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We discuss how to efficiently and reliably estimate the level of agreement and disagreement on
parameter determinations from different experiments, fully taking into account non-Gaussianities in the
parameter posteriors. We develop two families of scalable algorithms that allow us to perform this type of
calculations in an increasing number of dimensions and for different levels of tensions. One family of
algorithms rely on kernel density estimates of posterior distributions while the other relies on machine
learning modeling of the posterior distribution with normalizing flows. We showcase their effectiveness
and accuracy with a set of benchmark examples and find both methods agree with each other and the true
tension within 0.5σ in difficult cases and generally to 0.2σ or better. This allows us to study the level of
internal agreement between different measurements of the clustering of cosmological structures from the
Dark Energy Survey and their agreement with measurements of the cosmic microwave background from
the Planck satellite.
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I. INTRODUCTION

Despite the success of the Λ cold dark matter (ΛCDM)
model at fitting a vast range of cosmological observations,
the emergence of increasingly statistically significant ten-
sions on cosmological parameters has sparked interest in
the problem of their precise calculation. In particular, the
value of the Hubble constant, H0, inferred from observa-
tions of the cosmic microwave background [1,2] is lower
than that inferred from the distance ladder at low redshifts
using type Ia supernovae [3], at 4 to 6σ, which has
prompted searches for hints of new physics [4][see][for
a recent review]. Of less significance, but still puzzling, is
the 1 to 2σ lower amplitude of structure found by weak
lensing surveys [5,6] compared to that inferred from
the CMB.
Many tension metrics and numerical tools have been

developed and characterized in the literature (e.g., [7–26]).
Most commonly Gaussian approximations at either the data
or parameter posterior level need to be made when
computing statistical significance. One open problem is
how to precisely compute the statistical significance of a
tension in the presence of significant non-Gaussianities in
the posterior distributions of cosmological parameters.
While the problem is conceptually straightforward, the
large number of dimensions usually involved when com-
paring datasets of interest in cosmology makes its calcu-
lation challenging in practice.
In this paper, we first derive and characterize the

posterior distribution of differences between parameters
determined from two, possibly correlated, experiments. We
then discuss two methods to compute the statistical

significance of a parameter difference, showcasing their
reliability on a set of toy problems and two examples from
cosmology. One class of methods relies on kernel density
estimates with fixed and variable data-driven smoothing
scales. Another method relies on machine learning model-
ing of the posterior distribution with normalizing flows.
Both methods show remarkable accuracy on a set of
benchmark examples that cover a wide range of dimensions
(from 2 to 30), different known input tension levels (from 1
to 4σ) and different ways in which non-Gaussianities in the
parameter posteriors might arise. We comment on the
advantages and weaknesses of both strategies and develop
efficient algorithms for their computation. Without these
algorithms the calculation of statistical significance would
be practically impossible in realistic scenarios. All the
methods we discuss have to give the same result and are
expected to converge for increasing posterior sample size
so their spread can be used as a reliable global error
estimate. Finally, we implement these non-Gaussian ten-
sion estimators in tensiometer,1 that we use to perform
all calculations in this paper and that we make publicly
available.
As a first worked example we study the mutual con-

sistency of measurements of galaxy lensing and clustering
from the Dark Energy Survey year 1 data [DES Y1, [27]],
finding them in excellent agreement. We then compute the
level of agreement, within ΛCDM, of DES Y1 measure-
ments and cosmic microwave background power spectrum
measurements from the Planck satellite [1,2], finding them

1https://github.com/mraveri/tensiometer
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in disagreement at about the p ¼ 0.3% (or 3σ) level. The
former example shows the reliability of these estimates in a
case with significant correlations and high dimensionality
but low statistical significance, while the latter example
showcases reliability in the case of uncorrelated measure-
ments but higher statistical significance.
This paper is structured as follows: in Sec. II, we discuss

how to obtain the posterior distribution of parameters
differences, calculate their statistical significance and
characterize its properties; in Sec. III, we show how to
efficiently calculate statistical significance with kernel
density estimates (KDE)-based methods; in Sec. IV, we
discuss how to obtain statistical significance of parameter
differences with normalizing flows; in Sec. V, we discuss a
set of benchmark examples that are tailored to gauge the
accuracy of both calculation methods; in Sec. VI, we apply
both the KDE and normalizing flows estimators to data
from Planck and DES; we discuss the results and conclude
in Sec. VII.

II. PARAMETER DIFFERENCES

In this section we introduce the distribution of parameter
differences and comment on its properties.
We start by defining general notations and writing the

posterior probability of parameters θ, within model M
given data d as

PðθÞ≡ Pðθjd;MÞ ¼ PðθjMÞPðdjθ;MÞ
PðdjMÞ ; ð1Þ

where we indicate the prior probability asΠðθÞ≡ PðθjMÞ,
the likelihood as LðθÞ≡ Pðdjθ;MÞ and the evidence as
E ≡ PðdjMÞ. We will drop M hereafter for conciseness
and indicate the support of the prior as VΠ. This is defined
as the set of parameters where the prior is strictly
nonvanishing.
We now consider two different datasets d1 and d2,

labeled here and throughout with 1 and 2 subscripts,
described by a joint likelihood LðθÞ≡ Pðd1; d2jθÞ with
shared parameters θ and prior ΠðθÞ. We denote L1ðθÞ≡
Pðd1jθÞ and P1ðθÞ≡ Pðθjd1Þ the joint likelihood/posterior
that has been marginalized over d2 (likewise for d1). The
first step to build the parameter difference distribution
consists in duplicating all shared parameters, i.e., create
two copies of the parameter set, θ1 and θ2, and then choose a
prescription for the joint likelihood with duplicated param-
eters, Lðθ1; θ2Þ≡ Pðd1; d2jθ1; θ2Þ. As an example, if the
joint likelihood is a multivariate Gaussian distribution over
ðd1; d2Þ with parameter-independent covariance, a typical
choice is to use θ1 (respectively θ2) in the computation of the
mean of d1 (d2). In general, however, there is not necessarily
a unique solution and different data splits correspond to
different aspects that are tested. We may simply impose the
following constraints: (a) Lðθ1 ¼ θ; θ2 ¼ θÞ ¼ LðθÞ such
that the likelihoodwith duplicated parameters coincides with

the joint likelihood on the subset where parameters are equal,
and (b) Pðd1jθ1; θ2Þ ¼ Pðd1jθ1Þ such that the likelihood for
d1 is independent of θ2 once marginalized over d2 (and
similarly even switching indices 1 and 2). These conditions
ensure that, in the case where the data are conditionally
independent given θ, i.e., Pðd1; d2jθÞ ¼ Pðd1jθÞPðd2jθÞ,
then the only choice is to use the product of likelihoods, such
that Lðθ1; θ2Þ ¼ L1ðθ1ÞL2ðθ2Þ. We further assume that the
joint prior distribution factorizes, Πðθ1; θ2Þ ¼ Πðθ1ÞΠðθ2Þ.
We can then write the posterior of duplicated parameters,
in the general case, as Pðθ1; θ2Þ≡ Pðθ1; θ2jd1; d2Þ ∝
Lðθ1; θ2ÞΠðθ1ÞΠðθ2Þ.
To obtain the probability density of parameter differences

we can change variables and consider Δθ≡ θ1 − θ2. This
gives a joint posterior Pðθ1;ΔθÞ ¼ Pðθ1; θ1 − ΔθÞ, and we
can integrate out the base parameters,

PðΔθÞ ¼
Z
Vπ

Pðθ; θ − ΔθÞdθ: ð2Þ

We distinguish two cases based on whether the two datasets
at hand are correlated or not,

(i) If the datasets are conditionally independent given
parameters θ, the posteriors P1 and P2 may be
sampled independently, and differences of samples
Δθ≡ θ1 − θ2, with θ1 ∼ P1 and θ2 ∼ P2, are sam-
ples of the difference distribution PðΔθÞ, which is
given by

PðΔθÞ ¼
Z
Vπ

P1ðθÞP2ðθ − ΔθÞdθ: ð3Þ

This type of integral is known in the signal process-
ing literature as the cross-correlation of P1 and P2.

