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We show that monopoles can be pair produced by cosmological magnetic fields in the early Universe.
The pair production gives rise to relic monopoles and, at the same time, induces a self-screening of the
magnetic fields. By studying these effects we derive limits on the monopole mass and also on the initial
amplitude of primordial magnetic fields. Monopoles of GUT scale mass can even be produced if primordial
magnetic fields exist at sufficiently high redshifts.
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I. INTRODUCTION

The hypothesis that magnetic monopoles exist, albeit
without any experimental evidence, has long been a subject
of intense research. Monopoles would symmetrize
Maxwell’s equations and, moreover, their existence would
be tied to the observed quantization of electric charge
through the Dirac quantization condition eg ¼ 2πn, n ∈ Z
[1]. Besides the possibility that monopoles are elementary
particles, they can be realized as topological solitons in
spontaneously broken gauge theories as shown by ’t Hooft
and Polyakov [2,3]. The fact that such soliton solutions are
contained in any grand unified gauge theory (GUT), in
which the electromagnetic U(1) is embedded in a semi-
simple gauge group, makes monopoles an inevitable
prediction of grand unification.
Despite the strong theoretical support for their existence,

monopoles remain elusive in experimental searches. One
reason is that their masses are expected to be superheavy.
Solitonic monopoles have masses of the order of the
symmetry breaking scale, which for GUT monopoles is
typically 1016 GeV, and thus is far beyond the reach of
terrestrial colliders. This does depend on the model and
much lighter monopoles can also arise, for instance, in
theories with several stages of symmetry breaking [4].
However, even with a small mass, producing solitonic
monopoles at colliders has been argued to be strongly
suppressed due to their high degree of compositeness [5,6].
It is also important to note that the computation of the
production cross section of monopoles is a challenging task

in itself. This is because the Dirac quantization condition
demands jgj ≫ 1 for jej ≪ 1, rendering monopoles strongly
coupled and perturbation theory invalid.
On the other hand, a symmetry breaking phase transition

in the early Universe copiously produces solitonic monop-
oles with an abundance that would overdominate the
present Universe, unless the symmetry breaking scale is
very low. This was one of the motivations for inflationary
cosmology, which dilutes away the monopoles by a period
of a rapid cosmological expansion [7–10]. By solving the
monopole problem, however, cosmic inflation also prohib-
its relic monopoles from a phase transition to be observed.
Another possible venue for monopole production is in

strong magnetic fields, from which monopole-antimono-
pole pairs are nonperturbatively produced. This is the
magnetic dual of the Schwinger process [11–13], and the
rate of monopole pair production with arbitrary coupling
was computed using an instanton method in [14,15].
Monopole production from magnetic fields in magnetars
(highly magnetized neutron stars with fields up to
B ∼ 1015 G ∼ 10−5 GeV2) and heavy-ion collisions (B∼
1018 G ∼ 10−2 GeV2 at CERN Super Proton Synchrotron)
have been studied, by further taking into account finite-
temperature effects into the calculations [16–19] (see [20]
for a review). However, even in such environments the
magnetic fields are not strong enough to produce monop-
oles with masses much larger than a GeV.
Magnetic fields also exist in the cosmic space on various

length scales, with their origin still remaining a mystery.
Spiral galaxies are known to host magnetic fields of B ∼
10−5 G [21]. Recent gamma ray observations suggest the
presence of magnetic fields even in intergalactic voids with
strength B≳ 10−15 G coherent on Mpc scales or larger
[22–24], giving strong indication that they are remnants of
primordial magnetic fields produced in the early Universe.
Importantly, if (some parts of) the cosmological magnetic
fields are actually of primordial origin, then even if their
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present field strengths are weak, they could have been
extremely strong in the early Universe.
In this paper we show that (even superheavy) monopole-

antimonopole pairs can be produced by primordial mag-
netic fields and explore their cosmological implications. A
strong enough primordial magnetic field dissipates energy
by the monopole pair production, and also by accelerating
the monopoles. By evaluating these effects, we obtain
consistency conditions for primordial magnetic fields to
survive until today to make up the observed magnetic
fields, within physical theories that contain either elemen-
tary or solitonic monopoles. We also discuss the possibility
of primordial magnetic fields producing an observable
abundance of monopoles in the Universe, or even giving
rise to a new kind of monopole problem. Based on these
discussions, we derive lower bounds on the monopole
mass, under the assumption that the observed cosmological
magnetic fields have a primordial origin.
Our discussion regarding the dissipation of primordial

magnetic fields is quite distinct from those of the so-called
“Parker limit” on the monopole flux, obtained by requiring
the survival of galactic magnetic fields [25,26]. (See also
[27] which studied the Parker limit for primordial magnetic
fields.) While these works assume a hypothetical abun-
dance of preexisting monopoles, here the monopoles are
produced by the primordial magnetic field itself, and thus
the monopole abundance is uniquely determined.1 This
enables us to obtain a direct bound on the monopole mass,
as a function of the primordial magnetic field strength.
This paper is organized as follows: In Sec. II we compute

the number of monopoles produced in primordial magnetic
fields. In Sec. III we evaluate the magnetic field dissipation
by the monopoles, as well as the monopole relic abun-
dance, and derive limits on the primordial magnetic field
strength. In Sec. IV, the magnetic field limit is translated
into limits on the monopole mass and the energy scale of
magnetic field generation. We then conclude in Sec. V. In
Appendix A we present a general formalism for analyzing
the magnetic field dissipation by monopoles and also
analyze effects that are not discussed in the main text. In
Appendix B we give the relations between the Hubble rate,
cosmic temperature, and redshift during the reheating and
radiation-dominated epochs. In Appendix C we give a
lower limit on the relic abundance of solitonic monopoles
produced at a symmetry breaking phase transition.
Throughout this paper we use Heaviside-Lorentz units,

with c ¼ ℏ ¼ kB ¼ 1. MPl refers to the reduced Planck
mass ð8πGÞ−1=2. Unless explicitly noted, our discussions
cover both elementary and solitonic monopoles. The
magnetic charge of the monopole is typically large (e.g.,
g ≈ 21n for e ≈ 0.30), however, most of the analyses apply
even if g is tiny.

II. MONOPOLE PAIR PRODUCTION IN
MAGNETIC FIELDS

A. Vacuum decay rate

Analyses of pair production in an external field often
invokes a weak coupling, as was also assumed by
Schwinger [13], however, this does not necessarily apply
to monopoles due to the Dirac quantization condition.
Using an instanton method, the authors of [14,15] derived
an expression for the vacuum decay rate due to monopole-
antimonopole pair production in a static magnetic field as

Γ ¼ ðgBÞ2
ð2πÞ3 exp

�
−
πm2

gB
þ g2

4

�
; ð2:1Þ

where B is the magnetic field strength, m is the monopole
mass, and g is the amplitude of the magnetic coupling (thus
g is non-negative hereafter). This result is valid for an
arbitrary g, as long as the field is sufficiently weak such that

gB
m2

≲ 1; ð2:2Þ

g3B
m2

≲ 4π: ð2:3Þ

The second condition suggests that the expression (2.1) is
valid while its exponent is negative, and this is stricter than
the first condition if g ≫ 1. It can be understood as the
requirement that, in order for the semiclassical instanton
techniques used to obtain (2.1) to be valid, the loop radius
of the classical instanton solution [14,15],

R ¼ m
gB

; ð2:4Þ

should be larger than the size of a monopole,2

r ∼
g2

4πm
: ð2:5Þ

The expression (2.1) can receive corrections also from
finite-temperature effects, when the inverse of the temper-
ature of the thermal bath is smaller than the instanton radius
1=T < R; such thermal corrections to the monopole pro-
duction rate have been computed in [16,18]. Gravitational
effects on the monopole production are less studied, but one
naively expects that the rate receives corrections when the
curvature radius of the spacetime is smaller than R; in a

1If there are additional monopole producing processes such as
a thermal production [28], then our bound becomes tighter.

