply fixes Ωbh2 and Ωch2, while changing T0, then the
baryon and matter densities at the recombination epoch are
actually changed, which drastically alters the recombina-
tion history [39]. However, baryon and dark matter den-
sities at last scattering are actually fairly well measured
through recombination physics, so such an approach of
fixingΩbh2 andΩch2 and changing T0 does not correspond
with the constraint conditions set by CMB power spectra. A
better and more physically motivated approach for analyz-
ing the effects of T0 on cosmology is to fix ω̃b and ω̃c,
which are well constrained in the 7-parameter ΛCDMþ
T0 model.
When analyzing the impact of varying T0 in cosmo-

logical models, it is crucial to distinguish T0 from T�, based
on their roles in recombination. The dynamical variable Tγ

clearly enters recombination physics, with T� being set by
the absolute energy scale of atomic and particle physics and
well determined by CMB power spectra; however, the
present-day background photon temperature T0 only serves
as a relative timescale that indicates how much the Universe
has expanded since the time of last scattering, with T0 itself
having no effect on the physics of the early Universe when
using the physically relevant parameters ω̃b and ω̃c.

C. Constraining T0 with CMB power spectra

As established in Sec. II, the calibration of CMB
anisotropy data does not actually involve the current
experimentally determined CMB monopole, T0.
Nevertheless, if T0 impacts the dimensionless Cl, then

in principle we can provide an independent constraint on T0

from the measured (dimensionless) anisotropy power
spectra.
Since the shapes of the primary CMB anisotropy power

spectra are determined by the physical conditions around
the last-scattering epoch (on which T0 has no impact when
ω̃b and ω̃c are used as density parameters), they only tell us
about the physical conditions at recombination and provide
no constraints on T0. Nevertheless, changing T0 does alter
the amount of expansion after the last-scattering epoch,
changing the angular-diameter distance DA back to the
recombination epoch, which shifts the anisotropies in
multipole space. However, the angular scale of the acoustic
oscillations is actually extremely tightly constrained by
CMB experiments [3]. Therefore, as we vary T0, we have to
take advantage of the geometrical degeneracy and change
the values of other cosmological parameters in order to
preserve the angular acoustic scale (as discussed further in
the next section). As a result, the acoustic oscillations in the
power spectra, both in shape and period, give no informa-
tion about the epoch at which we are observing.
By contrast, secondary anisotropies, generated after the

last-scattering epoch, can break this degeneracy and pro-
vide some constraints on T0. In particular as structure forms
and dark energy starts to dominate at low redshifts, both the
so-called integrated Sachs-Wolfe (ISW) effect [15] and
gravitational lensing depend on the late-time expansion
and give observable imprints on the CMB anisotropies, and
hence their signatures are able to constrain T0. To quantify
these effects, we calculate the predicted T0 constraints
using lensed TT, TE, and EE power spectra through a
Fisher-matrix analysis (see Appendix A). We can see in
Fig. 1 that as lmax is increased, there is a substantial drop in
the uncertainty on T0 until lmax ≃ 30 (which is where the
ISW effect contributes) and a continuous decrease towards
higher multipoles (where gravitational lensing contributes).
Using the 2018 Planck TT;TE;EEþ lensing likelihood,

we find the 68% interval to be T0 ¼ 3.10þ0.18
−0.09 K and the

95% interval to be T0 ¼ 3.11þ0.22
−0.25 K, with the distribution

of T0 values shown in Fig. 3. Our results were found using
an MCMC analysis with the COBAYA [55] and CAMB [12]
codes, with RECFAST [56,57] included for the recombina-
tion modeling. These results are in excellent agreement
with those in Ref. [18], which used a different set of
cosmological codes. As seen in Fig. 3, this constraint
depends strongly on the priors imposed on the underlying
cosmology, most prominently the assumption that the dark
energy should be positive, i.e., ΩΛ ≥ 0. For models with
negative dark energy T0 can go as high as 3.8K, and the
associated uncertainty on T0 becomes significantly larger,
with a 1σ value around 0.2K, which agrees with the blue
line in Fig. 1 determined by the Fisher forecast. In general,
the current Planck data provide a poor constraint on T0.
Since ω̃b and ω̃c are as well constrained in a 7-parameter
ΛCDMþ T0 model as Ωbh2 and Ωch2 are in the
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6-parameterΛCDMmodel, the weak constraint on T0 leads
to considerable degeneracy between T0 and Ωbh2 and
between T0 and Ωch2 [2].
As seen above, the central value of the T0 constraint from

the Planck 2018 data is about 2σ higher than the FIRAS
measurement. This slight shift is mainly caused by the twin
facts that the low multipoles (l≲ 30) in the measured TT
power spectrum of Planck are somewhat low compared to
the best-fit ΛCDM model and that the observed TT power
spectrum appears to be more smoothed by lensing than
expected (as usually characterized by the consistency
parameter AL) [3]. Both the “low-l deficit” and “AL
tension” have already been shown to have an impact on
the standard parameter constraints [3,58]. With a higher T0

value, the theoretical TT power spectra prefer less large-
scale power and more lensing smoothing [18], which both
correspond with the direction of the deviation in the
observed data. Since T0 is only constrained by late-ISW
and lensing effects, the low-l deficit and AL tension lead to
a small shift in the parameter constraint on T0, resulting in
this 2σ deviation from the FIRAS result.
Figure 4 demonstrates the predicted constraining power

on T0 coming from CMB power spectra for an ideal CMB
experiment (described in Appendix A). With negligible
instrumental noise, gravitational lensing provides a much
stronger constraint on the amount of late-time Universe
expansion compared to the constraint coming from Planck;
this is because the temperature and polarization power
spectra for l≳ 1000 (where lensing smoothing plays a
major role) and the lensing reconstruction spectrumCϕϕ

l are
much better measured in an ideal experiment, while the

late-ISW effect is limited by the high cosmic variance at
low l. In general, lensing decreases the uncertainty on T0