(ii) If the datasets are correlated, we can obtain samples
of PðΔθÞ by sampling the joint posterior with
duplicated parameters and differentiating sample
by sample.

Once the density of parameter differences is obtained,
one can quantify the probability that there is in fact a
parameter shift, given by

Δ ¼
Z
PðΔθÞ>Pð0Þ

PðΔθÞdΔθ; ð4Þ

which is the posterior mass above the isocontour of no shift,
Δθ ¼ 0. In the following we indicate the parameter
set contained by the isocontour of no shift as Ω0≡
fΔθ∶PðΔθÞ > Pð0Þg.
Several basic properties can be easily shown from the

definition.
(i) If the posterior distributions are normalized, then so

is the parameter difference distribution.
(ii) The support of the parameter difference distribution

is the support of the convolution of the characteristic
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function of VΠ with itself. In particular if the support
of the prior is an interval ½a; b� then the support of
the prior for the parameter difference posterior
is ½a − b; b − a�.

(iii) The distribution of parameter differences is always
continuous at the prior boundary, even if the two
single posteriors are not. Smoothness or continuity
of derivatives is not guaranteed.

(iv) Δ is symmetric for changes of datasets 1 ↔ 2.
(v) When datasets are uncorrelated and we have n1 and

n2 samples, we can build up to n1n2 samples of the
parameter difference distribution. If the samples are
weighted the weights of the parameter difference
samples are the product of the two weights.

(vi) If the two posteriors are uncorrelated Gaussian
distributions with mean θ1 and θ2 and covariance
C1 and C2 respectively, then the distribution of
parameter differences is Gaussian with mean θ1 −
θ2 and covariance C1 þ C2. If the two parameters are
correlated and C12 indicates their covariance, then
the covariance of parameter differences is given by
C1 þ C2 − C12 − CT12 and the mean is unchanged.

In Fig. 1 we show an example of how the calculation of
the parameter difference tension estimator proceeds. We
start in the upper panel showing two Gaussian posterior
distributions, with different parameter degeneracies and
different means. We then obtain and show in the lower
panel, the distribution of parameter differences, as the
convolution of the two single distributions, as in Eq. (3).
Since the two initial distributions are Gaussian the dis-
tribution of parameter differences is Gaussian as well. The
support of the prior for the two separate posteriors is the
½−1; 1� square; hence the support of the prior of parameter
differences is the ½−2; 2� square. We then find the iso-
contour that touches the origin. Integrating the posterior
inside that isocontour indicates that it contains 0.995 of the
posterior mass, which is the estimate of the probability that
the parameters are actually different.
In the following sections we comment on other proper-

ties of parameter differences that are worth further
discussion.

A. Unconstrained parameters

A couple of general results can be shown from the
definition of the parameter difference distribution and help
its characterization in cases where data do not constrain
some of the parameters of the model.
The first consists in showing that parameters that are

prior constrained for both datasets can never contribute a
shift. If there is no data information on a parameter then the
likelihood of both experiments is constant and the param-
eter shift integral becomes

PðΔθÞ ∝
Z

ΠðθÞΠðθ − ΔθÞdθ; ð5Þ

up to an irrelevant normalization constant. In signal
processing literature this integral is called the autocorrela-
tion of Π. By Cauchy inequality this is maximum for
Δθ ¼ 0 so that the posterior can have no mass above it.
The second noticeable property is that parameters con-

strained by flat priors for one dataset but not the other can
never contribute a shift. If the prior is flat across the support
and that the second dataset provides no constraint (i.e., has
a constant likelihood), we have

PðΔθÞ ∝
Z

ΠðθÞLðθÞΠðθ − ΔθÞdθ; ð6Þ

up to an irrelevant normalization constant. Equation (6) is
integrating the likelihood over the intersection between the
prior volume and the shifted prior volume. A nonvanishing
Δθ reduces the integration volume of a positive function
and hence reduces the integral. This means that Eq. (6) is
maximum at zero shift.
As a consequence of this second property nonshared

parameters between two experiments can never contribute

FIG. 1. A toy example of how the parameter difference tension
calculation proceeds, starting from the two single parameter
distributions in the upper panel, to the calculation of the
distribution of parameter differences and its isocontour of zero
parameter shift in light blue in the lower panel. In both panels
different lines of the same color show the 68% and 95% C.L.
regions of parameter space for different distributions, as shown in
legend.
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any shift and can be premarginalized over before doing any
parameter shift calculation.

B. Properties under changes of parameters

Since Eq. (4) is the integral of a probability density it is
invariant under reparametrizations. However, when work-
ing directly with transformations of parameter differences
some care must be exercised.
We consider a change of variables z ¼ T−1ðΔθÞ with an

invertible, differentiable transformation T. The probability
density function of z is given by

PðzÞ ¼ PðΔθÞj det∇Tj; ð7Þ

computed with the determinant of the Jacobian of T. The
shift probability is then given by

Δ ¼
Z
Ω0

PðΔθÞdΔθ ¼
Z
T−1ðΩ0Þ

PðzÞdz; ð8Þ

where both the posterior and integration measures change
by the same factor that then cancels; but the domain of

integration is modified to the preimage of Ω0, which may
not necessarily correspond to the zero isocontour of PðzÞ.
In Fig. 2, we consider the one-dimensional case where

PðΔθÞ is a mixture of Gaussian distributions with two
components. We apply the Gaussianizing transformation
given by the successive application of the cumulative
distribution function (CDF) of the Gaussian mixture and
the inverse CDF of the standard normal distribution. The
resulting transformation is highly nonlinear. The top panel
shows the posterior PðΔθÞ and the bottom panel shows
PðzÞ. The iso contour at zero-shift,Ω0, shown in gray in the
top panel, has two connected components. Its preimage,
shown in gray in the bottom panel, also has two compo-
nents, and therefore T−1ðΩ0Þ clearly does not correspond to
an isocontour of the Gaussian distribution PðzÞ. Note,
however, that the posterior mass in the two gray areas is
conserved and the same in the two cases.

