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cancellations of projected shear and expansion rate fluctuations
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It is shown with several concrete examples that the Dyer-Roeder approximation is valid in spacetimes
which fulfill the condition that fluctuations in the expansion rate along a light ray locally cancels with
the shear contribution to the redshift. This is the case for standard cosmological scenarios including
perturbed Friedmann–Lemaitre–Robertson–Walker spacetimes, N-body simulations, and Swiss-cheese
models. With another concrete example it is then illustrated that it is possible to construct statistically
homogeneous and effectively statistically isotropic cosmological models which do not fulfill the condition.
In this case, the Dyer-Roeder approximation is invalid. Instead, the mean redshift-distance relation can be
described using a relation based on the spatial averages of the transparent part of the spacetime.
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I. INTRODUCTION

By studying light propagation in, e.g., N-body simulations
it has been found that narrow beams from point sources such
as supernovae typically travel through a mean mass density
significantly lower than the cosmic mean—at least at low
redshifts [1–4]. The most well-known method for taking this
into account when describing the redshift-distance relation is
the Dyer-Roeder approximation [5–7]. This approximation
is based on the idea that a fraction of the matter in the
Universe is localized in clumps that (narrow) light beams
rarely meet, such that the mean density sampled by these
light beams is less than the spatial mean. More specifically,
three assumptions are made in the Dyer-Roeder approxi-
mation: namely that 1) the redshift along narrow beams is the
same as that of the background Friedmann-Lemaitre-
Robertson-Walker (FLRW) model, 2) Weyl lensing can
be neglected, and 3) the Ricci lensing can be modified
simply by multiplying a constant α onto the density in order
to take the mean underdensity along the narrow beams into
account. This results in a redshift-distance relation which
can be written as (c ¼ 1 throughout)

d2DA

dz2
þ
�

2

1þ z
þ d lnH

dz

�
dDA

dz
¼ −

4πGρ
H2ð1þ zÞ2 αDA: ð1Þ

By analyzing supernova data with this redshift-distance
relation, limits obtained for α so far indicate 0.4≲ α
[8–15], although the exact constraints naturally depend
much on what other restrictions are introduced including,
e.g., on the dark energy equation-of-state. If a flat ΛCDM
model is assumed, the value of α ≈ 1 is obtained [12].

A value of α ≈ 1 is also indicated by the fact that results
based on standard ΛCDM interpretations of supernova data
is overall consistent with observations based on much wider
beams (e.g., BAO and CMB data) which are expected to
sample a mass density corresponding to the cosmic mean.
From a theoretical point of view, an observational value

of α ≈ 1 would at this point be somewhat surprising since
theoretical investigations of, e.g., N-body simulations
indicate that narrow beams should typically have α sig-
nificantly smaller than 1 (but see e.g., [16–19] for a
possible, at least partial, explanation based on flux averag-
ing). One may note though, that while typical narrow light
beams are theoretically expected to experience an under-
dense universe, a small number of special rays will
experience a compensating significant lensing when pass-
ing close by structures of high density. The resulting mean
redshift-distance relation when averaging over the entire
sky is therefore expected to be well described by that of the
FLRW background even when considering narrow beams
(see e.g., [20] as well as the more recent, detailed consid-
erations of [21–23]). However, our supernovae catalogs do
not cover the entire sky and additionally one may worry
that the special rays, if even observed, would be rejected as
outliers (see e.g., [24] for a discussion). It is therefore far
from clear how α ≈ 1 should come about. An obvious
related question is whether real supernova light beams
actually do typically experience an underdense spacetime
but this may go unnoticed when interpreting data with the
Dyer-Roeder approximation because this approximation
is insufficient for describing the effect. Indeed, the Dyer-
Roeder approximation is a conjecture with underlying
assumptions which have not all been justified theoretically.
Specifically, while the assumptions of neglecting Weyl
lensing and reducing the Ricci lensing by a factor α is*koksbang@cp3.sdu.dk
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reasonable for light rays traveling mostly in underdense
regions far from high-density structures, the assumption
that the redshift should be given by the background
expression does not seem to have a clear theoretical
justification.
Since the Dyer-Roeder approximation is largely a

conjecture, the literature naturally contains studies into
possible modifications of the approximation. Such intro-
ductions e.g., include introducing a redshift dependence
of α which certainly has some theoretical justification
[24–29]. At a more fundamental level, it has been ques-
tioned whether it is valid to not account for light rays
sampling an underdense universe when considering the
expansion rate and redshift along the light rays [1,2,24,30].
In [31] it was even argued that it a priori seems more
reasonable to expect that the mean redshift-distance rela-
tion follows the prescription given in [32,33] where the
redshift-distance relation is based on spatially averaged
quantities, yielding

d2DA

dz2av
þ
�

2

1þ zav
þ d lnHav

dzav

�
dDA

dzav
¼ −

4πGρav
H2

avð1þ zavÞ2
DA;

ð2Þ

where ρav is the spatially averaged density field, and Hav a
third of the averaged local expansion rate θ (with averages

given by Xav ≔
R
D
XdVR

D
dV

, where dV is the proper infinitesimal

volume element of the spatial hypersurfaces, and D the
spatial averaging domain). The mean redshift is in [32,33]
argued to be well approximated by