(out to lmax ≃ 6000) by around a factor of 4 compared with
the late-ISW effect. The lensing smoothing effect starts to
become important at l≳ 1000 as expected, and addition-
ally the lensing reconstruction spectrum drives down the T0

uncertainty mainly around l ≃ 100, where the peak of Cϕϕ
l

is located. Changes in cosmological parameters mainly lead
to a shift of the overall amplitude for Cϕϕ

l (rather than a
change in the shape [59]), so the peak region provides most
of the constraining power for any parameter. Combining
both lensing smoothing and lensing reconstruction leads to
an improvement in the T0 constraint by a small amount.
However, even the most ideal CMB experiment is only able
to constrain T0 to around 0.03 K, which is still about two
orders of magnitude poorer than the FIRAS measurement.
This means that we will never be able to obtain a
competitive constraint on T0 from CMB anisotropy data
alone, compared to FIRAS.
It is possible to obtain a better constraint on T0 by

combining CMB anisotropy data with other cosmological
data sets. Reference [2] has already noted that combining
baryonic acoustic oscillation (BAO) data [60] with the full
2015 Planck likelihood leads to a 68% confidence interval
of T0 ¼ ð2.718� 0.021Þ K, and we find a similar result
when combining the Planck 2018 likelihood with current
BAO data. Unlike the constraint from Planck data alone,
this measurement is not shifted high, but is completely
compatible with the FIRAS measurement. Because T0 is
effectively a parameter measuring the amount of expansion

FIG. 3. Samples from MCMC posteriors using the 2018 Planck
TT;TE;EEþ lensing likelihood for the 7-parameter ΛCDMþ
T0 model, plotted in the T0-H0 plane and color coded by the
value ofΩΛ. The degeneracy between T0 andH0 is clearly seen in
the plot, with ΩΛ corresponding to different amounts of late-time
expansion and late-ISW effects. The current constraint on T0

from the Planck dataset is highly dependent on the prior choice,
with ΩΛ ≥ 0 imposed here.

FIG. 4. Predictions of the level of uncertainty on T0 as a
function of maximum multipole, coming from CMB anisotropy
power spectra, under the cosmic-variance limit (described in
Appendix A). The purple (dot-dashed) curve corresponds to the
use of unlensed TT, TE, and EE power spectra (although
unrealistic, they are plotted here to assess the size of the different
physical effects), the blue (dashed) curve is for the lensed TT,
TE, and EE power spectra, and the red (solid) curve uses the
lensed TT, TE, and EE power spectra as well as the lensing-
reconstruction power spectrum Cϕϕ

l . For comparison, the black
line shows the uncertainty of the FIRAS measurement.
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since recombination, any measurement of the late-time
Universe that constrains the expansion history should
strengthen the constraint on T0. With the error from the
noise-free CMB data alone also predicted to be at around
the 1% level, one might expect to obtain an independent T0

measurement with a precision comparable to the current
FIRAS uncertainty level by combining future CMB
anisotropy experiments with upcoming large-scale struc-
ture (LSS) surveys such as DESI [61] and Euclid [62].
To give a simplistic assessment of this idea, we combine

the Fisher forecast from TT, TE, EE, and lensing
reconstruction spectra in an ideal CMB anisotropy experi-
ment (shown in Fig. 4) with the forecast from measure-
ments of the BAO scale in a Euclid-like survey [63]. Details
of our BAO forecast method are given in Appendix A. The
combination of CMB and BAO data is predicted to
constrain T0 with an uncertainty of around 0.006K, which
is about four times better than the constraint from ideal CMB
alone, or the constraint from a combination of Planck and
current BAO data. Even though 0.006K is an order of
magnitude less constraining than the FIRAS measurement,
the CMB anisotropy plus BAO constraint will nonetheless
provide a relatively precise measurement of T0 that is
independent of FIRAS. In principle, we could further drive
down the uncertainty on T0 with the full constraining power
of a Euclid-like experiment by including galaxy clustering
and weak lensing measurements in addition to BAO data.
However, determining such future predictions fromLSS data
is outside the scope of this paper. Still, from our discussion of
the role of T0 and our simple combination of future BAO and
ideal CMB anisotropy constraints, it is already clear that
combining next-generation CMB and LSS data will offer an
independent measurement of T0 with a precision that could
approach that of FIRAS.Whether such a constraint will ever
surpass the current FIRAS error remains to be seen.

D. T0 and other cosmological parameters

Since CMB data alone only provide a weak constraint on
T0, through the late-ISW and lensing effects, it is possible
to connect T0 variation with other cosmological parame-
ters. For example Ivanov et al. [18] focus on the tension
between CMB-derived [3] and distance-ladder-derived
estimates of the Hubble constant [64]. Although they
conclude that changing T0 does not provide a viable
solution to this apparent cosmological parameter discrep-
ancy, it is nevertheless instructive to see how the parameter
degeneracies work here.
In the standard ΛCDM model, θ�, which is the ratio

between the proper sound horizon at recombination
(d�s ¼ a�rs) and the angular-diameter distance back to
the recombination epoch (DA), is the best constrained
parameter from CMB experiments due to the well-
measured acoustic oscillations of the CMB power spectra
[3]. The angular-diameter distance to the last-scattering
epoch can be written as

DA ¼ 1

ð1þ z�Þ
Z

z�

0

cdz
Hðz;Ωm;ΩΛÞ

;