III. KDE ESTIMATE OF PARAMETER
DIFFERENCES

In this section we discuss how to compute the integral in
Eq. (4) with kernel density estimates (KDE) of the
parameter difference posterior. For an overview of KDE
techniques we refer the reader to [28,29].
As we have highlighted in Sec. II when building the

parameter difference chain we do not have likelihood
values for samples. In this section we comment on how
to obtain likelihood values through KDE. In this section
only we use the shorthand notation of PðxÞ≡ PðΔθÞ.
Given a kernel smoothing function, KðxÞ, that is

positive, smooth, spherically symmetric and normalized
we consider a bandwidth matrix H which we assume to be
symmetric and positive definite. The bandwidth matrix
scales the kernel coordinates KHðxÞ≡ jHj1=2KðH−1=2xÞ
and controls the extent of smoothing in different directions.
In practice we always assume that the smoothing kernel
KHðxÞ is Gaussian.
Given our nweighted samples,Xi, of P, we can compute

its KDE estimate as

P̂HðxÞ≡ 1

wtot

Xn
i¼1

wiKHðx −XiÞ; ð9Þ

where wi denotes the weights of the samples and
wtot ≡P

n
i¼1 wi. In abstract terms our problem consists in

estimating the posterior mass inside the isocontour that
touches a particular point, x0, whose KDE estimate we
indicate with

Δ̂ ¼
Z
P̂ðxÞ>P̂ðx0Þ

P̂ðxÞdx: ð10Þ

To the best of our knowledge this problem has not been
specifically addressed in KDE literature.

FIG. 2. A toy example of a Gaussianizing transformation
showing the mapping of the isocontour at a given point.
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We notice that since the distribution of parameter
differences is always continuous at the boundary we do
not need to be concerned about correcting for KDE biases
at the boundary.
When we consider high dimensional problems it is

useful to slightly modify the KDE estimator to have
adaptive bandwidth. This leads to the sample point density
estimators,

P̂SPðxÞ≡ 1

wtot

Xn
i¼1

wiKHi
ðx −XiÞ; ð11Þ

which considers a different bandwidth matrix for every
sampled point Hi. As discussed in [30] we can consider
different strategies to fix the sampled point bandwidth. In
particular we test the case where Hi ¼ δðkÞðxiÞ2I, where
δðkÞ is the distance to the k nearest neighbor of a given
point. Note that for sample point density estimators there is
no smoothing parameter to optimize. We tested other
variable smoothing scale choices, in particular nearest
neighbor ellipsoidal smoothing, but find that they never
exceed the performances of the simpler nearest neighbor
distance smoothing scale that we use.

A. Monte Carlo algorithms

Since we have samples from P we can perform the
integration of Eq. (10) as a Monte Carlo (MC) volume
integral,

Δ̂ ¼ 1

wtot

Xn
i¼1

wiSðP̂ðxiÞ − P̂ðX0ÞÞ; ð12Þ

where SðxÞ is the Heaviside step function that is unity when
x > 0 and zero otherwise. We note that we have here
assumed that the samples from the parameter difference
chain are uncorrelated. This is generally easily achieved by
suitably thinning the input parameter samples in order to
obtain uncorrelated samples. Since we are counting sam-
ples above a threshold, the confidence intervals for the
result can be estimated from the binomial distribution,
through the Clopper–Pearson formula for the sum of
weights above threshold and total sum of weights. We
notice that the Clopper–Pearson formula applies to non-
integer values of trials and successes so we can use it with
noninteger weights.
We can compute Δ̂ with a brute force algorithm that

iterates through the samples, computes KDE probability of
a sample, compares its value to the precomputed reference
and counts the sample or not. The drawback of this
algorithm is that it clearly requires Oðn2Þ operations
making it unfeasible for high statistically significant
tensions that require a large number of samples to be
accurately estimated.

For high statistically significant tension, we develop an
ad hoc algorithm that we call neighbor elimination. We
notice that Eq. (12) involves a threshold crossing problem,
whether P̂ðXiÞ > P̂ðx0Þ or not, but does not rely on the
actual value of P̂ðXiÞ. Each of the P̂ðXiÞ is computed from
Eq. (9) and is a sum of positive quantities that decrease with
distance from Xi, since the kernel is positive. Then, after
precomputing P̂ðx0Þ, we start by organizing samples in a k-
d tree, which costs Oðn log nÞ operations. We then iterate
through the samples and query the tree for the nearest
neighbor of each point, which globally costs Oðn log nÞ
operations. We build the sum in Eq. (9) going through the
nearest samples, and since the kernel is positive we can
discard a point in the tree as soon as it crosses the threshold
of P̂ðx0Þ. For a large tension, where P̂ðx0Þ is small and in
the tails of the distribution, it only takes a few nearest
neighbors to be able to discard a point. If the vast
majority of points are discarded after a search of α nearest
neighbor then the calculation of Eq. (10) only requires
Oððαþ 1Þn log nÞ operations. Notice that in the worst case
scenario, where all points are above threshold, this algo-
rithm requiresOðn2 log nÞ operations so it is only suited for
the calculation of statistical significance of large tensions.
Problems in one or two dimensions are, in this respect,

special, since KDE evaluation can be performed with fast
Fourier transforms (FFT) on a discrete grid with ngrid points
that is then interpolated. This decreases the cost of
operations to be globally Oðngridn log nÞ and makes it
clearly faster than neighbor elimination below three
dimensions. For and above dimension three, we expect
the neighbor elimination algorithm to outperform FFT
methods mostly because of the increasing size of the grids
involved in the FFT calculation.
Notice that the brute force and the neighbor elimination

algorithms have to agree exactly on the result while the FFT
algorithm can differ with dependence on the size of
the grid.

B. KDE bandwidth selection

The last ingredientweneed to estimateEq. (4)withKDE is
a selection of the bandwidth matrixH. We refer the reader to
[29] for a comprehensive discussion of multidimensional
band selectors. Herewe review themain ideas and outline the
strategies that we compare in the next sections.
Although we phrase the following in general terms, in

practice, we always work with prewhitened samples,
scaling all samples as x̃ ¼ Σ−1=2x, where Σ is the sample
parameter covariance. Doing this ensures that sample
variance is the identity matrix. This cannot generally be
done in all applications and we exploit here explicitly the
independence of our resulting integral from the choice of
coordinates.
The first family of band selectors that we consider aim at

minimizing the mean integrated square error (MISE),
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MISEðfÞ≡
Z

E½ðfðxÞ − f̂ðxÞÞ2�dx; ð13Þ

where E denotes expectation over independent and iden-
tically distributed samples realizations. Minimizing this
quantity is a very common approach as it seeks to minimize
differences between the true distribution and its KDE
approximation over the whole domain, resulting in a
KDE estimate that is overall good for general purposes.
As noted in the two seminal papers [31,32], and can be

verified by direct calculation, Eq. (13) can be written
exactly in terms of convolutions between the true distri-
bution f and the smoothing kernel KH,

MISEðfÞ ¼ RðKH � fÞ − 2

Z
ðKH � fÞðxÞfðxÞdxþ RðfÞ

þ n−1eff jHj−1=2RðKÞ − n−1effRðKH � fÞ; ð14Þ

where neff ≡ ðPi wiÞ2=ð
P

i w
2
i Þ, RðfÞ≡ R

f2ðxÞdx and
we indicate convolutions with f � g≡ R

fðx − yÞgðyÞdy.
To make progress we assume that both the kernel and the

target distributions are Gaussian, with covariance H and Σ
respectively, that allows to write Eq. (14) as

MISEðHÞ ¼ ð2πÞ−d=2½j2Hþ 2Σj−1=2 − 2jHþ 2Σj−1=2
þ j2Σj−1=2�
þ n−1effð2πÞ−d=2½j2Hj−1=2 − j2Hþ 2Σj−1=2�:

ð15Þ

The matrix HMISE that minimizes Eq. (15) cannot be
expressed analytically. Hence our strategy is to minimize
Eq. (15) numerically over the space of positive symmetric
matrices [33].
On the other hand if we consider the asymptotic

expansion of Eq. (14) for large n and small H, usually
referred to as asymptotic MISE (AMISE), we can solve the
corresponding minimization problem exactly in the
Gaussian case by

HAMISE ¼
�

4

ðdþ 2Þneff

� 2
dþ4

Σ: ð16Þ

This is known as the rule of thumb selector that we test and
generally use as the starting guess for numerical minimi-
zation of MISE.
We test other possible choices for bandwidth selectors,

including the maximum bandwidth and cross validation. In
practice we find that their performances do not exceed
the MISE/AMISE ones at the specific problem we are
considering.

