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We investigate what the orbits of globular clusters (GCs) in the Fornax dwarf spheroidal (dSph) galaxy
can teach us about dark matter (DM). This problem was recently studied for ultralight dark matter (ULDM).
We consider two additional models: (i) fermionic degenerate dark matter (DDM), where Pauli blocking
should be taken into account in the dynamical friction computation; and (ii) self-interacting dark matter
(SIDM). We give a simple and direct Fokker-Planck derivation of dynamical friction, new in the case of
DDM and reproducing previous results in the literature for ULDM and cold DM. ULDM, DDM and SIDM
were considered in the past as leading to cores in dSphs, a feature that acts to suppress dynamical friction
and prolong GC orbits. For DDM we derive a version of the cosmological free streaming limit that is
independent of the DM production mechanism, finding that DDM cannot produce an appreciable core in
Fornax without violating Ly-α limits. If the Ly-α limit is discounted for some reason, then stellar kinematics
data does allow a DDM core which could prolong GC orbits. For SIDM we find that significant
prolongation of GC orbits could be obtained for values of the self-interaction cross section considered in
previous works. In addition to reassessing the inspiral time using updated observational data, we give a new
perspective on the so-called GC timing problem, demonstrating that for a cuspy cold DM profile dynamical
friction predicts a z ¼ 0 radial distribution for the innermost GCs that is independent of initial conditions.
The observed orbits of Fornax GCs are consistent with this expectation with a mild apparent fine-tuning at
the level of ∼25%.
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I. INTRODUCTION

The Milky Way dwarf spheroidal (dSph) satellite gal-
axies are broadly believed to be dominated by dark matter
(DM) [1,2],1 and this fact combined with their small sizes
and nearby locations makes them interesting test beds of
the small-scale behavior of DM [4–10]. In fact, some of the
basic predictions of the most commonly considered para-
digm of DM—collisionless cold dark matter (CDM)—may
be in tension with observations (see, e.g., Refs. [11,12]).
Conclusive kinematic data for a decisive test of CDM in
dSphs is difficult to obtain, but upcoming observatories
may supply it [13].
One intriguing puzzle about the dSph galaxies concerns

the globular clusters (GCs) of the Fornax dSph [14]: some
of Fornax’s six known GCs [2,15] have orbital decay times
due to dynamical friction (DF) which seem to fall

significantly short of their age [14]. If estimated naively
based on the Chandrasekhar formula [16], assuming the
usual CDM cusp density profile (see, e.g., Ref. [17]), one
obtains an instantaneous DF time of less than 1 Gyr for the
most troublesome GC4. On the other hand, the stellar
content of the GCs is old, >10 Gyr [18,19], as is much of
the stellar content of Fornax itself [20,21]. It may seem
unlikely then, that we observe some of the GCs just a short
time before they fall to the center of the galaxy. We show a
visualization in Fig. 1.
Part of the scope of this work is to give an analytical

perspective on DF, allowing us to sharpen the GC timing
puzzle. When the dust settles (in Sec. VI B, using tools
developed throughout the paper) we obtain reasonably
robust predictions for the late-time distribution of GCs:
for a cuspy halo, the cumulative number of GCs contained
within a radius r has the form

FΔtðrÞ ∝
τðrÞ
Δt

; ð1Þ

where τðrÞ is the instantaneous DF time (defined precisely
in Sec. III), Δt is the age of the system, and the prefactor is
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proportional to the initial number of GCs contained inside
r ∼ 1 kpc. Up to the prefactor, the radial slope in Eq. (1) is
insensitive to the assumed initial distribution of GCs and
can be calibrated observationally from kinematics model-
ing. Equation (1) substantiates the expectation that the fine-
tuning associated with observing a GC at short DF time
τ ≪ Δt is of order τ=Δt.
We should say in advance that although the timing

puzzle is very interesting, our analysis suggests that the
possible tension it entails is not very severe. For a cuspy
CDM halo, when one takes into account projection effects
and the fact that Fornax hosts not just one, but a collection
of GCs, then the timing puzzle may be ascribed to a mild
(but quite persistent) chance fluctuation with a probability
of 25% or so. The lack of a ∼106 M⊙ nuclear star cluster in
Fornax, the remnant of old tidally disrupted GCs [23,24],
may exacerbate the tension.
Many explanations were suggested for the GC timing

puzzle [25–39], of which an exciting class of ideas entails a
modification to the nature of darkmatter, goingbeyondCDM
[33,36–39]. In particular, Refs. [33,38,39] studied ultralight
dark matter (ULDM) and showed that in the particle mass
window m≲ 10−21 eV, ULDM would suppress DF enough
to eliminate the timing puzzle. However, most of this mass
range for ULDM has been scrutinized in the last few years,
resulting in disfavoring evidence [40–43]. Motivated by the
fact that the combination of GC age and orbit measurements
probes the details of the DM halo and microphysics, we
extend the DF analysis to additional DM models. The first
model is degenerate dark matter (DDM), in which the phase-
space distribution of DM in dSph cores is affected by Pauli
blocking [44,45]. The second model is self-interacting DM
(SIDM), in which self-interactions between DM particles
produce a cored isothermal distribution.
In Sec. II we focus on the microphysics and calculate

DF for CDM, DDM, and ULDM. Our results for DDM
are new; for ULDM, we make contact with a different

derivation in the literature; while for SIDM the micro-
physics of the DF calculation is argued to be similar to that
in CDM.
All three DMmodels can, in principle, naturally produce

cored isothermal halos. As we show in Sec. III, a cored
isothermal distribution of DM suppresses DF in part due to
a phase-space effect (associated with the “core stalling”
[46] identified in past numerical work), as the velocity of
the inspiraling GC can become parametrically lower than
the DM velocity dispersion.
For ULDM, DF and the Fornax GC timing puzzle were

studied in recent works [33,38,39] and we do not review
them again. As noted above, constraints from galaxy
dynamics and from cosmological Ly-α analyses suggest
a similar behavior to CDM.
For DDM (Sec. IV), we formulate a robust version of the

Ly-α bound that is insensitive to DM model building and
cosmological history, finding that it disfavors an appreci-
able core. If one chooses to discount the Ly-α bound (see,
e.g., Ref. [33] for a qualitative discussion of concerns
regarding systematic uncertainties), then stellar kinematics
does allow a considerable DDM core which could lead to
significant suppression of DF and prolong the settling time
of the innermost GCs.
For SIDM (Sec. V), stellar kinematics allows a consid-

erable core. If the SIDM cross section is as large as that
considered in Ref. [47], then the DF settling time for the
innermost GCs can be significantly longer than in the cuspy
halo CDM model.
The possibility that baryonic feedback deforms a CDM

cusp into a core is also considered. Since baryonic feedback
is expected to deform the halo primarily within the half-
light radius [10,17,48,49], the resulting core is spatially
smaller than the typical cores that were previously sug-
gested as an explanation to the GC timing puzzle [17,28].
In that sense, such a model is a hybrid between other cusp/
core classes of density profiles that we consider in this
work, in the spirit of Ref. [2]. As a benchmark, we adopt the
density profile fit in Ref. [10]. We find that GC orbital
decay times may be somewhat prolonged within the inner
few hundred parsecs compared to the pure cusp case. This
baryon-induced core model may therefore provide a better
fit to the GC distribution compared to the cusp case.
Our approach is mostly analytical. Of course, this has

limitations and one may be justified in expecting that more
progress would require numerical simulations. According
to recent simulations in Ref. [50], reasonable initial con-
ditions for the Fornax GCs (derived from the simulations)
can lead to the observed configuration in a standard cuspy
CDM halo. The timing puzzle may thus be even less
significant than the mild 25% that we find with analytical
tools. Nevertheless, we believe that analytical insight is
important. Notably, as we demonstrate in our analysis, it
allows to identify which features of the late-time state of a
GC configuration are the result of particular initial con-
ditions and which are generic outcomes of DF.

FIG. 1. Orbital radius vs time, calculated for the Fornax
GC4 assuming a slightly eccentric orbit. t ¼ 0 represents today.
The orbit calculation assumes the CDM Navarro-Frenk-White
(NFW) [22] profile of Ref. [17].
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We summarize in Sec. VII. Many details of the calcu-
lations are deferred to the Appendixes.

II. DYNAMICAL FRICTION: MICROPHYSICS

Dynamical friction can be described in terms of the
Fokker-Planck theory for the motion of a probe particle
(a GC in our case) traveling through a gas of spectator
particles (DM particles in our case). In Appendix A we
derive the Fokker-Planck equation as the small-momentum-
exchange limit of the Boltzmann equation, governing the
motion of a probe object in different background media,
accounting for the gravitational interaction between the
probe and the medium particles. Our calculation is direct, in
the sense that it simply amounts to computing the collision
integral while taking care to account for the quantum
statistics of spectator gas particles. Here we bypass the
details of the calculation, while utilizing the main results.
The Fokker-Planck equation is characterized by a set of

momentum space diffusion coefficients, calculated in
Appendixes A 1, A 2, and A 3 for the case of a medium
composed of a classical gas, degenerate Fermi gas, and
Bose gas, respectively. Of particular importance for our
analysis is the diffusion coefficient Djj, corresponding to
the diffusion in momentum parallel to the probe object’s
instantaneous velocity. The DF deceleration acting on a
probe with mass m⋆ moving with instantaneous velocity V
with respect to the medium is computed as [51]

dV
dt

¼ Djj
m⋆

V̂

¼ −
4πG2m⋆ρ

V3
CV: ð2Þ

In the second line, to compare the DF arising in different
types of media we define the dimensionless coefficient C as
follows [33]:

C ¼ −
V2Djj

4πG2m2⋆ρ
; ð3Þ

where ρ is the mass density of the medium.
Different microphysics properties of the medium (in our

case, the DM galactic halo) predict different results for C.
In the next subsection we discuss three scenarios.

A. Classical gas

This is the appropriate limit for a halo composed of a gas
of classical particles. Wewill adopt this limit to describe DF
in the ordinary CDM model, as well as for the SIDM
model.2 For a homogeneous classical gas with an isotropic

distribution function fvðvÞ, DF is described by the
Chandrasekhar formula [16] (see also Appendix A 1),

Cclass ¼ 4π lnΛ
Z

V

0

dvmv2mfvðvmÞ; ð4Þ

where lnΛ is the Coulomb logarithm. If the gas distribution
function is a Maxwellian with velocity dispersion σ,
fvðvÞ ¼ ð2πσ2Þ−3=2 expð−v2=ð2σ2ÞÞ, we have

CMax ¼ lnΛ
�
erfðXÞ − 2Xffiffiffi

π
p e−X

2

�

→ lnΛ

(
1 V ≫ σ;ffiffi

2
p
3
ffiffi
π

p V3

σ3
V ≪ σ;

ð5Þ

where X ≡ V=ð ffiffiffi
2

p
σÞ and where in the second line we show

the asymptotic scaling of C at large and small X.