¼ 1

T�

Z
T�

T0

cdTγ

HðTγ; H0; ω̃b; ω̃cÞ
; ð18Þ

where we neglect the radiation, neutrino, and curvature
background components for simplicity, since the effects of
these components on the expansion history are relatively
small compared to the impacts of varying T0 within the
weak T0 constraint from Planck. Reference [18] demon-
strates that d�s ¼ ðT0=T�Þrs is only a function of ω̃b and ω̃c,
without explicit dependence on T0. Therefore, since ω̃b, ω̃c,
and θ� are measured significantly better through CMB
power spectra compared to T0, we can regard ω̃b, ω̃c, and
θ� as fixed here, so that T�, d�s , and DA can also be
considered to be fixed. Viewed as an integral with respect to
Tγ , DA can now be treated as a function of only two
variables (namely T0 and H0) whose combination in some
functional form gives a fixed value. Hence, T0 andH0 have
an approximate degeneracy when ω̃b, ω̃c, and θ� are
measured so well compared to the poor constraint on T0

coming from CMB power spectra. This T0-H0 degeneracy
can be best seen in Fig. 3 with samples from an MCMC
run. The uncertainty on T0 physically corresponds with the
uncertainty on the amount of dark energy contained in the
Universe, which is demonstrated by the variation of ΩΛ
along the T0-H0 degeneracy line in the plot. Since θ� is well
measured by CMB experiments, we need to change the
amount of dark energy in the Friedmann model to com-
pensate for the change of T0, in order to obtain a fixed
DA value.
It might be tempting to relate this T0-H0 degeneracy to

the Hubble-constant tension. Reference [18] finds T0 ¼
ð2.56� 0.05Þ K by combining Planck 2018 data with
SH0ES, where the H0 measurement from the distance
ladder provides an additional constraint on the late-time
expansion. However, such a result deviates from the current
best measurement T0;F ¼ ð2.7255� 0.0006Þ K by hun-
dreds of σ in terms of the FIRAS uncertainty. Therefore,
addressing the Hubble tension by varying T0 requires us to
completely discount the FIRAS measurement. One should
remember that FIRAS measured the entire frequency
spectrum of the CMB, rather than just a single value of
the absolute intensity, with the shape of this spectrum
determining the value of T0; hence it is hard to imagine how
the derived value of T0 could be so far off. Moreover, the
experimental determination of T0 does not come entirely
from FIRAS, since there have been many other measure-
ments of the CMB monopole temperature. Although the
current 0.02% uncertainty in T0 is dominated by data from
FIRAS, there are other independent measurements with
uncertainties that are still impressively small [65,66].
Reference [7] provides an alternative estimate from a
compilation of measurements excluding FIRAS, T0 ¼
ð2.729� 0.004Þ K, which still has approximately 0.1%

WEN, SCOTT, SULLIVAN, and ZIBIN PHYS. REV. D 104, 043516 (2021)

043516-10



precision (and is in excellent agreement with the FIRAS
constraint). Therefore, the reasonable range of variation ofT0

that is consistentwith experimental constraints has an entirely
negligible effect on H0, with or without the COBE-FIRAS
data. Indeed, since both are background variables, we would
expect to require a temperature shift with a magnitude on the
order of the Hubble parameter discrepancy, i.e., we would
expectΔT0=T0 ∼ ΔH0=H0 ∼ 10%, for theHubble tension to
be resolved with a shift in T0.
On the other hand, since the constraint on T0 coming

from the CMB power spectra arises because of the late-ISW
and lensing effects, there will be degeneracies between T0

and other cosmological parameters in some extensions of
standard ΛCDM. With Planck 2018 data, allowing T0 to be
a free parameter can slightly relieve the so-called AL
tension [41], since varying T0 also changes the amount
of lensing smoothing. Because the spatial curvature param-
eter ΩK, the total neutrino mass

P
mν, and the dark energy

equation of state parameter w also contribute to the late-
time expansion of the Universe (and therefore have a direct
impact on the late-ISWeffect and lensing [37,41,67]), these
parameters will also be somewhat correlated with T0. For a
counterexample, the parameter Neff (the effective number
of light particle species) only matters when neutrinos are
relativistic in the early Universe and so will not be
correlated with T0. Nevertheless, even in cases where there
is some degeneracy, the actual uncertainty in the measured
T0 is so small that there is no way of using a shift in T0 to
resolve any apparent parameter tensions.

IV. IMPACT OF FIRAS UNCERTAINTY

A. Current CMB anisotropy experiments

Despite our pedagogical discussion on the role of T0 as a
free variable in Sec. III, any realistic treatment of temper-
ature as a variable requires the adoption of the FIRAS
measurement as a prior, representing our current knowl-
edge of T0. To fold in this information, we will adopt a
Gaussian distribution with central value T̄0;F ¼ 2.7255 K
and standard deviation σF ¼ 0.0006 K as the prior on T0.
The conventional belief is that the FIRAS measurement
does not make any appreciable difference to the current
CMB results. This is true for the constraints on the base
parameters of ΛCDM, as well as most other parameters.
However, as seen in Table II, we noticeably underestimate
the error for some of the derived parameters by ignoring the
FIRAS uncertainty. Even for present-day anisotropy
experiments, the FIRAS prior can have some unexpected
impacts on our parameter constraints.
The parameter θMC is a common alternative to θ� used in

the literature [2,3,5], which is much faster to compute. It is
based on a numerical approximation for θ�, derived in
Ref. [54], with the assumption of T0 being a constant.
However, the error on θMC increases substantially (and a
large bias develops) when we vary T0 as a free parameter

without the FIRAS prior. The approximating formula for
θMC depends explicitly onΩbh2 andΩch2 instead of ω̃b and
ω̃c, and therefore performs poorly when we start to vary T0.
Even when we only vary T0 within the FIRAS prior, the
68% error of θMC still increases by about 20% compared to
the error with the fixed T0 model (as seen in Table II).
However, the constraint on θ�, the accurate version of θMC
(as defined in Sec. III D), experiences no statistically
significant change with or without fixing T0. There is no
compelling reason to continue using this approximate
parameter θMC in any case, given the currently available
computing power.
A similar increase in the uncertainties can also be seen