IV. NORMALIZING FLOW ESTIMATE OF
PARAMETER DIFFERENCES

We now turn to a radically different method to compute
the probability of no shift, Δ, based on building an analytic
approximation of PðΔθÞ. This method relies on normal-
izing flows (NF), that were introduced as generative models
with tractable likelihoods, i.e., analytic approximation to
the likelihood enabling fast sampling and inference [34–
38]. NF have recently found applications in astrophysics,
both for modeling [39] and Bayesian inference tasks
[40–42].

A. Approximating difference distributions with
normalizing flows

In this approach, one introduces a bijective, differen-
tiable mapping Tφ parametrized by neural networks with
weights φ, between D-dimensional input data x with
distribution PðxÞ and abstract variables z ¼ TφðxÞ. The
mapping is optimized over parameters φ with (stochastic)
gradient descent to maximize the log-probability of z under
a simple distribution, typically the standard D-dimensional
normal distribution N ð0; IÞ, with density φD. One finally
approximates the data distribution P with PðxÞ ≈ qðxÞ ¼
φDðzÞj det∇xTφj, using the determinant of the Jacobian of
the transformation, as explained in Sec. II B. The density of
the approximated distribution qðxÞ can be computed
analytically using automatic differentiation. One can also
easily sample from q, by sampling from the D-dimensional
standard Gaussian and transforming samples with the
inverse mapping, x ¼ T−1

φ ðzÞ.
For the problem at hand in this work, we approximate the

parameter difference distribution PðΔθÞ with qðΔθÞ ¼
φDðzÞj det∇ΔθTφj, where z ¼ TφðΔθÞ and Tφ has been
optimized to Gaussianize z, as in Sec. II B. This is obtained
by minimizing the loss function given by LðΔθ;φÞ ¼
− logφDðTφðΔθÞÞ. In order to estimate the shift probability
Δ, we sample Δθ ∼ q, compute the probability density of
those samples, qðΔθÞ, and compare the results to
qðΔθ ¼ 0Þ, computed the same way. The fraction of
samples for which qðΔθÞ > qð0Þ provides a
Monte Carlo estimate of the shift probability Δ, with an
error that can be made arbitrary low by generating more
samples and estimated with the Clopper-Pearson formula.
The accuracy of the estimate ofΔ is therefore limited by the
accuracy of the normalizing flow model, rather than the
number of samples drawn during this final step.
This technique transforms the problem of estimating Δ

into an optimization problem. This means that it is not
guaranteed to converge to the true value and instead, the
result will depend on the choice of NF and neural network
architecture, as well as drawbacks inherent to neural
networks such as initialization, underfitting and overfitting.
In particular, if the tension is strong and the no-shift point is
far from the bulk of samples, the approximation to Pð0Þ
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may be a poor one. Nonetheless, the computation—which
involves training a neural network—now benefits from a
large initial sample and suffers less than KDE from
dimensionality [43]. Moreover, we find it efficient for
small to mild tensions, which are interesting to characterize
precisely, and thus this methods complements the KDE
method presented in the previous section.

B. Normalizing flows implementation

In this work, we use masked autoregressive flows [MAF,
[34] ] to approximate the parameter difference distribution
PðΔθÞ. MAFs are composed of a series of masked
autoencorders for density estimation [MADE, [44] ] that
each implement autoregressive transformations of the input
variables encoded by a single neural network. If the input
variable is x ¼ ðx1;…; xnÞ, the output y of an autoregres-
sive transformation has components yi ¼ μðx1∶i−1Þþ
σðx1∶i−1Þxi, where μ and σ are parametrized by uncon-
strained neural networks that receive masked inputs,
x1∶i−1 ¼ ðx1;…; xi−1; 0;…; 0Þ. MAFs allow for estimation
of more complex distributions by stacking such trans-
formations and introducing random permutations of the
components between them.
In practice, we first compute the mean hΔθi and

covariance Σ of the difference samples, Δθ, to shift and
rescale parameters, Δθ0 ¼ Σ−1=2ðΔθ − hΔθiÞ, thus defin-
ing a bijective mapping into a prewhitened (but still non-
Gaussian) space. We then apply MAFs to learn the
mapping to the fully Gaussianized space and apply chain
rules to approximate the difference parameter distribution
P. We find that MAFs are generally sufficiently flexible for
typical parameter difference distributions, requiring only
few hundreds to few thousands of trainable weights in the
examples considered below.
Our code relies on the implementation of MAFs within

the TensorFlow-Probability package [TFP, [45] ], which ben-
efits from the automatic differentiation of the TensorFlow2

framework to compute the Jacobian of the transformation
and other derivatives needed for gradient descent. We
provide utility functions to quickly instantiate a default
(but easily tweakable) architecture of MAFs composed of
2d stacked MADEs, each with two dense layers of 2d
nodes each with sinh activation functions, and with random
permutations of variables between MADEs (where d is the
dimension of the parameter difference space). We found
this architecture to work well for all the examples detailed
below. However, the code is not restricted to using MAFs
and can accomodate any user-provided normalizing flow
implemented as a TFP Bijector object. We also found
that the uniform Glorot initializer (of the weights and biases
of MAFs) provided a good balance between learning speed
and stability, although the user can also easily opt for any
other initializer. We provide plotting utilities to monitor the

evolution of a number of metrics during training (see
Fig. 8), in addition to the standard training and validation
losses, to assert the quality of the approximation to the
parameter distribution P. In particular, since NFs learn a
mapping to the standard multivariate Gaussian, we com-
pute the squared norms of the transformed samples and
verify that their distribution converges to a χ2d distribution,
e.g., with a Kolmogorov-Smirnov test.

V. BENCHMARK EXAMPLES

In this section, we perform numerical experiments on
benchmark examples designed to test and compare our
methods in limit cases.
We first consider, in Sec. VA, examples where the

difference parameter distributions are Gaussian in an
increasing number of dimensions. In these examples, the
input tension is known analytically. We then consider, in
Secs. V B–VD, two-dimensional models where the two
posteriors, P1 and P2, have analytic probability densities
that are strongly non-Gaussian. The density of the differ-
ence distribution, PðΔθÞ, can be computed on a dense grid
and is given by the convolution of the posterior densities
evaluated over dense grids covering the prior volume VΠ.
We then compute the expected probability of no shift by
numerical integration of PðΔθÞ over Ω0. In all cases, we
compare the probability of no shift obtained with the
numerical integration to the one obtained with the KDE
and NF methods as well as the Gaussian approximation.
For the Gaussian approximation we compute parameter

shifts both in standard form and in update form, as in [17].
The standard form of parameter shift, QDM, requires us to
compute

QDM ≡ ðθp1 − θp2ÞðCp1 þ Cp2Þ−1ðθp1 − θp2ÞT; ð17Þ

where θp1=θp2 and Cp1=Cp2 denote the posterior mean
parameters and posterior covariance respectively for the
dataset 1=2. QDM is χ2 distributed with rankðCp1 þ Cp2Þ
degrees of freedom. The update parameter shifts estimator
is defined as

