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A new formulation for light propagation in geometric optics by means of the bilocal geodesic operators
is considered. We develop the BIGONLIGHT Mathematica package, uniquely designed to apply this
framework to compute optical observables in numerical relativity. Our package can be used for light
propagation on a wide range of scales and redshifts and accepts numerical as well as analytical input for the
spacetime metric. In this paper we focus on two cosmological observables, the redshift and the angular
diameter distance, specializing our analysis to a wall universe modeled within the post-Newtonian
approximation. With this choice and the input metric in analytical form, we are able to estimate non-
linearities of light propagation by comparing and isolating the contributions coming from Newtonian and
post-Newtonian approximations as opposed to linear perturbation theory. We also clarify the role of the
dominant post-Newtonian contribution represented by the linear initial seed which, strictly speaking, is
absent in the Newtonian treatment. We found that post-Newtonian nonlinear corrections are below 1%, in
agreement with previous results in the literature.

DOI: 10.1103/PhysRevD.104.043508

I. INTRODUCTION

Upcoming galaxy surveys like Euclid, LSST, SKA and
others1 mark the beginning of a new exciting era, dubbed
precision cosmology. The reason behind this name is
twofold: on one side these future observations will map
almost all the visible universe with the unprecedented
precision of 1% and on the other side cosmological
modelling aim at the same precision target.
In this view treating non-linearities, i.e., going beyond

(linear) cosmological perturbation theory is of crucial
importance and new approximation schemes were devel-
oped specifically or approximations used in other contexts
were applied to cosmology. They include: the post-
Newtonian (PN) approximation (see [1,2] for formulations
of PN cosmology in two different gauges), the post-
Friedmann approximation (see [3,4] for a different
approach, which adapts to cosmology the weak-field
post-Minkowskian approximation and reproduces linear-
order cosmological perturbation theory at their zeroth-

order), the weak-field approximation2 (see [6] for the
development of the framework and [7] for estimations
with the use of Newtonian simulations for a plane-
symmetric universe), and, more recently, a two-parameters
gauge-invariant approximation (see [8]). In addition, over
the past few decades, numerical simulations have increas-
ingly become a powerful tool in cosmology to model the
growth of non-linear structures. Since Newtonian dynamics
seems to be a good approximation to describe late-time
structure formation, the first generation of cosmological
simulations adopted Newtonian gravity to simulate cos-
mological dynamics. Then, Newtonian simulations were
used to feed approximate field equations coming from
general relativity (GR) as e.g., in [9–11]. Only recently we
assist to a revolution in cosmological simulations with the
birth of codes aiming at simulating fully general relativistic
dynamics, [12–17]: for the state of the art and the
comparison among different codes, see [18].
However, a sophisticated general relativistic (exact or

approximated) description of cosmological dynamics is not
the end of the story. The key point is how (much) it affects
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2The leading order of the last two approximation schemes were
shown to be equivalent for a dust universe in the Poisson gauge in
[5], whereas [1,2] were constructed on purpose to include second-
order perturbation theory at their PN order.
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light propagation, the final aim being to characterize and
(hopefully) measure nonlinear GR effects in the observ-
ables on cosmological scales or, at least, quantify their bias
in observations. These studies are still in their infancy but
they are addressed with several approaches most of which
we briefly sketched above. A noncomprehensive list
includes [19–27]. Despite being too early to draw definitive
conclusions, it seems that the codes that approximate GR
dynamics are in agreement with Newtonian simulations for
what concerns weak-lensing observables [19,26] but a
modification in the statistics of the luminosity distance
[24] was found. In addition, the PN approximation for
some models gives predictions different from ΛCDM [22].
A bit of work is still needed to adapt to (observational)
cosmology the truly GR numerical codes.
In this paper we examine the differences between linear

and nonlinear light propagation. An accurate treatment of
the problem would require to analyse light propagation in a
realistic model of the universe. However, our aim is not to
make general predictions, but rather to deeply investigate
the various factors and effects on observables coming from
nonlinearities. For this purpose, we decided to employ a
toy-model of the universe in which light rays pass through a
series of plane-symmetric perturbations around a
Friedmann-Lemaître-Robertson-Walker (FLRW) back-
ground. This model is known as plane-parallel or wall
universe, and it was used in the past to study the back-
reaction from the small-scale inhomogeneities [28–31]. We
start by extending the results of [28] by providing the so-
called Zel’dovich solution with a ΛCDM background. In
this model, we compute the redshift and the angular
diameter distance within three different approximation
schemes: linear, Newtonian and post-Newtonian. In order
to quantify and isolate nonlinear contributions, we present
our results in terms of the relative differences between
observables computed with these three different approx-
imations (see Sec. IV for details). We also analyze different
aspects of nonlinearities, e.g., scale-dependence, non-
Gaussianity, etc. Even if our modeling is very simple,
we believe that this kind of analysis is representative of
more general configurations.
Besides, an important novelty of this work is that wemake

use of the new BIGONLIGHT Mathematica package to study
light propagation in GR and compute observables numeri-
cally, [32]. Contrary to other software, BIGONLIGHT imple-
ments light propagation within the new bilocal geodesic
operator (BGO) framework, which is applicable to more
general situations than the standard formalism and it is also
suitable to construct new observables, [33,34]. This unique
design makes the package adaptable to study various light
propagation problems in numerical simulations.
We begin by presenting in Sec. II the plane-parallel toy-

model as introduced in [28]. Then, in Sec. III we briefly
describe the BGO framework, pointing out to [33,34] for
further details. In Sec. IV, we introduce the goals of our

analysis and the method which led to the results presented
in Sec. V. Finally, we address our conclusions in Sec. VI.
Notation: Greek indices (α; β;…) run from 0 to 3, while

Latin indices (i; j;…) run from 1 to 3 and refer to spatial
coordinates only. Latin indices (A;B;…) run from 1 to 2.
Tensors and bitensors expressed in a semi-null frame are
denoted using boldface indices: Greek boldface indices
(α; β;…) run from 0 to 3, Latin boldface indices (a; b;…)
run from 1 to 3 and capital Latin boldface indices (A;B;…)
run from 1 to 2. Latin tilded indices (ã; b̃;…) run from 0
to 7 and refer to the indices of 8 × 8 matrices W and Ω. A
dot denotes derivative with respect to conformal time.
Quantities with a subscript 0 are meant to be evaluated at
present, whereas the subscript “in” indicates the initial
time. Similarly, we indicate with a subscript O (S)
quantities defined at the observer (source). An overbar
indicates quantities evaluated in the ΛCDM model. In this
paper we use three different approximations and conse-
quently three different notations: “N” for Newtonian, “PN”
for post-Newtonian, “Lin” for first-order perturbation
theory. We place these abbreviations up or down depending
on convenience.

II. THE PLANE-PARALLEL DYNAMICS IN THREE
APPROXIMATIONS

We consider a toy-model characterized by the choice of
globally plane-parallel configurations, i.e., the case where
the initial perturbation field depends on a single coordinate.
The dynamics of this very simple universe consists of a
collection of parallel planes that collapse along the direc-
tion of their normal to form a pancake. For the purposes of
our work, we are not interested in a more realistic
modelling of the Universe; rather our main aim is to
estimate, isolate and compare purely nonlinear and non-
Newtonian contributions in light propagation, e.g., in
fundamental observables such as redshift and angular
diameter distance.
We work in the synchronous-comoving gauge and leave

to future work the gauge issue of every perturbation scheme
that affects the observables as well as the estimate of the
related contributions in other gauges. Despite gauge effects
in the observables are known in standard cosmological
perturbation theory (see Ref. [35] for a recent discussion of
gauge invariance of cosmological observables up to second
order), the issue is more delicate for nonstandard approx-
imations, such as those considered in this paper.
The starting point of our analysis is the results of