for z� and zdrag (the redshifts at the last-scattering epoch and
the Compton-drag epoch, respectively) in Table II. Since
CMB power spectra directly constrain T� to an accuracy
comparable to the FIRAS measurement (as established in
Sec. III B) instead of z�, the inclusion of the FIRAS error on
T0 will noticeably increase the error on z�, considering the
relation z� ¼ T�=T0 − 1. A similar argument to our dis-
cussion on the epoch of last scattering will apply to Tdrag

and zdrag, which describe the time of decoupling of baryons
from the photon background. Such an underestimation of
parameter uncertainties by neglecting the FIRAS error will
not occur if we choose to use T� and Tdrag instead of z� and
zdrag in the first place. It is therefore better to use temper-
ature to describe the timeline of major events in the early
Universe rather than redshift.

B. Future CMB anisotropy experiments

Even though the FIRAS error does not make a difference
to the main parameter constraints or our actual cosmologi-
cal model in the current generation of CMB experiments
(and will not even for the next generation of “Stage 4”
experiments), there is still the question of whether the

TABLE II. 68% intervals for some derived parameters using the
2018 Planck TT;TE;EEþ lensing likelihood in an MCMC
analysis. We specifically look at θMC (which we compare with
θ�), z� and T� (the redshift and temperature at the last-scattering
epoch), and zdrag and Tdrag (the redshift and temperature of the
Compton drag epoch). The middle column is for the ΛCDM
model with T0 fixed at 2.7255K, while the last column represents
the parameter error on the ΛCDMþ T0 model with the adoption
of the FIRAS prior. The errors in the middle column (“T0 fixed”)
excluding those for T� and Tdrag are presented in the final results
of the Planck Collaboration [3].

Parameter T0 fixed FIRAS prior

100θMC 1.04092� 0.00031 1.04091� 0.00037
100θ� 1.04110� 0.00031 1.04111� 0.00030
z� 1089.92� 0.25 1089.91� 0.34
T� [K] 2973.27� 0.67 2973.28� 0.67
zdrag 1059.94� 0.30 1059.94� 0.37
Tdrag [K] 2891.60� 0.78 2891.60� 0.78
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FIRAS measurement will be sufficient for all the cosmo-
logical results of all future CMB experiments. In the rest of
this section,wewill assess the impact of the FIRASprior on a
CVL CMB experiment going out to high multipoles. A
similar question was addressed in Refs. [40,68]; however,
Ref. [40] incorrectly propagated the dipole error into the
parameter analysis and only considered spectra up to
lmax ¼ 2500. Reference [68] focused on a Planck-like
experiment and also considered the effect of the cosmic
variance of T0; we will discuss this work further in
Appendix C.
We now examine the effects of including the FIRAS

prior on the constraints of the standard-ΛCDM parameters
fΩbh2;Ωch2; θ�; As; ns; τg using ideal CVL CMB data. The
uncertainties for fθ�; As; ns; τg are different by less than
0.1% in the two settings; hence these can be considered to
be unchanged for all practical purposes. However, as shown
in Table III and Fig. 5, the constraints for Ωbh2 and Ωch2

are noticeably different, with Ωbh2 showing the greatest
change among all parameters. Using a fixed temperature
(i.e., ignoring the FIRAS uncertainty) would lead us to
underestimate the error for Ωbh2 by around 50% and the
error for Ωch2 by around 10% for lmax ≃ 6000. Therefore,
for an ideal future experiment, the FIRAS uncertainty does
have an effect on the standard-model 6-parameter con-
straints; nevertheless, such differences are modest in size,
and in practice any differences would be even smaller
because of the inclusion of realistic noise from the instru-
ment and foreground residuals. We can conclude that
imposing the FIRAS prior on T0 will be sufficient for
analyzing all CMB experiments in the near future, until
such time as we can approach the cosmic-variance limit out
to multipoles of many thousands. It is therefore generally
safe to continue the practice of treating T0 as a constant,
without any measurable impact on the derived parameters
in standard cosmological models. We also checked the
effect of adding the lensing reconstruction spectrum Cϕϕ

l in
the Fisher matrix calculation, and our results still hold
(although the uncertainties are slightly smaller).
When we use the alternative parameter set with ω̃b and

ω̃c, the parameter constraints from the 7-parameter

ΛCDMþ T0 model with a FIRAS prior are essentially
the same as those from the 6-parameter ΛCDM model
under CVL conditions forecasted using a Fisher matrix
formalism, as shown through the perfectly overlapping
green and red curves in Fig. 2. Since Ωbh2 ∝ ω̃bT3

0 and
Ωch2 ∝ ω̃cT3

0, then the relative errors on Ωbh2 and Ωch2

with the FIRAS prior are simply given by those with fixed
T0 added in quadrature with three times the FIRAS
uncertainty. The FIRAS uncertainty plays a significant
role when the constraints on the parameters Ωbh2 (or ω̃b)
and Ωch2 (or ω̃c) approach the FIRAS relative error. This
can be seen in Fig. 5, where the constraint on Ωbh2 begins
to deviate at around lmax ≃ 2000, with the relative error
approaching 10−3. Because Ωbh2 is constrained by high-l
data, the FIRAS uncertainty leads to a more significant
effect and eventually causes the 50% underestimation of the
error at lmax ≃ 6000. The errors onΩch2 for the two models
also begin to slightly differ in Fig. 5 as the relative error
approaches 10−3, for lmax extending to 6000. However,

FIG. 5. Estimated Fisher-matrix uncertainties for Ωbh2, Ωch2,
and T0 as a function of the maximum l, using lensed TT, TE, and
EE power spectra under the assumption of the cosmic-variance
limit, as described in Appendix A. The green and blue curves
show the constraints for the free 6- and 7-parameter models,
respectively. The red curve shows the constraints for a 7-
parameter ΛCDM þ T0 model while imposing the FIRAS prior
[i.e., following Eq. (1)] on T0. The horizontal black dashed lines
give the uncertainties of Ωbh2 and Ωch2 derived from the actual
2018 Planck TT;TE;EEþ lensing likelihood, along with the
uncertainty from the FIRAS T0 measurement.