B. Degenerate Fermi gas

This is the relevant limit for DF at the core of a halo
supported by the degeneracy pressure of light fermionic
DM (DDM model [44,45]). In the high-degeneracy limit
we have fvðvÞ ¼ 3=ð4πv3FÞθðvF − vÞ, where θðxÞ is the
Heaviside function, the Fermi velocity vF is related to the
medium density via

ρ ¼ gm4v3F
6π2

; ð6Þ

m is the mass of the particles and g is the number of degrees
of freedom (e.g., g ¼ 2 for Weyl fermions). The calculation
in Appendix A 2 gives the following limiting behavior:

CDDM → lnΛ

(
1 V ≫ vF;
V3

v3F
V ≪ vF

ð7Þ

Thus, in both limits V ≫ vF and v ≪ vF, we find that
DF in a degenerate medium is equivalent to DF in a classical
medium with the replacement σ → ð 2

9πÞ
2
3vF ≈ 0.17vF. Note

that the three-dimensional velocity dispersion associated
with the classical isotropic Maxwellian distribution is
hv2x þ v2y þ v2zi ¼ hv2i ¼ 3σ2, while the dispersion for the
degenerate distribution is hv2i ¼ ð3=5Þv2F. Therefore, the
pressure in the different types of media matches when
vF ≈ 2.2σ. Similarly, Eqs. (7) and (5) tell us that DF in
thesemediamatch when vF ≈ 5.8σ. We note that the form of
Eq. (7) agrees with the results of Ref. [52].3

As an aside, it is interesting to note that to leading order
in m=m⋆, the diffusion coefficient of a classical gas has the
same functional form with respect to the distribution

2This is a good approximation for the SIDM cross sections of
interest, which are small enough such that SIDM particles travel
across distances larger than the size of the system without
colliding with each other. See Sec. V. 3We thank P. H. Chavanis for pointing it out to us.
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function as the diffusion coefficient of a degenerate gas
[cf. Eq. (A12) and Eq. (A21)]. This is somewhat surprising,
because the Fokker-Planck calculation took into account
Pauli exclusion in the medium whereas Eq. (4) does not.
Moreover, according to Eq. (4), only particles with veloc-
ities smaller than the probe object’s contribute to the DF.
For the case of degenerate matter, one could have expected
that the opposite should happen: only particles close to the
Fermi surface contribute to DF. We refer the reader again to
Appendix A 2 for the detailed computation that leads us
to Eq. (7).
Finally, note that above we evaluated DF in the zero-

temperature limit and not in the finite-temperature limit. In
Sec. IV we consider a finite-temperature density profile, so
we should keep this caveat in mind. We have not explored
DF of degenerate matter within the more sophisticated
treatment of Refs. [53,54].

C. Bose gas

This is the relevant limit for the case where halo particles
follow the Bose-Einstein statistics, as in the ULDM model.
The diffusion coefficients can be obtained either by solving
a Langevin equation with stochastic fluctuations of the
gravitational potential [38] or, as we do in Appendix A 3,
by using a kinetic equation.4 Both approaches provide
identical results.
Up to a slight modification of the Coulomb logarithm,

DF for the bosonic gas includes a contribution to the C term
that is identical to that of the classical gas in Eq. (5). In
addition to this, ULDM large-scale density fluctuations
(manifested byBose-enhancement terms in the kinetic theory
computation) cause additional velocity drift that can be
characterized by an extra term to C → Cþ ΔC, with5

ΔC ¼ lnΛ
�
meff

m⋆

��
erfðXeffÞ −

2Xeffffiffiffi
π

p e−X
2
eff

�
; ð8Þ

where meff ¼ π3=2ρ=ðmσÞ3 is the ULDM mass enclosed in
an effective de Broglie volume and Xeff ≡ v=

ffiffiffi
2

p
σeff with

σeff ¼ σ=
ffiffiffi
2

p
. Numerically, meff≈1.2×106ð10−21 eV=

mÞ3½ρ=ð3×107M⊙=kpc3Þ�½ð10km=sÞ=σ�3M⊙. With these
numbers and keeping in mind a typical GC mass
m� ∼ 105 M⊙, the ΔC effect becomes quantitatively impor-
tant in Fornax for m≲ 3 × 10−20 eV.
The kinetic theory result summarized above assumed

that the scale size of the system—e.g., the radius r of a GC
orbit—is much larger than the effective de Broglie wave-
length of the ULDM particles,

rdB ≈
2π

mσ
≈ 300

�
10 km=s

σ

��
10 −21 eV

m

�
pc; ð9Þ

and thus much larger than ULDM quasiparticle excitations
or than the soliton core that is ubiquitously found in ULDM
simulations (see Ref. [33] for a review). For r < rdB, the
treatment above breaks down and must be modified by
taking into account large-scale coherence effects of the
ULDM. This can be done via solving the Schrödinger
equation, as shown in Refs. [33,39], which indeed found
that DF becomes suppressed at r≲ rdB. We refer the reader
to Refs. [33,39] for more details on DF and the Fornax
GC puzzle in the context of ULDM. Here we only note
that for m≳ 10−20 eV, where r ≫ rdB and meff ≪ m� for
the Fornax GCs, DF in the ULDM medium becomes
quantitatively similar to DF in a classical medium.

III. DYNAMICAL FRICTION IN A CDM HALO:
CORE VS CUSP

It is natural to define an instantaneous DF time, τ, via

τ ¼ V3

4πG2m⋆ρC
; ð10Þ

such that (including here only the DF effect)

_V ¼ −
1

τ
V: ð11Þ

A crude estimate of the time scale it would take a GC to
settle down to the dynamical center of a halo can be
obtained by computing τ, using the current instantaneous
position and velocity of the GC. Assuming a CDM NFW
distribution, and plugging an estimate of the dark matter
density and velocity dispersion corresponding to the
present observed position of each GC into Eqs. (5) and
(10), the result we find is summarized in the column
marked τCDM (highlighted in blue) in Table I. For GC3 and
GC4 the DF time estimated in this way is 2.6 and 0.9 Gyr,
respectively, much shorter than the age of the system.6

However, estimating an orbital decay time from the
instantaneous value of τ can be misleading. In a realistic
galaxy, the DM phase-space distribution and with it the
instantaneous value of τ could change along the orbit of the
GC. To obtain a better estimate of the actual settling time one
could track the orbit of the GC semianalytically, using the
phase-space-dependent value of τ along the orbit [32,46,62].
Some details of this calculation are given in Appendix E.
The semianalytic integration reproduces results from

N-body simulations [17]. To demonstrate this, we use
Eqs. (5) and (10) while reading the CDM density and
velocity dispersion from the N-body simulations of
Ref. [17] to integrate the orbit of a GC. In Fig. 2

4While this paper was being prepared for publication, Ref. [55]
appeared which also presents a kinetic theory derivation of the
ULDM diffusion coefficients.

5Formally, the ΔC term is there also for standard CDM but is
negligible unless the individual DM particles are extremely
massive.

6Our estimates are larger than those previously obtained in
Ref. [33]; we discuss the differences in Sec. VI.
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we compare our results to two different scenarios
from Ref. [17].
The first scenario, denoted NFW, contains a cuspy

NFW-like halo (the density profile of this model is shown
in Fig. 11). The orbit of a GC in this halo is shown by the
blue dashed line for the simulation of Ref. [17] and by a
blue solid line for the semianalytic tracking. The second
scenario, denoted ISO, contains an isothermal core halo
(also shown in Fig. 11). The GC orbits are shown by the red
lines. Again, the semianalytic method (solid) compares
reasonably well with the simulation (dotted).
The results have a mild dependence on the choice of the

Coulomb log, and we make slightly different choices for
the different scenarios. For NFW we follow Ref. [28] in
setting

lnΛNFW ¼ ln
bmaxσ

2

Gm⋆
: ð12Þ

However, instead of the bmax ¼ 0.25 kpc used in Ref. [28],
we adopt bmax ¼ 0.5 kpc. For ISO we follow [33,46]

lnΛISO ¼ ln
2V2r
Gm⋆

: ð13Þ

We have checked that changing the definition of the
Coulomb log according to different prescriptions in the
literature changes the predicted infall time of GCs at
the level of a few tens of percent. This would not be
crucial for our main results.
We can gain some insight on the difference between

the DF settling time in the cusp vs the core profiles. In the
central part of a cuspy NFW halo, the density scales as
ρ ∝ 1=r and the circular velocity scales as Vcirc ∝ r1=2. Let
us simplify matters by assuming (as was often done in
previous works) that the GC moves on an approximately
circular orbit, V ¼ Vcirc. With this, considering the NFW
halo of Ref. [17] and using Eq. (5), we find7 CMax ≈
0.3ðr=kpcÞ0.5 lnΛ. The DF time τ defined in Eq. (10) then
scales as τ ∝ r2. This is a rough estimate: if we use the
simulation data of Ref. [17] for σ and ρ we find a similar but
slightly different scaling, τ ∝ r1.85, plotted in solid blue in
Fig. 4. The important point is the approximately power-law
decline of τ towards small r. This is the cause of the fast
orbital decay of the GC in the cuspy halo model.
The situation is different in a cored halo. In a core, the

density ρ ≈ ρ0 ¼ const, the circular velocity Vcirc ∝ r,
while a Jeans analysis shows that for an isotropic velocity
distribution the velocity dispersion is constant σ ≈

ffiffiffiffiffiffiffiffi
Gρ0

p
rc

[46], where rc is the core radius (see Appendix D).
This implies Vcirc=ð

ffiffiffi
2

p
σÞ ∼ r=rc, as corroborated in

TABLE I. Some details of Fornax GCs. For the galactic center of Fornax we use an updated measurement [21], based on surface
brightness modeling. This estimate is ≈160 pc off relative to the center defined by previous works [2,17,19,33,35,50], leading to
different projected radii of GCs. We set the distance to Fornax as 147� 4 kpc [18]. We estimate the error on r⊥ by propagating the
distance error, added in quadrature with a 13 pc [21] uncertainty on the center. For relative radial velocities Δvr, we use the galactic
radial velocity RVFornax ¼ 55.46� 0.63 km=s [56] and set Δvr ¼ RVGC − RVFornax, adding errors in quadrature. For GC6, the values
correspond to a small sample of stars, likely contaminated by background [15]. rc=h refers to the King radius for GC1–GC5 and half-
light radius for GC6. The CDM instantaneous DF time [Eq. (10)] estimates are based on the NFW profile of Ref. [17]. The instantaneous
DF times of DDM and SIDM are based on Secs. IV and V.