QUDM ≡ ðθp1 − θp12ÞðCp1 − Cp12Þ−1ðθp1 − θp12ÞT; ð18Þ

where θp12 and Cp12 are the joint posterior mean parameters
and covariance. QUDM is χ2 distributed with rankðCp1 −
Cp12Þ degrees of freedom.We refer the reader to [17] for the
details of these estimators and their computation. Two
noteworthy properties of these estimators, in this context,
are that they have to coincide for Gaussian distributions
with uninformative priors and that the QUDM estimator is
symmetric when swapping datasets 1 ↔ 2. In the non-
Gaussian case though, the update estimator allows us to use
the most Gaussian of the two distributions at hand hence
providing mitigation of non-Gaussian features.2https://www.tensorflow.org/

NON-GAUSSIAN ESTIMATES OF TENSIONS IN … PHYS. REV. D 104, 043504 (2021)

043504-7

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/


For KDE methods we avoid using the FFT algorithm in
two dimensions since we want to focus on the properties of
the Monte Carlo algorithm. We also use the neighbor
elimination algorithm in all calculations since we find that
it always exceeds the performances of the brute-force
algorithm. We focus on the dependence of the KDE result
on the number of samples that are used in the calculation
and different bandwidth choices.
For the NF method, we focus on choices of hyper-

parameters, the impact of the number of samples used to
train the model and model uncertainties. As previously
explained, the stochasticity in the initialization of the neural
networks and that of the gradient descent during training
introduce extra variance in the estimated shift probability
which is difficult to evaluate. Therefore, for each example,
we perform ten runs and report the uncertainty of the
results. For Gaussian examples in dimension d, we use
MAFs made of minðd; 12Þ stacked MADEs, each with two
layers of 2d units. We focus on the dependence of the shift
probability estimates and their error as a function of the
number of samples. For two-dimensional examples, we
focus on hyperparameters and compare results for MAFs
made of either four or eight stacked MADEs, each with two
hidden layers of eight units (for a total of 528=1056
parameters), with fixed training samples with a size of
105. Additionally, the learning rate needs some tuning for
these non-Gaussian examples: if it is too large, it may
prevent convergence, while if it is too small, the optimizer
might fall into a local minimum far from the global one.
Therefore, we repeat these tests for learning rates of 10−2,
10−3 and 10−4. For all tests, the estimated shift probability
is obtained by sampling the approximate posterior q until
the confidence interval on the result, estimated from the
Clopper-Pearson formula, has a length smaller than 0.05.
In the following, we always report results as effective

number of standard deviations. Given an event of proba-
bility P, it is given by

nσ ≡
ffiffiffi
2

p
Erf−1ðPÞ: ð19Þ

This corresponds to the number of standard deviations that
an event with the same probability would have had were it
drawn from a Gaussian distribution. This does not imply
Gaussianity of the underlying statistics and should be
regarded as a logarithmic scale for probabilities. Note that,
when gauging accuracy of estimates, requirements of a
precise determination of nσ is a much stricter requirement
than a threshold on absolute accuracy of the P value.

A. High-dimensional Gaussian

We start by considering a Gaussian distribution in an
increasing number of dimensions. Since Eq. (2) preserves
Gaussianity, if the two original distributions are Gaussian,
so is the parameter difference distribution. We then gen-
erate a random parameter difference distribution by

generating a random mean vector on the sphere, a random
covariance, and rescaling the mean vector length to match
the desired benchmark tension.

1. Results with KDE

In Fig. 3 we show the errorΔnσ on the determination of a
1σ tension (nσ ¼ 1) using KDE estimates, and we compare
the KDE estimate with the MISE smoothing scale to the
KDE sample point (SP) estimate. For each example, we
draw several batches of increasingly larger samples from
the random parameter difference distribution in order to
evaluate the bias of the estimator and its variance, as a
function of number of samples nsamples and dimension d.
We find that the MISE estimate converges more rapidly
than the SP estimate with the number of samples. As it is
known, however, its bias is, in all cases, larger than its
variance. However, when increasing dimension at fixed
sample size, samples become increasingly sparse and the
MISE estimate cannot be computed, while the SP estimator
retains workable accuracy in all dimensions, even with a
relatively small number of samples.
This trend is confirmed in Fig. 4 where we show

examples with higher tensions. Increasingly, samples

FIG. 3. The mean error Δnσ on the determination of a 1σ
tension (nσ ¼ 1) from KDE estimates in increasing number of
dimensions as a function of number of samples nsamples and
dimension d. Different panels show different KDE algorithms
while different colors show different number of dimensions, as
reported in legends. Error bars are obtained by drawing multiple
samples for each case. Note that for high dimensions, samples
become sparser and the MISE estimate cannot be computed,
which explains missing points.
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around the zero shift contour become sparse so the MISE
estimate would require a very large number of samples to
be meaningfully computed. On the other hand the SP
estimate shows remarkable performances with error Δnσ
rarely exceeding 0.5σ independently of dimension and
sample size. We note that the performances of the SP
estimator improve as dimension increases and especially in
high dimensions the variance of the estimator over pools of
samples is of the same order as its bias.
For large number of samples the variance of the estimator

is so small that it cannot be seen in the figure. Some results
for low number of samples also show no variance or largely
underestimated variance because they are generally border-
line feasible, and the calculation fails many times because
there is no sample outside the isocontour of no shift.
In all cases we note that the error scaling is worse than

what we would expect from binomial trials. The reason
why this happens is that the zero shift isocontour which is

the decision boundary in the binomial trial for each sample
is inferred from the samples. Sampling uncertainty on its
estimate then contribute to the total error budget.
We test several different algorithms and reach to quali-

tatively similar conclusions. The AMISE bandwidth leads
to similar results as the MISE one, while cross-validation
band estimators generally lead to a smaller smoothing
scale, which then requires more samples to converge.
Adaptive KDE with ellipsoidal smoothing scale show
performances similar to the SP estimator.

2. Results with normalizing flows

In Fig. 5, we show the bias and variance of the NF
estimate over ten runs, for increasing levels of tension and
increasing dimensions, as a function of the number of
training samples. In order to obtain a fair comparison, we
fix the number of epochs during training to 100, each with
100 batches per epoch (possibly using samples several
times per epoch). This sets the total number of model

FIG. 4. The mean error Δnσ on the determination of 2σ, 3σ and
4σ tensions from the KDE SP estimate in increasing number of
dimensions as a function of number of samples nsamples and
dimension d. Different panels show different input tension levels
while different colors show different number of dimensions, as
reported in legends. For high tensions, small samples lead to
highly biased results that are not visible in the lower plot.

FIG. 5. Similar to Figs. 3 and 4 for the NF estimate.
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updates, while the total number of samples impacts the
diversity of training batches.
Overall, we observe that having more training samples,

even at fixed number of updates and thus computing time,
drastically improves the accuracy. Specifically, both the
average error and the variance decrease with increasing
sample size, down to a variance of about 0.1 on nσ in our
tests. Note that this residual variance includes errors from
the NF models as well as the uncertainty from the
Monte Carlo estimate (required to be smaller than 0.05).
As expected, higher levels of tensions require more training
samples, although with a relatively mild dependence on
dimension, confirming the NF method to be fairly robust to
dimensionality. Overall, the NF method, when provided
with sufficiently many samples, performs extremely well,
with biases below 0.2σ, even for a 4σ tension. However, we
also find that, when using only 1000 training samples,
MAF models tend to overfit (as can be observed by
comparing the training and validation losses), even though
the same models, trained on the same number of batches,
perform well on larger training samples. In these cases, the
method often is unable to produce a shift probability using
the Monte-Carlo sampling technique, except in very low
dimension. This occurs when all samples drawn from the
approximate posterior q fall within the qð0Þ isohypersur-
face, which is itself poorly determined due to overfitting. In
the next section, we provide some practical tools to monitor
training and mitigate for under- and overfitting.