TABLE III. Estimated uncertainties for Ωbh2 and Ωch2 from a
7-parameter Fisher-matrix calculation using the lensed TT, TE,
and EE power spectra, assuming that we are in the cosmic-
variance limit. The second column is for T0 fixed at 2.7255 K,
while the third column is for adoption of the FIRAS prior. In this
calculation, we go to lmax ¼ 3000 for the TT power spectrum
and lmax ¼ 6000 for the TE and EE power spectra. More details
are given in Appendix A.

Parameter T0 fixed FIRAS prior

Ωbh2 1.12 × 10−5 1.85 × 10−5

Ωch2 2.09 × 10−4 2.22 × 10−4
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since Ωch2 is not as well constrained by CMB anisotropy
data as Ωbh2, the FIRAS uncertainty impacts the con-
straints on Ωbh2 much more than those on Ωch2. To
summarize, the FIRAS uncertainty will have a small
(but non-negligible) effect only when Ωbh2 and Ωch2 are
constrained to about the 0.1% level in ΛCDM.
Following Sec. IVA, we also forecast the uncertainties

on the derived cosmological parameters listed in Table II,
assuming ideal CMB data in the 6-parameter ΛCDM
model. As shown in Table IV, in the cosmic-variance
limited setting, the inclusion of the FIRAS error for T0

increases the uncertainties on θMC, z�, and zdrag substan-
tially compared to Table II with Planck data. In fact,
ignoring the FIRAS error underestimates the uncertainties
by almost an order of magnitude. This provides compelling
evidence that for future CMB analysis we should adopt θ�,
T�, and Tdrag as more appropriate parameters that are not
sensitive to the change of T0, compared with their currently
used counterparts.
We also examine the effects of including the FIRAS prior

on the parameter constraints for some models that are
extensions to 6-parameter ΛCDM. In general, the FIRAS
prior has negligible impact on these extended parameters in
an ideal CVL anisotropy experiment. To illustrate this we
take ΩK as an example of such an extended parameter. As
seen in Table V, the inclusion of the FIRAS uncertainty has
a similar impact on Ωbh2 and Ωch2 for the ΛCDMþ ΩK
model compared to the results in Table III for ΛCDM; this
means that our previous discussion on the impact of the
FIRAS uncertainty on the ΛCDM model still holds in this
case. VaryingΩK as a free parameter increases the error in a
substantial way only for Ωch2, due to the degeneracy
between the matter density and curvature. However,
including the FIRAS uncertainty does not impact the error
onΩK, since the constraint forΩK obtained in a CVL CMB
anisotropy experiment is still far from the relative accuracy
of the FIRAS measurement. Including a Euclid-like

measurement of the BAO scale (see Appendix A for
details) further strengthens the parameter constraints, but
the FIRAS error still has no impact on the accuracy of ΩK .
Because the FIRAS measurement is so precise, the uncer-
tainty on T0 will generally not be a concern for future CMB
anisotropy experiments placing constraints on the
ΛCDMþΩK model, or on other common extensions to
6-parameter ΛCDM.

C. Future LSS measurements

For ideal CMB anisotropy experiments, we saw that the
FIRAS uncertainty starts to inhibit parameter constraints
when the errors of Ωbh2 and Ωch2 approach the 0.1% level.
For upcoming LSS surveys, the uncertainties on some
cosmological parameters might also approach this preci-
sion. For example, with the combined cosmological probes
from galaxy clustering and weak lensing in an optimistic
scenario, Euclid is projected to constrain several cosmo-
logical parameters (including σ8, h, Ωb, and Ωm) to well
below the percent level [62], where the present-day
uncertainty on T0 could actually play a role. A more
rigorous assessment is needed to determine whether the
uncertainty of T0 will actually matter in practice for such
LSS surveys.

V. CONCLUSIONS

In this paper, we have investigated the effect of the
parameter T0 on CMB anisotropies. In order to clarify the
role of T0 in calibration, we advocate the use of dimen-
sionless (i.e., ΔT=T) units to measure, analyze, and present
the CMB dipole, as well as the higher multipoles of the
CMB sky. When calibrating with the orbital dipole, the
dimensionless CMB fluctuations can be measured inde-
pendently of our knowledge of T0, even in the presence of
foregrounds. The value Tc ¼ T̄0;F ¼ 2.7255 K is merely a
particular choice of calibration constant for unit-conversion
purposes. Even though dimensionless units and Tc-cali-
brated temperature units are physically equivalent, it is in
principle better to use dimensionless quantities for CMB
data, since this avoids unnecessary confusion between T0

and Tc and prevents people from folding additional temper-
ature uncertainty into the cosmological results. Since the

TABLE IV. Estimated uncertainties for some derived parame-
ters from a 7-parameter Fisher-matrix calculation using the lensed
TT, TE, and EE power spectra, assuming that we are in the
cosmic-variance limit. These estimates are the absolute uncer-
tainties on the parameter (instead of the percentage error). This
table is the CVL forecast version of Table II. In this calculation,
we go to lmax ¼ 3000 for the TT power spectrum and lmax ¼
6000 for the TE and EE power spectra. More details are given in
Appendix A.