m⋆½105 M⊙� r⊥½kpc� Δvr½km=s� rc=h½pc� Refs. τCDM½Gyr� τð135ÞDDM½Gyr� τSIDM½Gyr�
GC1 0.42� 0.10 1.73� 0.05 3.54� 1.18 10.8� 0.3 [18,19,56–58] 119 122 79.3
GC2 1.54� 0.28 0.98� 0.03 3.9� 0.7 6.2� 0.2 [18,19,58,59] 14.7 7.12 8.82
GC3 4.98� 0.84 0.64� 0.02 4.94� 0.66 1.7� 0.1 [18,19,60,61] 2.63 1.48 2.21
GC4 0.76� 0.15 0.154� 0.014 −8.26� 0.64 1.9� 0.2 [18,19,60,61] 0.91 10.7 14.8
GC5 1.86� 0.24 1.68� 0.05 3.93� 0.77 1.5� 0.1 [18,19,56,60,61] 32.2 30.1 20
GC6 ∼0.29 0.254� 0.015 −1.56� 1.36 12.0� 1.4 [15,50] 5.45 16.1 22

FIG. 2. Radius of an infalling GCwith massm⋆ ¼ 3 × 105 M⊙,
based on the simulations of Ref. [17]. In dotted blue (thick
dotted red) we plot the simulation result (Fig. 3 in Ref. [17]) for
the NFW (ISO) halo. In solid lines, we plot our semianalytic
integration. Horizontal dot-dashed lines show the radii rf where
MhaloðrfÞ ¼ m⋆, in which the semianalytic treatment should
break down.

7Reference [33] assumed that V ¼ Vcirc and also took Vcirc
equal to the velocity dispersion σ, which would lead to a con-
stant CMax. While this is roughly correct, for the NFW halo of
Ref. [17] we find mild radial dependence of Vcirc=σ ∝ r0.23, as
shown in Fig. 3.
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Fig. 3 by comparing to the simulation data from Ref. [17].
At r < rc the low-velocity approximation in Eq. (5)
gives C ∝ ðr=rcÞ3 lnΛ. The ðr=rcÞ3 factor can be thought
of as a phase-space suppression of DF: it arises from the
factor

R
V
0 dvmv2mfvðvmÞ in Eq. (4), because the velocity

dispersion inside an isotropic core is greater than the
circular velocity (which we assumed to match the instanta-
neous GC velocity).
Altogether, referring to Eq. (10), an isotropic core

predicts an approximately constant τ (see also Ref. [25]),

τ ≈
3

ffiffiffi
π

pffiffiffi
2

p σ3

4πG2m⋆ρ0 lnΛ

≈
π

2
ffiffiffi
3

p r3c
ffiffiffiffiffi
ρ0

pffiffiffiffi
G

p
m⋆ lnΛ

≈ 1.95
4

lnΛ

�
rc

1 kpc

�
3 3 × 105 M⊙

m⋆

�
ρ0

3 × 107
M⊙
kpc3

�1
2

Gyr:

ð14Þ

In the second line we used Eq. (D4) and in the third line we
used values relevant for Fornax GCs. Again, we can
compare this estimate to numerical simulations. The dashed
red line in Fig. 4 shows τ as calculated by using the velocity
dispersion and density read off the cored ISO model of
Ref. [17]. τ is approximately constant in the core, exceed-
ing the value of τ found for the NFW halo.
The result that DF is suppressed in a cored halo, in

comparison to a cusp, is consistent with the finding of
Refs. [2,28,63], further confirmed in Refs. [17,32,46,62].8

In the next two sections we consider this perspective in
exploring DM models that predict a cored halo.

IV. DEGENERATE DARK MATTER

Reference [44] (see also Ref. [45]) made the interesting
observation that light fermionic DM would produce a core
in dSphs, if the DM particle massm is light enough to place
the halo in the degenerate regime. We call this model
degenerate DM. The DDM core scale radius rc can be
estimated via

rc ¼
A

G
1
2ρ

1
6

0ðgm4Þ13

≈ 681

�
ρ0

107 M⊙=kpc3

�
−1
6

�
gm4

2 × ð120 eVÞ4
�−1

3

pc;

ð15Þ

where ρ0 is the core central density and where
A ¼ ð9π=27Þ1=6 ≈ 0.78. In Appendix B we give a deriva-
tion of Eq. (15), modeling the dSph halo by a maximum
entropy configuration (at fixed total mass and energy,
similarly to Ref. [64]).9 The maximum entropy halo is
isothermal, scaling as ρ ∝ 1=r2 at large r. Between the
degenerate core and the 1=r2 regime there are intermediate
features that depend on the temperature.
Inside r≲ rc DDM particles are described by a degen-

erate distribution function with Fermi velocity vF related to

FIG. 4. Orbital decay time calculated using ρ and σ from Fig. 1
of Ref. [17] and assuming a test object on a circular orbit. NFW
denotes a cuspy profile, and ISO denotes an isothermal cored
profile. We use here the GC mass m⋆ ¼ 3 × 105 M⊙.

FIG. 3. The ratio of the circular velocity Vcirc to the radial
velocity dispersion σr, reproduced from Ref. [17] for NFW (thick
blue) and isothermal (ISO, red) halos.

8The core stalling observed in N-body simulations was
initially ascribed in Ref. [63] to a failure of the Chandrasekhar
formula. However, as we explained here (see also Ref. [46]),
semianalytic tracking using the Chandrasekhar formula along the
orbit reproduces this result.

9Our approach in Appendix B is similar to that of Ref. [44], but
differs in that we also include nonzero temperature solutions.
Such solutions were noted but not implemented in Ref. [44]. We
find that these solutions could expand the range of applicability
of the DDM model in dSphs. Reference [65] also considered
nonzero temperature solutions, albeit without comparison to data.
(We thank P. H. Chavanis for pointing this out to us.)
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their mass density via Eq. (6). DF for this system is
characterized by Eq. (7), so inside the DDM core, where
ρ and vF are constant, Eq. (10) yields a constant DF time,

τDDM ≈
3π

2G2gm4m⋆ lnΛ

¼ 4.8
4

lnΛ
105 M⊙

m⋆
2 × ð150 eVÞ4

gm4
Gyr: ð16Þ

Note that if one inserts the DDM halo core radius (15) into
Eq. (14), one obtains the same parametric dependence as in
Eq. (16). This is a result of the similarity between Eqs. (5)
and (7). The interesting feature of the DDM model is that it
produces the core due to Pauli blocking.
Naively, Eq. (16) suggests that DF in a DDM core could

be arbitrarily suppressed by decreasing m. This happens
because decreasingm at fixed ρ is tied to increasing vF. The
DF effect on Fornax GCs is thus an interesting test bed of
DDM, and in Sec. IV C we explore this point in more
detail. Before entering that discussion, however, we first
consider observational limits on m.
First, the Fermi velocity cannot be arbitrarily high in a

gravitationally bound halo [66]. In Sec. IVAwe make this
analysis more precise by fitting stellar line-of-sight velocity
distribution (LOSVD) data to the DDM halo model; we
find that while the Fornax LOSVD data indeed constrains
m≳ 100 eV or so, this constraint by itself would still allow
a significant modification of DF compared to the CDM
prediction.
A second and much tighter constraint comes from

cosmological structure formation as observed through
Ly-α forest statistics. We show in Sec. IV B that this
constraint directly affects the same combination, gm4,
that appears in Eqs. (16) and (15). Imposing the Ly-α
constraint excludes DDM from making an appreciable core
in Fornax on scales r≳ 100 pc, meaning that DDM could
not significantly affect the orbits of GCs. While earlier
work on DDM argued that a nonthermal production
mechanism for DDM could avoid the cosmological con-
straint, we formulate a rather robust version of the bound
which appears difficult to evade.

A. Stellar LOSVD constraints on DDM in Fornax

In this section we summarize the results of a Jeans
analysis for the DDMmodel in Fornax.10 The DDM profile
is described in Appendix B and the details of the Jeans
analysis are given in Appendix C.
In Fig. 5 we plot LOSVD data of Fornax [10] alongside

fits of the density profile presented in Appendix B. Our
fitting procedure is based on a simple χ2 minimization,
where χ2 ≡PNdata

i¼1 ðσLOS;i − σLOSðriÞÞ2=σ2i and σi is the
reported uncertainty for radial bin i. At a given particle

mass m, our fit has three free parameters: the degeneracy
parameter μ0=T, the central core density ρ0, and the stellar
velocity anisotropy parameter β, taken to be constant in r.
In Fig. 6 we plot the circular velocity compared to the

Fermi velocity, which we define using vFðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðrÞ=mp

,
for the m ¼ 135 eV fit. As can be expected, the circular
velocity scales as V ∝ r, whereas vF remains constant at
small radii. This leads to a suppression of DF, as explained
in Sec. III.

B. Structure formation constraints on DDM

The free streaming of light DM suppresses the matter
power spectrum [71], notably constrained via Ly-α forest
statistics [72–74], with details depending on the cosmo-
logical DM production mechanism. References [44,45]
considered nonthermal mechanisms for cosmological

FIG. 6. The circular velocity Vcirc and the Fermi velocity vF for
the DDM halo with m ¼ 135 eV, ρ0 ¼ 3.9 × 107 M⊙=kpc3,
μ0=T ¼ 3 and g ¼ 2. The vertical lines show the estimated
orbital radii (r ¼ r⊥ × 2=

ffiffiffi
3

p
) of the three GCs closest to the

dynamical center of Fornax, cf. Table I.

2

FIG. 5. LOSVD compared with data [10] for DDM with g ¼ 2.
The best-fit parameters of the profile are μ0=T ¼ 3 and
ρ0 ¼ 3.9 × 107 M⊙=kpc3.