B. Strong non-Gaussianity

We now consider a first example where one of the two
distributions has a strong, banana-shaped, non-Gaussian
degeneracy. We show in Fig. 6 the two distributions that we
use and notice that the strong non-Gaussianity would not be
clearly visible in one-dimensional projections. The param-
eter difference distribution, shown in Fig. 6, inherits the
strong non-Gaussianity that causes the input tension not to
appear appreciably in one-dimensional marginalized
posteriors.
In this example the first distribution is a multivariate

Gaussian with zero mean and diagonal covariance equal to
σ2 ¼ 0.01 while the second distribution is given by
P2 ∼N ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ21 þ 20ð2θ21 − θ2 − 1=2Þ2

p
; 1=4Þ, up to an irrel-

evant normalization constant. The prior is flat for both
parameters in the interval ½−1; 1�.
The exact input tension for this example is 2.77σ as

computed on a very fine grid that makes the error on this
determination irrelevant. The Gaussian parameter shift
QDM estimator applied to the two datasets reports a tension
of 0.12σ which is largely underestimated. This happens
because the long tails of the second distribution move the
Gaussian approximation toward the first distribution. From
the two single distributions we can compute the joint
distribution as the product of the two. We can then use
this joint distribution to compute the significance of update

parameter shift, QUDM, applied to the most Gaussian of the
two distributions and the joint distribution. This leads to an
estimate of 2.81σ tension which is remarkably accurate.
The reason for this is that the effect of the non-Gaussian
tails is mitigated in the joint distribution.
In the upper panel of Fig. 7 we show the scaling of KDE

estimates with number of samples. As we can see the
MISE/AMISE estimates increasingly agree as the number
of samples increases and show a convergent behavior.
While the power law scaling of the MISE estimate follows
the binomial one, Δnσ ∝ n−1=2, it does suffer from a factor
ten penalty. As we can clearly see in Fig. 7 these two
estimators always have a systematic bias that is larger than
their variance. Hence the best computation strategy is to use
the largest sample size available.
On the other hand the SP estimate is extremely precise in

the regime where the number of samples is very limited and
samples are sparse. In this regime the accuracy of the SP
estimator scales like the binomial but with better overall

FIG. 6. The relevant posterior distributions of the first bench-
mark example in Sec. V B. The upper triangle plot shows the
posteriors for the two single datasets while the lower triangle
shows the posterior of parameter differences. We highlight both
the prior boundary and the isocontour that is compatible with zero
parameter shift.
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performances. Once the sample size exceeds 103 and the
sparsity of samples decreases, the estimator shows no
further improvement. In this regime, we notice that the
variance of the SP estimator is of the same order of
magnitude as its bias. This suggests that, when a large
sample is available, one can increase the precision of the
estimator by computing it on smaller batches and averag-
ing. The lack of asymptotic improvement at increasing
sample size, for the SP estimator, is due to the absence of a
tuning parameter, the smoothing scale, that in the MISE/
AMISE case changes as sample size increases.
In the lower panel of Fig. 7 we show the error of NF

estimates as a function of learning rate. Note that here, we
maintain the value of the learning rate fixed, which
determines the sensitivity to local optima, while for realistic

cases, we recommend decreasing it progressively during
training (see Sec. VI B). We observe that if the learning rate
is set too low, the NF model tends to underfit the banana-
shaped distribution, leading to an underestimation of the
tension. However, setting the learning rate at 10−2, the
maximum value we used in our test, increases the variance
in the estimate, as can be seen by the wider boxes in Fig. 7.
We also note that in this example, the more flexible models
with eight stacked MADEs generally show less variance
than models with only four. A possible reason is that
MADEs, which implement autoregressive operations, are
sensitive to the ordering of variables, which is why we
randomly permute them between MADEs. Therefore, since
the difference distribution shows strong non-Gaussianity in
only one of the two dimensions, models with more MADEs
are likely to operate on the most efficient orderings of
variables, at the price of some redundancy.
Finally, we illustrate training diagnostics in Fig. 8.

Before training, the sample is randomly split into a training
sample and a smaller validation sample, which is not used
for training, to watch for overfitting. The upper panel shows
the evolution, as a function of training epochs, of the
training and validation losses (given by the average log-
probability of the tranformed samples, see Sec. IVA) in
blue as well as the evolution of the Kolmogorov-Smirnov
statistics, Dn, in yellow. This quantity is testing that the
squared norms of samples in the Gaussianized space
follows a χ22 distribution. This Gaussianization can be
visualized in the middle panel of Fig. 8 where we compare
the distribution of the squared norms of samples in the
Gaussian approximation space (blue histogram) and in the
fully Gaussianized space (yellow histogram) to the χ22
distribution. Finally, we illustrate in the lower panel of
Fig. 8 how the model evolves during training and
approaches the true distribution (black), by showing the
learned distribution at the end of the twenty first epochs
(red to yellow).

C. Informative prior

We now consider an example in which the prior is
informative. We show in Fig. 9 the two distributions that we
use. This example has the highest tension we consider, yet
that can hardly be guessed from one-dimensional margin-
alized posteriors. In this example the first distribution is a
multivariate Gaussian with mean ð1=2;−1=2Þ and diagonal
covariance equal to σ2 ¼ 0.01, while the second distribu-
tion is given by P2 ∼N ðx − y3; 1=2Þ. The second distri-
bution has a direction which is fully degenerate and
constrained by the prior on the unity square. Figure 9 also
clearly shows that, while the prior boundary introduces a
discontinuity in the two posterior distributions it does not
do so for the parameter difference distribution.
The exact input tension for this example is 4.03σ

computed as in the previous example. The Gaussian
estimator applied to the two datasets reports a tension of

FIG. 7. Determination of the tension in the non-Gaussian
example in Sec. V B as a function of number of samples for
KDE estimates in the upper panel and as a function of learning
rate for NF estimates in the lower panel. The exact result is a
2.77σ tension as shown by the black dashed line. In the upper
panel the continuous black lines shows the limiting case of
binomial scaling of errors.
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3.93σ while the Gaussian update estimator reports 3.89σ.
Both Gaussian estimates agree fairly well with the exact
result mostly because the tension in the correlated direction

is so high that details of the degeneracy or the prior hardly
change the end result.
In Fig. 10 we show the absolute error scaling of KDE

estimates with number of samples. As we can see a
meaningful determination of the result requires signifi-
cantly more samples with respect to the previous examples,
compatibly with the input tension which is sensibly larger.
The number of samples is so large that the MISE and

AMISE estimates entirely agree. In this example the
tension is large so the SP estimator is expected to have
good performances as can be clearly seen in Fig. 10. In
particular samples are so sparse around the zero isocontour,
due to the high tension, that the SP estimator has similar
performances to the MISE one with an order of magnitude
less samples.
NF estimates show good performance, somewhat inde-

pendent of the learning rate. However, NFs with eight
stacked MADEs generally show lower errors, especially at
lower learning rate, because of the more complex

FIG. 8. Illustration of training diagnostics for the NF method.
The upper panel shows the evolution of training (solid) and
validation (dashed) losses, in blue, as a function of the number of
epochs (the two almost completely overlap). At the end of every
epoch, we compute the squared norms of the transformed
samples and perform a Kolmogorov-Smirnov (K-S) test, for
which the null hypothesis is that these norms are χ2d-distributed
(here d ¼ 2). We show the evolution of the K-S statistic Dn, in
yellow, in the upper panel on a different y-axis. In the middle
panel, we show the distributions of squared norms of transformed
samples, first through the Gaussian approximation (blue) and
through the trained MAF (yellow). In practice, we draw these
plots at the end of every epoch, allowing the user to monitor
convergence. The lower panel illustrates the learning the differ-
ence distribution, by showing the 95% contours of the approxi-
mate distribution at the end of the first twenty epochs of training
(colored contours). The true distribution is shown in black.