Ref. [28]: the authors started from the Newtonian back-
ground given by the well-known Zel’dovich approxima-
tion, [36], which, for plane-parallel perturbations in the
Newtonian limit, represents an exact solution. They then
obtained the exact analytical form for the PN metric,
thereby providing the exact PN extension of the
Zel’dovich solution. Let us remark how the Zel’dovich
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approximation is constructed: in its conformal version, it is
an expansion around the three-dimensional spatial dis-
placement vector of the CDM particles between the
position comoving with the Hubble flow and the true
position governed by perturbations. The peculiarity is the
following: the solution for the displacement vector is
strictly linear, as it is found from the linear Newtonian
equations of motion. But all other dynamical quantities,
such as the mass density, are written in terms of such a
displacement vector, as if it was exact, i.e., from their
nonperturbative definition. The same construction was first
extended to the PN approximation of general relativity,

where the metric tensor also is a dynamical variable, in
Ref. [1] and specialized in the plane-parallel case
in Ref. [28]. The Zel’dovich specific feature is evident
in the form of the metric tensor (7), which is quadratic in
the perturbations, and the density contrast in Eq. (9) for the
Newtonian background and in Eqs. (2) and (10) for the PN
solution found in Ref. [28].
We provide here the ΛCDM extension of the PN metric

found in Ref. [28], which was obtained for the Einstein-de
Sitter background model, i.e., the dust-only universe.
Starting from the line element

ds2 ¼ a2ðηÞf−c2dη2 þ γPN11 ðη; q1Þdq21 þ γPN22 ðη; q1Þdq22 þ γPN33 ðη; q1Þdq23g ð1Þ

we then obtain the conformal metric given by3

γPN11 ¼
�
1 −

2

3

∂2
q1ϕ0

H2
0Ωm0

D
�

2

þ 1

c2

�
−
10

3
ϕ0 þ ð4anl − 5Þ 10

9

ð∂q1ϕ0Þ2
H2

0Ωm0

Dþ ðanl − 1Þ 40
9

ϕ0∂2
q1ϕ0

H2
0Ωm0

D

þ
�
41

7
− 4anl

�
20

27

ð∂q1ϕ0Þ2∂2
q1ϕ0

ðH2
0Ωm0Þ2

D2 þ ð3 − 2anlÞ
40

27

ϕ0ð∂2
q1ϕ0Þ2

ðH2
0Ωm0Þ2

D2 −
80

189

ð∂q1ϕ0Þ2ð∂2
q1ϕ0Þ2

ðH2
0Ωm0Þ3

D3

�

γPN22 ¼ 1þ 1

c2

�
10

9

�
Dð∂q1ϕ0Þ2
H2

0Ωm0

− 3ϕ0

��

γPN33 ¼ 1þ 1

c2

�
10

9

�
Dð∂q1ϕ0Þ2
H2

0Ωm0

− 3ϕ0

��
: ð2Þ

In the above expression η is the conformal time,a is the scale-
factor encoding the evolution of theΛCDMbackground,H0,
Ωm0 , andϕ0 are the (conformal)Hubble parameterH≡ _a=a,
the matter (ordinary plus dark) densaity parameter, and the
peculiar gravitational potential, respectively, all evaluated at
present. The dot denotes differentiation with respect to
conformal time. D is the growing mode solution of
the first-order equation for the density contrast which is
defined as

δðη; q1Þ≡ ρðη; q1Þ
ρ̄ðηÞ − 1; ð3Þ

where ρ̄ theΛCDMbackgroundmatter density. At first order
in standard perturbation theory and without loss of general-
ity, the space and time dependence of the expression of the

growing density contrast can be factored out. In our one-
dimensional case we have δLinðη; q1Þ ¼ DðηÞδLin0 ðq1Þ,
where we fix the constant δ0 at the present time, and the
growing mode D obeys the well-known equation

D̈þH _D −
3

2
H2

0Ωm0

D
a
¼ 0: ð4Þ

It is worth noticing that these quantities are all connected via
the cosmological Poisson equation

D∇2ϕ0 −
3

2
H2

0Ωm0δLin ¼ 0: ð5Þ

Finally, we follow here the parametrization for primordial
non-Gaussianity defined in Ref. [37]: the number anl
parametrizes local primordial non-Gaussianity of the
gauge-invariant curvature perturbation of uniform density
hypersurfaces. This is linked to the parametrization of the
primordial gravitational potential by a simple relation
between the respective parameters: fnl ¼ ð5=3Þðanl − 1Þ.

3We take this chance to point out a typo in Eq. (4.37) of
Ref. [28]: in the first term of the second line of the expression for
γ11 the correct coefficient is 5=756 instead of 5=576.
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The metric in (2) corresponds to the most sophisticated
approximation that we will use in this paper: although
being referred to the 1D toy-model, it is fully nonlinear in
the standard perturbative sense, i.e., it is not assumed that
density perturbations are small. On the contrary, taking
advantage of the Zel’dovich prescription, we calculate the
density contrast nonperturbatively, see Eq. (10) below. The
PN approximation extends standard perturbation theory
including the leading-order corrections to the Newtonian
treatment, which are the terms proportional to 1=c2. For the
convergence of the PN expansion in the metric (2), see
Ref. [28].Wewill compare light propagation in the spacetime
described by (2) with other two cases, that are both extended
in (2): the linear order of standard cosmological perturbation
theory and the Newtonian approximation. The linear space-
timemetric in the synchronous-comoving gauge is very well
known and in 1D it reads

γLin11 ¼ 1 −
4

3

D∂2
q1ϕ0

H2
0Ωm0

−
10

3c2
ϕ0

γLin22 ¼ 1 −
10

3c2
ϕ0

γLin33 ¼ 1 −
10

3c2
ϕ0: ð6Þ

This metric is the solution of the Einstein’s equations
expanded at first order around the FLRW background.

Note however that the planar symmetry reduces the degrees
of freedom to be only scalar (there are no vector or tensor
mode in 1D, by construction) and confines the dynamical
part in γLin11 only, i.e., only in the direction of the perturbations,
while in the other two directions we have just the (PN) initial
conditions. On the other hand, in the Newtonian approxi-
mation we have

γN11 ¼
�
1 −

2

3

D∂2
q1ϕ0

H2
0Ωm0

�
2

γN22 ¼ 1

γN33 ¼ 1: ð7Þ

This metric can be read off (2) by discarding the PN
corrections proportional to 1=c2.
For completeness we report here the expressions of the

density contrast in the three cases:

δLin ¼
2

3

D∂2
q1ϕ0

H2
0Ωm0

ð8Þ

δN ¼
2
3

D∂2q1ϕ0

H2
0
Ωm0

1 − 2
3

D∂2q1ϕ0

H2
0
Ωm0

ð9Þ

δPN ¼
2
3

D∂2
q1
ϕ0

H2
0
Ωm0�

1− 2
3

D∂2q1ϕ0

H2
0
Ωm0

�
þ 1

c2
1�

1− 2
3
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0
Ωm0
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2

�
5

9
ð3− 4anlÞ

D
H2

0Ωm0

ð∂q1ϕ0Þ2þ
20
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ð2−anlÞ

D
H2

0Ωm0

ðϕ0∂2
q1ϕ0Þþ

20
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�
2

3

D
H2

0Ωm0
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2∂2

q1ϕ0ð∂q1ϕ0Þ2
�

ð10Þ

Note that the Newtonian density contrast, according to the
Zel’dovich approximation, is calculated exactly from the
continuity equation in the synchronous-comoving gauge
(see Eq. (25) as the PN one, which is just expanded in
powers of 1=c2. We take our initial conditions at ηin, after
the end of inflation and in the matter-dominated era, when
linear theory around the Einstein-de Sitter model is still a
good approximation. The explicit expression for the initial
density contrast is thus

δin ¼
2

3

Din∂2
q1ϕ0

H2
0Ωm0

ð11Þ

whereDin ∝ η2in is the linear growingmodeof theEinstein-de
Sitter model. We model the profile of the gravitational

potential at present asϕ0 ¼ I sinðωq1Þ, with frequencyω ¼
2π

500 Mpc and amplitude I such that maxðδPNðη0; q1ÞÞ ¼ 0.1.
We set the fiducial values of the cosmological parameters
from [38,39] with Ωm0 ¼ 0.3153, ΩΛ ¼ 0.6847, H0 ¼
67.36 and anl ¼ 3

5
fnl þ 1 ¼ 0.46. The three profiles (8),

(9) and (10) of the density contrast at the present time are
shown in Fig. 1. The plot shows the amplitudes of the curves
of the N and PN density contrast are shifted to higher values
compared to the linear one, namely theN and PN corrections
have the effect of increasing both the under- and the over-
density peaks by the same amount ≈4.15 × 10−3. The
differences in the evolution of the density contrast in the
three approximations are more evident from Fig. 2, in
which we analyse the growth of an initial under-density,
δin < 0, over-density, δin > 0, and the case of vanishing δin.
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In Figs. 2(a) and 2(b) we show the deviations j δLin−δNδN
j and

j δPN−δNδN
j respectively, at fixed position as a function of time for

the two cases of initial over- and underdensities. In Fig. 2(a)
we clearly see that the variation Lin vs N grows with time,
reaching ≈9% at present, which is exactly the shift of 4.15 ×
10−3 that we see in Fig. 1. The variation PN vs N grows with
time as well, Fig. 2(b), but the value at present is 4 orders of
magnitude less. Furthermore, in this figure we can also
appreciate how the overdensities accrete faster than the
underdensities, as one should expect. This is not visible in
Fig. 2(a), due to the fact that the difference between the linear
and the Newtonian approximation is dominant. The case of
δin ¼ 0 is presented in Fig. 2(c), wherewe plot the differences
jδLin − δNj and jδPN − δNj. The reason why we took the
difference instead of the variation (as was done in the over-
and underdensity cases) is to avoid the operation of dividing
by zero, since we are considering regions with δ ¼ 0. We
begin by noticing that for δin ¼ 0 both δLin and δN vanish at
any time, as evident from (8) and (9): both δLin and δN are
proportional to ϕ0 and they are exactly zero at the same value