10For previous analyses, see Refs. [44,45,67–70].
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production of DDM, aiming to bypass the Ly-α bounds.
With such mechanisms in mind, values ofm in the ballpark
of 100 eV were considered in these works. We now revisit
the cosmological bound and formulate a conservative
limit that is insensitive to the cosmological production
mechanism of DM. Our results suggest that mechanisms of
the kind proposed in Refs. [44,45] should not be able to
produce m < 1.4 keV without tension with the nominal
Ly-α bound.
The instantaneous DM free-streaming wavelength

kFS depends on the DM velocity dispersion,11

kFSðzÞ≡
ffiffiffi
3

2

r
HðzÞ
csðzÞ

≃
ffiffiffi
3

2

r
HðzÞ
σðzÞ : ð17Þ

Here z is the redshift, HðzÞ is the Hubble rate, we have set
σðzÞ ¼

ffiffiffiffiffiffiffiffiffi
hv2i

p
and

hv2i ¼
R
d3p p2

m2þp2 fðpÞR
d3pfðpÞ : ð18Þ

Bounds on warm DM (WDM) [74] effectively constrain
kFSðzÞ. Specifically, they apply to z≲ 106, where density
perturbations on comoving scales of the order of λ ≈ ð1þ
zÞ=HðzÞ ≈ 0.5 Mpc enter the horizon and begin to evolve
under their own gravitational potential.
We can convert the WDM limit of Ref. [74] into a bound

on DDM by the following prescription. At a given energy
density, the coldest possible distribution function of DDM
is the fully degenerate distribution fðpÞ ¼ θðpF − pÞ,
where the Fermi momentum pF is related to the energy
density via

ρ ¼ g
ð2πÞ3

Z
d3p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
f

¼ g
16π2

�
pF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

F

q
ðm2 þ 2p2

FÞ −m2sinh−1
�
pF

m

��

≈

8<
:

gmp3
F

6π2
pF ≪ m;

gp4
F

8π2
pF ≫ m:

ð19Þ

The pF parameter redshifts as pF ∝ ð1þ zÞ. The velocity
dispersion for this distribution is

hv2i ¼ 1 − 3

�
m
pF

�
2

þ 3

�
m
pF

�
3

arctan
�
pF

m

�

≈
� 3p2

F
5m2 pF ≪ m;

1 pF ≫ m:
ð20Þ

Using Eq. (20) we can calculate kFSðzÞ, compare this to
the kFSðzÞ of WDM, and cast the bounds of Ref. [74] into
the most conservative, maximally cold DDM model by
matching the kFSðzÞ curves of the two models. To recall,
WDM was defined [74] by the distribution function
fWDM ¼ ðexpðp=TÞ þ 1Þ−1, where T ∝ ð1þ zÞ. Com-
paring the DM mass density for DDM and WDM in the
nonrelativistic regime, we have

ρ ¼
8<
:

gmp3
F

6π2
DDM;

3ζð3ÞgmT3

4π2
WDM:

ð21Þ

Matching the density in the two models implies

ðT=mÞWDM

ðpF=mÞDDM
¼

�
2

9ζð3Þ
ðgm4ÞDDM
ðgm4ÞWDM

�1
3

: ð22Þ

On the other hand, still in the nonrelativistic regime we can
compare the velocity dispersion in the two models,

hv2iDDM
hv2iWDM

≈
3ζð3Þ
75ζð5Þ

�ðpF=mÞDDM
ðT=mÞWDM

�
2

¼ 3ζð3Þ
75ζð5Þ

�
9ζð3Þ
2

�2
3

�ðgm4ÞWDM

ðgm4ÞDDM

�2
3

; ð23Þ

where in the second line we used Eq. (22). We illustrate the
comparison in Fig. 7. For model parameters of interest to
this discussion, the ratio of velocity dispersions is redshift

FIG. 7. A comparison of the velocity dispersions (in natural
units) of WDM and DDM for various particle masses. Including
CMB data, Ref. [74] put a bound of m > 2.96 keV on WDM
(95% C.L.), for which we plot the velocity dispersion as the green
solid line.

11This formula is correct up to an order unity factor relating the
speed of sound cs and the velocity dispersion σ [75]. This factor is
unimportant for our analysis.
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independent at z≲ 106. We can therefore conclude that the
WDM constraint of Ref. [74], mWDM > 2.96 keV at the
95% C.L. for g ¼ 2, implies the constraint

gm4
DDM > 2 × ð1.4 keVÞ4: ð24Þ

We expect that model building around the bound of
Eq. (24) would be quite difficult. No production mecha-
nism should be able to create a colder distribution
function for DDM. In particular, the skewed momentum
distribution scenarios of Ref. [45] and the scalar decay
models of Refs. [44,76] should all satisfy this bound.
Using Eq. (15), we find that Eq. (24) constrains the
DDM core in Fornax to rc ≲ 20 pc, irrelevant for the
orbits of GCs.
The Ly-α analyses may be affected by systematic

uncertainties related, among other things, to the thermal
history of the intercluster medium and other baryonic
effects [74]. Keeping this caveat in mind, it seems sensible
to take Fig. 7 with a grain of salt. If we allow kFS of the
(coldest possible) DDM model to exceed the nominal
bound of Ref. [74] by, say, a factor of ∼4.5, we could
relax Eq. (7) to gm4 > 2 × ð500 eVÞ4. With such a (rather
ad hoc) relaxed bound we could allow a DDM core
rc ≲ 80 pc, still irrelevant for GC orbits in Fornax.
Going down to m ¼ 150 eV (still at g ¼ 2), which would
allow a DDM core radius of rc ≈ 385 pc encompassing
some GC orbits, would amount to kFS being smaller by a
factor of 20 than the nominal WDM bound.

C. Orbital decay time in DDM

As we have seen, Ly-α analyses exclude DDM from
producing a core extending to the observed orbital posi-
tions of GCs in Fornax. This means that DDM would not
change the standard CDM predictions for the DF settling
time of the GCs. Nevertheless, given that the Ly-α bound is
subject to some debate, it is interesting to see what DDM
could do to DF subject only to the LOSVD constraints of
Sec. IVA.
In order to estimate the instantaneous DF time scale τ,

we use Eq. (10), with a modified Eq. (7). In order to
interpolate between a quasidegenerate core and a classical
gas in the outskirts of the halo, we adopt

CDDM ¼ 1

1
0.5 þ

v3F
V3

lnΛ; ð25Þ

such that in the regime V ≫ vF, we retrieve CDM-like
behavior, cf. Sec. III. For lnΛ, we adopt the choice for
lnΛISO, cf. Eq. (13).
We use the GC masses and projected radii collected in

Table I, combined with the density profile derived in the
LOSVD fits. We correct for the projection effect by relating

the assumed true orbital radius to the observed projected
radius of the GC via rtrue=r⊥ ¼ 2=

ffiffiffi
3

p
. We also assume that

the GCs are on circular orbits, setting V true=VcircðrtrueÞ ¼ 1.
(This deprojection procedure is, of course, simplistic:
we will shortly report a more comprehensive treatment.)
The results are summarized in Table I. For m ¼ 135 eV
we find naive orbital decay time scales of 1.48 and 10.7 Gyr
for GC3 and GC4, respectively. For comparison, using
the approach of Ref. [33] for cuspy CDM we find 2.63
and 0.99 Gyr. Therefore, while the naive DF time of GC4
in DDM is much longer than in cuspy CDM, for GC3
the naive time in cuspy CDM actually exceeds that
of DDM.
However, as discussed in Sec. III, the instantaneous τ can

be misleading when comparing different halo morpholo-
gies: a realistic estimate of the GC settling time requires
orbit integration. We turn to this analysis next, finding that
the real orbit settling times of both GC4 and GC3 are in fact
longer in DDM compared with cuspy CDM.
To obtain a more comprehensive estimate of the DF

settling time and the impact of projection effects, we use
the orbit integration explained in Appendix E with initial
conditions that we vary as follows. For each GC, we scan the
range rtrue ∈ ½1; 2�r⊥ (the logic behind this range is explained
in Appendix G). For each rtrue we scan over V true ∈
½0.5; 1.5�VcircðrtrueÞ. For each V true we test positive and
negative cos θ. Finally, we test the two cases, Δvy ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2true − Δv2r

p
,Δvz ¼ 0 andΔvy ¼ 0,Δvz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2true − Δv2r

p
.

For each starting point in phase space, we integrate
the equations of motion, stopping the integration
when ðrapoenter þ rpericenterÞ=2≲ 0.3rinitial ≡ frrinitial, or after
10 Gyr (the earlier of the two). We then report the
integration time as τinspiral.
In Fig. 8 we plot the result of this procedure for GC3,

comparing the DDM halo for m ¼ 135 eV (top panel)
and the cuspy CDM halo from Ref. [17] (bottom panel).
For the representative phase-space point rtrue=r⊥ ¼ 2=

ffiffiffi
3

p
,

V true=VcircðrtrueÞ ¼ 1, highlighted in Fig. 8 by a red dot, we
find that the inspiral time in the DDM halo is in fact longer
(∼4 Gyr) than in the cuspy CDM one (∼1.5 Gyr). This
result is in reversed order to the naive estimate in Table I,
demonstrating that the naive DF time estimate can indeed
be misleading.
We note that the inspiral time in the NFW case is not very

sensitive to the stopping radius fraction fr (set as 0.3),
whereas the DDM case is, and so are other cored halo
models. As explained in Sec. III, a cuspy profile predicts
approximately τðrÞ ∝ r2, and therefore the inspiral time is
mostly sensitive to the initial radius. In a cored model, τðrÞ
is a weak function of r, potentially even nonmonotonous.
Therefore, the definition of the inspiral time in the cored
model becomes sensitive to the radius at which the orbit
integration is stopped.

ASSESSING THE FORNAX GLOBULAR CLUSTER TIMING … PHYS. REV. D 104, 043021 (2021)

043021-9



V. SELF-INTERACTING DARK MATTER

Self-interacting DM is a simple modification of CDM,
that could arise in many models [47,77–84]. The self-
interactions can be expressed in terms of the cross section
per unit mass, σ=m, which could be velocity dependent
[82]. The scattering mean free path is

l ¼ m
ρσ

¼ 48
108 M⊙=kpc3

ρ

1 cm2=gr
σ=m

kpc; ð26Þ

and the time between scatterings l=v is

tscat ¼ 2.35
20 km=s

v
108 M⊙=kpc3

ρ

1 cm2=gr
σ=m

Gyr: ð27Þ

When l is larger than the distance across the halo, we
expect that the microphysics of DF in the SIDM model
will be similar to that of CDM. On the other hand, the
morphology of an SIDM halo could be different to that in
CDM as long as tscat is smaller than the age of the system.
Given a large enough cross section, SIDM produces cored
halos which affect the orbital settling time of GCs as
discussed in Sec. III.
We follow Ref. [47] in modeling the SIDM halo profile.