1þ zav ¼ exp

�Z
to

te

dtHav

�
; ð3Þ

where to is the time of observation and te that of emission
(the former usually taken to be present time, t0).
The redshift-distance relation in Eqs. (2) and (3) was

in [32,33] derived for statistically spatially homogeneous
and isotropic spacetimes with slowly evolving structures
and without opaque regions. For narrow beams, the
naive expectation would be that the spatial averaging
domains used for computing the spatially averaged
quantities in the above equations should simply exclude
regions not probed by the light rays (such regions
could be considered effectively opaque). The resulting
relation differs from the Dyer-Roeder expression since
the redshift is modified if there are (effective or actual)
opaque regions.
The prescription of Eqs. (2) and (3) for computing a

redshift-distance relation based on spatial averages has
been found to yield an accurate approximation of the mean
redshift-distance relation even in models that do not have
explicit FLRW backgrounds [34,35], but the models

studied had no opaque regions. It was then shown in
[31] that the redshift-distance relation based on spatial
averages does not in general give the correct mean redshift-
distance relation along light rays in Einstein-Straus models
[36] which are Swiss-cheese models constructed by gluing
Schwarzschild regions (with opaque centers) into a FLRW
background. The Dyer-Roeder approximation was, on the
other hand, found to give an excellent description of the
mean redshift-distance relation along the light rays (in
agreement with the results of [37]). It was found that the
reason for the success of the Dyer-Roeder approximation is
a delta-function contribution to the redshift which ensures
that the redshift in these models will always be (nearly)
identical to the background redshift after a light ray has
traversed one or more entire structures.
While there are indications that the same result could

be obtained without introducing delta-functions by choos-
ing another spacetime foliation (see e.g., [37]), it is
interesting to understand exactly under what conditions
one can expect the redshift to behave in such a way that it is
always close to the background redshift, and whether such
a condition is necessary for the Dyer-Roeder approximation
to be correct. Therefore, the work in [31] is here elaborated
by considering the validity of the Dyer-Roeder approxi-
mation in three different types of inhomogeneous cosmo-
logical models and specifically studying under what
conditions the redshift will be well approximated by the
redshift of the background. In Sec. II, Swiss-cheese models
will be considered. Then, in Sec. III, N-body simulations
and perturbation theory is studied. Finally, in Sec. IV, a
more exotic model type is considered before concluding
in Sec. V.

II. SWISS-CHEESE MODELS

This section discusses the mean redshift-distance rela-
tion and specifically the mean redshift along light rays in
Swiss-cheese models.
Swiss-cheese models are based on FLRW backgrounds

but have been made inhomogeneous by removing spheri-
cally symmetric patches of the FLRW background and
substituting them by inhomogeneous models. If this sub-
stitution is done such that the Darmois junction conditions
[38] are fulfilled, the resulting inhomogeneous model is
an exact solution to the Einstein equations. The original
version of the Swiss-cheese model, the Einstein-Straus
model [36], introduced Schwarzschild regions into a FLRW
background. The light propagation qualities of the Einstein-
Straus model has been studied in e.g., [31,37,39–43].
More recently, Swiss-cheese models with Lemaitre-
Tolman-Bondi (LTB) [44–46] and Szekeres [47,48] inho-
mogeneities have been extensively studied. It has become
well known that the mean redshift-distance relation in this
type of Swiss-cheese model (without opaque regions) is
well described by that of the background (see e.g., [49]
for one of the earlier papers on this topic). Swiss-cheese
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models with opaque regions have only been studied in
terms of the Einstein-Straus model where the Dyer-Roeder
approximation describes the mean redshift-distance rela-
tion well if the density used in the Ricci lensing term is
given by the spatially averaged density of the transparent
regions [31] or, equivalently, by the background density
field multiplied by the volume fraction of transparent
regions [37,43].
While it was in [31] found that the redshift along light

rays in Einstein-Straus models is (nearly) equal to the
background redshift only because of a delta-function
contribution to the redshift, it was noted that a similar
result would presumably be true for Swiss-cheese models
based on LTB and Szekeres structures. That this is indeed
correct is illustrated here by considering two concrete
examples.
In the subsections below, the LTB and Szekeres models

are introduced, an appropriate light propagation formalism
in the corresponding Swiss-cheese models is discussed, and
results from studying light propagation in Swiss-cheese
models with LTB/Szekeres structures with opaque regions
are presented.

A. Model construction

The Szekeres model is a family of exact solutions to the
Einstein equations containing comoving dust and a cos-
mological constant. Its line element can be written as
(subscripted commas indicate partial derivatives)

ds2 ¼ −dt2 þ
�
A;r − AE;r

E

�
2

ϵ − k
dr2 þ A2

E2
ðdp2 þ dq2Þ; ð4Þ

where A ¼ Aðt; rÞ, E ¼ Eðr; p; qÞ, and k ¼ kðrÞ. ϵ is a
constant that may take the values �1, 0. When ϵ ¼ 1, the
model is known as the quasispherical Szekeres model. Only
the quasispherical Szekeres model will be considered here.
For a quasispherical Szekeres model E can be written as

E ¼ 1

2S
ðp2 þ q2Þ − pP

S
−
qQ
S

þ P2 þQ2 þ S2

2S
; ð5Þ

where P, Q, and S are arbitrary (though continuous)
functions of r with SðrÞ ≠ 0. When E;r ¼ 0, the quasi-
spherical Szekeres model reduces to the spherically sym-
metric LTB model. See e.g., [50] for more information on
the Szekeres models.
The evolution of the Szekeres model is given by

A2
;t ¼

2M
A

− kþ 1

3c2
ΛA2; ð6Þ

and the density can be written as

ρ ¼ 2M;r − 6ME;r

E

c2βA2
�
A;r − A E;r

E

� ; ð7Þ

where β ≔ 8πG and MðrÞ appears as a constant of
integration with respect to time.
For the specific LTB model considered here, the curva-

ture function kðrÞ is chosen to have the form

kðrÞ ¼
�−5.4 × 10−8r2ðð rrbÞ6 − 1Þ6 if ≤ rb ≔ 40 Mpc

0 otherwise
:

ð8Þ

Since the goal here is to consider a Swiss-cheese model, the
LTB model should reduce exactly to a background FLRW
model at some r ¼ rb. For this to be possible, A must
reduce to A ¼ ar at r ¼ rb, where a is the scale factor of
the background. This can, e.g., be achieved by, in addition
to choosing kðrÞ as above, choosing Aðti; rÞ ¼ ar with ti
the time where the background scale factor is equal to
1=1200. The considered model includes a cosmological
constant withΩΛ;0 ¼ 0.7 (settingH0 ¼ 70 km=s=Mpc) but
this contribution is negligible at early times. Therefore,
following [51], one can set

MðrÞ ¼ 4πGρbgðtiÞ
3ðaðtiÞrÞ3

�
1þ 3

5

kðrÞ
ðraðtiÞHðtiÞÞ2

�
; ð9Þ

corresponding to the constant big bang time of tbb ¼ 0
[i.e., Að0; rÞ ¼ 0], and where ρbg is the background density
which is chosen according to Ωm;0 ¼ 0.3 so that the
background is flat.
Although it is mainly the LTB model which will be

considered, results based on a Szekeres model will also be
presented. This model is obtained by modifying the LTB
model by introducing

PðrÞ¼QðrÞ¼
�−1.768×10−5r2ðð rrbÞ10−1Þ4 if r≤ rb

0 otherwise
;

ð10Þ

while setting S ¼ 1.

B. Light propagation

The redshift along a light ray is given by

1þ z ¼ ðuαkαÞe
ðuβkβÞo

; ð11Þ

where the subscripts e, o indicate the spacetime event of
emission and observation of the light ray, respectively.
Assuming a nonaccelerating velocity field uα, the redshift
may also be computed as an integration over the local
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expansion rate and projected shear along the light path.
Specifically, the redshift can be computed as

1þ z ¼ exp

�Z
to

te

dt

�
1

3
θ þ σαβeαe

β

��
; ð12Þ

where, for the quasispherical Szekeres model, (a sub-
scripted semicolon indicates covariant derivative)

θ ≔ uα;α ¼
A;tr − 3A;t

E;r

E þ 2
A;tA;r

A

A;r − A E;r

E

; ð13Þ

and the nonvanishing components of the shear tensor
(σαβ ≔ uðα;βÞ − 1

3
hαβθ with hαβ ¼ gαβ þ uαuβ) are

σrr ¼
2

3

A;tr −
A;tA;r

A

A;r − AE;r

E

ð14Þ

σpp ¼ σqq ¼ −
1

2
σrr: ð15Þ

The vector eα is proportional to the spatial direction of kα as
seen by the observer and is given by eα ¼ kα

−uβkβ
− uα.

In order to evaluate either of the two expressions for the
redshift given above, the light path of the ray/beam must be
known. This can be computed by solving the null-geodesic
equations d

dλ ðgαβkβÞ ¼ 1
2
gβγ;αkβkγ, where λ is an affine

parameter along the light ray.

The angular diameter distance along the light beam is
also needed. This can be computed by introducing the tidal
matrix

Tab ¼
�
R − ReðFÞ ImðFÞ
ImðFÞ Rþ ReðFÞ

�
ð16Þ

and solving the transport equation [52]

d2Da
b

dλ2
¼ Ta

cDc
b; ð17Þ

simultaneously with solving the null geodesic equations
and the parallel propagation equations for the orthonormal
vectors spanning screen space, Eμ

1 and Eμ
2. The latter are

needed because they enter into the expressions for the
components of the tidal matrix which are given by

R ≔ −
1

2
Rμνkμkν

F ≔ −
1

2
Rαβμνðϵ�Þαkβðϵ�Þμkν; ð18Þ

where Rμν and Rαβμν are the Ricci and Riemann tensors,
respectively, and ϵμ ≔ Eμ

1 þ iEμ
2. The angular diameter

distance can then be computed as DA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetDjp
if initial

conditions are set according to kti ¼ −1. The screen-space
basis vectors are chosen such that they are orthogonal to
each other as well as to uα and kα. To fulfill this, their initial
conditions are set according to

Eμ
1 ∝

 
0;

ffiffiffiffi
F

pffiffiffiffi
R

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkpÞ2 þ ðkqÞ2

q
;−

ffiffiffiffi
R

pffiffiffiffi
F

p krkpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkpÞ2 þ ðkqÞ2

p ;−
ffiffiffiffi
R

pffiffiffiffi
F

p krkqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkpÞ2 þ ðkqÞ2

p
!

Eμ
2 ∝

 
0; 0;

1ffiffiffiffi
F

p kqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkpÞ2 þ ðkqÞ2

p ;
−1ffiffiffiffi
F

p kpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkpÞ2 þ ðkqÞ2

p
!
; ð19Þ

where F ≔ A2

E2 and R ≔ ðA;r−A
E;r
E Þ2

1−k were introduced as short-
hand notation for the metric components gpp ¼ gqq and grr.