(a) (b)

(c)

FIG. 2. Comparison between δLin, δN and δPN as functions of conformal time η. The comparisons 2(a) and 2(b) are evaluated for an
initial overdensity δin > 0 and underdensity δin < 0, while 2(c) is plotted for δin ¼ 0. All the three approximations are obtained for
ϕ0 ¼ I sinðωq1Þ with ω ¼ 2π

500 Mpc, amplitude I such that maxðδPNðη0; q1ÞÞ ¼ 0.1. and cosmological parameters taken from [38,39].

FIG. 1. Density contrast at present (conformal) time η0 in the
three approximations δLin, δN and δPN, as in Eqs. (8), (9) and (10)
respectively. The plots are obtained setting up the potential as
ϕ0 ¼ I sinðωq1Þ with ω ¼ 2π

500 Mpc and amplitude I such that
maxðδPNðη0; q1ÞÞ ¼ 0.1. The values for Ωm0, ΩΛ, fnl and H0 are
taken from [38,39].
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of q1, in our toy model ϕ0 ∝ sinðωq1Þ. Conversely, the term
∝ ∂q1ϕ0 in δPN (10) implies that δPNðηinÞ ≠ 0 at the position
where δin ¼ 0. Therefore, what is actually shown in Fig. 2(c)
is the evolution of the density contrast in the post-Newtonian
approximation, whose absolute value increases up to
≈3 × 10−6.

III. LIGHT PROPAGATION IN THE BGO
FRAMEWORK

In this section we present the key elements of the
formulation of light propagation which we are going to
use in this paper: the bilocal geodesic operator (BGO)
framework (for a more extended discussion of this formal-
ism, see [33]). The physical situation we want to study is
depicted in Fig. 3: an observer O placed at xμO is connected
to the source S placed at xμS through a null geodesic γ. Both
S and O are free to move along their timelike worldlines,
but we assume that the typical length scale of the regions in
which their motion takes place is small compared to the
distance between them, so that their local geometry can be
treated as flat. Therefore, we can safely assume that all
gravitational effects on light propagation are due to the
curvature of the spacetime between S and O.
In general, geodesics are uniquely specified by giving

the initial position and the initial tangent vector, that can be
assigned at the observation point. In other words, a fiducial
null geodesic γ can be identified through its initial con-
ditions (xμO, l

μ
O). Now, if the observer is displaced by δx

μ
O, a

new geodesic connects S and O and it is characterized by
the new initial conditions (xμO þ δxμO, l

μ
O þ Δlμ

O), where
we define Δlμ

O as the covariant deviation of the tangent
vector lμ

O at the observer position, namely

Δlμ
O ¼ δlμ

O þ Γμ
αβðxOÞlα

Oδx
β
O: ð12Þ

The deviations (δxμO, Δl
μ
O) can be used to parametrize a

family of null geodesics around the fiducial geodesic γ,
provided that the geodesics of the family stay close enough
to γ, such that it can be studied by keeping all the equations
linear in the displacements.
The deviation vector δxμ, which is the displacement

between γ and infinitesimally separated geodesics, propa-
gates accordingly to the geodesic deviation equation (GDE)

∇l∇lδxμ − Rμ
αβνlαlβδxν ¼ 0 ð13Þ

with initial conditions

δxμðxOÞ ¼ δxμO
∇lδxμðxOÞ ¼ Δlμ

O: ð14Þ

Using the linearity of the GDE and considering its projection
into the parallel-propagated frame4 ϕμ

α ¼ ðuμ;ϕμ
A;lμÞ

(with α ¼ 0; 1; 2; 3 and A ¼ 1; 2 frame indices), the devia-
tions at the source (δxμS, Δl

μ
S) can be given as a linear

combination of the initial deviations (δxμO, Δl
μ
O)

δxμS ¼ WXX
μ
νδxνO þWXL

μ
νΔlν

O

Δlμ
S ¼ WLX

μ
νδxνO þWLL

μ
νΔlν

O; ð15Þ

where the BGOWXX,WXL,WLX,WLL are bi-tensors acting
from O to S. Equation (15) can then be written in the more
compact form

�
δxS
ΔlS

�
¼

�
WXX WXL

WLX WLL

��
δxO
ΔlO

�

¼ WðS;OÞ
�
δxO
ΔlO

�
; ð16Þ

whereWðS;OÞ is the resolvent of theGDE acting fromO to
S and satisfying the properties:

WðO;SÞ ¼ ðWðS;OÞÞ−1
WðS;OÞ ¼ WðS; pλÞWðpλ;OÞ; ð17Þ

with pλ being an arbitrary point on γ. A third key property of
the BGO is thatW is symplectic, as first shown in [40]. To be
precise, this property is written as

WTm̃
ãΩm̃ s̃W s̃

b̃ ¼ Ωã b̃ ð18Þ

where Ω is the 8 × 8 nonsingular, skew-symmetric matrix

FIG. 3. Sketchy representation of the geometric set-up. Both
the source S and the observer O are free to move along their
worldlines, with the condition that at every proper time τO there
exists a null geodesic connecting xμO and xμS .

4The frame ðuμ;ϕμ
A;lμÞ is called seminull frame and it is

composed by two parallel-propagated Sachs screen vectors ϕμ
A,

both orthogonal to uμ and lμ. See [33] for a detailed discussion
on semi-null frames properties.
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Ωã b̃ ¼
�

0 hαβ
−hγδ 0

�
; ð19Þ

with hαβ the metric associated to the parallel-transported
frame ϕμ

α, tilded indices run from 0 to 7 and bold indices
α ¼ 0; 1; 2; 3 are those associated with the frame. Inserting
(16) in theGDE equation projected in the parallel transported
frame ϕμ

α, we obtain the propagation equation for the BGO

d
dλ

W ¼
�

0 14×4
Rll 0

�
W ð20Þ

with initial conditions

WjO ¼
�
14×4 0

0 14×4

�
; ð21Þ

where λ is the affine parameter spanning the geodesic γ and
Rll is a short-hand notation to express the optical tidalmatrix
in the frame Rμ

αβνlαlβ.
The usual procedure for studying light propagation in

numerical simulations is that the spacetime dynamics is
integrated forward in time, while the study of light
propagation is done in postprocessing, tracing the light
beam backwards from the observer O to the source S. By
solving (20) with initial conditions (21) at O, one obtains
the BGO Wðpλ;OÞ connecting the observer with the point
pλ up to the source S ¼ pλS and this is the procedure to
compute observables, since real observations are made
from the observer position. Nevertheless, in the framework
we present here, one can choose to give initial conditions at
S (or anywhere else) and integrate forward in time to O.
The key advantage is that in this way one is able to integrate
(20) for light propagation on-the-fly with Einstein’s equa-
tions for spacetime dynamics. In this case one obtains the
BGO Wðpλ;SÞ relating the point pλ with the source. The
two procedures for light propagation are fully equivalent
and the relation between them, namely between Wðpλ;OÞ
and Wðpλ;SÞ, simply follows from the BGO properties
(17) and reads5

Wðpλ;OÞ ¼ Wðpλ;SÞðWðO;SÞÞ−1 ð22Þ

where WðO;SÞ ¼ WðpλO ;SÞ.
In this work the input is an analytic form of the spacetime

metric and we integrate the equation for the BGO (20)
backwards in time and obtain directly the left-hand side
(lhs) of Eq. (22). The procedure to compute observables
can be summarized in the following steps:
(1) compute the null geodesic connecting O and S;
(2) perform the parallel transport of a reference frame;

(3) solve the evolution equation for the BGO, Eq. (20),
with initial conditions, Eq. (21) from the observer to
the source;

(4) combine the BGO with the four-velocity of source
and observer to obtain the observables we are
interested in, which are redshift and angular dia-
meter distance Dang, written in terms of the BGO as,
see [34]

1þ z ¼ lσuσjS
lσuσjO

ð23Þ

Dang ¼ lσuσjOj detðWXL
A
BÞj12: ð24Þ

The advantage of the BGO formalism is that it provides a
unified approach to geometric optics. Furthermore, it
extends the standard Sachs formalism, allowing also to
describe what happens when the observation occurs for a
prolonged period of time and the slow temporal variations
of the optical observables, called the drift effects, could
become measurable.
All the steps 1–4 require the ability of solving systems of

coupled ODEs, that can be done either using analytical
methods (exact or perturbative approach) or numerical
methods. In our work we will use both methods, as we
are going to explain in the next section.