Inside some radius r1, we assume a hydrostatic profile
with central density ρc and pressure P ¼ σ20ρ. For a self-
gravitating spherical halo, the density profile obeys

1

r2
∂rðr2∂r ln ρisoÞ ¼ −

1

r2ic

ρiso
ρc

; ð28Þ

where ric ≡ σ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρc

p
(similar to the King radius [51]).

Beyond r1 we match the density to the NFW profile,
ρNFW ¼ ρsðr=rsÞ−1ð1þ r=rsÞ−2, fixing ρs and rs by impos-
ing continuity of ρisoðr1Þ ¼ ρNFWðr1Þ and of the enclosed
mass Misoðr1Þ ¼ MNFWðr1Þ. This procedure is consistent
with an initially NFW-like cusp profile that was deformed
into a cored isothermal profile due to the SIDM scatterings.
Altogether, the halo model has three free parameters, ρc, r1
and σ0, that we can constrain with LOSVD data.
In Fig. 9 we plot a LOSVD fit, following the same χ2

procedure as in Sec. IV. The model is taken to illustrate a
large core solution that would include the orbit of GC3.
In Fig. 10 we show the inspiral time of GC3, using the

same procedure as in Fig. 8. We use Eq. (5) with σ0 from
the LOSVD fit and adopt lnΛ ¼ lnΛISO as in Eq. (13). We
find that the large core SIDM model significantly increases
the inspiral time of GC3 compared to the CDM prediction.

2

FIG. 9. LOSVD data of Fornax dSph modeled by different
SIDM profiles. The central density is ρc ¼ 2.6 × 107 M⊙=kpc3,
the velocity dispersion is σ0 ¼ 17 km= sec and r1=ric ¼ 6.

FIG. 8. Contours of the inspiral time of GC3, defined in
Appendix G, for the DDM (top) and cuspy CDM models
(bottom). The “naive” estimates written on top are those given
in Table I based on an evaluation of the instantaneous DF time at
rtrue=r⊥ ¼ 2=

ffiffiffi
3

p
and V true=VcircðrtrueÞ ¼ 1. The different line

types correspond to different discrete choices in our scan of the
initial conditions in phase space, explained in more detail in
Appendix G.
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Reference [47] pointed out that in the SIDM core region,
DM particles have undergone about a single collision
during the age of the system, i.e.,

hσvi
m

ρctage ¼
tage
tscat

≈ 1: ð29Þ

With this assumption,12 we can estimate the cross section
implied by the LOSVD fit

hσvi
m

≈ 18
10 Gyr
tage

2.6 × 107 M⊙=kpc3

ρc

cm2

g
km
s
: ð30Þ

This result is compatible with the baseline model of
Ref. [47], which predicted hσvi=m ∼ 25 cm2 g−1 km s−1.
It would significantly increase the DF settling time of the
innermost Fornax GCs.

VI. DISCUSSION

In Fig. 11 we summarize the key features of dif-
ferent models of DM discussed in this work, including
both cuspy and core halo models. In the spirit of Ref. [2],
we also add the hybrid coreNFW model of Ref. [86]
with density13

ρcoreNFW ¼ f̃nρNFW þ nf̃n−1ð1 − f̃2Þ
4πr2rc

MNFW; ð31Þ

where f̃ ¼ tanhðr=rcÞ and MNFW ¼ R
r
0 d

3r0ρNFW. This
model aims to describe a CDM-dominated halo modified
by baryonic feedback.
The LOSVD data (top left panel of Fig. 11) is described

reasonably well in all models, with the fit of the ISO model
of Ref. [17] being slightly worse.
The instantaneous DF time for a GC with m� ¼ 3 ×

105 M⊙ is shown in the bottom right panel of Fig. 11. It
illustrates the fact that the main impact of the microphysics
of DM (as in DDM and SIDM) on DF comes from their
prediction of a cored halo morphology, and not from the
exotic microphysics per se. The formation of a core due to
baryonic feedback in CDM [28,63] could therefore have
similar consequences.
The density profiles (top right panel of Fig. 11) demon-

strate the cusp for NFW, large cores and the intermediate
coreNFW. We also plot an estimate of the stellar density.
This may become important for large-core models, whose
density is only larger by a factor of 2 or so than the stellar
density at small r. In these cases, accounting for the stellar-
induced potential could slightly change our results numeri-
cally, but not qualitatively: as far as the DF microphysics is
concerned, background stars would contribute to the DF of a
GC just like CDM particles, and since the total mass density
is constrained by the LOSVD fit, the separation into DM and
stellar components is not essential for the DF computation.
It is interesting to compare the circular velocity profiles

of different models (bottom left panel of Fig. 11) to the
phase-space parameters of GCs.
In Sec. VI A we briefly consider each of the six GCs,

noting the implications with respect to the timing puzzle.
Next, in Sec. VI B we consider the GC system as a whole
and use the tools we have developed throughout this work
to reevaluate the problem.

A. Comments regarding GC data used
in this work (GC-by-GC discussion)

Let us reevaluate the role of each GC in the timing
puzzle, in light of the observational data used in this work
(see Table I) including projected radii that are different than
those of earlier analyses [2,19,33,35] and LOS velocities
that were often ignored in past analyses, but are in fact
known fairly well from observations.
(1) GC1 and GC5—these GCs do not seem to pose a

timing problem as they are located at fairly large
projected radii, r⊥ ≈ 1.7 kpc, not far below the
(somewhat model-dependent) tidal radius of Fornax
at 1.8 ÷ 2.8 kpc [2,30,87]. That said, it is interesting
to note that while the circular velocity at the GC radii
is 20 ÷ 30 km=s, the measured GC LOS velocities
are smaller than Vcirc by a factor of 5 or so. This
could hint that GC1 and GC5 are close to the
apocenter of fairly eccentric orbits. If this is indeed
the case, then the naive instantaneous DF time
overestimates the true orbital settling time because

FIG. 10. DF time for an SIDM halo, analogously to Fig. 8.

12It has been pointed out [80,85] that this assumption may
be simplistic.

13For the coreNFW model we adopt the best fit of Ref. [10],
with ρ0 ≈ 107.1 M⊙, rs ≈ 2.1 kpc, n ≈ 0.8 and rc ≈ 0.52 kpc. We
derive the velocity dispersion of the halo by solving the Jeans
equation, Eq. (D1), assuming isotropy.
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the GCs typically experience stronger DF when they
venture into smaller radii, as expected if the orbit is
eccentric.

(2) GC2—does not seem to present a timing problem.
(3) GC3—for a cuspy profile, our “naive” instantaneous

DF time of 2.6 Gyr is in some disagreement the τ ≈
0.6 Gyr quoted in Ref. [33]. The main reasons for
the difference are the new estimate of r⊥ and the
updated LOSVD data [10] compared to the older
data [1]. Of more relevance, however, is the actual
physical inspiral time obtained with the orbit inte-
gration of Appendix G. We find that both a simple
cusp profile and the intermediate coreNFW profile
predict an inspiral time ≈1.5 Gyr, whereas models
with a large core predict 4 ÷ 5 Gyr.

(4) GC4—the cuspy CDM orbital decay time is short
≈1 Gyr, but not as short as previously estimated
[33]. Beyond the reasons listed for GC3, we find that
the approximationC ≈ 0.5 lnΛ, adopted in Ref. [33],
is not accurate for small radii, cf. Sec. III.
A large core would stabilize the orbit of this GC to

the 10 Gyr time scale, and even the intermediate
coreNFW profile predicts an inspiral time of≈5 Gyr.

GC4 is younger and more metal rich compared to
the other GCs [18,19], and it has been debated in the
literaturewhether it is in fact the nuclear star cluster of
Fornax [18,88–90]. The LOS velocity of this GC,
≳8 km=s, appears to potentially be at odds with this
interpretation [91].
The large LOS velocity is also somewhat difficult

to accommodate within a large core halo model. In
all of our cored halo models (see bottom left panel of
Fig. 11 and note that r⊥ ≈ 150 pc for this GC), GC4
needs to be on a circular orbit with rtrue=r⊥ ≳ 2 or
close to the pericenter of an eccentric orbit with
rtrue=r⊥ ≳ 1.6. These possibilities are somewhat
tuned, either with respect to the projection angle
or with respect to the orbital phase. In comparison,
an NFW profile can comfortably accommodate the
radial velocity of GC4. For the coreNFW model, it
is marginally possible to have GC4 on a circular
orbit without tuning in orbital parameters.

(5) GC6—the newly rediscoveredGC[15] probably has a
smaller mass (≈0.29 × 105 M⊙ [50]) than the other
five GCs. It does not seem to reinforce the timing
puzzle.

FIG. 11. Comparison of models. Top left: LOSVD data and fits. The M19 NFW and M19 ISO models refer to the halos of Ref. [17],
for which we only fit the velocity anisotropy. The DDM and SIDM models are based on Sec. IV and Sec. V. The χ2=d:o:f: is ≈1.9 for
NFW, DDM and SIDM, and ≈2.5 for ISO. The velocity anisotropy is taken to be constant in each fit. We find βNFW ¼ −0.4, βISO ¼ 0.2,
βDDM ¼ −0.1, βSIDM ¼ 0.1 and βcoreNFW ¼ −0.1. Top right: Density profiles. In addition to DM, we also plot an estimate of the stellar
density, assuming a Plummer profile with scale rp ¼ 851 pc [21] and mass 4 × 107 M⊙ [18]. Bottom left: Circular velocity. (Note how
cored models require some tuning to explain the large radial velocity of GC4, jΔvrj ¼ 8.26� 0.64 km=s, at its small projected radius
r⊥ ≈ 0.154 pc). Bottom right: Instantaneous DF time, evaluated for m⋆ ¼ 3 × 105 M⊙.
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Reference [15] noted that GC6 has an elongated
shape and may be undergoing tidal disruption. This
may comprise some evidence in favor of a cuspy halo.

To summarize, the usual suspects for a GC timing
puzzle, GC3 and GC4, are found here to have somewhat
longer settling times than previously thought [33], but
nevertheless much shorter than their age.