C. Numerical results

This section serves to present the results obtained by
computing the redshift-distance relation along light rays in
LTB and Szekeres Swiss-cheese models. The Swiss-cheese
models are constructed on-the-fly, with a given light ray
initialized at r ¼ r0 ≔ 45 Mpc and t ¼ t0 (present time)
with an arbitrary impact parameter towards the Szekeres/
LTB structure. Once the light ray again reaches r ¼ r0, it is
turned back towards the structure with a new, arbitrary
impact parameter, and so forth, until z ¼ 2 is reached. The
maximum redshift of z ¼ 2 was chosen because it is
enough to get a clear picture of the relation between

the mean redshift-distance relation, the Dyer-Roeder
approximation, and the redshift-distance relation based
on spatial averages.
Since the goal is to consider the mean redshift-distance

relation in the presence of opaque regions, the central part
of the structures are made opaque by requiring that if a light
ray gets closer to the center of an inhomogeneous region
than rlim ≔ 25 Mpc, the light ray is moved back to the
previous point along the light path where it reached r ¼ r0.
The light ray is then propagated towards the structure again
with a new (random) impact parameter. Figure 1 shows
present-time LTB and Szekeres density profiles. Densities
are normalized such that a density of 1 corresponds to the
density of the background FLRWmodel. In these units, the
spatial average (also shown) is roughly 1.35, i.e., roughly
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35% greater than the background density. In the Dyer-
Roeder approximation this would correspond to αðt¼ t0Þ¼
1.35>1, in accordance with the central underdense regions
being opaque. Note though, that normally α < 1 is con-
sidered for real narrow light beams since these are expected
to mostly travel through voids and avoid regions with larger
density. This difference has no significant implications for
the presented results as it is of no principal significance for
the validity of the Dyer-Roeder approximation whether α is
greater or less than 1. The important point is that the model
contains regions which are opaque to the light rays.

The redshift-distance relation has been computed along
2000 light rays in the Swiss-cheese model with LTB
structures. The resulting mean and dispersion of the red-
shift-distance relation is shown in Fig. 2 where it is
compared with the redshift-distance relation of the back-
ground FLRW model and the predictions of the Dyer-
Roeder equation [Eq. (1)] as well as with the predictions of
the redshift-distance relation based on spatially averaged
quantities [Eqs. (2) and (3)]. When computing the Dyer-
Roeder approximation, the Ricci-term was computed using
the spatial average of the density field of the transparent
regions. The same is done when computing the redshift-
distance relation based on spatial averages, but, in that
case, also the redshift and expansion rates are computed
according to spatial averages of the transparent regions.
In the Dyer-Roeder approximation, the redshift and expan-
sion rate are computed according to the background
FLRW model.
As seen in Fig. 2, the Dyer-Roeder approximation makes

a good prediction for the mean redshift-distance relation
and is indeed nearly indistinguishable from the mean
redshift-distance relation. The same is not true for the
relation based on spatial averages which deviates signifi-
cantly from the actual mean redshift-distance relation. This
is exactly as anticipated since it has earlier been noted
[53,54] that the expansion rate fluctuations compared to the
background expansion rate to a high precision cancel with
the projected shear contribution to the redshift locally along
light rays. This is illustrated in Fig. 3 for a single light ray in
the Swiss-cheese models based on the LTB and Szekeres
structures. The local deviation from the background is
subpercent everywhere despite the fluctuations in the
expansion rate and the projected shear individually con-
tributing to fluctuations of the redshift at percent order. In
addition, the small subpercent deviations along the light
rays are only visible while the light ray is actually inside the

FIG. 2. Mean (black line) and spread (gray shaded area) of
redshift-distance relation along 2000 light rays with comparison
with prediction by the Dyer-Roeder approximation (“DR”), the
relation based on spatial averages (“average”) and the back-
ground (“bg”). The shaded area, the Dyer-Roeder expression, and
the mean redshift-distance relation are barely distinguishable in
the main figure so a close-up is included of the last part of the
light ray to illustrate the small difference between the two latter.

FIG. 1. Present time 1D density profiles of LTB and quasispherical Szekeres models. For the Szekeres model, the profile is shown
along the direction of highest degree of anisotropy. The vertical axis shows �Aðt0; rÞ which approximately corresponds to � the
physical distance from the origin. The present-time average density field computed without the opaque regions is also shown. The
figures include close-ups of the density to more clearly illustrate the central underdensity which has been made opaque to the light rays.
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structure, i.e., the fluctuations that accumulate while a light
ray traverses a structure cancel to a very high precision
upon traversal of an entire structure. This is similar to
what was found in [31] for Einstein-Straus models except
that, there, the main part of the fluctuations in the redshift
occurred on the boundary between Schwarzschild and
FLRW regions.
Only a single light ray has been considered for the Swiss-

cheese model based on Szekeres structures since Fig. 3
illustrates that also for the case of the anisotropic quasi-
spherical Szekeres structures does the redshift locally equal
the background redshift to a high precision (and the spatial
averages of the Szekeres model are equal to those of
the corresponding LTB model as discussed in, e.g., [55]).

Thus, the result shown in Fig. 2 for the Swiss-cheese model
with LTB structures can safely be extrapolated to also be
valid for Swiss-cheese models based on (quasispherical)
Szekeres models.

III. N-BODY SIMULATIONS AND
PERTURBATION THEORY

The Swiss-cheese models are interesting to study
because they are exact solutions to the Einstein equations
which can be constructed as inhomogeneous cosmological
models with a statistically homogeneous and isotropic
distribution of matter. The inhomogeneities described by
the models are, however, too simple for the resulting
models to be considered particularly realistic. While
Swiss-cheese models are therefore useful for especially
proof-of-principle studies, it is often desirable to also study
more realistic structure formation scenarios.
N-body simulations are generally considered to yield the

most realistic renderings of our Universe as they can be
initialized based on random fluctuations on a FLRW back-
ground at early times (in accordance with CMB observa-
tions) and propagated forwards to evolve into a network of
nonlinear structures at late times. Originally, these numerical
simulations were Newtonian (e.g., [56–58]) but more
recently also relativistic codes for studying cosmic evolution
have appeared [59–66].
The goal with this section is to confirm that the

Dyer-Roeder approximation is also valid within the setting
of more complicated structures generated with numerical
N-body codes. Since neither relativistic species, extremely
high precision details including vector and tensor modes
nor nonstandard cosmological metrics are of interest here, it
is sufficient to use a Newtonian N-body simulation for the
current work (see e.g., [59,67,68] for comparisons of
Newtonian and general relativistic codes). The numerical
results presented in this section were therefore obtained
with Gadget-2 [57,69].
The following subsections serve to describe the consid-

ered N-body simulation including how it is related to light
propagation, as well as presenting numerical results.