2The classical radius of a vanilla ’t Hooft-Polyakov monopole
is of (2.5) [29]. It has been claimed that elementary monopoles
should also have a similar spatial extension [30–32]; one simple
argument is that the classical point-particle picture should break
down at distances shorter than (2.5) since otherwise the sum of
the rest energy and potential energy of a monopole-antimonopole
pair can become negative and render the vacuum unstable.
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Friedmann-Robertson-Walker (FRW) Universe, this con-
dition is written as 1=H < R, where H is the Hubble
expansion rate.3 Moreover, primordial magnetic fields
redshift with the expansion of the Universe on a time scale
of order the Hubble time; this time dependence can also
modify the rate if 1=H < R (see e.g., [19] for discussions
on pair production in spacetime-dependent fields). These
corrections would enhance the pair production rate, even
enabling the pair production to proceed via sphalerons, if
the temperature and/or the Hubble scale are sufficiently
high.
We should also note that in (2.1), m and g should be

taken to be the renormalized quantities [15]. However, we
ignore their runnings, which should be good enough for the
approximate calculations in this paper.

B. Number density

In order to evaluate the number of monopoles produced
from primordial magnetic fields, we identify the decay rate
(2.1) with the rate of pair production per unit volume per
unit time.4 Then the number density n of monopole-
antimonopole pairs follows

_n ¼ −3Hnþ Γ; ð2:6Þ

where an overdot denotes a derivative with respect to
physical time t, and the Hubble rate isH ¼ _a=a in terms of
the scale factor a. Considering the magnetic field to be
effectively homogeneous, this equation is integrated to
yield

nðtÞ ¼ 1

aðtÞ3
Z

t

ti

dt0 aðt0Þ3Γðt0Þ; ð2:7Þ

where ti denotes the time when the magnetic field is
switched on. Here, Γ depends on time through its depend-
ence on the magnetic field, which redshifts with the
expansion of the Universe. We parametrize the redshifting
of the magnetic field strength as

B ∝ a−p; ð2:8Þ

with p being a positive constant of order unity. Without any
source, primordial magnetic fields redshift with p ¼ 2,

however, different values of p can also be realized in the
presence of matter or with stronger electric fields [36].
Here, let us also introduce a dimensionless quantity

ϵ≡ gB
πm2

; ð2:9Þ

which obeys ϵ ≪ 1 when the first weak field condition
(2.2) is well satisfied. Since the production rate Γ depends
exponentially on B, it decays very quickly under weak
fields on a time scale of ΔtΓ ¼ jΓ= _Γj ≃ ϵ=ðpHÞ ≪ 1=H.
Hence the integral in (2.7) is dominated by the lower limit,
and we obtain an approximate expression for the pair
number density valid for t≳ ti þ ΔtΓi as

5

n ∼
ðΔtΓa3ΓÞi

a3
¼ ϵiΓi

pHi

�
ai
a

�
3

; ð2:12Þ

where quantities measured at the initial time ti is denoted
by the subscript i.
The “initial time” ti, which we defined as the moment

when the magnetic field switches on and begins to redshift
as (2.8), can be understood as the time when the magnetic
field generation has concluded. To keep our discussion
general we do not specify the concrete mechanism of
primordial magnetic field generation, but the time when the
generation process completes could, for instance, be at the
end of inflation [37,38], after inflation when the Universe is
dominated by an oscillating inflaton [39], or at cosmo-
logical phase transitions [40,41].

III. EFFECTS OF PRODUCED MONOPOLES

As one can read off from the expression (2.1) for Γ, the
exponential suppression factor disappears and monopole
production becomes significant as the magnetic field
strength approaches the value,

3Pair production of charged scalar particles by electric fields in
de Sitter space was analyzed in [33]. It was found that the flat-
space result is modified at H2 ≳ eE, which is different from the
above naive guess of 1=H < R (with the replacement
g; B → e; E). It would be interesting to explicitly compute the
monopole production rate in a curved spacetime and check when
gravitational effects become important.

4The two rates are not necessarily the same [34]. The pair
production rate in an electric field is computed in [35], however, it
is also found that this matches with the vacuum decay rate in the
weak field limit. Hence we suppose that they also match for
monopoles in weak fields.

5The integral in (2.7) can be directly performed when the
background Universe has a constant equation of state w such that
H ∝ a−3ð1þwÞ=2, as

n ¼ e
g2

4
1

8πp
m4

Hi

�
ai
a

�
3

ϵbþ2
i

�
G
�
b;

1

ϵi

�
− G

�
b;
1

ϵ

��
; where

b ¼ 3ð3þ wÞ
2p

− 2: ð2:10Þ

Here we assumed b > 0, and Gðb; zÞ ¼ R∞
z xb−1e−xdx is the

incomplete gamma function. By using the asymptotic form
Gðb; 1=ϵÞ ∼ ϵ−bþ1e−1=ϵ in the weak field limit ϵ → 0, one obtains

n ∼
ϵiΓi

pHi

�
ai
a

�
3

−
ϵΓ
pH

: ð2:11Þ

The first term dominates at t≳ ti þ ΔtΓi, and then the expression
reduces to (2.12).
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B⋆ ¼ 4π
m2

g3
: ð3:1Þ

This is also the field strength which saturates the second
weak field condition (2.3). In this section we show that
primordial magnetic fields could not have been stronger
than B⋆, by evaluating the backreaction of the monopoles
on the magnetic field, and also the monopole relic
abundance.
We will mostly consider times long before the electro-

weak phase transition, therefore, the primordial magnetic
field and the monopoles are actually those of the hyper-
charge U(1) gauge field. When these are converted into the
magnetic fields and monopoles of the electromagnetic U(1)
at the electroweak phase transition, quantities such as the
magnetic field strength and magnetic charge will change by
a number of order unity that depends on the Weinberg
angle, however, this will not be important for our
discussions.

A. Magnetic field dissipation by monopole production

In terms of the energy density of the magnetic field,

ρB ¼ B2

2
; ð3:2Þ

the magnetic field scaling (2.8) is rewritten as

ð_ρBÞred ¼ −2pHρB; ð3:3Þ

where we have added a subscript “red” to specify that this
contribution to _ρB represents the redshifting of the magnetic
field due to the cosmic expansion. The time scale of
redshifting, Δtred ¼ jρB=ð_ρBÞredj ¼ 1=2pH, is of order
the Hubble time.
Additionally, each time the field produces a monopole-

antimonopole pair it looses energy corresponding to the rest
energy of the pair, ΔEB ¼ −2m.6 Thus the energy dis-
sipation due to pair production per unit time and volume is

ð_ρBÞprod ¼ −2mΓ: ð3:4Þ

This dissipation rate is smaller than the rate of redshifting,
i.e., 2mΓ < 2pHρB, if

B < Bprod ¼
4πm2

g3

�
1þ 4

g2
ln

�
g2

4π3p
m
H

��−1
: ð3:5Þ

A magnetic field stronger than the right-hand side would
quickly decay through monopole production on a time
scale shorter than a Hubble time, until the field falls below
Bprod. Hence (3.5) gives an upper bound on the primordial
magnetic field strength.
The expression for Bprod becomes negative if

ð4=g2Þ ln½ðg2=4π3pÞðm=HÞ� < −1. This implies that in
such a case the dissipation becomes significant only at
very strong fields where the expression (2.1) for Γ breaks
down. However, the logarithmic term is generically larger
than −1 if g ≫ 1: Even in the extreme case where the
monopole mass saturates its lower bound m≳ 1 GeV
derived from heavy-ion collisions [17],7 and the Hubble
scale saturates the upper bound H ≲ 1014 GeV on the
inflation scale [42], we get ð4=g2Þ lnðm=HÞ≳ −0.5 as long
as g≳ 16. Hence by supposing g ≫ 1 and considering the
logarithmic term to be either negligible or positive, we get
Bprod ≲ B⋆, which guarantees that the weak field conditions
(2.2) and (2.3) are satisfied at B ¼ Bprod.
One can also check that, under the weak field conditions,

the ratio B=Bprod monotonically decreases in time, which
indicates that the energy dissipation by the monopoles is
more important at earlier times. Hence (3.5) also sets a
lower limit on the time of magnetic field generation, as we
will see explicitly in Section IV.