B. Statistical discussion

Let us finally use the tools we developed to reevaluate
the timing puzzle. Consider the cuspy NFW and the cored
ISO profiles in Fig. 11. Using the results developed in
Appendix F, we can map a distribution of GC initial radii
into the cumulative distribution function (CDF) of GC
projected radii today.
An example of such a calculation is shown in Fig. 12,

with the NFW result in the left panel and the ISO in the
right. For concreteness, in making Fig. 12 we used an
initial distribution of GC radii of the form f0ðr0Þ ∝
r20 exp ð−a0r0Þ, with r0 given in kpc and the parameter
a0 in kpc−1. We give this initial distributionΔt ¼ 10 Gyr to
evolve. For the NFW example we set a−10 ¼ 0.3 kpc, while
for the cored ISO case we set a−10 ¼ 0.6 kpc. We stress that
this form for f0 is used here mainly for illustration.
Physically, the scaling f0 ∝ r20 at small r0 ≪ a−10 could
arise naturally if the initial 3D distribution of GCs is
constant in radius, consistent with the current stellar
distribution in Fornax. The peak of the distribution is at
r0 ¼ 2a−10 , comparable to the current half-light radius.
For the NFW halo, the derivation in Appendix F shows

that before projection effects are taken into account the
time-evolved CDF of GC radii at r ≪ rcr ≈ 1 kpc takes the
form

FΔtðrÞ ≈ A
τðrÞ
Δt

; ð32Þ

independent of initial conditions, where A is an Oð1Þ
coefficient.14 This small-r approximation is shown by the
dashed red line in the left panel of Fig. 12. The dashed
green line shows the full unprojected GC CDF, consistent
with Eq. (32) for r < 500 pc.
Projection has a significant effect, meaning that typi-

cally, a considerable number of GCs observed at a projected
radius smaller or equal to r⊥ are in fact located at r > r⊥.
The solid blue line shows the projected radius CDF: for
r⊥ ≲ 0.5 kpc, projection roughly doubles the GC count
inside a given r⊥.
The GC timing puzzle is reflected in the left panel of

Fig. 12, by the presence of two GCs (GC4 and GC6) inside
of r⊥ < 250 pc or so, where the CDF shown by the solid
blue line predicts that no more than one GC should be
expected. While Fig. 12 shows the CDF resulting from just
one example of initial conditions, we could not find initial
conditions that would fit the innermost GC4 and GC6,
while not at the same time overshooting GC3 and GC2
further out; nor could we find initial conditions which fit
GC3, while not at the same time undershooting GC4 and
GC6. The reason for this (mild) inconsistency is the growth
in r of FΔt in Eq. (32), which is model-independently (that
is, irrespective of initial conditions) predicted to possess a
strong slope FΔtðrÞ ∝ τðrÞ=Δt ∝ r1.85. We stress, however,
that the inconsistency is indeed quite mild: the Poisson
probability to see two or more GCs where only one GC is
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FIG. 12. Example of a calculated CDF of projected radii using τðrÞ from Fig. 11. Left: NFW halo. Right: Cored ISO halo. The solid
blue line shows the CDF after projection effects are taken into account. The dashed green line shows the result before projection. For the
NFW case, the small-r prediction of Eq. (32) is shown by the red dashed line. Observed Fornax GCs are also shown. The initial radial
GC PDFs used to make the plot are explained in the text.

14For an NFW halo, A ≈ 0.4Ncr where Ncr specifies (approx-
imately) the initial number of GCs located inside the critical
radius rcr ≈ 1 kpc.
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expected is about 25%. This does not seem like severe
fine-tuning.
As the right panel of Fig. 12 shows, the cored ISO

profile can easily provide a time-evolved projected CDF
in excellent agreement with the data. While here we
performed the calculation for the cored ISO profile, our
analysis in this paper makes clear that essentially any model
of DM microphysics would lead to similar conclusions as
long as it produces a sizable core in Fornax.
Figure 12 suggests that even for a cuspy halo (left panel),

the GC timing puzzle does not invoke extreme fine-tuning
in the sense that it is not difficult to find apparently
reasonable initial conditions that evolve to the observed
configuration of GCs. Another point to consider is related
to GCs that inspiral down and are tidally disrupted,
presumably forming a stellar nucleus [14]. In the NFW
case in Fig. 12, about 50% of GCs present initially in the
halo arrived at the dynamical center within Δt. This may be
expected to produce a nucleus for Fornax with a stellar
mass in the ballpark of 106 M⊙, which—as far as we are
aware—is not observed. However, Ref. [14] suggested that
because of the small number of GCs involved, three-body
interactions between accreted GCs could preclude the
formation of the nucleus.
More insight could come from numerical simulations,

even though both DF and GC formation involve subgrid
physics in most existing simulations. Recently, Ref. [50]
explored the survival of GCs in cuspy Fornax-like halos
using hydrodynamical cosmological simulations [92,93],
to which subgrid formation of GCs was added and their
orbital evolution under DF was tracked in post-processing.
Reference [50] calculated the projected radius CDF of GCs
at z ¼ 0, finding that their simulated CDF is consistent with
the observed positions of the Fornax GCs. According to
Ref. [50], only around 33% of GCs are tidally disrupted in
the simulations, a somewhat smaller number than the 50%
in our example in Fig. 12. Fornax is found to be special, in
that only about 3% of Fornax-like galaxies in the simu-
lation ended up with five or more surviving GCs today.15

VII. SUMMARY

We revisited the calculation of globular cluster orbits
under dynamical friction, considering different microscopic
models of dark matter and different halo morphologies that
they predict. We focused on the Fornax dwarf spheroidal
galaxy, which hosts six GCs and which has been noted in
previous literature to pose a GC timing problem, that is, the
future orbits of some of its GCs are much shorter than their
current age.

We presented semianalytical computations of DF and of
GC orbits under DF. For a cuspy DM halo, we showed
that the current cumulative distribution function of GC
radii takes an approximately power-law form that can be
deduced from stellar kinematics and age measurements.
Including projection effects, we demonstrated that the GC
timing problem does not appear very severe: the existence
of the innermost GCs could be accounted for at the cost of
moderate fluctuation with a Poisson probability of about
25%. A comparable hint of a core in Fornax may also be
inferred by mass modeling of kinematic data [10,94].
A cuspy halo, in conjunction with GC orbits, does place

interesting constraints on the initial distribution of GCs in
dSphs, as it suggests that an Oð1Þ of initially present GCs
should have arrived and either disrupted or merged at the
dynamical center of the galaxy. If GCs merge to form a
dense nuclear cluster, as found by some simulations
[23,24], where is the nuclear cluster of Fornax?
Testing these results further would likely require

high-resolution numerical simulations including bar-
yonic effects, where GC formation can be modeled
from first principles. The recent numerical simulations
of Ref. [50] made an interesting step in this direction.
According to Ref. [50] a reasonable distribution of
initial conditions for the GCs may naturally lead to
the observed present configuration. However, both GC
formation and DF were treated in Ref. [50] at the
subgrid and post-processing level, and it is not clear (to
us) if the resolution of the simulation was high enough
to resolve the inner region of Fornax containing the
innermost GCs. Moreover, theoretical insight about the
role that initial conditions play in shaping the present
distribution of GCs is important. We thus believe that
our analytical approach remains useful.
The fact remains that the combination of GC age and

orbit measurements could probe the Fornax DM halo and
microphysics. At the level of the microphysics, in Sec. II
we calculated DF for three models of DM: fermionic
degenerate DM, where Pauli blocking affects the DF
derivation; bosonic ultralight DM, where an astronomical
de Broglie scale comes into play; and self-interacting DM,
where—in the limit we were mostly interested in—the
microphysics of DF should mostly follow that of CDM, but
the halo morphology is different.
For ULDM, DF and specifically the Fornax GC problem

were studied in a number of works. Constraints from
galaxy dynamics and cosmological Ly-α analyses exclude
a soliton core reaching out to the orbits of Fornax GCs, and
lead to a similar behavior as in CDM.
For DDM, we gave a new derivation of DF. We then

formulated a robust (in terms of DM model building)
version of the Ly-α bound, showing that it excludes an
appreciable core, leading again to CDM-like behavior at
the scale of GC orbits. At the same time, stellar kinematics
in Fornax could still allow a considerable DDM core. If
the Ly-α bound is discounted, for some reason, then

15Note that Ref. [50] considered GC6 as a candidate for a
tidally disrupted GC, assuming that its projected distance from
the center of Fornax is just 30 pc. In comparison, using the
Fornax center of Ref. [21], we find a projected distance of 254 pc
for GC6.
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DDM could lead to significant suppression of DF and
prolongation of the settling time of GC3 and GC4.
For SIDM, stellar kinematics allows a considerable core.

If the SIDM cross section is as large as that considered in
Ref. [47], then the DF settling time for GC3 and GC4 can
be significantly longer than in the cuspy halo CDM model.
We also considered the possibility that baryonic feed-

back deforms a CDM cusp into a core. In that case, the
deformation of the halo is expected primarily within the
half-light radius [10,17,48,49]. This makes the core spa-
tially smaller than the typical cores that were previously
suggested as an explanation of the GC timing puzzle
[17,28]. For our analysis, we adopted the density profile
fit in Ref. [10]. This intermediate-size baryonic-driven core
can also prolong GC orbital decay times within the inner
few hundred parsecs compared to the cusp case.
Altogether, we considered DM microphysics (and indi-

rectly, also baryonic feedback) as a possible source for the
formation of a core in Fornax, and computed the detailed
effects on dynamical friction. In general, both the detailed
microphysics and the mere presence of a core (regardless of
how it formed) affect the settling of GC orbits. Our analysis
suggests that the most relevant factor is the presence of the
core itself, rather than the specific microphysics scenario.
Further analysis, including other galaxies, and in particular
the search for nuclear star clusters in Fornax-like systems,
may be able to differentiate between these possibilities.
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APPENDIX A: DYNAMICAL FRICTION IN
EXOTIC MEDIA: DERIVATION FROM THE

BOLTZMANN EQUATION

In this Appendix we provide an economical derivation of
gravitational DF acting on a nonrelativistic probe object
moving in a medium, with different medium microphysics
including a classical gas as well as quantum Fermi and
Bose gases. We neglect interactions apart from minimal
gravity. We start with a quick recap of the derivation of the
Fokker-Planck equation, governing the phase-space distri-
bution functions of the probe and medium particles.
We consider the following elastic scattering process of

two particle species:

1ðpÞ þ 2ðkÞ → 1ðp0Þ þ 2ðk0Þ:

The phase-space distribution function for the particle
species 1 evolves according to the Boltzmann equation,

df1
dt

¼ C½f1�: ðA1Þ

The collision integral C½f1� contains information about the
elastic scattering process, and is written as

C½f1� ¼
ð2πÞ4
2Ep

Z
dΠkdΠp0dΠk0δ

ð4Þðpþ k − p0 − k0ÞjM̄j2

× ½f1ðp0Þf2ðk0Þð1� f1ðpÞÞð1� f2ðkÞÞ
− f1ðpÞf2ðkÞð1� f1ðp0ÞÞð1� f2ðk0ÞÞ�; ðA2Þ

where jM̄j2 is a squared matrix element averaged over
initial and final spins, and dΠk ¼ g