A. The N-body simulation and light
propagation formalism

To study the mean redshift-distance relation along light
rays in an N-body simulation, Gadget-2 was run with an
Einstein–de Sitter (EdS) background using initial condi-
tions generated with N-GenIC.1 An EdS background was
used in order to enhance the effects of inhomogeneities
which are naturally suppressed if, say, 70% of the present-
day density is in the form of a homogeneously distributed
dark energy component. The code was run using 5123

FIG. 3. Components of the redshift fluctuation according to
1þz
1þzbg

¼ exp ðR tote dtð13Δθ þ σαβeαe
βÞÞ for single light rays in the

Swiss-cheese models based on LTB and Szekeres structures. The
contribution exp ðR tote dt 13ΔθÞ is denoted by Δθ while the con-
tribution exp ðR tote dtσαβeαeβÞ is denoted σ (and Δθ ≔ θ − θbg).

The total fluctuation contribution, exp ðR tote dtð1
3
Δθ þ σαβeαe

βÞÞ, is
denoted by Δθ þ σ. Close-ups are included to show the small
deviations of the total fluctuation contribution from 1.

1The N-GenIC code can be downloaded from https://wwwmpa
.mpa-garching.mpg.de/gadget/.
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particles on a 512 Mpc=h grid (with h the reduced Hubble
parameter, set to 0.7). 24 snapshots corresponding roughly
to a background redshift interval of 0 ≤ z ≤ 1 were
obtained and saved. The triangular shaped cloud (TSC)
method was used to interpolate from the discrete masses to
a density field and was also used to construct a correspond-
ing smooth velocity field.
Since the goal with the snapshots is to describe light

propagation, a relation between the Newtonian snapshots
and a corresponding relativistic spacetime is required. The
connection between Newtonian N-body simulations and
corresponding relativistic counterparts has been studied in,
e.g., [70–75]. Again since extremely high precision (and
super-horizon scales [76]) are not of interest here, it is
sufficient to consider the simple recipe of [71]. In this case,
the spacetimes corresponding to the snapshots are identi-
fied with the perturbed FLRW metric in the Newtonian
gauge which we can write as

ds2 ¼ −c2ð1þ 2ψÞdt2 þ a2ð1 − 2ψÞðdx2 þ dy2 þ dz2Þ;
ð20Þ

where ψ is computed according to ∇2ψ ¼ 4πGa2δρ, with
δρ the overdensity of the TSC-generated density field
compared to the EdS background. To obtain ψ in practice,
this equation is solved in Fourier space using FFTW3.2

With the above procedure, the density field, velocity
fields, and ψ are computed on a 4-dimensional grid. Their
values at any point along a light ray are obtained by
quadrilinear interpolation.
4600 light rays were traced through the N-body

simulation (using periodic boundary conditions) with
each light ray corresponding to a randomly placed
observer (always placed at t ¼ t0) looking in a random
direction. Light rays were then propagated by using
the full null-geodesic equations corresponding to the
perturbed metric described above. The corresponding
redshift along the light rays can be computed as

1þ z ¼ ðuαkαÞe
ðuβkβÞo

, with uα ∝ ð1; viÞ, where vi is the velocity

field obtained with the TSC method and where uα is
normalized according to uαuα ¼ −1.
It is well-known that the mean redshift-distance relation

of light rays propagated through N-body simulations
corresponds well with the background relation if all regions
of the snapshots are treated as transparent (see e.g., [77] and
references therein). The issue studied here is what happens
if some regions are made opaque. It is not currently feasible
to study an N-body simulation with a resolution high
enough to actually mimic the distribution of matter along
narrow light beams so opaque regions are introduced more
practically by simply not permitting light rays to travel in

regions with δ ≔ δρ
ρEdS

≥ 0. In practice, this is implemented
by turning a light ray around if it reaches a region with
δ ≥ 0. This is clearly not fantastically realistic but it is a
fairly fast and straight forward way to obtain a large
number of light rays that sample the desired spacetime.
As long as a large number of light rays is considered, the
nonrealistic features of the method should not affect the
mean, although it will most likely exaggerate the spread in
the redshift-distance relation since some light rays will be
“trapped” in a relatively small region between structures
with δ ≥ 0.
As with the Swiss-cheese models, the angular diameter

distance is computed by solving the transport equation
along the light rays. To speed up the computations, the
Weyl term (F) in the tidal matrix is neglected. With as small
number of light rays it has been confirmed that the Weyl
lensing has negligible effect on the results.