B. Magnetic field dissipation by monopole acceleration

After the monopoles are produced, they are accelerated
by the magnetic fields and thus further deplete the magnetic
field energy.8 We first evaluate this effect by assuming that
the (anti)monopoles move with relativistic velocities v ≃ 1
in the (reverse) direction of the magnetic field. Then each
(anti)monopole gains kinetic energy of ΔEM ¼ gBΔt and,
in turn, the magnetic field loses energy per unit time and
volume as

ð_ρBÞR ¼ −2ngB: ð3:6Þ

Let us for the moment only consider pairs that are produced
during an interval ΔtΓ around the time of consideration and
substitute for the pair density [see discussions around
(2.12)],

6By equating the pair’s rest energy with its potential energy
due to the background magnetic field, one obtains the critical
separation between the pair upon creation as rc ¼ 2m=gB, which
is of the same order as the instanton radius (2.4). The depletion of
the field energy ΔEB ¼ −2m corresponds to the decrease in the
net magnetic field strength due to a monopole-antimonopole pair
separated by rc. Under the weak field condition (2.3), the
attractive force between a pair separated by rc is weaker than
the repulsive force imposed by the background field.

7A similar bound on m can also be derived by combining
discussions on the thermal production of monopoles [28] with the
lower limit on the reheating temperature from Big Bang Nucleo-
synthesis (BBN).

8This discussion of monopole acceleration follows that of
[25,26]. There is, however, a key difference that here the
monopole abundance is produced by the magnetic field itself
and thus is uniquely determined.
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n →
ϵΓ
pH

: ð3:7Þ

This amounts to ignoring energy dissipation by the accu-
mulated abundance of monopoles produced in the past, and
thus we will obtain a conservative bound on the field
strength. Then one finds that the dissipation rate (3.6), due
to accelerating relativistic monopoles, is smaller than the
rate of redshifting (3.3), i.e., 2ngB < 2pHρB, when

B < BR ¼ πm2

2g
1

WðxRÞ
with xR ¼ e

g2

8
g

4πp
m
H
: ð3:8Þ

Here, WðxÞ is the Lambert W-function which is a solution
ofWeW ¼ x; it is non-negative and increasing for x ≥ 0. BR
also serves as an upper limit on the magnetic field strength,
beyond which the field quickly decays by accelerating the
monopoles the field itself has produced.
One can obtain an approximate expression for BR if the

first weak field condition (2.2) is well satisfied, i.e.,
2gBR=πm2 ¼ 1=WðxRÞ ≪ 1. This is equivalent to
xR ≫ 1, for which we can use the rough approximation
WðxRÞ ∼ ln xR [43] to obtain

BR ∼
4πm2

g3

�
1þ 8

g2
ln

�
g

4πp
m
H

��
−1
: ð3:9Þ

This now takes a form similar to the upper bound (3.5) from
pair production, except for the logarithmic factor.
In the above discussions we assumed the monopoles to be

relativistic, however, one obtains similar results also for
nonrelativistic monopoles. From the equation of motion of a
nonrelativisticmonopole/antimonopole, m̈z ¼ �gBwhere z
is the direction of the magnetic field, the distance the
monopole/antimonopole travels is Δz ¼ �ðgB=2mÞðΔtÞ2,
supposing they are initially at rest. Here we ignored the time
dependence of B, as well as the effect of the cosmological
expansion on themonopole dynamics; this is becausewe are
interested in cases where the magnetic field is dissipated on
time scales comparable to, or shorter than, aHubble time, and
also because we use this computation only while the
magnetic field strength changes by an order-unity factor.9

Thus by accelerating n pairs from zero initial velocity, the
magnetic field looses its energy density during Δt as

−ΔρB ¼ 2ngBjΔzj ¼ ng2B2

m
ðΔtÞ2: ð3:10Þ

Equating this with ρB, one obtains the characteristic time
scale of magnetic energy dissipation,

ΔtNR ¼ 1

g

ffiffiffiffiffiffi
m
2n

r
: ð3:11Þ

The condition for this to be longer than the time scale of
redshifting Δtred ¼ 1=2pH [cf. (3.3)] is obtained by sub-
stituting (3.7) for n as

B < BNR ¼ πm2

3g
1

WðxNRÞ
with xNR ¼ e

g2

12
g2=3

6ð2πÞ1=3p
m
H
:

ð3:12Þ

Under the first weak field condition (2.2), this upper limit is
approximated by

BNR ∼
4πm2

g3

�
1þ 12

g2
ln

�
g2=3

6ð2πÞ1=3p
m
H

��−1
: ð3:13Þ

Since (3.9) and (3.13) differ only by the logarithmic factor,
we conclude that the order ofmagnitude of themagnetic field
limit does not depend on whether the monopoles are
relativistic or not.
We have treated the primordial magnetic field as effec-

tively homogeneous, by supposing the coherence length of
the field to be larger than the Hubble radius at the time of
consideration. In fact, the observationally hinted interga-
lactic magnetic field typically has a coherence length of
Mpc scale or larger [22–24], which, if it is of primordial
origin, reenters the horizon only at a0=a≲ 106. However, if
the primordial magnetic field had inhomogeneous compo-
nents with subhorizon coherence lengths in the early
Universe, then the monopoles would not always travel in
the direction of the magnetic field, and thus the energy
dissipation via monopole acceleration would be less effec-
tive (see [26] for similar discussions for monopoles in
galactic magnetic fields).
We also remark that, in the above analyses, we only

included monopoles produced “on the spot” and ignored
monopoles that have already been produced in the past.
Depending on the time evolution of the monopole velocity,
the population of monopoles from the past may more
effectively deplete the magnetic field energy, in which case,
the bound on the magnetic field strength becomes even
tighter. Discussions on this point, as well as a general
formalism for analyzing the magnetic field dissipation by
both the production and acceleration of all existing monop-
oles, are presented in Appendix A.

C. Monopole relic abundance and flux

Constraints on the relic density of the produced monop-
oles yield further limits on primordial magnetic fields.
Supposing the monopoles today to be nonrelativistic, their
relic density is obtained as

9When taking into account the backreaction of the monopoles,
one obtains an oscillatory solution for the magnetic field; this
magnetic field oscillation is expected to decay by a Landau
damping [26].
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ρM0 ¼ 2mn0 ∼
2mϵiΓi

pHi

�
ai
a0

�
3

; ð3:14Þ

where we used (2.12), and the subscript “0” denotes values
in the present Universe. Requiring the density of monop-
oles not to exceed that of dark matter, i.e., ρM0 < ρdm0 ≈
0.3ρcrit0 [42], we obtain an upper limit on the initial
magnetic field strength (the value when magnetic field
generation concludes) as

Bi < Bdm ¼ πm2

3g
1

WðxdmÞ
with

xdm ¼ e
g2

12

�
1

108πp
m5

Hiρdm0

�
1=3 ai

a0
: ð3:15Þ

In order to evaluate ai=a0, let us suppose that the
generation of the primordial magnetic field concludes at
the end of inflation or later, but before matter-radiation
equality. We further assume a postinflation history starting
with an epoch dominated by an oscillating inflaton, which
eventually decays away and initiates the radiation-dominated
epoch. We use the subscript “end” to denote quantities at the
end of inflation, “dom” at the time when radiation domina-
tion takes over, and “eq” at matter-radiation equality.
The Hubble scale during the postinflation epochs as a

function of the scale factor is given in Appendix B. Using
(B2) and (B4) to rewrite ai in terms of Hi, one obtains

xdm∼e
g2

12
1

p1=3

�
m

109GeV

�
5=6

�
m
Hi

�
5=6

min

�
1;

�
Hdom

Hi

�
1=6

�
;