Parameter T0 fixed FIRAS prior

100θMC 6.0 × 10−5 2.4 × 10−4

100θ� 6.0 × 10−5 6.0 × 10−5

z� 0.021 0.20
T� [K] 0.056 0.056
zdrag 0.033 0.24
Tdrag [K] 0.090 0.090

TABLE V. Estimated uncertainties for Ωbh2, Ωch2, and ΩK
from an 8-parameter ΛCDMþ ΩK þ T0 model Fisher-matrix
calculation using the lensed TT, TE, and EE power spectra,
assuming that we are in the cosmic-variance limit. The calcu-
lation setting is the same as for Table III, with more details given
in Appendix A.

Parameter T0 fixed FIRAS prior

Ωbh2 1.13 × 10−5 1.85 × 10−5

Ωch2 5.29 × 10−4 5.35 × 10−4

ΩK 1.29 × 10−3 1.29 × 10−3

ROLE OF T0 IN CMB ANISOTROPY MEASUREMENTS PHYS. REV. D 104, 043516 (2021)

043516-13



CMB power spectra are naturally dimensionless in theory
and are also measured directly inΔT=T units, we should go
back to the tradition of using dimensionless units, as
theorists did in the earliest discussions of CMB
anisotropies.
We have also given an overview of the role of T0 as a

cosmological parameter, building on the work of
Refs. [18,41]. As a cosmic clock, Tγ indicates the change
of absolute energy scale as the Universe evolves, while
T0 ¼ Tγðz ¼ 0Þ characterizes the amount of expansion
after recombination, a process that is relatively well
determined by the primary anisotropies. Clarifying some
previous confusion on the role of T0, we emphasize that the
monopole temperature T0 does not influence the physics of
the early Universe, in particular recombination, when
holding fixed the parameters ω̃b and ω̃c, which are
physically relevant at that time and are well constrained.
As a result, the constraining power of T0 from CMB power
spectra only comes from late-time effects, in particular the
ISW effect and gravitational lensing, with both the lensing
smoothing effect on the 2-point functions and the lensing
reconstruction spectrum itself providing comparable con-
straining power. Current CMB anisotropy data give only a
weak constraint on T0, which leads to various degrees of
degeneracy between T0 and other cosmological parameters,
including H0. However, employing such degeneracies to
address cosmic tensions ignores the fact that it would
require excursions hundreds of times the size of the FIRAS
uncertainty to make a substantial difference. This means we
would have to disregard current reliable knowledge of T0,
derived not just from COBE-FIRAS, but from many other
experiments. Using a Fisher-matrix analysis for an ideal
future experiment, we estimate that CMB data alone can at
best constrain T0 to the 1% level, which is still two orders
of magnitude less constraining than the current local
temperature measurements. Adding Euclid-like BAO
results to the parameter forecasts improves the T0 con-
straint by another factor of 4. It is in principle possible to
obtain an independent measurement of T0 with a precision
that could approach that of FIRAS by combining future
CMB and LSS data.
Despite the pedagogical discussion of treating T0 as a

free variable, we are in the situation where it is sufficient to
use the FIRAS measurement as a prior in order to provide
any realistic assessment of the impact of T0 on parameters
extracted from CMB power spectra. The FIRAS uncer-
tainty is so small that we can say it will generally have
negligible impact on the main cosmological results coming
from current and next-generation CMB anisotropy experi-
ments. Hence adopting the central FIRAS value as T0 will
be sufficient for any currently proposed experiment.
Nevertheless, it is important to keep in mind that neglecting
the error of the FIRAS measurement will noticeably
underestimate the uncertainties for several occasionally
quoted derived parameters, even in current CMB

experiments, although such effects can be mitigated by
choosing alternative derived parameters that are less
sensitive to the change of T0. As experimental capabilities
improve, the FIRAS uncertainty will eventually impact the
constraints on Ωbh2 and Ωch2 for the main cosmological
parameters as well. In the CVL situation, we will under-
estimate the uncertainty on Ωbh2 by 50% and on Ωch2 by
10% (out to lmax ¼ 6000 for polarization and 3000 for
temperature) if we ignore the FIRAS uncertainty on T0.
This shows that if we ultimately want to extract all available
information from the CMB power spectra measured to
multipoles l ≃ 5000, then we will indeed need a better
determination of T0 than is currently available. Our work
thereby provides another motivation for the proposed future
CMB spectral distortion experiments [69–71], which will
further improve the accuracy of our measurement for T0

compared to FIRAS.
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APPENDIX A: FISHER-MATRIX METHOD

The Fisher-matrix formalism is a well established tool
for forecasting parameter constraints in cosmology [77–
80]. We use this approach to assess the impact of varying
T0 on CMB power spectra in both realistic and CVL
conditions. For any observed data vector x and model
parameters p, with likelihood function Lðx;pÞ, the Fisher
information matrix is defined as

Fij ¼ −
�∂2 lnL
∂pi∂pj

�
: ðA1Þ

By the Cramer-Rao inequality, the variance of an unbiased
estimator for a parameter pi from the data has a lower
bound ðF−1Þii, to which the maximum likelihood estimator
approaches asymptotically. Therefore, the Fisher matrix
gives an estimate for the approximate error bars achievable
from an experiment.