B. Numerical results

Figure 4 shows the mean and spread of the redshift-
distance relation obtained along the light rays propagated
through the cosmological model described by the snap-
shots. For comparison, the redshift-distance relation of the
EdS model as well as the predictions of the Dyer-Roeder
approximation and that of the method based on spatial
averages (of the transparent regions) are included. There is
a good (but not perfect) agreement between the mean
relation and the prediction of the Dyer-Roeder approxima-
tion. The prediction based on the spatial averages is also

FIG. 4. Mean (black line) and spread (gray shaded area) of
redshift-distance relation along light rays propagated through
N-body simulation. The figure also shows the redshift-distance
relation of the EdS model (the background of the N-body
simulation), as well as the predictions based on the Dyer-Roeder
(“DR”) approximation and the spatial averages of the transparent
regions (“average”). A close-up is shown since is is difficult to
distinguish between several of the lines in the main figure.2http://www.fftw.org/

UNDERSTANDING THE DYER-ROEDER APPROXIMATION AS A … PHYS. REV. D 104, 043505 (2021)

043505-7

http://www.fftw.org/
http://www.fftw.org/
http://www.fftw.org/


fairly good, although not nearly as good as the prediction
based on the Dyer-Roeder approximation.
Just as for the Swiss-cheese models, the good agreement

between the Dyer-Roeder approximation and the mean
redshift-distance relation can be understood by looking at
the redshift. First of all, one may note that the studied
spacetime is near-FLRW as defined in [78]. For such
spacetimes, it was shown in [78] that the dominant part
of the fluctuation in the expansion rate cancels with the
dominant contribution from the projected shear [see spe-
cifically Eq. (5.8) and the related discussion]. Indeed,
as shown in Fig. 5 the redshift along an individual light
ray is everywhere very close to the background redshift.
Specifically, the figure shows Δz ≔ z−zEdS

zEdS
and the corre-

sponding density field along a small portion of a fiducial
light ray. Just as was seen for the Swiss-cheese models, the
redshift fluctuates slightly, with the fluctuations due to a
light ray moving into a structure compensated/canceled by
the fluctuations due to the redshift moving out of the
structure. In addition one may note that the fluctuations
do not appear to be around exactly zero. This is not
surprising as the redshift must have a small offset due to
the Reese-Sciama/Integrated Sachs-Wolf effect [79–81],
implying that the redshift cannot be exactly equal to the
background redshift.
The small difference between the Dyer-Roeder approxi-

mation and the actual mean redshift-distance relation is
presumably partially due to the fairly low precision used for
the computations. It can also partially be understood as a
consequence of the mean density along the computed light
rays deviating slightly from the spatial mean. This
deviation is shown in Fig. 6 and could presumably be
avoided by including more light rays.

The spatial average of the expansion rate3 deviates
slightly from the background expansion rate. This then
means that the redshift based on spatial averages is slightly
different than that of the background. This explains why the
redshift-distance relation based on spatial averages does a
(slightly) poorer job than the Dyer-Roeder approximation
in describing the mean redshift-distance relation.
It must be noted that a higher resolution than that

used here could in principle lead to a more significant
deviation between the Dyer-Roeder approximation and the
mean redshift-distance relation. This would especially be
possible if density contrasts large enough to lead to a
significant contribution from Weyl lensing were included.
However, the main point with this section is to illustrate that
the redshift along light rays in this type of spacetime are
well approximated by the background redshift even when
opaque regions are introduced. It seems quite unlikely that
a higher resolution would significantly alter this point as it
is understood through the analytical arguments in [78] to be
valid largely as long as the metric remains perturbatively
close to the background FLRWmetric which is expected to

FIG. 5. The redshift along a single light ray in the N-body
simulation with opaque regions. The redshift is shown as the
fluctuation about the EdS redshift, i.e., Δz ≔ z−zEdS

zEdS
. The redshift

fluctuation is shown together with a scaling of the density
contrast.

FIG. 6. Mean and spread of density along light rays in N-body
simulation compared with the spatial average of the density of
the transparent regions. The dotted line representing the latter is
difficult to see since the mean density fluctuates very closely
around the spatial average of the density of the transparent region.

3The spatial average of the expansion rate is approximated asP
ð1−3ψÞð3Hþvi;iÞP

1−3ψ
with the sum including grid points with δ < 0.

This approximation takes only the dominant part of the local
fluctuation in the expansion rate into account, but it has been
verified that taking subdominant contributions into account leads
to no visible difference. Note also that the averaging procedure as
well as the computation of the redshift using Eq. (3) is slightly
incorrect since it ignores the deviation of the lapse function from
1. The consequences of this are expected to be negligible. Note
that the same approximation of spatial averages was used when
computing the spatially averaged density used for both the Dyer-
Roeder approximation and the relation based on spatial averages.
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be realistic as long as one does not consider highly dense
structures such as neutron stars or black holes. On the other
hand, estimating if Weyl lensing becomes important for
some real observations requires actually being able to
resolve structures on the appropriate (very small) scale.

IV. A MODEL WITHOUT LOCAL
CANCELLATION OF PROJECTED SHEAR AND

EXPANSION RATE FLUCTUATIONS

The previous two sections showed that the Dyer-Roeder
approximation agrees well with the mean redshift-distance
relation of standard inhomogeneous cosmological models,
and it was argued that the reason the redshift is well
described by that of the background even in models with
opaque regions is that the shear contribution to the redshift
locally cancels almost exactly with the fluctuations in the
expansion rate along individual light rays. Since this
conclusion is based on several types of Swiss-cheese
models, perturbation theory, and N-body simulations, it
seems fair to conclude that the Dyer-Roeder approximation
can be expected to be valid in standard cosmological
scenarios. This section explores the validity of the Dyer-
Roeder approximation in the less-standard scenario of an
inhomogeneous cosmological model which does not have a
FLRW background and where the shear and fluctuations in
the expansion rate do not cancel locally along individual
light rays. Specifically, the model presented in [82] is
studied. This model was first studied in terms of its light
propagation qualities in [35] where it was found that the
mean redshift-distance relation is well described by spa-
tially averaged quantities according to Eqs. (2) and (3).
However, the study did not consider the possibility of
opaque regions. This is remedied here.
In the following subsections, the studied model is

described together with a formalism for computing the
redshift-distance relation in the model. In the final sub-
section, numerical results are presented and discussed.