FIG. 9. The relevant posterior distributions of the second
benchmark example in Sec. V C. The upper triangle plot shows
the posteriors for the two single datasets while the lower triangle
shows the posterior of parameter differences. We highlight both
the prior boundary and the iso-contour that is compatible with
zero parameter shift.
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morphology of the difference distribution. The best case is
found for MAFs made of eight MADEs and the smallest
learning rate, in contrast with the previous case, prone to
overfitting. In this case, we find errors of order 0.2 with
negligible bias (over ten runs). We note that the spread is
larger for this example than the previous one. Indeed, we
observed more important fluctuations of the predicted
isocontour of zero shift over the ten runs, consistent with
the fact that training samples are sparser in this case where
the true tension if higher.

D. Multimodal posterior

We last consider an example that entails a multimodal
posterior. We show in Fig. 11 the two distributions that we
use. The first distribution is a multivariate Gaussian with

zero mean and diagonal covariance equal to σ2 ¼ 0.05
while the second distribution is a mixture of two Gaussian
distributions, with weights (2, 1), means (0.5, 0.5) and
ð0.3;−0.5Þ and diagonal covariances both equal
to σ2 ¼ 0.03.
The exact input tension for this example is 1.66σ

computed as in the previous examples on a grid. The
Gaussian estimator applied to the two datasets reports a
tension of 1.07σ while the Gaussian update estimator gets
closer to the correct result and reports a tension of 1.40σ.
Figure 12 shows the behavior of the KDE estimators that

mostly follows previous examples. The large number of
samples and the relatively low tension result in fairly poor
performances of the SP estimator while the MISE/AMISE
estimators show an absolute error decay that is slower than
the binomial power law.
Multimodal distributions can be challenging to model

with normalizing flows, especially with simple autoregres-
sive operations. However, we observe good performance of

FIG. 10. Determination of the tension in the informative prior
example in Sec. V C as a function of number of samples for KDE
estimates in the upper panel and as a function of learning rate for
NF estimates in the lower panel. The exact result is a 4.03σ
tension as shown by the black dashed line. In the upper panel the
continuous black lines shows the limiting case of binomial
scaling of errors.

FIG. 11. The relevant posterior distributions of the third bench-
mark example in Sec. V D. The upper triangle plot shows the
posteriors for the two single datasets while the lower triangle
shows the posterior of parameter differences. We highlight both
the prior boundary and the isocontour that is compatible with zero
parameter shift.
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our NF method in this example, as shown by the small
errors in Fig. 12, albeit with slightly underestimated results.
We find that using larger learning rates provides more
accurate results, similar to the first example, and models
with eight MADEs show lower variance.

VI. APPLICATION TO DES Y1 AND PLANCK

In the previous section we have thoroughly investigated
the behavior of the two techniques to compute the signifi-
cance of parameter differences with benchmark examples
where the answer is known.
In this section we apply these estimators to real data

where the correct answer is not known, showing a use case
with realistic challenges. We consider two datasets: the

clustering and lensing of galaxies from the Dark Energy
Survey (DES) year 1 dataset [27]; the Planck 2018
measurements of CMB temperature and polarization at
small (Planck 18 TTTEEE) and large angular scales
(lowlþ lowE) [1,2].
With these two datasets we investigate two cases. In

Sec. VI A, we quantify the internal consistency of DES
cosmic shear measurements with the DES measurements of
the galaxy-galaxy lensing and galaxy clustering two-point
functions. This case shows appreciable data correlation. In
Sec. VI B, we compute the tension between DES Y1 and
Planck 2018, as an example that does not have appreciable
correlation between the two datasets.

A. DES Y1 cosmic shear vs galaxy-galaxy
lensing and clustering

In this section, we investigate the agreement between
cosmic shear measurements from DES Y1 with those of
galaxy-galaxy lensing and galaxy clustering.
These datasets are strongly correlated, which means that

we must apply the parameter duplication scheme detailed in
Sec. II to sample the parameter difference posterior. Here,
we duplicate the six cosmological parameters used in the
DES Y1 analysis, including the sum of neutrino masses, as
well as the two parameters describing intrinsic alignments
(amplitude and redshift dependence). We do not duplicate
galaxy clustering biases as they only impact the galaxy-
galaxy lensing and clustering measurements, and we opt
not to duplicate other nuisance parameters that are strongly
prior dominated and would considerably increase the
computing time needed to sample the parameter difference
posterior. To sample the parameter difference distribution,
we slightly modify the DES Y1 analysis pipeline within
CosmoSIS [46] to compute the theoretical predictions for
the two subsets of the data vector with their respective
copies of the parameters, and then combine them in the full
likelihood. We sample the posterior with MultiNest [47] and
show 68% and 95% contours in Fig. 14 in red. We find that
the maximum correlation coefficient between all parame-
ters is 58% (see Appendix A of [19]), meaning that it is
indeed crucial to account for the correlation between
datasets. We note that this analysis in parameter space is
complementary to the extensive analysis performed in data
space in [25].
We start by computing Gaussian estimators and find that

standard parameter difference yields a tension of nσ ¼ 0.08
while its update form gives nσ ¼ 0.5. In this case we apply
the Gaussian estimators to the duplicate parameters to
account for the data correlation, as discussed in [19].
In this example the number of samples in the parameter

difference chain is limited by the number of samples in the
nested sampling chain, and it is sensibly lower than what
can be obtained in case of uncorrelated samples. For this
reason we vary the sample pool for the KDE estimation
from 102 samples to all samples in the chain. The number

FIG. 12. Determination of the tension in the multimodal
example in Sec. V D as a function of number of samples for
KDE estimates in the upper panel and as a function of learning
rate for NF estimates in the lower panel. The exact result is a
1.66σ tension as shown by the black dashed line. In the upper
panel the continuous black lines shows the limiting case of
binomial scaling of errors.
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of repetitions of the calculation is then limited by the
random nonoverlapping samples that we can draw. As we
can see in Fig. 13, similarly to the previous case, for very
small sample sizes, all KDE estimates are largely spread
and converge toward nσ ¼ 0.4 as sample size increases. In
this case we notice that the bias of the SP estimator is very
low even at small sample size.
For NF, we also employ the default MAF architecture

with 16 MADEs, for a total of 11008 trainable weights.
With 10 runs, we find nσ ¼ 0.23� 0.02, with a small
variance that can be attributed to the fact that the difference
distribution is very close to Gaussian in this case, as can be
seen on Fig. 14. This result is consistent with the results
obtained with KDE using the full sample. This test shows
good agreement between the subsets of the DES Y1 data
used here, consistent with [25]. Using a comparison in data
space (asymmetric in the two datasets), they found a
calibrated p-value of 0.396 for the “cosmic shear vs
galaxy-galaxy lensing and clustering” consistency test,
which may be compared to our probability of no shift
of Δ ¼ 0.29.