ð3:16Þ
where the last factor depends on whether the magnetic
field generation completes during radiation domination
(Hi < Hdom), or in an earlier epoch (Hi > Hdom).
Further using the weak field condition, the magnetic field
limit is thus approximately written as

Bdm ∼
4πm2

g3

�
1

þ 12

g2
ln

�
1

p1=3

�
m

109 GeV

�
5=6

�
m
Hi

�
5=6

× min

�
1;

�
Hdom

Hi

�
1=6

���
−1
; ð3:17Þ

which differs from the other bounds only by the logarithmic
factor.
A few comments are in order. First, since the monopoles

are continuously accelerated by the magnetic fields,
they may withstand the Hubble damping and be moving
with relativistic velocities in the current Universe
(cf. Appendix A 2). In such a case, the relic density is
larger than (3.14), and the relativistic monopoles serve as
extra radiation which is constrained by cosmic microwave

background (CMB) observations and BBN, yielding a
tighter bound on Bi. Secondly, we assumed that the
annihilation of monopoles and antimonopoles does not
significantly reduce their abundance. According to the
analyses in [44,45], the annihilation only becomes relevant
if the monopole number density is so large as to lead to an
overabundance (unless the mass is very light). The dis-
cussion may be modified in the presence of cosmological
magnetic fields, which pull the monopoles and antimono-
poles apart. It will be interesting to study annihilation
effects in a magnetic field background.
One can further compute the average flux of monopoles,

F ¼ 2n0v0=4π, with v0 being the monopole velocity, and
compare with various existing bounds [46,47] including the
Parker limit [25–27]. Depending on the monopole mass,
the flux bounds give stronger constraints than ρM0 < ρdm0.
However, they do not drastically improve the limit on Bi,
which depends on the bound on the monopole abundance
only through the logarithmic factor.

D. Remarks on solitonic monopoles

For monopoles that are topological solitons of sponta-
neously broken gauge theories, the discussions above do
not apply when the symmetry is unbroken, as then the
monopole solution does not exist. Thus strong magnetic
fields can exist without producing monopoles while the
cosmic temperature and/or the Hubble rate is larger than the
symmetry breaking scale, σ < max :fT;Hg. Even with a
low temperature and Hubble rate, the magnetic field itself
may restore the symmetry if it is stronger than B⋆ [48–50].
(The explosive production of monopole-antimonopole
pairs at B ∼ B⋆ may be related to this symmetry restora-
tion.) However, if the symmetry is unbroken at some time
during the postinflation era, then later at the symmetry
breaking phase transition, monopoles are copiously pro-
duced and eventually overdominate the Universe, unless
the symmetry breaking scale is very low. It should also be
noted that this monopole problem is particularly severe if
the phase transition happens prior to radiation domination
(see Appendix C).
Hence, although the magnetic field limits can, in

principle, be evaded by keeping the symmetry unbroken,
one has to pay the price of endangering the Universe with
the monopole problem. Therefore, it is safe to assume also
for solitonic monopoles that primordial magnetic fields
beyond the aforementioned upper limits could not have
existed in the postinflation Universe.
We also remark that in a phase of broken symmetry, the

magnetic field strength in a radiation-dominated Universe
is bounded from above by the symmetry breaking scale,
and thus is typically well below B⋆. On the other hand,
stronger fields can exist in the preradiation-dominated era,
during which solitonic monopoles can be abundantly
produced. We will see this in detail in Sec. IV B.
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E. Summary: A conservative bound

In the previous subsections we derived upper limits on
the primordial magnetic field amplitude, beyond which the
magnetic field self-screens by producing monopole-anti-
monopole pairs (3.5), or by accelerating the produced
monopoles (3.9) and (3.13). A cosmological upper limit
(3.17) was also derived by the requirement that the
magnetic field does not overproduce monopoles in the
Universe. These limits from self-screening and overpro-
duction are all comparable to or smaller than B⋆, as one can
check by following a discussion similar to that below (3.5).
Potential loopholes to the individual limits were discussed

in each subsection, but let us give a few more remarks:
(i) Corrections to pair production rate. The expression

(2.1) for Γ used in our analyses can break down at
the values of B where self-screening or monopole
overproduction takes place, if (a) the weak field
conditions are violated, or (b) the cosmic temper-
ature/Hubble scale are sufficiently high to induce
finite-temperature/gravitational corrections. We dis-
cussed below (3.5) that (a) is unlikely for g ≫ 1,
however, there can still be some corrections to Γ
since B⋆ only marginally satisfies the second weak
field condition (2.3). Regarding (b), note that the
radius (2.4) of the classical instanton solution at B⋆
is R⋆ ¼ g2=ð4πmÞ. For solitonic monopoles whose
masses are related to the symmetry breaking scale
typically via m ∼ gσ, one finds during the symmetry
broken phase, i.e., σ > T;H, that ð4π=gÞR⋆ ≲ 1=T;
1=H. If g ∼ 10, then we get R⋆ ≲ 1=T; 1=H, and
hence we can safely use the zero-temperature and
flat-space expression (2.1). The corrections, how-
ever, may become important if the actual limits such
as Bprod are much smaller than B⋆, or in the late
Universe when B is small. We also note that this
discussion based on the symmetry breaking scale does
not directly apply to elementary monopoles. When
(2.1) breaks down, pair production tends to take place
at a faster rate. Therefore, we expect that corrections to
Γ, if any, can only make the upper limits on the
primordial magnetic field more stringent.

(ii) Interaction with thermal plasma. We have ignored
the interaction ofmonopoles with the thermal plasma,
which can affect our discussions in the following
ways: (a) The friction from theplasmamayslowdown
the monopole (see e.g., [51]) and render the magnetic
field dissipation via monopole acceleration less effi-
cient. (b) Strong magnetic fields in the preradiation-
dominated era (such as those generated in the
magnetogenesis scenarios of [37–39]) can give away
large energy to the monopoles, which in turn may
raise the temperature of the plasma. If such a monop-
ole-mediated reheating were to happen, then it would
modify the perturbative reheating historywe assumed
for evaluating the monopole relic density.

(iii) Thermal production. Monopoles can also be ther-
mally produced in the early Universe. In particular for
solitonic monopoles, according to the analysis in [28],
there can be a temperature window below the sym-
metry breaking scale where an observable monopole
abundance is thermally produced. However, this
analysis assumes entropy conservation after the
monopole production, and thus is modified in the
preradiation-dominated epoch. In any case, the exist-
ence of such an additional monopole population would
further tighten the magnetic field limits we discussed.

(iv) Effects on magnetic field generation. Our field limits
should be applied to primordial magnetic fields after
their generation process has completed. This is
because during the magnetic field generation, the
field can grow faster than it is dissipated by the
monopoles, and/or the U(1) gauge theory itself is
modified such that the magnetic energy density does
not take the form ρB ¼ B2=2 (as is typically the case
for Weyl symmetry-breaking magnetogenesis sce-
narios). If the monopoles are solitonic, then mod-
ifications of the gauge theory can further affect the
monopole solution itself. We also note that the
calculation of the monopole relic density is modified
if the magnetic field generation completes before the
end of inflation. It would be interesting to study how
monopoles affect various magnetic field generating
mechanisms.

While most of the effects discussed here and in each
subsection further tighten our magnetic field limits, some of
them may weaken the limits. However, we also note that
none of the effects seem capable of evading all limits in one
go. Thus we conclude that if either elementary or solitonic
monopoles are contained in the physical theory, then the
amplitude of primordial magnetic fields in the postinflation
Universe is always bounded from above as

B≲ B⋆ ¼ 4π
m2

g3
: ð3:18Þ

We stress that this is a conservative upper bound, and the
magnetic self-screening and/or monopole overproduction
can happen with weaker fields.