IV. METHOD

The core of our analysis is to estimate the magnitude of
the nonlinear effects on light propagation, through the
comparison of some cosmological observables calculated
within different approximation schemes. In particular, we
will compare the redshift z and the angular diameter
distance Dang computed in the following three cases:
(1) using the first-order expansion in standard cosmo-

logical perturbation theory of the plane-parallel
metric (6) and performing light propagation pertur-
batively, up to first order. We will denote asOLin, the
generic observable O obtained in this way, which
only includes effects linear in the perturbations; (zLin

and DLin
ang are derived in App. B);

(2) using the Newtonian part of the plane-parallel
metric, namely the metric in Eq. (7), and performing
exact light propagation6 using numerical integration.

5The symplectic property of W, Eq. (18) simplifies a lot the
computation of W−1.

6The term “exact” refers to the fact that no perturbative
approach is used when we derive and solve the equations
describing the propagation of light and observables. In other
words, even if the spacetime metric was obtained using some
perturbation scheme, we use it as if it were exact for the entire
procedure to calculate the observables, starting from the very
beginning, i.e., the geodesic equation. We will discuss this
approach further on in this section.
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The observables calculated in this way will be
indicated as ON;

(3) using the full PN plane-parallel metric (2) and
performing exact light propagation via numerical
integration. We denote the observables calculated
with this method as OPN.

The observables calculated with the last two methods, ON

and OPN, are obtained using BiGONLight.m (bilocal
geodesic operators framework for numerical light propa-
gation), a publicly available Mathematica package (https://
github.com/MicGrasso/bigonlight) developed to study light
propagation in numerical simulations using the BGO
framework. The package contains a collection of function
definitions, including those to compute geodesics, parallel
transported frames and solve the BGO’s equation (20).
BiGONLight.m works as an independent package that,
once is called by a Mathematica notebook, can be used to
compute numerically the BGO along the line of sight, given
the spacetime metric, the four-velocities and accelerations
of source and observer as inputs: a sample of the notebook
we used for our analysis can be found in the repository

folder Plane-parallel. An exhaustive description of
BiGONLight and several tests of the package are pre-
sented in [32]. Here we just report in Appendix A two case
studies of code testing, the ΛCDM and the Szekeres model.
Let us now comment about the fact that we use exact

light propagation for the Newtonian and post-Newtonian
observables, despite the fact that the respective spacetime
metric is obtained with perturbative techniques. First, we
notice that this method used to compute OPN does not
produce observables strictly of PN order: the observables
OPN will contain also some of higher than PN contribu-
tions, coming from the fact that we start from the PN metric
(2) but we do not expand further the equations for light
propagation or the expressions for the observables in
powers of 1=c2 (we set c ¼ 1 everywhere). One would
naively expect that the higher than PN terms are always
subleading with respect to the PN ones, as in any well-
defined perturbation scheme. The key point here is if this
hierarchy, which starts at the level of metric perturbations,
is preserved throughout the full calculation to the final
results, especially in our case where the equations to

(a)

(b)

FIG. 4. Evolution of the variation δPN vs δN (a) and δex vs δPN
(b) for initial overdensity δin > 0 and underdensity δin < 0
regions for k ¼ 500 Mpc. The variation δex vs δPN (b) is 4 orders
of magnitude smaller than the variation δPN vs δN (a).

(b)

(a)

FIG. 5. Evolution of the variation δPN vs δN (a) and δex vs δPN
(b) for regions with δin ¼ 0 and k ¼ 500 Mpc. The variation δex
vs δPN (b) is 6 orders of magnitude smaller than the variation δPN
vs δN (a).
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compute the observables are fully nonlinear. We find that
this is indeed the case, as indicated in similar investigations
in the literature. In order to show this explicitly and to give
an estimate of the higher than PN corrections, we have
compared the density contrast calculated strictly up to PN
order δPN (10) and the density contrast δex obtained from its
exact expression from the continuity equation in synchro-
nous-comoving gauge, i.e.,

δexðη; q1Þ ¼ ðδðηin; q1Þ þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jγðηin; q1Þj
jγðη; q1Þj

s
− 1; ð25Þ

where jγj is the short-hand notation for the determinant of
the metric (2), calculated here without expanding in powers
of 1=c2.
The plots in Fig. 4 show that the variation between δPN

and δex is 4 orders smaller than the variation between δN
and δPN for initial over- and underdense regions and it is 6
orders smaller when we consider regions with vanishing
initial density contrast, Fig. 5. This is something we
expected, since the impact of the corrections gets smaller
and smaller with the increase of the order in the expansion
and, more importantly, we were able to isolate and quantify
the corrections coming from the higher than PN terms. This
specific result holds for the density contrast but it is
perfectly reasonable that this estimation is roughly valid
for the observables too, even if the calculation to get them is
different. We believe that the argument just presented
validates our method of performing exact light propagation.

In order to compare the observables calculated within
different approximations, we introduce the dimensionless
variation ΔO for the generic observable O calculated in the
two approximations a and b defined as:

ΔOðb; aÞ ¼ Ob −Oa

Oa ð26Þ

where a and b stand for ΛCDM, Lin, N or PN, namely the
ΛCDM background, the linear order in standard PT,
Newtonian or post-Newtonian approximations, respectively.
Having introduced the general method we use for our

analysis and we defined the key quantity for our compar-
isons, we have to specify the free functions and the
parameters of the plane-parallel universe we are consider-
ing, of the ΛCDM background model and its perturbations.
We recall that the evolution of the inhomogeneities in our

TABLE I. Values ðk; δmax
0 Þ used in our analysis.

k (Mpc) 500 300 100 50 30
δmax
0 0.1 0.35 1 1.5 1.8

FIG. 6. Graphic representation of the direction normal to the
planes (blue) and the direction along the bisect (red). Two
geodesics with these directions will intersect the uniform density
planes with different angles. Therefore the matter distribution
profiles along the geodesics are also different.

(b)

(a)

FIG. 7. ΔzðPN; NÞ [7(a)] and ΔDangðPN; NÞ [7(b)] according
to our definition (26) for the two geodesics with directions normal
to the planes (blue lines) and parallel to the bisect (orange lines).
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model is governed by the growing mode solution D (4),
while the spatial part of the matter distribution is deter-
mined by the gravitational potential ϕ0, which is the only
free function. We use a sinusoidal profile for the gravita-
tional potential ϕ0 defined as:

ϕ0 ¼ I sinðωq1Þ ð27Þ

where the frequency ω ¼ 2π=k is determined from the
scale of the inhomogeneities k, while the amplitude I is
obtained from (10) for a certain value of the maximum of
post-Newtonian density contrast today δmax

0 . The scale k
and the maximum of the density contrast δmax

0 are linked by
the matter power spectrum and we will repeat our analysis
for different values of ðk; δmax

0 Þ (this will be discussed in the

Sec. V). In Table I we report the chosen values for the scales
and the corresponding maximum of the density contrast
today. The cosmological parameters are set using the
fiducial values from [38], i.e., Ωm0 ¼ 0.3153, ΩΛ ¼
0.6847 and H0 ¼ 67.36. For primordial non-Gaussianity
we use the parameter anl introduced in [37]. It is linked to
the parameter fnl by:

anl ¼
3

5
fnl þ 1 ð28Þ

where anl ¼ 1, i.e., fnl ¼ 0, correspond to the case of exact
Gaussian fluctuations. The latest measurement of fnl from
the Planck collaboration [39] gives anl ¼ 0.46� 3.06 that
will fix anl ¼ 0.46 as the fiducial value for our analysis.

(a) (b)

(c)

FIG. 8. Redshift variations, as defined in Eq. (29), Linear vs Newtonian (blue) and post-Newtonian vs Newtonian (orange) on three
different scales k ¼ 30; 100; 300 Mpc. We see that ΔzðLin;NÞ ∼ 102ΔzðPN;NÞ on every scale k. The variable on the horizontal axis is
the ΛCDM redshift.
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However, since in our case we take deterministic initial
conditions, anl merely represents an extra free parameter of
our approach which tunes the post-Newtonian corrections.7

Given that anl has a lot of room to vary inside its confidence
interval of �3.06, we have also investigated how the
comparison Newtonian vs post-Newtonian gets modified
if we take different values of anl to calculate post-
Newtonian observables OPN (see section V).
The last things we need to specify are the observer and

emitter positions and their kinematics. In our study we
place the observer in a position with vanishing initial
density contrast δin ¼ 0 and we will leave the analysis on

how the comparison change when the observer is located in
an initial overdensity or underdensity for future investiga-
tions. The geodesic equations and the BGO equations (20)
are solved giving the initial conditions at the observer
position and they are integrated backwards in time up to
redshift z ¼ 10. The choice of analyzing only sources at
z ¼ 10 still leaves us the freedom in selecting the direction
from which the light is coming. The difference between
geodesics with different directions is mainly due to the way
in which the geodesics cross the parallel planes with
uniform density. To investigate this effect, we have con-
sidered two geodesics, one with direction normal to the
planes and one with direction parallel to the bisect as
represented in Fig. 6, considering in both cases the observer
in a position with δin ¼ 0 and the gravitational potential
(27) set such that k ¼ 500 Mpc and δmax

0 ¼ 0.1. For both

(a) (b)

(c)

FIG. 9. Angular diameter distance variations, as defined in Eq. (29), linear vs Newtonian (blue) and post-Newtonian vs Newtonian
(orange) on three different scales k ¼ 30; 100; 300 Mpc. We see that ΔDangðLin;NÞ ∼ ΔDangðPN;NÞ on every scale k. The variable on
the horizontal axis is the ΛCDM redshift.