2Ek

d3k
ð2πÞ3 is the Lorentz-

invariant phase element with the number of internal degrees
of freedom g. The sign in 1� fi refers to bosons (þ) or
fermions (−), respectively. It is convenient to write the
above Boltzmann equation in the following form:

df1
dt

¼
Z

d3p0

ð2πÞ3 ½Sðp
0;pÞf1ðp0Þð1� f1ðpÞÞ

− Sðp;p0Þf1ðpÞð1� f1ðp0ÞÞ�; ðA3Þ

where the function S encodes the response of the medium,
and is defined as

Sðp;p0Þ≡ ð2πÞ4
2Ep2Ep0

Z
dΠkdΠk0δ

ð4Þðpþ k − p0 − k0Þ

× jM̄j2f2ðkÞð1� f2ðk0ÞÞ: ðA4Þ

The function Sðp;p0Þ can be interpreted as a differential
rate at which a particle of momentum p is converted into a
particle with momentum p0.
The Boltzmann equation can be greatly simplified if the

momentum exchange

q ¼ p0 − p ðA5Þ

is smaller than the typical momentum given by the distri-
bution function f1. In such cases, the Boltzmann equation is
reduced to the nonlinear Fokker-Planck equation,

df1
dt

¼ −
∂
∂pi ½f1ð1� f1ÞDi�

þ 1

2

∂
∂pi

� ∂
∂pj ðDijf1Þ � f21

∂
∂pj Dij

�
; ðA6Þ

where the diffusion coefficients are defined as
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DiðpÞ ¼
Z

d3q
ð2πÞ3 q

iSðp;pþ qÞ; ðA7Þ

DijðpÞ ¼
Z

d3q
ð2πÞ3 q

iqjSðp;pþ qÞ: ðA8Þ

The gravitational scattering of a probe particle of massM
and a particle in the medium with mass m is described by
the spin-averaged matrix element

jM̄j2 ¼ 1

2sþ 1

ð16πGÞ2m4M4

½ðq0Þ2 − q2�2 ; ðA9Þ

entering Eq. (A4). In the nonrelativistic limit, we can
neglect q0 and maintain only q in Eq. (A9).
The problem of calculating the diffusion coefficients for

different types of media amounts to evaluating Eqs. (A7)
and (A8), where in the response function (A4) we can select
the appropriate sign in 1� f2 corresponding to the medium
particle’s spin statistics (or setting 1� f2 → 1 if we wish to
compute the classical gas limit).
For the calculation of DF we are particularly interested in

Djj, the first diffusion coefficient corresponding to motion
parallel to the probe object’s instantaneous velocity. Djj is
simply given by Eq. (A7) when we select qi to align with
the direction of p.

1. A classical gas medium

We first rederive the relaxation of massive classical
objects, such as supermassive black holes or GCs, in a
background medium consisting of other classical objects
such as stars or CDM particles. In the nonrelativistic limit,
the function Sðp;p0Þ is simplified as

Sðp;p0Þ ≃ gχ
ð4πGmMÞ2

q4

Z
d3k
ð2πÞ3

d3k0

ð2πÞ3
× ð2πÞ4δð4Þðpþ k − p0 − k0Þf2ðkÞ ðA10Þ

where gχ is the number of internal degrees of freedom of
dark matter. Here, M and m are the masses of the particle
species 1 and 2, respectively. In the small momentum
exchange limit, the δ function for the energy conservation
can be expanded as

δðEp þ Ek − Ep0 − Ek0 Þ

≃
1

q

�
1þ M

2μr
q ·

∂
∂p

�
δ

�
q̂ ·

�
k
m
−

p
M

��
; ðA11Þ

where μr ¼ mM=ðmþMÞ is the reduced mass. Using
these approximate expressions in nonrelativistic and small
momentum exchange limits, we obtain the diffusion
coefficients as

DiðpÞ ¼
Z

d3q
ð2πÞ3 q

iSðp;pþ qÞ

¼ 4πG2m2M2

�
1þM

m

�
lnΛ

∂
∂pi hðp; f2Þ ðA12Þ

and

DijðpÞ ¼
Z

d3q
ð2πÞ3 q

iqjSðp;pþ qÞ

¼ 4πG2m2M4 lnΛ
∂2

∂pi∂pj gðp; f2Þ ðA13Þ

where lnΛ ¼ R
qmax
qmin

dq=q is the Coulomb logarithm, and
we have used the identities (26)–(27) of Ref. [38] to
perform the angular integration at the second step in each
equation. The Rosenbluth potentials hðpÞ and gðpÞ are
defined as [95]

hðp; fÞ ¼ gχ

Z
d3k
ð2πÞ3

fðkÞ
j km − p

M j ; ðA14Þ

gðp; fÞ ¼ gχ

Z
d3k
ð2πÞ3

���� km −
p
M

����fðkÞ: ðA15Þ

This reproduces the well-known diffusion coefficients
in a classical system; see Eq. (7.83) in Ref. [51]. For
the Maxwell-Boltzmann distribution f2ðkÞ ¼ ð2πÞ3=2n2=
½gχðmσÞ3�e−v2k=2σ2 , it is straightforward to find

∂h
∂pi ¼ −

vi

v
n2
Mσ2

1

2X2

�
erfðXÞ − 2Xffiffiffi

π
p e−X

2

�

≡ −
vi

v
n2
Mσ2

GðXÞ; ðA16Þ

∂g
∂pi∂pj ¼

ffiffiffi
2

p
σ2

M2

�
3

2

XiXj

X3

�
GðXÞ − 1

3
erfðXÞ

�

þ δij

2

erfðXÞ −GðXÞ
X

�
; ðA17Þ

where v ¼ p=M, v ¼ jvj and

X ¼ vffiffiffi
2

p
σ
: ðA18Þ

2. Degenerate fermionic dark matter

We now consider the diffusion of astrophysical objects
such as GCs in a halo of fermionic dark matter. In this case,
the response function S becomes

Sðp;p0Þ ≃ gχ
ð4πGmMÞ2

q4

Z
d3k
ð2πÞ3

d3k0

ð2πÞ3
× ð2πÞ4δð4Þðpþ k − p0 − k0Þf2ðkÞð1 − f2ðk0ÞÞ:

ðA19Þ

BAR, BLAS, BLUM, and KIM PHYS. REV. D 104, 043021 (2021)

043021-16



Expanding f2ðk0Þ around k, we find an additional con-
tribution to the function S due to quantum statistics as

ΔSðp;p0Þ ≃ −2πgχ
ð4πGmMÞ2

q5

×
Z

d3k
ð2πÞ3

�
1þ q

2
·
∂
∂p

�
δ

�
q̂ ·

�
k
m
−

p
M

��
× f22ðkÞ; ðA20Þ

which is the same as Eq. (A10) upon substitutingM=μ → 1

and f2 → f22. We find

DiðpÞ ¼
4πG2m2M3 lnΛ

μr

∂
∂pi

�
hðp; f2Þ −

μr
M

hðp; f22Þ
�
;

ðA21Þ

DijðpÞ ¼ 4πG2m2M4 lnΛ
∂2

∂pi∂pj ½gðp; f2Þ − gðp; f22Þ�:

ðA22Þ

For the degenerate case, one can perform the k and k0
integrations without expanding f2ðk0Þ. This computation
was already done in the context of neutrino transport in a
hot and dense medium [96] and dark matter thermalization
in neutron stars [97]. We find

Sðp;p0Þ ¼ gχ
ð4πGmMÞ2

q4
m2T
2πq

z
1 − e−z

�
1þ ξ−

z

�
ðA23Þ

where z ¼ −q0=T, E2
− ¼ m2 þ k2−, k2− ¼ ðm2=q2Þ×

ðq0 þ q2=2mÞ2, and

ξ− ¼ ln

�
1þ eðE−−μÞ=T

1þ eðE−−μÞ=Tez

�
: ðA24Þ

Integrating this response function with respect to q, one
obtains the diffusion coefficients for a degenerate medium.

3. Ultralight dark matter

It was discussed in Ref. [98] that the dynamical
relaxation of stars in a ULDM halo proceeds as stars
scatter off ULDM quasiparticles whose size is of the order
of the de Broglie wavelength, λdB ∼ 2π=mv. This obser-
vation was confirmed by Bar-Or et al. [38], where the
dynamical relaxation time scale as well as diffusion
coefficients were computed in more a rigorous way by
using Fokker-Planck equation and stochastic gravitational
potential.
The Boltzmann equation approach can also reproduce

the dynamical relaxation time scale and diffusion coeffi-
cients. The gravitational scattering between ultralight dark
matter and a star can be described by the same matrix

element, Eq. (A9), where M and m are the mass of the
star and ultralight dark matter, respectively. We treat the
star as a pointlike particle, and this can be justified
since the maximum momentum exchange q ∼mv is much
smaller than 1=r with a typical star radius r. The function
Sðp;p0Þ is

Sðp;p0Þ ≃ gχ
ð4πGmMÞ2

q4

Z
d3k
ð2πÞ3

d3k0

ð2πÞ3
× ð2πÞ4δð4Þðpþ k − p0 − k0Þf2ðkÞð1þ f2ðk0ÞÞ:

ðA25Þ

The quantum correction is the same as Eq. (A21) with an
opposite sign. Therefore, the diffusion coefficients are

DiðpÞ ¼
4πG2m2M3 lnΛ

μr

∂
∂pi

�
hðp; f2Þ þ

μr
M

hðp; f22Þ
�
;

ðA26Þ

DijðpÞ ¼ 4πG2m2M4 lnΛ
∂2

∂pi∂pj ½gðp; f2Þ þ gðp; f22Þ�:

ðA27Þ

This reproduces the results of Ref. [38].