IV. LIMITS ON MONOPOLE MASS AND
PRIMORDIAL MAGNETIC FIELDS

A. General limits

We now discuss the implications of the bound (3.18) for
primordial magnetic field generation and monopoles.
Below we suppose the magnetic field to redshift consis-
tently as B ∝ a−2, i.e., (2.8) with p ¼ 2, after being
generated. Then Bi < B⋆ imposes a lower bound on the
scale factor (or equivalently an upper bound on the redshift)
when the magnetic field generation completes,

MONOPOLE-ANTIMONOPOLE PAIR PRODUCTION IN … PHYS. REV. D 104, 043501 (2021)

043501-7



ai > a⋆ ¼ a0

�
B0

B⋆

�
1=2

; ð4:1Þ

with the right-hand side expressed in terms of the present-
day magnetic field strength B0. This in turn sets an upper
bound on the Hubble scale as Hi < Hða⋆Þ. (We remind the
reader that Hi is the Hubble scale at the completion of the
magnetic field generation; see discussions below (2.12).
For instance, in inflationary magnetogenesis scenarios
where the magnetic fields are excited during the inflation
epoch, Hi is equal to the Hubble scale at the end of
inflation, Hend.)
We assume the magnetic field generation was completed

either at the end of inflation, or during the subsequent
reheating or radiation-dominated epochs (i.e., tend ≤
ti < teq), and adopt the usual postinflation history based
on perturbative reheating as described in Sec. III C or
Appendix B. Then calculating Hða⋆Þ using (B2) and
(B4), we obtain an upper limit on Hi, whose form depends
on whether a⋆ is smaller or larger than the scale factor upon
radiation domination adom,

10

Hi ≲Hdom min

��
adom
a⋆

�
2

;

�
adom
a⋆

�
3=2

�
;

adom
a⋆

∼
�

Hdom

1014 GeV

�
−1=2

�
B0

10−15 G

�
−1=2

�
mg−3=2

1011 GeV

�
:

ð4:2Þ

The combination mg−3=2 derives from (3.18), which traces
back to the ratio between the two terms in the exponent of Γ,
cf. (2.1). This upper limit onHi can also bewritten as a lower
limit on the monopole mass,

m

g3=2
≳ 1011 GeV

�
B0

10−15 G

�
1=2

�
Hi

1014 GeV

�
1=2

× max

�
1;

�
Hi

Hdom

�
1=6

�
: ð4:3Þ

Thus we have obtained a consistency bound on monopoles
(m, g) and primordial magnetic fields (B0, Hi), for a given
postinflation history characterized by Hdom.
The temperature at the onset of radiation domination

Tdom, which is often referred to as the reheat temperature, is
related to Hdom via (B4). It is required to lie within the
range 10−3 GeV≲ Tdom ≲ 1016 GeV, where the lower
bound comes from BBN, and the upper bound is from
the observational limit on the energy scale of inflation [42].
The reference value for the present-day magnetic field in

the above expressions is taken from the claimed lower limit
B0 ≳ 10−15 G on intergalactic magnetic fields from gamma
ray observations [22–24]. (If the coherence length λ of the
magnetic field is much smaller than a Mpc, then the lower
limit improves as λ−1=2.) We also remark that a primordial
magnetic field, if homogeneous, is bounded from above as
B0 ≲ 10−9 G from CMB anisotropies [52], although it has
also been claimed that this limit is relaxed in the presence of
free-streaming particles like neutrinos [53].
In Fig. 1 we plot the lower limit (4.3) on mg−3=2 as a

function of Hi (or equivalently the upper limit (4.2) on Hi

in terms of mg−3=2). Here, the present-day magnetic field
strength is fixed to the minimum value for intergalactic
magnetic fields, B0 ¼ 10−15 G, and the limits are shown for
Tdom ¼ 1016 GeV (purple), 1012 GeV (blue), 108 GeV
(green), 104 GeV (orange), and 1 GeV (red). The colored
lines in the plot overlap at Hi ≤ Hdom, where the limit
becomes independent of Hdom; in other words, the bend in
the line is at Hi ¼ Hdom. As one goes towards larger Hi
(magnetic field generation at earlier times), a stronger
initial magnetic field is required to survive the more
substantial redshifting, and therefore, the lower limit on
mg−3=2 becomes more stringent. The same is true for lower
Tdom when Hi > Hdom, which can be understood from the
fact that the Universe expands more rapidly during an
inflaton domination than radiation domination.
In the parameter regions slightly above the colored lines,

an observable abundance of monopoles, but not so large as

FIG. 1. Lower limit onmg−3=2 (m: monopole mass, g: magnetic
charge) as a function of the Hubble scale Hi when primordial
magnetic fields are initially generated. The present-day magnetic
field strength is taken as B0 ¼ 10−15 G. The cosmic temperature
when radiation domination takes over is varied as Tdom ¼
1016 GeV (purple), 1012 GeV (blue), 108 GeV (green), 104 GeV
(orange), and 1 GeV (red).

10Since a⋆=a0∼10−29ðB0=10−15 GÞ1=2ðmg−3=2=1011 GeVÞ−1,
we can safely assume that a⋆ ≪ aeq ≈ a0=3000. On the other
hand, depending on the inflation scale, a⋆ can even be smaller
than aend. In such cases our Hða⋆Þ, obtained using (B2) which is
valid for tend < t < teq, gives a conservative upper limit on Hi.
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to overdominate the Universe, could be produced. One sees
that even monopoles of GUT scale mass (m ¼ 1016 GeV
with, say, g ¼ 10 gives mg−3=2 ∼ 1014 GeV) are produced
if magnetic field generation takes place at sufficiently high
energy scales.
Our bound also sets an upper limit on the scale Hi of

magnetic field generation, for a given value of mg−3=2. Let
us also comment on other bounds on Hi. Firstly, as we are
assuming the magnetic field generation to conclude
between the end of inflation and matter-radiation equality,
the Hubble scale should lie within the range
10−37 GeV≲Hi ≲ 1014 GeV, where the upper bound is
the observational limit on the inflation scale. Secondly, we
have assumed that the magnetic field only gives a sub-
dominant contribution to the total energy density of the
Universe. The time evolution of the energy densities in the
postinflation era is illustrated in Fig. 2. Here the orange line
denotes the energy density of an oscillating inflaton ρϕ, and
the red line denotes the radiation energy density ρrad, which
is created by the decay of the inflaton. Since the generation
of primordial magnetic fields and reheating are, in general,
different processes, we discuss the energy density of the
magnetic field ρB separately from ρrad and denote it by the
blue line in the figure. By extrapolating the magnetic
energy density back in time as ρB ∝ a−4, it can overtake
ρϕ in the reheating epoch and dominate the Universe, which
would signal that the cosmological expansion history was
once significantly affected by the magnetic field. However,
the scaling ρB ∝ a−4 is actually cut off at the time ti, and we
constrain this by requiring that the magnetic energy density
never dominated the Universe. By using (B2) and (B4), the
magnetic energy fraction at ti is written as

ρBi
3M2

PlH
2
i
∼10−19

�
B0

10−15G

�
2

max

�
1;

�
Hi

Hdom

�
2=3

�
; ð4:4Þ

which is smaller than unity ifHi ≤ Hdom and B0 ≲ 10−6 G.
However, in cases with Hi > Hdom, then ρBi < 3M2

PlH
2
i

requires11

Hi ≲ 1010 GeV

�
B0

10−15 G

�
−3
�

Tdom

1 GeV

�
2

; ð4:5Þ

where we have rewritten Hdom in terms of Tdom. This
condition is satisfied on the limits displayed in the plot;
e.g., on the red line (Tdom ¼ 1 GeV), the condition is
violated atHi ≳ 1010 GeV, which is around the upper edge
and beyond. Both upper limits on Hi, (4.2) and (4.5), are
tightened by a larger value of B0; we will see this
explicitly below.