7This is evident, since anl appears only in the post-Newtonian
terms and some of them can be cancelled or dimmed with an
appropriate choice of the anl’s value.
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geodesics we have analysed what are the effects of the
direction on the variations Newtonian vs post-Newtonian
for Δz [Fig. 7(a)] and ΔDang [Fig. 7(b)].
From the plots we can conclude that there are small

differences in the comparison post-Newtonian vs Newtonian
for geodesics with different directions. However, the change
in the matter distribution on the geodesic induced by the
different directions does not modify the magnitude of the
variations too much, but only their shapes. In conclusion,
when we consider geodesics along the normal, the effects of
the nonlinearities are somewhat smaller than for the geo-
desics along the bisect direction. Nevertheless, from now on,
wewill consider only geodesics directed along thebisect: this
will not affect our conclusions because we will make all the
comparisons using geodesics along the bisect in all the cases
under study.
For clarity, the following list summarizes the conditions

we set for our analysis:
(i) If not specified, the observerO is placed in a position

with initial vanishing density contrast δin ¼ 0.
(ii) The sources are at redshift z ¼ 10 and such that the

observer receives the light with direction parallel to
the bisect.

(iii) Our analysis is performed in synchronous comoving
gauge implying that both emitter and observer are
comoving with the cosmic flow.

(iv) The primordial non-Gaussianity parameter anl is set
using the fiducial value from Planck [39], i.e.,
anl ¼ 0.46. However, in Sec. V wewill also consider
the case when anl is set equal to the extreme of its
confidence interval.

V. RESULTS

In this section we present the results of our study that we
plot in terms of the quantity

ΔOðb; aÞ ¼ Ob −Oa

Oa ; ð29Þ

where our observables O are the redshift z and the angular
diameter distanceDang and a, b stand for the approximations
used in turn. Let us start with Figs. 8 and 9 in which we plot
the variation between linear and Newtonian approximations,
ΔzðLin;NÞ andΔDangðLin;NÞ, and the PNcorrections to the
Newtonian approximation, ΔzðPN;NÞ and ΔDangðPN;NÞ
for three different scales, k ¼ 30; 100; 300 Mpc. The main
result here is that the variations behave differently for the
redshift and for the angular diameter distance. Indeed, while
for z the post-Newtonian corrections are two orders of
magnitudes smaller than the nonlinear Newtonian contribu-
tions with respect to linear theory, for Dang the two correc-
tions are of the same order. This can be clearly seen on
k ¼ 300 Mpc, Figs. 8(a) and 9(a), and the same behavior
also holds on smaller scales, Figs. 8(b), 8(c), 9(b), and 9(c).

For z≲ 2 we have that ΔzðPN;NÞ ∼ 10−6 on k ¼ 300 Mpc
with oscillation dumped as the redshift increases.
On the other hand, for the angular diameter distance
ΔDangðLin;NÞ ∼ ΔDangðPN;NÞ ∼ 10−4 on k ¼ 300 Mpc
in the full redshift range [0, 10].
We dedicate a separate study, reported in Figs. 10 and 11,

to the change of the amplitude of all the variations
with the scale. We consider inhomogeneities scales of
k ¼ 500; 300; 100; 50; 30 Mpc. Figure 10 shows that both
the variations ΔzðLin;NÞ and ΔzðLin;NÞ increase from
k ¼ 500 Mpc to reach the maximum amplitude on k ¼
100 Mpc and then decreases down to k ¼ 30 Mpc. In terms
of amplitudeswe have:ΔzðLin;NÞ ∼ 10−4, with amaximum
∼10−3 around k ¼ 100 Mpc and ΔzðPN;NÞ ∼ 10−7, with a
maximum ∼10−6 around k ¼ 100 Mpc. We again note that

(a)

(b)

FIG. 10. Variations ΔzðLin;NÞ and ΔzðPN;NÞ, as defined in
Eq. (29), on different scales in the range [30, 500] Mpc. Both the
variations show a maximum around k ¼ 100 Mpc. The variable
on the horizontal axis is the ΛCDM redshift.
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the variations for the redshift are damped as z increases. This
is most evident for ΔzðLin;NÞ. The angular diameter
distance shows in Fig. 11 a different behavior: the amplitude
of both variations ΔDangðLin;NÞ and ΔDangðPN;NÞ
decreases monotonically as the scale k become smaller.
Both the amplitudes start from ΔDang ∼ 10−4 on k ¼
500 Mpc and decrease to 10−6 on k ¼ 30 Mpc.
As we mentioned in Sec. IV, different values of the

primordial non-Gaussianity parameter anl tune some of the
post-Newtonian terms in (2), e.g., a perfect Gaussian initial
perturbation (anl ¼ 1) cancels out the third term in the PN
part of the metric (2). We then decided to quantify how the
PN observables change when we vary the values of anl
inside the confidence interval measured by Planck, [39].

For this analysis, we choose anl ¼ 1; 0.46;−2.6, 3.52,
corresponding to Gaussian perturbations (anl ¼ 1),
Planck 2018 fiducial value (anl ¼ 0.46), and extremes of
confidence interval (anl ¼ −2.6, 3.52). We start the dis-
cussion of our results by looking at Figs. 12(a) and 13(a), in
which we plot for the PN observables the quantity

ΔOPNðanl1 ; anl2Þ ¼
OPN

anl1
−OPN

anl2

OPN
anl2

; ð30Þ

where we fix anl2 to the Planck best-fit value and we vary
anl1 . The effect is different for the redshift and for the
angular diameter distance: the variation in DPN

ang is ∼10−9,
two orders of magnitude smaller than the one in zPN. This

(a)

(b)

FIG. 12. The effect of varying primordial non-Gaussianity
for the redshift: the variation in Eq. (30), [12(a)], and PN
correction for different values of anl, [12(b)]. We find that
ΔzPNðanl1 ; anl2Þ≲ ΔzðPN;NÞ. The variable on the horizontal
axis is the ΛCDM redshift.

(a)

(b)

FIG. 11. Variations ΔDangðLin;NÞ and ΔDangðPN;NÞ, as
defined in Eq. (29), on different scales in the range [30,
500] Mpc. The amplitudes monotonically decrease as the scale
k becomes smaller. The variable on the horizontal axis is the
ΛCDM redshift.
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very difference is evident when we plot the PN corrections
for different values of anl, see Figs. 12(b) and 13(b). The
effect of tuning primordial non-Gaussianity is roughly of
the same order as the PN correction for the redshift and also
changes its shape. On the contrary, Dang is completely
insensitive to the variation of the non-Gaussianity param-
eter, since ΔDPN

angðanl1 ; anl2Þ ∼ 10−4ΔDangðPN;NÞ.
To conclude our analysis, we isolate and quantify the

contribution of the linear PN initial seed proportional to the
gravitational potential, i.e., γij ¼ − 10

3c2 ϕ0δij in the space-
time metric (2). To do so, we define an hybrid spacetime
metric, labelled with Ñ, by adding the initial PN seed to the
Newtonian metric (7), i.e.,

γÑ11 ¼
�
1 −

2

3

D∂2
q1ϕ0

H2
0Ωm0

�
2

−
10

3c2
ϕ0

γÑ22 ¼ 1 −
10

3c2
ϕ0

γÑ33 ¼ 1 −
10

3c2
ϕ0; ð31Þ

and we have compared the angular diameter distance
computed from the two have compared the angular diam-
eter distance computed from the two approximations in
Eq. (7) and in Eq. (31). The inclusion of the initial seed in

(a)

(b)

FIG. 14. Results for the contribution of the initial seeds to the
angular diameter distance. For the definition of Ñ see Eq. (31).

(a)

(b)

FIG. 13. The effect of varying primordial non-Gaussianity for
the angular diameter distance: the variation in Eq. (30), [13(a)],
and PN correction for different values of anl, [13(b)]. We find that
ΔDPN

angðanl1 ; anl2Þ ∼ 10−4ΔDangðPN;NÞ. The variable on the hori-
zontal axis is the ΛCDM redshift.
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the modified Newtonian model is such that the PN variation
is reduced by two orders of magnitude, see Fig. 14(a). In
other words the initial seed is the leading order of the post-
Newtonian correction. The effect is even more evident
when we consider the variations of each of the approxi-
mation Lin, N, Ñ, PN respect to the ΛCDM background:
we can clearly distinguish between the two approximations,
observing that Ñ behaves as expected very close to the PN
approximation.