1. Fisher matrix for CMB

The Fisher matrix for CMB temperature and polarization
anisotropies is [81,82]
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FCMB
ij ¼

Xlmax

l¼2

X
X;Y

∂CX
l

∂pi
ðCovlÞ−1XY

∂CY
l

∂pj
; ðA2Þ

assuming Gaussian primordial perturbations and Gaussian
noise. CX

l represents the power of the lth multipole for
X ¼ T;E;C, which stand for either the lensed or unlensed
TT, EE, or TE power spectra, respectively. We neglect the
BB power spectrum, since the detection of the primordial
signal is not guaranteed and, as we have confirmed, adding
the BB power spectrum does not significantly change our
results.4 We use CAMB for all the CMB power spectrum
calculations, with RECFAST chosen as the recombination
code; we checked that selecting other recombination codes
does not impact any of our results. The symmetric
covariance matrix Covl has elements

ðCovlÞTT ¼ 1

N
ðCT

l þ ω−1
T B−2

l Þ2; ðA3Þ

ðCovlÞEE ¼ 1

N
ðCE

l þ ω−1
P B−2

l Þ2; ðA4Þ

ðCovlÞCC ¼ 1

2N
½ðCC

lÞ2

þ ðCT
l þ ω−1

T B−2
l ÞðCE

l þ ω−1
P B−2

l Þ�; ðA5Þ

ðCovlÞTE ¼ 1

N
ðCC

lÞ2; ðA6Þ

ðCovlÞTC ¼ 1

N
CC
lðCT

l þ ω−1
T B−2

l Þ; ðA7Þ

ðCovlÞEC ¼ 1

N
CC
lðCE

l þ ω−1
P B−2

l Þ; ðA8Þ

where we defineN ¼ fskyð2lþ 1Þ=2, and we take the sky
coverage fraction fsky ¼ 0.7 throughout the paper (so in
this sense our estimates have some degree of realism, even
though we neglect any complications related to foreground
removal). The beam window function B2

l is assumed to be
Gaussian with B2

l ¼ exp½−lðlþ 1Þθ2beam=ð8 ln 2Þ�, where
θbeam is the full-width, half maximum of the beam.
The quantities ωT and ωP are inverse squares of the
detector noise level per steradian for temperature and
polarization, respectively; these can be determined by
ωT;P ¼ ðθbeamσT;PÞ−2, where σT and σP are the noise in

units of μK per full-width, half maximum beam size. For
convenience, we use a single channel as a simple approxi-
mation for modeling the Planck results, taking values
from Ref. [81], namely θbeam ¼ 5.5, σT ¼ 11.7 μK, and
σP ¼ 24.3 μK. We have verified that this noise specifica-
tion provides an excellent forecast for the current Planck
results in [3]. We sum l from 2 to 2500 with the above
beam size and white noise specification, which we used to
generate Fig. 1. Since the noise here is specified in μK, we
use Eq. (12) to convert the dimensionlessCl into μK2 units,
as described in Sec. II for CMB power spectra. Ideally, the
noise should be specified as dimensionless as well and will
have the same calibration as the signal; however, in practice
even if the noise was calibrated differently than the signal
this would make negligible difference (since changing the
calibration choice will at most lead to a small difference in
the noise level, and hence this is effectively a higher-order
correction for parameter forecasts).
In the CVL case, we simply remove the noise term

ω−1
T;PB

−2
l from the covariance matrix [Eqs. (A3)–(A8)] to

obtain the correct Fisher matrix, working entirely with
dimensionless Cl. Planck has already measured most of the
information from the TT power spectrum out to l ≃ 2000,
and with foregrounds it seems unrealistic to push beyond
l ≃ 3000 for TT [83]. However, since the foregrounds from
galaxies and galaxy clusters are very weakly polarized, we
should be able to measure the primary polarization anisot-
ropies out to l ≃ 5000 and perhaps even higher [83,84].
Therefore, in our noise-free experiment, we take lmax ¼
3000 for TT and lmax ¼ 6000 for the TE and EE power
spectra in Eq. (A2). The Cl power spectra become non-
Gaussian at l ≃ 5000 due to the effects of lensing on small
scales, so the Fisher forecast will not be exactly accurate
there. However, the Fisher forecast still gives an approxi-
mate estimate of the error. Instead of providing an exact
error forecast, we are mostly interested in the general
effects of the FIRAS error on cosmological parameter
constraints, so the use of Fisher matrix is sufficient for our
purpose. Figures 2 and 5 are obtained using these CVL
settings.
To combine independent likelihood functions, we can

add the corresponding Fisher matrix of each likelihood
function to find the total Fisher matrix, and the FIRAS prior
is indeed independent of the CMB likelihood function. For
a normal distribution for T0;F with standard deviation σF
that characterizes the FIRAS measurement in Eq. (1),
where σF ¼ 0.0006 K is known, the T0-T0 term of the
Fisher matrix is 1=σ2F; we therefore just add 1=σ2F to the
T0-T0 term in the CMB Fisher matrix calculated from
Eq. (A2) to account for the FIRAS prior in the ΛCDMþ
T0 model.
To study the constraining power of the lensing

reconstruction spectrum Cϕϕ
l on T0 in the CVL setting,

we include Cϕϕ
l in Eq. (A2). The additional terms in the

symmetric covariance matrix are given by [82]

4In fact the BB spectrum does not add significant constraining
power to either the 6-parameter ΛCDM or 7-parameter ΛCDMþ
T0 models, except by noticeably improving the constraints on the
dark matter density Ωch2 by around a factor of 2 at lmax ≃ 2000
for the 6-parameter ΛCDM model. However, the differences
between the constraints forΩch2 with or without the BB spectrum
become negligible by lmax ≃ 5000. Most of the lensing informa-
tion contained in the BB power spectrum is also contained in the
EE power spectrum in the CVL case.
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ðCovlÞTϕ ¼ 1

N
ðCTϕ

l Þ2; ðA9Þ

ðCovlÞEϕ ¼ 1

N
ðCEϕ

l Þ2; ðA10Þ

ðCovlÞCϕ ¼ 1

N
CTϕ
l CEϕ

l ; ðA11Þ

ðCovlÞϕϕ ¼ 1

N
ðCϕϕ

l Þ2: ðA12Þ

We take the lensing reconstruction spectrum to extend to
lmax ¼ 1000 in Eq. (A2). Here the CVL condition refers to
the ideal no-noise assumption for the measurement the of
CMB lensing reconstruction spectrum Cϕϕ

l . We exclude the
actual reconstruction noise for simplicity. Figure 4 is
obtained with the inclusion of Cϕϕ

l in the Fisher matrix,
assuming CVL settings.