B. Further limits for solitonic monopoles

For solitonic monopoles of spontaneously broken gauge
theories, the mass limit (4.3) can be evaded by keeping the
symmetry unbroken when the magnetic field is generated.
However, in such a case the monopoles produced later at
the symmetry breaking phase transition would induce a
monopole problem, unless the symmetry breaking scale
is very low12 (see also discussions in Sec. III D and
Appendix C). Thus we can combine the requirement to
avoid a postinflation symmetry breaking with the mass
limit and give further constraints for solitonic monopoles.
In the following, for concreteness, we study the vanilla ’t

Hooft-Polyakov monopole of an SO(3) gauge theory
spontaneously broken to U(1) [2,3]. In this case the
monopole mass is related to the vacuum expectation value
of a triplet Higgs field σ, which we also refer to as the
symmetry breaking scale, via m ∼ gσ (the exact value
depends also on the Higgs self-coupling [29]). The mag-
netic charge is g ¼ 4π=e in terms of the gauge coupling e.
To avoid a symmetry breaking after inflation, the

symmetry breaking scale should be high enough to satisfy
σ > maxfT;Hg throughout the postinflation Universe.
During radiation domination, this implies ρB ∼ B2 ≲ ρrad ∼
T4 ≲ σ4 (here we neglect numerical coefficients). Hence
with m ∼ gσ, we get B≲ gB⋆. Thus one sees that if, say,
g ¼ Oð10Þ, then unless the inequalities are close to being
saturated, the magnetic field in the symmetry broken phase
is well below the threshold value B⋆ for significant

FIG. 2. Schematic of the evolution of energy densities in the
reheating and radiation-dominated epochs as functions of the
scale factor, in log-log scale. Shown are the energy densities of an
oscillating inflaton (orange), radiation (red), and primordial
magnetic fields (blue). Here the magnetic field energy density
is extrapolated back to the left edge of the plot (which corre-
sponds to some time during reheating), but there is actually a
cutoff corresponding to the time when the magnetic fields are
generated. See the text for details.

11If the coherence length of the primordial magnetic field
happens to be close to the CMB scales, then the magnetic energy
density is further restricted from discussions on curvature
perturbations.

12A very low scale postinflation symmetry breaking might
avoid cosmological issues while allowing for an initially very
strong primordial magnetic field to survive until today, but we do
not pursue this direction further herein.

MONOPOLE-ANTIMONOPOLE PAIR PRODUCTION IN … PHYS. REV. D 104, 043501 (2021)

043501-9



monopole production (although there can still be non-
negligible effects below B⋆ as discussed in the previous
sections). However, this is no longer the case in the epoch
prior to radiation domination, where ρB can be larger than
ρrad, while being smaller than the dominant inflaton energy
density (cf. Fig. 2). This kind of situation can arise, for
instance, in magnetic field generating mechanisms that
invoke a violation of the Weyl invariance of the Yang-Mills
action (see e.g., [37,38]); these take place only in a cold
Universe, such as during inflation, since otherwise electri-
cally charged particles in the thermal plasma freeze in the
magnetic flux. While such mechanisms are in operation, the

energy density of the magnetic field is typically much
larger than that of the radiation component.
In Fig. 3 we show the parameter space of ’t Hooft-

Polyakov monopoles in the Hi − σ plane, where we took
m ¼ gσ, g ¼ 10, and B0 ¼ 10−15 G. Tdom is varied in the
four plots as 1 GeV, 104 GeV, 108 GeV, and 1012 GeV.
The blue region is excluded by the lower limit (4.3) on the
monopole mass and corresponds to that shown in Fig. 1.
The green region violates the magnetic field energy bound
(4.5), which is seen only in the plot for Tdom ¼ 1 GeV,
since for Tdom ≳ 102 GeV the upper limit on Hi from this
bound exceeds the highest possible inflation scale. The red

FIG. 3. Parameter space of ’t Hooft-Polyakov monopoles in the plane of the Hubble scale Hi when primordial magnetic fields are
initially generated, and the symmetry breaking scale σ. The magnetic charge is fixed to g ¼ 10, and the present-day magnetic field
strength to B0 ¼ 10−15 G. The cosmic temperature Tdom when radiation domination begins is varied in the four plots. The blue region
violates the monopole mass limit (4.3) obtained by the analyses of pair production in primordial magnetic fields. The green region is
excluded by magnetic field dominance in the early Universe. In the red region the symmetry breaking phase transition happens after
inflation. For a stronger magnetic field B0 ¼ 10−10 G, the left edges of the blue and green regions shift to the positions depicted by the
dashed lines.
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region shows where σ < maxfTi; Tdomg, indicating that the
symmetry breaking takes place after inflation and thus
possibly gives rise to a monopole problem. Here, Ti is
given in terms of Hi through (B2) and (B3).13 We do not
show where σ < maxfHi;Hdomg since it only gives con-
straints weaker than the other conditions in the displayed
parameter regions.
As we have already discussed, the requirement of σ >

maxfTi; Tdomg gives a stronger constraint than the mass
limit (4.3) during radiation domination (Hi < Hdom), and
serves as the dominant constraint in the entire displayed
space in the plot for Tdom ¼ 1012 GeV. For the other plots
with lower Tdom, the mass limit dominates at Hi ≫ Hdom,
i.e., if the primordial magnetic field is generated long
before radiation domination. The combination of σ >
maxfTi; Tdomg and the mass limit (4.3) put severe con-
straints on symmetry breaking at intermediate and low
scales. For instance, the necessary condition for σ ¼
108 GeV to evade the two constraints is that Tdom <
108 GeV and Hi ≲ 103 GeV are both satisfied.
The condition σ > maxfTi; Tdomg is independent of B0,

while the limits (4.3) and (4.5) become stronger for a larger
B0. In the plots we also show (4.3) and (4.5) for
B0 ¼ 10−10 G, by the blue and green dashed lines, respec-
tively. With this larger B0, the monopole mass limit is
tightened by about two orders of magnitude and overtakes
the constraint from σ > maxfTi; Tdomg in a wider param-
eter range. The magnetic energy bound is also tightened
and is seen to constrain the high-Hi regions in the plots
with Tdom up to 108 GeV.
Note that, to keep the discussion general, we have not

specified the inflation scale. We focused on the time ti at the
end of magnetic field generation, which may coincide with
the end of inflation, but can also be at some later time.
Accordingly, we only imposed σ > maxfTi; Hi; Tdom;
Hdomg, i.e., the symmetry to be broken by the time when
magnetic field generation completes or radiation domination
begins, whichever happens earlier, instead of imposing σ >
maxfT;Hg since the end of inflation. The actual lower
bound on σ for evading a postinflation symmetry breaking
would be tighter than shown in the figure, if radiation
domination and magnetic field generation take place long
after the end of inflation.

V. CONCLUSIONS

We showed that the process of pair production in
primordial magnetic fields provides an excellent opportu-
nity to confront magnetic monopoles with astrophysical
observations. We analyzed two major consequences of the
monopole pair production: (i) Primordial magnetic fields

dissipate energy by producing the monopole pairs and
subsequently accelerating them. This fact that the field self-
screens yields a consistency condition for primordial
magnetic fields to survive until today and explain the
observed magnetic fields. (ii) The pair produced monopoles
can give rise to a new type of monopole problem, which
gives a cosmological bound on monopoles and primordial
magnetic fields. After evaluating the constraints from each
effect, we used the most conservative bound on the
primordial magnetic field amplitude (3.18) to derive a
lower limit on the monopole mass (4.3):

m≳ 1013 GeV

�
g
20

�
3=2

�
B0

10−15 G

�
1=2

×

�
Hi

1014 GeV

�
1=2

max

�
1;