VI. CONCLUSIONS

In this paper we use the new BGO framework for
light propagation in general relativity, presented in [33]
and applied to ΛCDM cosmology in [34]. We encoded
the new framework in the Mathematica package called
BIGONLIGHT (https://github.com/MicGrasso/bigonlight) that
is designed to compute optical observables numerically,
once the spacetime metric components and the observer
and source kinematics are provided as input. The code is
adaptable to work in any gauge and with analytical as well
as numerical inputs. A short description of the package is
given in Appendix A here and we will give a more
extensive discussion on BIGONLIGHT in [32]. In the present
work we focus on two observables in the cosmological
context: redshift and angular diameter distance. We con-
centrate our analysis on a one-dimensional toy model in
which the density perturbations around the ΛCDM back-
ground are distributed along parallel planes. In other words
our perturbations depend on time and one spatial coor-
dinate only. The purpose of our investigation is to isolate
the contribution of nonlinearities by considering the rela-
tive differences in the observables ΔO, as defined in
Eq. (29), computed within three approximations: linear
cosmological perturbation theory, Newtonian and post-
Newtonian approximation. Although the plane-parallel
universe is a simple model, let us remark that the spacetime
metric in Eq. (2) is particularly well-suited for this kind of
analysis, since the terms coming from all the three
approximations are clearly identified and they can be
directly used as input in our code for light propagation.
All our investigations are performed within a fixed setting
for light propagation: (i) in the observers region δin ¼ 0,
(ii) the source is at redshift z ¼ 10, (iii) photon geodesics
are parallel to the bisect, i.e., they have an inclination of 45°
with respect to all the three spatial axes.
We now present our findings relative to the different

features that we examined: the dependence on the scale of
perturbations, on primordial non-Gaussianity and the role of
initial conditions. We start by pointing out that the redshift
and the angular diameter distance have different behavior: for
the redshift the Newtonian corrections are the leading order
for the nonlinearities with ΔzðLin;NÞ ∼ 102ΔzðPN;NÞ, see
Fig. 8, whereas for the angular diameter distance Newtonian
and post-Newtonian contributions are of the same order
ΔDangðLin;NÞ ∼ ΔDangðPN;NÞ, as clear from Fig. 9. Our

results confirm previous studies in the literature [30], in
particular we have found that the nonlinearities from the
approximations we considered are well below 1% for both
the observables. To be more precise, we have that the
variation linear vs Newtonian approximations is of order
10−3 for z and 10−5 for Dang, while the variation post-
Newtonian vs Newtonian is of order 10−6 for z and 10−5 for
Dang, both on k ¼ 100 Mpc and δmax

0 ¼ 1.
In addition, we analysed the dependence of the various

contributions on the inhomogeneities scale, finding again a
slightly different trend for z and Dang, see Figs. 10 and 11.
For both observables, the change in the scale modifies the
amplitude of the oscillations by more than one order of
magnitude, but the amplitude of ΔDang decreases mono-
tonically with the scale k, while that of Δz has a maximum
around k ¼ 100 Mpc. For the angular diameter distance the
contributions from nonlinearities span from 10−4 on k ¼
500 Mpc to 10−6 on k ¼ 30 Mpc.
To complete our investigation, we took advantage of

having an analytical expression of our input, i.e., the
spacetime metric. As one can easily verify, some of the
PN terms are triggered or cancelled out for specific values
of the primordial non-Gaussianity parameter anl inside
Planck confidence interval. Therefore, we decided to
examine the response of the post-Newtonian observables
to the variation of anl. It turned out that the tuning of
primordial non-Gaussianity has negligible effects on the
PN observables. The only effect is the change in the shape
of the PN part of the redshift but the net contribution is of
the order of 10−6 see Figs. 12 and 13.
Finally, we have estimated the relative variations of the

three approximations with respect to the ΛCDM back-
ground in Fig. 14b. We find that the post-Newtonian
contribution to Dang comes almost exclusively from the
linear post-Newtonian initial seed. The other, i.e., non-
linear, post-Newtonian corrections are below 1%, in agree-
ment with previous results in the literature.
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APPENDIX A: BIGONLIGHT: PRESENTING AND
TESTING THE CODE

In Sec. III we have introduced the BGO formalism,
emphasizing that it provides a unified framework to
compute all possible optical observables and how it extends
the Sachs formalism: it includes the case of observations
occurring for a prolonged period of time, when repeated
observations are made, e.g., parallax and drifts. In this
Appendix, we present the BiGONLight.m package used
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in this paper to calculate the Newtonian and post-
Newtonian observables numerically within the BGO frame-
work. The main achievement of our package is to simulate
light propagation in numerical relativity to extract observ-
ables. BIGONLIGHT works in any gauge and with any
coordinate system and it requires the spacetime metric
components and the source and observer kinematics (four-
velocities and four-accelerations) as input.8 The flexibility
of the code allows us to use two types of inputs: analytic
expressions or the output of a (relativistic) numerical
simulation. In fact, in order to make our code compatible
with the majority of the codes in numerical relativity, we
recasted the BGO framework in 3þ 1 formalism. We
decided to develop BIGONLIGHT within Mathematica for
several reasons. One of the advantages is that one can
choose between a large variety of numerical methods to
solve ODE without the need of modifying the code.
Another useful feature in Mathematica are the quite
detailed build-in precision control options, which allow
the user to set precision and accuracy of the numerical
calculations efficiently.
We devote a companion paper, [32], to the comprehen-

sive description of the modules of package, including also
benchmark testing performed in the context of several exact
and simulated cosmological models and addressing more
obsevables than in the present work. In the rest of this
Appendix, we report the tests for the angular diameter
distance only in the well-known ΛCDM and Szekeres
models.

1. ΛCDM model

Let us start by considering the test in the flat ΛCDM
model. It consists of a universe filled with a cosmological
constant Λ and an homogeneous and isotropic distribution
of noninteracting matter (dust) and it represents the back-
ground model of all the approximations used in this work.
We test our code by computing the variation between the

angular diameter distance calculated numerically using the
BiGONLight.m package and its analytic expression. We
plot our results in terms of

ΔDangðBGO; anÞ ¼
DBGO

ang −Dan
ang

Dan
ang

: ðA1Þ

The angular diameter distance is defined as

Dang ¼
Dcom

1þ z
ðA2Þ

where the comoving distance Dcom in the flat ΛCDM
model is

DcomðzÞ ¼
Z

z

0

dz0

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ z0Þ3 þΩΛ

p ; ðA3Þ

where H0 ¼ _a
a jη0 and Ωm0 þΩΛ ¼ 1. By solving the

integral, [41], the analytic expression of the angular
diameter distance is

Dan
angðzÞ ¼

F½χðzÞjr� − F½χð0Þjr�
ð1þ zÞH0ðΩm0Þ13ðΩΛÞ1631

4

ðA4Þ

where F½χðzÞjr� is the elliptic integral of the first

kind, with arguments r ¼
ffiffiffiffiffiffiffiffiffi
2þ ffiffi

3
p
4

q
and χðzÞ ¼ arccos×

ð 2
ffiffi
3

p

1þ ffiffi
3

p þð1þzÞ
ffiffiffiffiffiffi
Ωm0
ΩΛ

3

q − 1Þ. The plot in Fig. 15 shows a

deviation of the order of 10−22 between the numerical
and the analytical calculation, highlighting the high pre-
cision reached by our code. Such a precision was possible
thanks to the precision control options implemented in
Mathematica. We plot up to z ¼ 10000 to show that the
deviation stays small over the whole simulation.

2. Szekeres model

As second test-bed for the code, we decided to use a
more complicated spacetime. We chose the inhomogeneous
dust Szekeres model plus a cosmological constant as
presented in [42], discussed in Appendix C and briefly
summarized here. The line element of the model is

FIG. 15. ΔDangðBGO; anÞ in the ΛCDM model. The light
geodesic is traced backwards in time up to ηin ≈ 1

100
η0 ¼

5.1738 × 108 yr. The values for the cosmological parameters
Ωm0 ¼ 0.3153, ΩΛ ¼ 0.6847 and H0 ¼ 67.36 are taken from
Planck [38].