A. Model construction

The model considered in this section is constructed
by tessellating space by a simple type of Bianchi-I models,
each with a line element given by

ds2 ¼ −dt2 þ
�
t
t0

�
2α

dx2 þ
�
t
t0

�
2β

dy2 þ
�
t
t0

�
2γ

dz2:

ð21Þ

Present time is denoted by t0 andα, β and γ are constants. The
line element corresponds to a homogeneous but anisotropic
spacetime containing a comoving perfect fluid with aniso-
tropic pressure. Specifically, the density is given by

8πGρ ¼ αβ þ βγ þ αγ

t2
; ð22Þ

while the pressure components are

8πGpx ¼
β þ γ − ðβ2 þ βγ þ γ2Þ

t2

8πGpy ¼
γ þ α − ðγ2 þ γαþ α2Þ

t2

8πGpz ¼
αþ β − ðα2 þ αβ þ β2Þ

t2
: ð23Þ

The local expansion rate is given by

θ ¼ αþ β þ γ

t
; ð24Þ

and the nonvanishing components of the shear tensor are

σxx ¼
1

3t
ð2α − β − γÞ

σyy ¼ 1

3t
ð2β − α − γÞ

σzz ¼
1

3t
ð2γ − α − βÞ: ð25Þ

Asdiscussed in [82], finite spatial cubes can be arranged into a
“fundamental block” which can be repeated to tessellate the
entire spacetime. To fulfill the Darmois junction condition,
themetric parameters α, β, and γ corresponding to a direction
orthogonal to a junction between two cubes must be constant
across the junction.This can, e.g., beachievedbyconstructing
a fundamental block of eight cubes arranged according to
Fig. 7. One specific model is studied here, with model
parameters given in Table I. Note that the metric functions
are normalized to present time so that the values of dx1, dy1,
etc., in Table I give the proper dimensions of the different
regions at present time (inMpc). Thus, the proper side lengths
of the individual regions are either 10 Mpc or 30 Mpc at
present time. Going back in time, some of these regions will
have side lengths that grow (slowly) butmost side lengthswill
decrease backwards in time. This model was also studied in
[35]where it was found that the redshift-distance relationwas
well described by Eqs. (2) and (3), with Eq. (2) modified to
include the pressure components according to

d2DA

dz2av
þ
�

2

1þ zav
þ d lnHav

dzav

�
dDA

dzav

¼ −
4πGðρav þ pavÞ
H2

avð1þ zavÞ2
DA; ð26Þ

where the appropriate average of the anisotropic pressure is
set as pav ≔ 1

3
ððpxÞav þ ðpyÞav þ ðpzÞavÞ. When including

opaque regions, the pressure is treated similarly to the density,
i.e., themean pressure is computed only using the transparent
regions—both when considering the expression based on
spatial averages and the Dyer-Roeder approximation.
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B. Light propagation formalism and initial
numerical considerations

The light propagation formalism used to compute the
redshift-distance relation for the model follows the formal-
ism used in the previous sections, i.e., the light paths are
obtained by solving the null-geodesic equations and the
angular diameter distance is obtained through solutions of
the transport equation including parallel propagation of the
orthogonal screen-space basis vectors. One noteworthy
point is that the null-geodesic equations (and hence also
the parallel propagation equations) contain delta-function
contributions. For instance, if a boundary exists at some
value xb of x then the geodesic equation for kx will contain
a term of the form

−
1

2

gxx;x
gxx

kx ¼ −ðkxÞ2 log ðt=t0Þδðx − xbÞΔα; ð27Þ

whereΔα is the change in the metric parameter α across the
boundary at x ¼ xb. By integration, it is seen that this leads
to a jump in kx on the boundary given by

kx → kx þ kx log ðt=t0ÞΔα: ð28Þ

Similar delta-function contributions will of course occur on
boundaries at constant y and z. As discussed in [35] it is
numerically seen that the effect these delta-function con-
tributions have is to renormalize the tangent (and screen
space) vectors so that they stay null (normal) when crossing
junctions. There are no delta-function contributions to the
Riemann tensor and hence no delta-functions appear in the
transport equation.
The goal with this section is to see whether the mean

redshift-distance relation in the Bianchi-I tessellated
model can be described well by either the Dyer-Roeder
approximation or the relation based on spatial averages
when there are opaque regions in the model. Therefore,
region 4 (see Table I) is made opaque during light
propagation as illustrated in Fig. 7. In practice, this is
done similarly to what was done in the light propagation
study of the N-body simulation. Thus, if a light ray
reaches a junction to region 4, it is turned around and
propagated the other way.
One may note that the model studied in this section is

not statistically isotropic (but after averaging over many
randomly oriented light rays, the model can for a light
propagation study be considered effectively statistically
isotropic). Therefore, one should not expect that the shear
and fluctuations in the expansion rate cancel locally along a
light ray. This is indeed not the case, as illustrated in Fig. 8
which shows the redshift components along a single
(fiducial) light ray. Instead, a cancellation might be
expected if the fluctuations in the expansion rate were
computed compared to the spatially averaged expansion
rate along the individual light ray. Indeed, consider a light
ray propagating in the z-direction, alternately in regions 1
and 5. The redshift along this light ray can be written as
[using ei ¼ ki=kt and ðkzÞ2 ¼ ðt=t0Þ−2γðktÞ2]

TABLE I. Model parameters of cubes in the fundamental block
of the studied model. The parameters a, A, b, B, g, and G refer to
values of α, β, and γ in different cubes while dx1, dx2, etc., refer
to comoving side lengths of the different cubes. See Fig. 7 for an
illustration.