�
Hi

Hdom

�
1=6

�
: ð5:1Þ

Here g is the magnetic charge of the monopole, B0 is the
present-day magnetic field strength, Hi is the Hubble scale
when the primordial magnetic field is initially generated,
and Hdom is the Hubble scale when radiation domination
begins. This limit also serves as an upper bound on the
scale of magnetic field generation. A primordial magnetic
field that seeds the observationally suggested intergalactic
magnetic fields of B0 ≳ 1015 GeV imposes constraints on
monopoles for a wide mass range (Fig. 1). This also sets a
constraint on grand unified theories, which is particularly
severe for models with intermediate and low scale sym-
metry breaking. Moreover, we showed that even super-
heavy monopoles of m ∼ 1016 GeV can be abundantly
produced if primordial magnetic fields exist at sufficiently
high redshifts.
It is also important to know the exact abundance of

monopoles produced in primordial magnetic fields, in order
to make concrete predictions for monopole search experi-
ments. Because the pair production rate depends exponen-
tially on the magnetic field, the threshold field strengths for
magnetic self-screening and monopole overabundance are
typically of the same order. Moreover, this threshold value
may only marginally satisfy the weak field condition
invoked in the instanton calculation of the pair production
rate. Therefore, a precise evaluation of the monopole
abundance would require solving the full system, including
the backreaction from the monopoles on the magnetic field,
with possible corrections to the pair production rate for
marginally weak fields. Additional effects that deserve
careful studies are listed in Sec. III E. Taking into account
all of them can be nontrivial, however, there may be
fortunate circumstances where some effects decouple from
the rest to simplify the analysis. Alternatively, if some
effects can be argued to work only in a certain direction,
such as to always enhance the pair production, then one can
ignore those effects to derive conservative limits, which is
the strategy adopted in this paper. Despite being
conservative, our constraint should be useful since it

13A perturbative reheating is assumed here. If instead the
inflaton decays nonperturbatively (so-called preheating), then the
evolution of the cosmic temperature at T > Tdom could be
modified.
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applies to monopoles with a wide mass range, including
superheavy ones that are practically impossible to probe in
colliders.
Magnetic field generation in the early Universe can be

accompanied by a simultaneous generation of electric
fields, which are considered to eventually short out during
the reheating process. It would be interesting to study
monopole production in primordial magnetic and electric
fields before the latter vanish (see e.g., [54,55] for studies of
Schwinger pair production in electric and magnetic fields).
We also note that our analyses can be extended to the
production of dyons [56] from primordial electromagnetic
fields. Finally, we note that the pair production in primor-
dial fields works equally effective for monopoles and
magnetic fields of hidden U(1) gauge fields, therefore, it
can provide a new production mechanism for hidden
monopole dark matter [57].
Ultimately, one wishes to probe theories of monopoles

and quantum vacuum instability via astrophysical mea-
surements of cosmological magnetic fields and, in turn, to
reveal the origin of cosmological magnetic fields by
studying monopole pair production. This paper serves as
a first step towards this goal.
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APPENDIX A: GENERAL DISCUSSION OF
MAGNETIC FIELD DISSIPATION BY

MONOPOLES

We present a general discussion on the dissipation of
cosmological magnetic fields by monopoles.

1. General formalism

The physical energy density of a spatially homogeneous
magnetic field in a FRW background Universe obeys

d½ρBðtÞaðtÞ3�¼−PBðtÞd½aðtÞ3�−2mΓðtÞaðtÞ3dt

−2gBðtÞdt
Z

t

−∞
dt0aðt0Þ3Γðt0Þvðt0;tÞ; ðA1Þ

where PB is the pressure of the magnetic fluid, and Γ is the
rate of monopole-antimonopole pair production by the
magnetic field. The second term in the right-hand side
denotes the magnetic field energy being depleted by 2m for
the production of each pair, assuming the pairs to be
produced at rest [this term corresponds to (3.4)]. The third
term represents the energy loss by accelerating the pop-
ulation of pairs produced from the infinite past to time t,
where it should be noted that aðt0Þ3Γðt0Þdt0 gives the

comoving number density of pairs produced between t0
and t0 þ dt0. Moreover, we used vðt0; tÞ to denote the
velocity of monopoles produced at t0, measured at t
(≥ t0), in the direction of the magnetic field [antimonopoles
are taken to have charge−g and velocity−vðt0; tÞ]. We have
ignored monopole-antimonopole annihilation.
Using ρB ¼ B2=2, and supposing a barotropic equation

of state PB=ρB ¼ ð2p=3Þ − 1 for the magnetic fluid, which
amounts to supposing B ∝ a−p in the absence of monopole
production, then (A1) is rewritten as

_ρB
ρB

¼ −Πred − Πprod − Πacc; ðA2Þ

with the damping rates due to redshifting, monopole
production, and monopole acceleration:

ΠredðtÞ ¼ 2pHðtÞ; ΠprodðtÞ ¼
4mΓðtÞ
BðtÞ2 ;

ΠaccðtÞ ¼
4g

aðtÞ3BðtÞ
Z

t

−∞
dt0 aðt0Þ3Γðt0Þvðt0; tÞ: ðA3Þ

The depletion of the magnetic field energy can be studied
by solving this equation, combined with the expression
(A6) for vðt0; tÞ given below.

2. Monopole velocity

The motion of a monopole with magnetic charge g in a
homogeneous magnetic field and a FRW background
spacetime is described by the equation of motion,

m
a
d
dt

ðaγvÞ ¼ gB; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ðA4Þ

where v is the velocity in the direction of the magnetic field,
and we neglected motion perpendicular to the magnetic
field. This is integrated as

γðt0; tÞvðt0; tÞ ¼ g
maðtÞ

Z
t

t0
dt00 aðt00ÞBðt00Þ; ðA5Þ

or equivalently,

vðt0; tÞ ¼
g

maðtÞ
R
t
t0 dt

00 aðt00ÞBðt00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ g

maðtÞ
R
t
t0 dt

00 aðt00ÞBðt00Þ�2
q : ðA6Þ

Here t is the time when the velocity is measured, and t0 is
when the monopole was initially produced at rest.
For example, if the magnetic field scales as B ∝ a−p, and

the Hubble rate as H ∝ a−3ð1þwÞ=2 with a constant equation
of state w, then the integral can be directly performed as
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γv ¼ 1

1− ν

gB0

mH0

��
a0

a

�
ν

−
�
a0

a

��
; ν ¼ p−

3ð1þwÞ
2

;

ðA7Þ

where a ¼ aðtÞ, a0 ¼ aðt0Þ, etc. The behavior of γv in the
asymptotic future is as follows: If ν > 0, then it decays in
time as either γv ∝ a−1 (ν > 1), γv ∝ a−1 ln a (ν ¼ 1), or
γv ∝ a−ν (0 < ν < 1). If ν < 0, then it grows as γv ∝ ajνj.
If ν ¼ 0, i.e., the equation of state of the Universe equals
that of the magnetic fluid, then it asymptotes to a constant
value γv → gB0=mH0.

3. Case studies of dissipation by monopole acceleration

Let us evaluate the dissipation rate by monopole accel-
eration Πacc under the simplifying assumption that the
magnetic field is suddenly switched on at time ti, then
subsequently redshifts as B ∝ a−p with a positive p of
order unity (while the dissipation by monopoles is negli-
gible). Then with Γ of the form (2.1), the integral for Πacc is
dominated by the contribution from ti ≤ t0 ≲ ti þ ΔtΓi,
where ΔtΓi ¼ ϵi=pHi [≪ 1=Hi, see discussions below
(2.9)]. Ignoring the variation of a3Γ during this period
(which implicitly assumes ΔtΓi < Π−1

prodi, Π−1
acci), we get

ΠaccðtÞ ≃
4gΓi

BðtÞ
�

ai
aðtÞ

�
3
Z

tiþΔtΓi

ti

dt0 vðt0; tÞ; ðA8Þ

for t ≥ ti þ ΔtΓi. For a further evaluation, we consider
some limiting cases below.

a. Monopoles produced on the spot

We start by considering the times ΔtΓi ≪ t − ti ≲ 1=Hi,
which are within a Hubble time after the magnetic field is
switched on. During this period the expansion of the
Universe can be ignored. Further supposing B to be nearly
constant (which amounts to ignoring the backreaction from
the monopoles), then (A8) is approximated as