2. Fisher matrix for BAO

To break the geometric degeneracy and further constrain
the late-time expansion, it is common practice to combine
CMB data with BAO measurements for estimating cos-
mological parameters. BAO surveys generally use galaxy
clustering to measure the transverse and radial scales of the
sound horizon at recombination. The uncertainty in BAO
experiments can be given as the errors on the transverse and
radial BAO scale parameters y⊥ðzÞ ¼ DAðzÞ=rs and
ykðzÞ ¼ HðzÞrs, respectively. We use Δy⊥ and Δyk to
represent the errors associated with their measurement. For
simplicity, we assume that the errors in y⊥ and yk are
uncorrelated with each other and that there are no corre-
lations between different redshift bins. In this case, the
covariance matrix is diagonal, and the full Fisher matrix for
BAO simplifies to [85]

FBAO
ij ¼

X
i

1

ðΔy⊥i Þ2
∂y⊥ðziÞ
∂pi

∂y⊥ðziÞ
∂pj

þ
X
i

1

ðΔyki Þ2
∂ykðziÞ
∂pi

∂ykðziÞ
∂pj

; ðA13Þ

where the sums run over the observational bins at different
redshifts. We take the central redshift values of each bin to
calculate y⊥ðzÞ and ykðzÞ using CAMB. The errors forecast

for a Euclid-like experiment are given explicitly in
Table VI, and are derived from Ref. [86], using a method
based on the work of Refs. [87,88]. To combine the
forecasts coming from CMB and BAO measurements,
we add the Fisher matrix results from each experiment.
These combined CMB and BAO forecasts are used to
estimate future parameter constraints on T0 in Sec. III C
and ΩK in Sec. IV B.

APPENDIX B: TEMPERATURE DEFINITIONS

There are several temperature-related quantities referred
to in this paper. In order to distinguish between them,
Table VII provides definitions and values (where appro-
priate) for various temperatures.

APPENDIX C: INHOMOGENEITY AND T0

Throughout this paper we have implicitly treated T0 as a
background cosmological parameter, i.e., as spatially con-
stant. In reality the gravitational redshifts and blueshifts due
to structure change this picture, resulting in spatial as well
as time dependence for the CMB temperature. A straight-
forward example of this is that the gravitational potential at
the surface of the Earth, compared to the potential at a great
distance, increases the CMB temperature on the ground by
a factor 1þ GM⊕=R⊕c2 ≃ 1þ 7 × 10−10 over the distant
value. While this is a negligible amount, structure on large
scales is expected to perturb T0 at the 10−5 level5 [68],
which is only of order a tenth the FIRAS uncertainty.
Therefore, when we consider the ultimate effect of the T0

uncertainty with experiments that supersede FIRAS, it will
be important to take into account the inhomogeneity of the
Universe.
The perturbations of the CMB temperature over con-

stant-time slices of the spacetime result in a cosmic
variance, C0, in T0 that was first studied for particular
slices (i.e., in a particular gauge) in Ref. [90]. In Ref. [68]
the result of a calculation of C0 in comoving gauge [91]
was reported and found to have a negligible effect on the
uncertainties of the other cosmological parameters relative
to that of the FIRAS uncertainty. Note, however, that the

TABLE VI. Estimated errors for BAO scale measurements in a Euclid-like large-scale structure survey (see Ref. [86] for further
details). The first row shows the central redshift of each observational bin. The other rows give the estimated percentage error Δy=y on
the transverse and radial BAO scales, where y⊥ðzÞ ¼ DAðzÞ=rs and ykðzÞ ¼ HðzÞrs, respectively.
z 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05

ðΔy=yÞ⊥ [%] 1.23 0.83 0.74 0.71 0.70 0.70 0.70 0.73 0.78 0.87 1.01 1.23 1.61 2.32 5.32
ðΔy=yÞk [%] 1.89 1.42 1.27 1.19 1.14 1.12 1.10 1.11 1.16 1.24 1.40 1.64 2.07 2.90 6.39

5Metric perturbations caused by clusters and superclusters of
galaxies are at the 10−5 level, this being one of the “six numbers”
described by Martin Rees [89], which makes peculiar motions
with kinetic energies that have v2=c2 of order 10−5.
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choice of gauge in these studies was arbitrary, and can lead
to a zero, order 10−5, or divergent result for C0 [90]. For an
eventual successor to FIRAS, we note that the effect of
super-Hubble fluctuations in T0 should be irrelevant insofar
as the effect on the cosmological parameters within our
Hubble volume is concerned. We also point out that the
perturbations due to sub-Hubble structure could, in prin-
ciple, be taken into account and corrected for by mapping
that structure. So ultimately we do not expect the cosmic
variance of T0 to have an important effect on the deter-
minations of the other parameters.
In further work related to the effect of inhomogeneity on

the CMB temperature, Ref. [41] notes that by varying the
spatial curvature parameter ΩK as well as T0, tensions with

the Hubble and other parameters can be reduced even when
including BAO data, due to the extra freedom in the
background evolution that curvature allows. At roughly
10% the required shift in T0 is still much larger than the
FIRAS uncertainty, although the authors of Ref. [41] claim
this can be explained by our presence in a large under-
density, which would render the locally measured T0 colder
than outside the void. However, as mentioned above the
gravitational redshift or blueshift due to realistic structure is
of order 10−5 over a large range of scales. Thus the proposal
of [41] would require a potential well that is four orders of
magnitude deeper than expected, likely conflicting with a
range of observations [45].
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