8Note that the input is not in full tensorial form, but in the form
of components. Let us remark that, of course, once we give the
metric and the four-velocities components in practice we are
making a gauge and a coordinate system choice. Nevertheless,
the code can work with any choice.
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ds2 ¼ aðηÞ2½−dη2 þ Xðη; q1; q2; q3Þ2dq21 þ dq22 þ dq23�:
ðA5Þ

In particular, here we consider the case with axial symmetry
around the q1 axis in which the function X has the form

Xðη; q1; q2; q3Þ ¼ 1þ βþðq1ÞDðηÞ þ βþðq1ÞBðq22 þ q23Þ
ðA6Þ

with the constant B given by (C12). The function βþ is the
free function of the model and it is linked with the
gravitational potential ϕ0 via

βþ ¼ −
2

3

∇2ϕ0

H2
0Ωm0

ðA7Þ

as we show explicitly in Appendix C. For our test, we
set up βþ using Eq. (A7) with ϕ0 ¼ I sinðωq1Þ, where
ω ¼ 2π

500 Mpc, the amplitude I is determined such that

MaxðδSz0 Þ ¼ 0.1 and Ωm0 ¼ 0.3153 and H0 ¼ 67.36 are
taken from Planck [38]. Contrary to the ΛCDM case, where
the spatial orientation of the geodesic is irrelevant due to the
intrinsic homogeneity and isotropy of the model, in the
inhomogeneous Szekeres model the light propagates differ-
ently in different directions. In order to facilitate the
comparison with the literature, we decided to follow
Ref. [43] and consider geodesics traveling along the sym-
metry axis q1. The observer is placed at qμO ¼ ðηO; 0; 0; 0Þ
such that δjO ¼ 0.
The testing procedure for the BiGONLight.m package

in this case is to compare the angular diameter distance
calculated numerically using the BGO formalism imple-
mented in BiGONLight.m and numerically, as well, but
solving the Sachs focusing equation 9:

D̈ang þ
_l0

l0
_Dang ¼ −

1

l02

�
jσj2 þ 3

2

H2
0Ωm0

a
ðδþ 1Þ

�
Dang

σ ¼ σOD2
angjO

D2
ang

; ðA8Þ

and the initial conditions are given considering that the light
bundle has a vertex at the observation point and such that:

σO ¼ 0 ðA9Þ

DangjO ¼ 0 ðA10Þ

_DangjO ¼ gμνlμuνjO
l0
O

: ðA11Þ

In the above the dot indicates derivative with respect to
conformal time and σ̃ is the complex shear.10 All we need to
solve Eq. (A8) is the expression for δ,

δ ¼ −
βþD
X

; ðA12Þ

and the equation for l0

_l0

l0
¼ −

βþ _D
X

− 2H: ðA13Þ

We present the results of the comparison by plotting the
variation

ΔDangðBGO; SachsÞ ¼
ΔDBGO

ang − ΔDSachs
ang

ΔDSachs
ang

: ðA14Þ

From Fig. 16 we can conclude that also in the Szekeres
model we have a good agreement. However, contrary to the
ΛCDM case, the variation ΔDang plotted represents the
comparison between two numerical computations and it
cannot be considered as numerical error over the observ-
able. Nevertheless, the very good agreement between the
BIGONLIGHT code and the traditional method using the
Sachs focusing equation is another piece of evidence that
our code is a reliable tool for studying light propagation
also in more complicated spacetimes.

FIG. 16. Deviation ΔDangðBGO;SachsÞ for the angular dia-
meter distance in the Szekeres spacetime. The observables are
evaluated for a light bundle moving along the q3-axis and
received by the observer placed at qμO ¼ ðηO; 0; 0; 0Þ in a region
where δjO ¼ 0.

9Here, the Ricci part of the optical tidal matrix is substitute

using the Einstein equation Rμνlμlν ¼ 3H2
0
Ωm0

a ðδþ 1Þðl0Þ2.

10In general, the equation for the shear contains an additive
term Ψ0, which is the Weyl focusing term. However, in the
Szekeres model we have that Ψ0 ¼ 0, as shown in [43].
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APPENDIX B: LINEARIZING THE BGO
FORMALISM: SOLUTIONS FOR THE

PLANE-PARALLEL UNIVERSE

In this Appendix we consider the flat FLRW background
with linear perturbations in the synchronous-comoving
gauge. We obtain the linearized evolution equations for
the BGO, Eq. (B14), the general expressions for their
solutions, Eq. (B15), and the linear angular diameter
distance DLin

ang written in terms of the BGO, Eq. (B18).
We then specialise the general solutions to the ΛCDM
background with perturbations at first order in standard
cosmological perturbation theory and within our plane-
parallel toy model and finally obtain the analytic expres-
sions for zLin and DLin

ang that we used in Sec. IV.
The spacetime metric has the form

g̃μν ¼ a2gμν ðB1Þ

and is expanded at first order as

g̃μν ¼ a2ðḡμν þ δgμνÞ ðB2Þ

where ḡμν is the conformal flat FLRW background, i.e., the
Minkowski metric and δgμν represents the first-order scalar
perturbations in the synchronous-comoving gauge, in
general given by δgμν ¼ Diagð0; δg11; δg22; δg33Þ.
The first observable that we study in this work is the

redshift, defined as

1þ z ¼ g̃μνl̃
μũνjS

g̃μνl̃
μũνjO

: ðB3Þ

In the above expression uμ is the four-velocity of the
observer (source) and lμ is the tangent vector to the photon
geodesics. For our coordinates choice, all observers and
sources are comoving with the cosmic flow with four-
velocity given by

ũμ ≡ 1

a
ūμ ¼ 1

a
ð1; 0; 0; 0Þ ðB4Þ

at all orders and the null tangent vector is expanded as

l̃μ ¼ a2O
a2

ðl̄μ þ δlμÞ ðB5Þ

with ˜̄lμ ¼ a2O
a2 ðl̄0; l̄iÞ.11 The linear redshift is then given by

1þ z ¼ aO
aS

�
1þ 1

l̄0
ðδl0jS − δl0jOÞ

�
; ðB6Þ

where δl0 is founded from the first-order geodesic equation

dδlμ

dλ
¼ 1

2
ḡμσ∂σδgαβl̄αl̄β − ḡμσl̄α∂αδgσβl̄β: ðB7Þ

The second observable is the angular diameter distance
D̃ang. However, it is more convenient to expand the
conformal angular distance Dang which we write here in
terms of the BGO as (for a derivation see [33,34])

Dang ¼ lμuμjOj detðWXL
A
BÞj12 ðB8Þ

and then obtain D̃ang from the very well-known conformal
transformation D̃ang ¼ a

aO
Dang, that we verified for

Eq. (B8). The BGO WXLA
B
are expanded as

WXL
A
B ¼ WXL

A
B þ δWXL

A
B; ðB9Þ

where WXL and δWXL are found by solving the linearized
GDE (20) in conformal space

d
dλ

W ¼
�

0 14×4
Rll 0

�
W ðB10Þ

Notice that the optical tidal matrix in the frame is purely a
first-order quantity—the conformal Riemann tensor van-
ishes in the background—and it is given by:

Rμ
llν ¼ ϕ̄ρμδRραβσl̄αl̄βϕ̄σ

ν ðB11Þ

where δRραβσ is the first-order Riemann tensor and ϕ̄μ
α ¼

ðuμ; ϕ̄μ
A; l̄μÞ is the background parallel transported frame

along the background geodesic.
Let us start by solving the background GDE, which

reads:

8>>>>>><
>>>>>>:

dWXX
μ
ν

dλ ¼ WLX
μ
ν

dWLX
μ
ν

dλ ¼ 0

dWXL
μ
ν

dλ ¼ WLL
μ
ν

dWLL
μ
ν

dλ ¼ 0

ðB12Þ

with initial conditions W̄ ¼ 18×8. The solution is

W̄ ¼
�
δμν ðλ − λOÞδμν
0 δμν

�
: ðB13Þ

Next we find the first-order BGO from:

11The conformal tangent vector in the FLRW background l̄μ is
constant. Note that usually the normalization l̄0 � 1 is used for
the temporal component. Here, however, we leave it unnormal-
ized.
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8>>>>>><
>>>>>>:

dδWXXμν
dλ ¼ δWLXμ

ν

dδWLXμν
dλ ¼ Rμ

llν

dδWXLμν
dλ ¼ δWLLμ

ν

dδWLLμν
dλ ¼ ðλ − λOÞRμ

llν

ðB14Þ

with initial conditions δW ¼ 08×8, where we have replaced
the background solutions (B13). We obtain

8>>>>>><
>>>>>>:

δWXXμ
ν
¼ R λO

λ

R λO
λ0 Rμ

llνdλ0dλ00

δWXLμ
ν
¼ R λO

λ ðλO − λ0Þðλ − λ0ÞRμ
llνdλ0

δWLXμ
ν
¼ −

R λO
λ Rμ

llνdλ0

δWLLμ
ν
¼ R λO

λ ðλO − λ0ÞRμ
llνdλ0

: ðB15Þ

In order to find DLin
ang from the expansion of Eq. (B8) we

need the second of the above solutions and we recall
that the expansion of the square root of the determinant is
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detWXL

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðWXLÞ

q �
1þ 1

2
trðWXL

−1δWXLÞ
�
:

ðB16Þ

Now, looking at Eqs. (B13) and (B15) we have that

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðWXLÞ

p
¼ ðλ − λOÞ

trðWXL
−1δWXLÞ ¼

R
λO
λ

ðλO−λ0Þðλ−λ0ÞRA
llAdλ0

ðλ−λOÞ
ðB17Þ

The final result for DLin
ang is

DLin
ang ¼ ðl0

O þ δl0
OÞðλO − λÞ

−
l0
O

2

Z
λO

λ
ðλO − λ0Þðλ − λ0ÞtrðRA

llBÞdλ0: ðB18Þ

It is important to stress that all the quantities are evaluated
along the background geodesic, i.e., η≡ η̄ and q̄1ðηÞ≡
l̄1

l̄0 ðη̄O − η̄Þ þ q̄1ðη̄OÞ
We checked that our result coincides with the standard

result in the literature, e.g., [44], by simply noting that the
quantity− 1

2
trðRA

llBÞ is nothing more than the Ricci part of
the optical tidal matrix R, usually defined as

R ¼ 1

2
Rαβlαlβ ¼ −

1

2
Rμ

αβμlαlβ; ðB19Þ

and evaluated at first order.
We finally specialise the above results for our plane-

parallel model. The linear perturbation of the spacetime
metric around the flat ΛCDM background is

δgμν ¼

0
BBBBB@

0 0 0 0

0 −F − 10
3c2 ϕ0 0 0

0 0 − 10
3c2 ϕ0 0

0 0 0 − 10
3c2 ϕ0

1
CCCCCA; ðB20Þ

where we define

F ðη; q1Þ ¼
4

3

∂2
q1ϕ0ðq1Þ
H2

0Ωm0

DðηÞ: ðB21Þ

A straightforward substitution gives for the redshift

1þ zLin

¼ aO
aS

�
1 −

�
l̄1

l̄0

�
2
Z

η̄O

η̄S

2

3

∂q1ϕ0ðq1ðη̄0ÞÞ
H2

0Ωm0

∂0Dðη̄0Þdη̄0
�

ðB22Þ

and for the angular diameter distance

D̃Lin
angðηÞ ¼

a
aO

�
ðη̄O − η̄Þ þ l̄12

2l̄02

Z
ηO

η

Z
ηO

η0
_Fdη0dη00 þ

Z
ηO

η
ðηO − η0Þðη − η0ÞRðη0Þ

l̄02
dη0

�
: ðB23Þ

The two last relations are those we use in Sec. IV for our
comparison.

APPENDIX C: COMPARISON WITH THE
SZEKERES METRIC

In this section we compare the Szekeres spacetime with
the plane-parallel case considered in this work. In his
original paper [45], Szekeres studied all the solutions to the

Einstein field equation with irrational dust for line elements
having the form

ds2Sz ¼ −dt2 þ e2αðt;q1;q2;q3Þdq21 þ e2βðt;q1;q2;q3Þðdq22 þ dq23Þ
ðC1Þ

Two different classes of solutions can be distinguished:
class-I solutions are a generalization of the Lemaître-
Bondi-Tolman model while class-II solutions are a
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generalization of Kantowski-Sachs and FLRW model.
Subsequently, Barrow and Stein-Schabes [46] generalized
the Szekeres solutions by adding a cosmological constantΛ
to the dust. More recently, Bruni and Meures [42] presented
a new formulation of the class-II Szekeres solutions in
which the separation between inhomogeneities and the
FLRW background is explicitly provided and thus the
spacetime metric is presented in a more convenient form for
cosmological applications. We compare our plane-parallel
metric with their formulation. We begin by summarizing
the results presented in [42].
The authors focused their analysis on the Szekeres

solutions which admit a flat FLRW background and such
that the line element12 can be written as

ds2Sz ¼ a2ð−dη2 þ γSz11dq
2
1 þ γSz22dq

2
2 þ γSz33dq

2
3Þ ðC2Þ

where

γSz11 ¼ X2ðη; q1; q2; q3Þ
γSz22 ¼ 1

γSz33 ¼ 1: ðC3Þ

As it is shown in [42], thanks to the symmetry of the
problem, the function Xðη; q1; q2; q3Þ can be decomposed
as

Xðη; q1; q2; q3Þ ¼ Fðη; q1Þ þ Aðq1; q2; q3Þ; ðC4Þ

where the function Fðη; q1Þ satisfies the Newtonian evo-
lution equation for the first-order density contrast13

F̈ þH _F −
3

2
H2

0Ωm0

F
a
¼ 0; ðC5Þ

which admits two linearly independent solutions, the
growing and decaying modes, as is well known. Then
Fðη; q1Þ coincides with the linear density contrast and more
precisely we have Fðη; q1Þ ¼ −δLinðη; q1Þ.14 Neglecting

the decaying modes it is possible, without loss of general-
ity, to factorize Fðη; q1Þ as15

Fðη; q1Þ ¼ DðηÞβþðq1Þ; ðC6Þ
where D is the growing mode solution for the density
contrast given by (see e.g., Eq. (5.13) in [49], where we
have already normalized in order to have D0 ¼ 1)

DðηÞ ¼ a
5
2
Ωm 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΩΛ0

Ωm 0

a3

s
2F1

�
3

2
;
5

6
;
11

6
;−

ΩΛ0

Ωm 0

a3
�
;

ðC7Þ
with 2F1ða; b; c; xÞ being the Gaussian (or ordinary)
hypergeometric function.
On the other hand, our Newtonian plane-parallel metric

is given by:

γN11 ¼
�
1 −

2

3

D∂2
q1ϕ0

H2
0Ωm0

�
2

γN22 ¼ 1

γN33 ¼ 1: ðC8Þ
We now investigate the link between (C8) and (C3) by

comparing the two forms of γ11 and referring to Eqs. (C4)
and (C6). Let us start from (C6): to fix the time-independent
function βþðq1Þ, one can take advantage from the fact that
δLinðη; q1Þ ¼ −DðηÞβþðq1Þ and use the cosmological
Poisson equation (5) to find

βþðq1Þ ¼ −
2

3

∂2
q1ϕ0ðq1Þ
H2

0Ωm0

: ðC9Þ

At this point we have completely fixed Fðη; q1Þ. Now, by
looking at Eq. (C4) it is straightforward to conclude that the
two metrics (C8) and (C3) are fully equivalent if
Aðq1; q2; q3Þ ¼ 1.16 However, this cannot be the case, as
we will now show. Let us start by noticing that planar
symmetry implies that the metric components can depend
only on the coordinates ðη; q1Þ, while in the Szekeres
symmetry the metric can depend in general on all spatial

12We choose here to use our notation instead that of that of
[42]. The line element (C3) is different from the one presented in
[42] since we use conformal time and we have chosen a different
axis of symmetry. Of course this does not affect any results, since
it is easy to show that the two metrics are equivalent under a
coordinate transformation.

13This was shown implicitly in Sec. Vof the Szekeres’ original
paper [45] and subsequently by many other authors as those of
[47]. However, it was Goode and Wainwright who recognized
explicitly that the relativistic equations for the density fluctuations
in Szekeresmodel are the same as in Newtonian gravity, [48]. They
also provide a new formulation of the Szekeres solutions, much
more useful in cosmology, in which the relationship with the
FLRW solution is clarified.

14The minus sign between F and δ follows from the fact that in
Eq. (A8) of [42] the authors set, in full generality, δin ¼ − Fin

FinþA.

15The time-dependent-only growing mode is denoted by fþ in
[42] and it is given in a dimensionless time variable τ in Eq. (11b).
To match D in (C7) and fþ one needs to: first transform fþðτÞ to
conformal time fþðηÞ and then normalize such that fþðη0Þ ¼ 1.
The final result is Fðη; q1Þ as in (C6).

16To be more precise it would be enough to neglect the
dependence on ðq2; q3Þ in (C4) by imposing that
Aðq1; q2; q3Þ≡ Aðq1Þ, i.e.,

Xðη; q1Þ ¼ Aðq1Þ þ Fðη; q1Þ:
However, if this were the case, it is easy to show that performing
the coordinate transformation q̃1 ¼

R
Aðq1Þdq1 and rescaling

F̃ðη; q̃1Þ ¼ Fðη;q1Þ
Aðq1Þ , we obtain again Xðη; q̃1Þ ¼ 1þ F̃ðη; q̃1Þ.
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coordinates (and time). In [42] this dependence is encoded
in Aðq1; q2; q3Þ in Eq. (C4) and has the form

A¼ 1þBβþðq1Þ½ðq2 þ γðq1ÞÞ2 þ ðq3 þωðq1ÞÞ2�; ðC10Þ

thus the only possibility to have A ¼ 1 is that B ¼ 0. After
simple manipulations of the Einstein equations together
with Eq. (C10) we find that

2B ¼ 3

2

H2
0Ωm0

a
DþH _D: ðC11Þ

In [49] it is shown that the R.H.S. is constant and it is
always different from zero. Indeed, from Eq.(5.52) in [49]
we find

B ¼ 5

4
H2

0Ωm0

Din

ain
; ðC12Þ

where Din ¼ ain for Einstein-de Sitter initial conditions.
We finally conclude that the two metrics (C3) and (C8)
cannot coincide.
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