ΠaccðtÞ ≃
4gΓi

Bi

Z
tiþΔtΓi

ti

dt0vðt0; tÞ: ðA9Þ

Likewise, the monopole velocity (A6) in the integral is
approximated as

vðt0; tÞ ≃
gBi
m ðt − t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ½gBi
m ðt − t0Þ�2

q : ðA10Þ

If the initial magnetic field is sufficiently strong, such
that the monopoles are relativistic at the time of consid-
eration, i.e., ðgBi=mÞðt − tiÞ ≫ 1, then

R
dt0v ≃ ΔtΓi and

we obtain

Πacc ≃
4g2Γi

πpm2Hi
: ðA11Þ

This matches with the dissipation rate jð_ρBÞR=ρBj of (3.6)
with the substitution of (3.7) and t ¼ ti.
On the other hand for nonrelativistic monopoles, i.e.,

ðgBi=mÞðt − tiÞ ≪ 1, then
R
dt0v ≃ ðgBi=mÞΔtΓiðt − tiÞ

and we get

Πacc ≃
4g3BiΓi

πpm3Hi
ðt − tiÞ: ðA12Þ

Using this to solve _ρB=ρB ¼ −Πacc, one obtains ρB ¼
ρBi exp½−fðt − tiÞ=Δtaccg2� with the dissipation time scale
given by

Δtacc ¼
�
πpm3Hi

2g3BiΓi

�
1=2

: ðA13Þ

This matches with ΔtNR derived in (3.11) with the sub-
stitution of (3.7) and t ¼ ti.

b. Monopoles produced in the past

We now consider the times t − ti ≳ 1=Hi. Here we
assume for simplicity that vðt0; tÞ ≃ vðti; tÞ for
ti ≤ t0 ≤ ti þ ΔtΓi, i.e., most monopoles have the same
velocity. Then

R
dt0v ≃ ΔtΓivðti; tÞ, which gives

Πacc ≃
4g2Γi

πpm2Hi

Bi

BðtÞ
�

ai
aðtÞ

�
3

vðti; tÞ: ðA14Þ

This denotes the rate of magnetic field dissipation by
accelerating monopoles that have been produced at around
the initial time ti, which is well separated from the time t of
consideration. We did not discuss this effect in the
main text.
Let us focus on the time evolution of Πacc with respect to

the redshifting rate Πred,

Πacc

Πred
∝

vðti; tÞ
BðtÞaðtÞ3HðtÞ : ðA15Þ

For v, we can use (A7) when the Universe has an equation
of state w and while the magnetic field scales as B ∝ a−p.
For instance, with p ¼ 2 and w ¼ 1=3, the velocity v
approaches a constant value, and thus the ratio grows
asymptotically as Πacc=Πred ∝ a. In this case, even if the
dissipation by monopole acceleration is initially negligible,
it can become important at later times. For p ¼ 2 and
w ¼ 0, we get Πacc=Πred ∝ a1=2 while the monopoles are
relativistic (v ≃ 1), and Πacc=Πred ¼ const when nonrela-
tivistic (v ∝ a−1=2). It would be interesting to perform a
systematic study of the dissipation effect by monopoles
produced in the past.
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APPENDIX B: HUBBLE SCALE DURING AND
AFTER REHEATING

We give the expressions for the Hubble scale and cosmic
temperature as functions of redshift during the reheating
epoch and the subsequent radiation-dominated epoch. Here
we assume that after inflation ends (at tend), the Universe is
initially dominated by an oscillating inflaton field, which
undergoes perturbative decay into radiation; the radiation
component eventually comes to dominate the Universe
(tdom), until it gives way to matter domination at matter-
radiation equality (teq). A case of an instantaneous reheat-
ing, i.e., a sudden decay of the inflaton at the end of
inflation, is handled by setting tend ¼ tdom in the following
discussions.
During radiation domination (tdom ≪ t ≪ teq), we have

3M2
PlH

2 ≃ ρrad, where ρrad ¼ ðπ2=30Þg�T4 is the radiation
energy density, and T is the radiation temperature.
Combining this with the assumption that the entropy is
conserved until today, namely, that the entropy density
redshifts as s ¼ ð2π2=45Þg�sT3 ∝ a−3, one obtains

H≃
�

45

128π2

�
1=6g1=2�

g2=3�s

s2=30

MPl

�
a0
a

�
2

; T≃
�
45

2π2
s0
g�s

�
1=3a0

a
:

ðB1Þ

The subscript “0” denotes quantities in the present
Universe.
When the Universe is dominated by an oscillating

inflaton field (tend ≪ t ≪ tdom), it is effectively matter
dominated and thus H ∝ a−3=2. The radiation density
during this epoch is sourced by the perturbative decay of
the inflaton, and thus redshifts as ρrad ∝ a−3=2 when
ignoring the time dependence of g�; this can be checked
by solving the continuity equation _ρrad þ 4Hρrad ¼ Γϕρϕ,
with Γϕ being the inflaton decay rate, and the energy
density of the inflaton ρϕ ¼ ρϕendðaend=aÞ3e−Γϕðt−tendÞ [58].
Hence the radiation temperature redshifts as T ∝ a−3=8.
Connecting the scaling behaviors in the two epochs at

tdom, the Hubble rate and radiation temperature during the
radiation-dominated epoch (tdom < t < teq) and reheating
epoch (tend < t < tdom) are collectively written as follows:

H ∼Hdom min

��
adom
a

�
2

;

�
adom
a

�
3=2

�
; ðB2Þ

T ∼ Tdom min

��
adom
a

�
;

�
adom
a

�
3=8

�
; ðB3Þ

where we have ignored the time variation of g�ðsÞ in (B1).
The relations between Hdom, Tdom, and adom can be
obtained by extrapolating (B1) to the time tdom; after
plugging in numbers for MPl and the cosmological param-
eters, one gets

a0
adom

∼ 1029
�

Hdom

1014 GeV

�
1=2

;

Tdom ∼ 1016 GeV

�
Hdom

1014 GeV

�
1=2

: ðB4Þ

We remark that these depend only weakly on g�ðsÞ, hence its
detailed value does not affect the order-of-magnitude
estimates.

APPENDIX C: MONOPOLE ABUNDANCE
PRODUCED AT PHASE TRANSITIONS

In this appendix we consider solitonic monopoles pro-
duced at a symmetry breaking phase transition that happens
after inflation. Hence the critical temperature Tc at the phase
transition is assumed to be lower than the maximum temper-
ature achieved during reheating, or the inflationary Hubble
scale, i.e., Tc < maxfTmax; Hinfg. We consider a postinfla-
tion history as discussed in Appendix B, and obtain lower
limits on the monopole abundance for cases where the phase
transition takes place during the reheating epoch and during
the radiation-dominated epoch.
Considering that at least one monopole or antimonopole

is created within a Hubble volume after the phase tran-
sition, the monopole number density nM follows nMc ≥ H3

c ,
where the subscript “c” denotes quantities at the phase
transition. (Here we only compute a lower bound, but the
actual density can be computed by evaluating the correla-
tion length as discussed in [57,59,60].) Then supposing that
monopole-antimonopole annihilation is negligible, and that
the monopoles today are nonrelativistic, the lower bound
on the relic density is

ρM0 ¼ mnM0 ≥ mH3
c

�
ac
a0

�
3

: ðC1Þ

If the phase transition happens during the radiation-
dominated epoch, tdom < tc < teq, by rewriting the Hubble
rate and redshift in terms of the cosmic temperature using
(B2), (B3), and (B4), one finds for the relic abundance,

ΩMh2 ≳ 10−1
�

m
1013 GeV

��
Tc

1011 GeV

�
3

: ðC2Þ

On the other hand if the phase transition happens prior to
radiation domination, tend < tc < tdom,

ΩMh2 ≳ 10−1
�

m
1013 GeV

��
Tc

1011 GeV

�
3
�

Tc

Tdom

�
: ðC3Þ

Compared to (C2), this lower bound is enhanced by
Tc=Tdom. This can be understood from the fact that for
the same critical temperature Tc, the Hubble scale at the
phase transition Hc is larger during inflaton domination
than during radiation domination, and thus the number of
monopoles is enhanced.
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