B. DES Y1 3x2pt vs Planck

For this example, we start by sampling the posterior for
each dataset, varying the six parameters of the ΛCDM
model with the noninformative priors used in the Planck
2018 analysis [2]. We also include all the recommended
parameters and priors describing systematic effects in the
different datasets we consider. In this case, the sum of
neutrino masses is fixed to the minimal value of 0.06 eV
(e.g., [48]).
We start by computing the Gaussian tension between the

two datasets we consider. As we have seen in the previous

section, the standard Gaussian formula generally misesti-
mates tensions and in this case reports a tension of
nσ ¼ 0.5. The update Gaussian parameter shift on the
other hand, in presence of at least one Gaussian dataset

FIG. 15. Tension between DES and Planck as in Sec. VI B as a
function of number of samples, as estimated through the KDE
algorithm. Different lines show different algorithms, as shown in
legend.

FIG. 13. Internal tension between DES Y1 lensing and galaxy
clustering, including their cross-correlation, as in Sec. VI A, as a
function of number of samples, according to KDE estimates.
Different lines show different algorithms, as shown in legend.

FIG. 14. Marginalized parameter difference distribution
between DES Y1 cosmic shear and the combination of gal-
axy-galaxy lensing (GGL) and clustering, including their cross-
correlation. We only show the subspace of the most relevant
parameters.
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(Planck), is expected to be precise. In this case the update
difference in mean (UDM) estimator reports nσ ¼ 3.0,
which we can use to gauge the order of magnitude of
the tension. As such this allows us to orientate algorithmic
choices like the number of samples that we would need.
The UDM estimator also reports that only two of the six
parameters we are considering are significantly contribut-
ing to the cosmological parameter constraints and to
this tension determination while the other are prior
dominated. The data constrained parameters are

combinations of σ8 and Ωm that are given by σ8Ω0.7
m

and Ωm=σ8. Even though prior dominated parameter
combinations should not contribute to the end result, as
we have shown in Sec. II A, we still include them in this
calculation.
From the binomial distribution, we would expect to need

at least 5 × 103 samples to quantify a 3 sigma tension with
an accuracy of Δnσ ¼ 0.1. We then increase the number of
samples from 103 to 106 and compute the KDE estimator.
Figure 15 shows the behavior of the KDE estimator at

FIG. 16. Parameter difference distribution between DES Y1 and Planck 18 TTTEEE. The true distribution is shown in red, its
Gaussian approximation in blue and the normalizing flow approximation in yellow. The NF approximation captures non-Gaussian
features of the distribution, including those due to the prior (e.g., on the τ parameter).
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increasing number of samples, averaging the result over ten
pools of samples randomly drawn. As we can see, at low
number of samples, all KDE estimators are largely biased
with respect to their end result, and with a significant spread
of about 0.5σ. As the number of samples increases the
spread between the different estimates reduces and the
different estimators converge to about nσ ¼ 3.1. This slow
convergence is due to the large number of prior constrained
directions that are hard for the KDE estimator to resolve
accurately. We verified that, using only the parameters that
are actually involved in the physical origin of this tension,
the result would give a determination of nσ ¼ 3.1 with
small variation across sample size.
For NF, we employ the default MAF architecture

suggested in Sec. IV with 12 MADEs, for a total of
4752 trainable weights. Following guide lines drawn from
benchmark examples, we initialize the learning rate at a
sufficiently high value of 10−2 and decrease it during
training using the ReduceLROnPlateau callback
implemented in tensorflow.keras.callbacks.
We perform ten runs to assert the level of stochasticity
of the estimator and find a average tension of hnσi ¼ 3.0
with a standard deviation of 0.12 (with extrema at 2.78 and
3.13). We conclude that the suggested architecture provides
sufficiently accurate estimates of tension in this real-data
example. Finally, in order to demonstrate the quality of the
approximation q to the parameter difference distribution P,
we overlay in Fig. 16 the 68% and 95% contours for the
real chain samples (in red) and for a sample of 104 points
drawn from the approximation q. The agreement between
the two sets of contours shows that the NF model can learn
non-Gaussian features of the distribution, including those
induced by the complex prior (e.g., for the τ parameter).

VII. CONCLUSIONS

As the precision of different cosmological datasets
increases, so does the need to reliably check and monitor
their consistency. In this paper we have studied a method
for doing so that relies on and exploits the full distribution
of differences between the posteriors of two experiments.
We have characterized the properties of this parameter
difference estimator showing that it allows to characterize
tensions between probes, making no assumption about the
underlying distribution of parameters.
We have developed two complementary algorithms for

the efficient calculation of the statistical significance of a
parameter difference and shown that they generally achieve
fully workable performances through a series of toy
examples. These show that a tension ranging from 1σ to
4σ in dimension 2 to 30 can be accurately calculated with
an error that is below a fraction of a sigma.
The first method we develop relies on kernel density

estimates (KDE) of the posterior with fixed and variable
smoothing scale. We found that estimates with fixed

smoothing scale work best in low dimensions and show
fast convergence. Variable smoothing scale estimators, on
the other hand, show slower convergence but largely
outperformed fixed smoothing scale estimator in high
dimensions with limited number of posterior samples.
We have developed an algorithm that solves the problem
of the KDE estimator that would naively scale as the
number of posterior samples squared, while our neighbor
elimination algorithm scales as Oðn log nÞ, outperforming
FFT based methods in dimension larger than two.
The second method we develop uses normalizing flows

to learn and model the parameter difference posterior
distribution from its samples and provides a first use case
for machine learning techniques at the problem of estimat-
ing tensions between datasets. This technique shows good
scaling to large number of samples and high dimension,
benefiting from efficient implementations of normalizing
flows algorithms in TensorFlow-Probability. In particular,
the running time for the normalizing flow estimate is
determined by the number of updates during training rather
than the number of samples. The more samples are
available, the more diverse minibatches are and the faster
the model converges.
The two calculation methods we presented have to agree

exactly on the statistical significance of a tension. Since
they are profoundly different in the way statistical signifi-
cance is obtained, their spread can be used as a reliable
global error estimate, as both results can be obtained in
reasonable time on a laptop (from few minutes to few
hours). Our benchmark experiments show that the two
methods agree with each other and the true tension within
0.5σ in difficult cases, and generally within 0.1–0.2σ or
better, provided enough samples are used.
We have showcased their use with two examples from

cosmology. In the first one we have quantified the internal
agreement at parameter level of galaxy clustering and
lensing from the first year release of DES, finding them
in excellent agreement, at the 0.3σ level. We have then
quantified the level of agreement between CMB power
spectrum measurements from Planck and DES finding
them in a significant tension equivalent to 3σ. This is
slightly larger than what reported in [26] since we fix
neutrino masses to their minimal value, thus increasing the
precision of other parameter determinations and hence their
tension.
Looking forward, several improvements to the tech-

niques we discuss would be worth pursuing. For KDE
methods these would include the development of smooth-
ing scale selectors optimized at the specific isocontour
problem at hand rather than general purpose performances
across all parameter space. For normalizing flow estimates,
an improvement will be to simultaneously train an ensem-
ble of models and average the results, with weights based
on the quality of the fit of each model.
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