(a,b,g) (A,B,G) (dx1,dy1,dz1) (dx2,dy2,dz2) t0 (Gyr)

(1,1,1) −0.05 · ð1; 1;−1Þ 30 · ð1; 1; 1Þ 10 · ð1; 1; 1Þ 8.9

FIG. 7. 2D rendering of fundamental block with values of α, β, and γ indicated by a, A b, B, g, and G. The cubes on the left side of the
figure have a comoving height of dz1 while those to the left have a comoving height of dz2. Values of a, A, etc., are given in Table I. The
two sets of four cubes are stacked on top of each other such that cube 1 is below cube 5, etc. The gray-scaled cube, cube 4, is treated as
opaque during light propagation.
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1þ z¼ exp

�Z
to

te

dt

�
1

3t
θþ σαβeαeβ

��

¼ exp

�Z
to

te

dt
αþ βþ γ

3t
þ 2γ − α− β

3t
ðkzÞ2
ðktÞ2

�
t
t0

�
2γ
�

¼ exp

�Z
to

te

dt
γ

t

�
: ð29Þ

Thus, the redshift is given by the integral along the light
ray of the local “expansion rate” in the propagation
direction. This is illustrated in Fig. 9 which shows the
redshift along a single light ray, where the light ray has been
initialized in region 1 in the z-direction and the fluctuations
in the expansion rate are measured compared to the
1-dimensional spatial average of γ, defined as

γ1dav ≔
g · dz1ð tt0Þg þG · dz2ð tt0ÞG

dz1ð tt0Þg þ dz2ð tt0ÞG
; ð30Þ

in analogy with the ordinary (3-dimensional) spatial aver-
age defined in the introduction.
The above discussion highlights that even for the type of

model considered in this section, there is a type of local
cancellation between fluctuations in the expansion rate
and the projected shear along a light ray. However, the
cancellation is not identically a cancellation regarding the
expansion rate fluctuations about the spatial mean of
the entire (transparent part of the) spacetime. Therefore,
it is worth studying if the mean redshift-distance relation in
this situation will still be well approximated by the Dyer-
Roeder approximation if opaque regions are introduced.
This is done in the following subsection.

C. Numerical results

The results obtained from propagating 1600 light rays
in the model presented in the previous subsection are
shown in Fig. 10. The figure compares the mean redshift-
distance relation along the rays with the Dyer-Roeder
approximation and the expressions based on spatial aver-
ages. Unlike in the previous sections, the Dyer-Roeder
approximation is seen to not give a particularly good
approximation to the mean. In fact, the prediction based
on the Dyer-Roeder approximation deviates very little from
the expression based on the spatial averages of the entire

FIG. 8. Components of the redshift along a single light ray
according to the splitting 1þz

1þzopaque
¼ exp ðR tote dtð13Δθ þ σαβeαe

βÞÞ,
where zopaque is the redshift computed from the spatial average of
the expansion rate, only including transparent regions. The
contribution exp ðR tote dt 13ΔθÞ is denoted by Δθ while the con-
tribution exp ðR tote dtσαβeαeβÞ is denoted σ. The total fluctuation

contribution, exp ðR tote dtð13Δθ þ σαβeαe
βÞÞ, is denoted by Δθ þ σ.

FIG. 9. The redshift along a single light ray. The redshift is
compared with the “average” expectation based on Eq. (29). The
two lines are indistinguishable in the main plot so a close-up is
included to show the fluctuation of the two expression about one
another. Notice that the x-axis is the exact redshift which explains
why it is the “average” expectation which fluctuates.

FIG. 10. Mean and spread of redshift-distance relation along
light rays. For comparison, the redshift-distance relation of the
Dyer-Roeder approximation as well as those based on the spatial
average of the entire spacetimes (“total average”) and their
transparent parts (“opaque”) are also shown. A close-up is included
since it is difficult to distinguish all the lines in the main plot. Even
in the close-up, it is difficult to distinguish between the mean
redshift-distance relation and the line labeled “opaque”.
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spacetime (including region 4). On the other hand,
the relation based on spatial averages of the transparent
regions gives an excellent prediction of the mean redshift-
distance relation.
The mean density and mean fluctuations in the redshift

are shown in Fig. 11. The figure shows that the mean
density along the light rays is well approximated by the
spatial mean when not including the opaque regions.
Similarly, the mean fluctuations in the redshift compared
to the redshift based on the spatial average (again not
including opaque regions) are only a few percent.

V. CONCLUSIONS AND DISCUSSION

It has been argued and illustrated with examples that in
standard cosmological scenarios where the Universe can be
considered having a global FLRW background, the Dyer-
Roeder approximation is valid to the extent that the redshift
is well described by the background and the distance is well
described by neglecting Weyl lensing and giving the Ricci
lensing in terms of the mean density along the light beams.
Using explicit examples based on Swiss-cheese models,
N-body simulations and results based on perturbation
theory, it was argued that the reason the redshift can be
well approximated by the background redshift even when
there are opaque regions is that the projected shear

contribution to the redshift cancels almost exactly with
the contribution from the fluctuations in the local expansion
rate compared to the background expansion rate, with the
cancellation occurring locally along the light rays. With an
explicit example based on a somewhat exotic cosmological
model which does not contain an explicit FLRW back-
ground it was then shown that the Dyer-Roeder approxi-
mation is not generally valid. Specifically, in this exotic
model the redshift is not well described by that correspond-
ing to the globally averaged spacetime but is instead
described well by the redshift corresponding to the average
of only the transparent regions.
While the presented results illustrate the validity of the

assumptions upon which the Dyer-Roeder approximation is
based in standard cosmological scenarios, it still remains
to realistically quantify the mean density along narrow
(supernova) light beams in the real Universe.
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