APPENDIX B: MAXIMUM ENTROPY
DDM HALOS

In the derivation of the quasidegenerate density profile,
we adopt the assumption that a galactic structure may
be described as a statistical ensemble close to equilibrium,
in the sense of a maximal Boltzmann-Gibbs entropy. A
similar approach to ours can be found in a number of earlier
works [44,64,65,99–102].
The phase-space distribution function fðr;pÞ and differ-

ential particle number density dN are related via

ð2πÞ3 dN
d3xd3p

¼ gfðr;pÞ: ðB1Þ

The entropy of the gas is then given by the functional

S ¼ −g
Z

d3pd3r
ð2πÞ3 ½f ln f þ ð1 − fÞ lnð1 − fÞ�: ðB2Þ

Supplemented with Lagrange multipliers for the total
energy and the total number of particles, the variation
problem can be carried out along the lines of Ref. [64]. The
maximum entropy result is

fðr;pÞ ¼ 1

1þ exp½zðr;pÞ� ; ðB3Þ

where
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zðr;pÞ ¼ βp2

2m
þ βmΦðrÞ þ α; ðB4Þ

with β and α being the energy and particle number
Lagrange multipliers. The gravitational potential is
given by

ΦðrÞ ¼ −Gmg
Z

d3p0d3r0

ð2πÞ3
fðr0;p0Þ
jr − r0j : ðB5Þ

By construction, the gravitational potential solves the
Poisson equation, ∇2Φ ¼ 4πGρ, where the density is

ρðrÞ ¼ mg
Z

d3p
ð2πÞ3 fðr;pÞ: ðB6Þ

We can make progress by evaluating the density,

ρðrÞ ¼ −mg

�
m
2πβ

�
3=2

PolyLog

�
3

2
;−eφ

�
; ðB7Þ

where φ≡ −βmΦðrÞ − α≡ βμ ¼ μ=T, defining also the
“chemical potential” μðrÞ ¼ −mΦðrÞ − α̃, with α̃≡ α=β.
Using the Poisson equation and the definition of φ,

we have

∇2Φ ¼ −
1

βm
∇2φ ¼ 4πGρ: ðB8Þ

In the degenerate limit, μ=T ¼ φ ≫ 1, the PolyLog
function asymptotes to

−PolyLog
�
3

2
;−eφ

�
→

4φ3=2

3
ffiffiffi
π

p ¼ 4ðμ=TÞ3=2
3

ffiffiffi
π

p : ðB9Þ

It is therefore useful to rewrite Eq. (B8) as

∇2μðrÞ ¼ 4
ffiffiffi
2

p

3π
gGm7=2μ1=20

PolyLog½3
2
;−eβμ0f�

4
3
ffiffi
π

p ðβμ0Þ3=2
; ðB10Þ

where we defined μð0Þ≡ μ0 and μðrÞ ¼ μ0hðrÞ. Let us
also define a dimensionless radius x via r ¼ r0x, with r0
given by

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3π

4
ffiffiffi
2

p
gGm7=2μ1=20

s
: ðB11Þ

Then, one finds the equation

∂xðx2∂xhÞ ¼ x2
PolyLog½3

2
;−eðμ0=TÞh�

4
3
ffiffi
π

p ðμ0=TÞ3=2
: ðB12Þ

Given the solution for h, the density is simply

ρ ¼
ffiffiffi
2

p

3π2
gm

5
2μ

3
2

0

−PolyLog½3
2
;−e

μ0
T h�

4
3
ffiffi
π

p ðμ0=TÞ3=2
: ðB13Þ

In the limit μ0=T ≫ 1, the right-hand side of Eq. (B12)
becomes −x2h3=2, which is a Lane-Emden equation with
a scale r0. The central density becomes ρð0Þ≡ ρ0 ≈
ð ffiffiffi

2
p

=3π2Þgm5=2μ3=20 , i.e., μ0¼ð3π2= ffiffiffi
2

p Þ2=3ðρ0=gÞ2=3=m5=3,
which implies16

r0 ≈
1

2

�
9π

2G3ρ0g2m8

�1
6

: ðB14Þ

The solution for ρ is constant near the origin and falls as
ρ ∝ 1=r2 at r ≫ r0, with a “wriggle” feature near r ∼ r0. An
example with μ0=T ¼ 10 is shown in Fig. 13.
It is interesting to compare this class of solutions to the

solutions obtained from the prescription of Ref. [45].
Rescaling the equations of Ref. [45] by r0 from
Eq. (B14), we plot the solution we find (at constant ρ0)
in Fig. 14 (named RSU), along with different solutions
corresponding to different μ0=T. Evidently, the profile used
in Ref. [45] bears a strong resemblance to the μ0=T ∼ 1
case. Also, Fig. 14 shows that in the limit μ0=T → ∞, the
solution is a core with finite radius. We show it both by
solving the density profile for μ0=T ≫ 1 and by solving the
Lame-Emden (LE) approximation that appears above.

8

5

5

FIG. 13. The density profile found by solving Eq. (B12) and
inserting into Eq. (B13) (blue line), compared with an analytical
ansatz (orange) that demonstrates the asymptotic behavior of the
solution. Evidently, for x≲ 1 the density profile is constant,
whereas the density asymptotes to 1=x2 for large x.

16Our natural unit notation, which includes ℏ → 1, may mask
the fact that the characteristic radius (B14) is determined by
quantum degeneracy pressure. This is easy to unmask by
restoring ð2πÞ3 → ð2πℏÞ3 on the left-hand side of Eq. (B1).
Tracking ℏ through the computation gives a factor of ℏ on the
right-hand side of Eq. (B14).
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In Fig. 15 we plot the circular velocities induced by the
density profiles in Fig. 14.

APPENDIX C: JEANS MODELING

Following Ref. [51], the equation for the second velocity
moments of a static spherical system of particles under the
influence of a gravitational potential with enclosed mass
MðrÞ is

1

ν

d
dr

ðνv̄2rÞ þ 2
βv̄2r
r

¼ −
GM
r2

; ðC1Þ

where νðrÞ is the particles’ density, v̄2rðrÞ is the radial
second velocity moment, v̄2θ is the angular second velocity

moment and β≡ 1 − v̄2θ=v̄
2
r is the velocity anisotropy. For

constant β, Eq. (C1) is solved by

νv̄2rðrÞ ¼
G
r2β

Z
∞

r
r02β−2νðr0ÞMðr0Þdr0: ðC2Þ

This can be related to the line-of-sight (LOS) velocity,

σ2LOSðrÞ ¼
2

IðrÞ
Z

∞

r

�
1 − β

r2

r02

�
νv̄2rðr0Þr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 − r2

p dr0: ðC3Þ

In modeling stellar kinematics in Fornax, we assume a
Plummer profile with density and surface density given by,
respectively,

νðrÞ ¼ 1

ð1þ r2=r2pÞ5=2
3L
4πr3p

; ðC4Þ

IðrÞ ¼ 1

ð1þ r2=r2pÞ2
L
πr2p

: ðC5Þ

We use the radius parameter rp ¼ 710 pc [10], consistent
with the stellar sample on which the kinematics data is
based. (This radius parameter is about 20% smaller than the
rp ≈ 851 pc reported in a new morphological study [21].
The difference is not crucial for our analysis. Moreover, we
prefer to consider the photometry and spectroscopy of the
same data set.)

APPENDIX D: CDM VELOCITY DISPERSION
IN A CORED PROFILE

In this Appendix we discuss some features of cored
CDM halos, notably DF, partially following Ref. [46].
The velocity dispersion of dark matter is important to the

discussion, and therefore let us write the Jeans equation for
the second radial velocity moment with a constant velocity
anisotropy β, which has the solution [51]

v̄2rðrÞ ¼
G

r2βρðrÞ
Z

∞

r
r02β

ρðr0ÞMðr0Þ
r02

dr0; ðD1Þ

which is the same as Eq. (C2) but in slightly different
notation.
Consider a finite-core toy model, where the density is

ρð0Þ for r < rc and 0 for r > rc. Then, the solution of
Eq. (D1) is [46]

v̄2rðrÞ ¼
2πGρð0Þ
3ðβ þ 1Þ

1

r2β
ðr2βþ2

c − r2βþ2Þ: ðD2Þ

For isotropic velocity dispersion β ¼ 0, this reduces to

v̄2rðr; β ¼ 0Þ ¼ 2πGρð0Þ
3

ðr2c − r2Þ: ðD3Þ

Thus, for r ≪ rc,

FIG. 15. The circular velocities
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðrÞ=rp

for the density
profiles that appear in Fig. 14.

31
4

FIG. 14. The density profile found by solving Eq. (B12) and
inserting into Eq. (B13) for different values of μ0=T, keeping ρ0
constant. The dashed blue line (RSU) is based on the treatment of
Ref. [45]. The dotted red line (LE) is based on solving the Lane-
Emden equation, which is the μ0=T → ∞ limit of the equations,
as described in the text.
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σr ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̄2rðr ≪ rc; β ¼ 0Þ

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πGρð0Þ

3

r
rc

≈ 30

�
ρð0Þ

108
M⊙
kpc3

�1
2 rc
1 kpc

km
s
: ðD4Þ

We can also note the ratio,

X ≡ Vcircffiffiffi
2

p
σr

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðrÞ
2r

r 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πGρð0Þr2c

3

r
¼ r

rc
; ðD5Þ

indicating that the low-velocity approximation of the
Chandrasekhar deceleration may apply inside a core; see
Eq. (5). This implies a “phase-space suppression” to DF, as
discussed in the main text (Sec. III).

APPENDIX E: ORBITS UNDER
DYNAMICAL FRICTION

In this Appendix we review the solution of an orbit under
the influence of DF. We write the equations of motion
(EoM) in circular coordinates,

̈r ¼ ð̈r − r _φ2Þr̂þ ð2_r _φþrφ̈Þφ̂ ðE1Þ

¼ −
GMðrÞ

r2
r̂−

���� d_rdt
����
DF

_r
j_rj : ðE2Þ

We express the deceleration jd_r=dtjDF as j_rj=τ, where τ
appears in Eq. (10).
Defining r ¼ R0x, t ¼ T0 t̄, T2

0 ¼ R3
0=GMðR0Þ, we find

x00 − xφ02 ¼ −
1

x2
MðR0xÞ
MðR0Þ

−
x0

τ=T0

; ðE3Þ

2x0φ0 þ xφ00 ¼ −
xφ0

τ=T0

ðE4Þ

where 0 is differentiation with respect to t̄. Note, τ can
depend on r and j_rj. For a circular orbit, for example, the
initial conditions can be set as xð0Þ ¼ 1, x0ð0Þ ¼ 0, φð0Þ ¼
0 and φ0ð0Þ ¼ 1=xð0Þ ¼ 1, which has a revolution time
of Δt̃ ¼ 2π.
Solving the orbit of a decelerating test object generally

requires numerical integration. We can understand some
features of the solution analytically, however. Defining
vφ ≡ r _φ, the φ̂ part of the EoM has the solution

rvφ ¼ ðrvφÞ0 exp
�
−
Z

t

0

dt0

τ

�
: ðE5Þ

This solution expresses the decay of angular momentum of
the test object. Using the circular velocity v2circ ¼ GMðrÞ=r,
we can express the r̂ part of the EoM as

v2φ − v2circ ¼ r

�̈
rþ _r

τ

�
: ðE6Þ

We can gain more analytical intuition by considering
nearly circular orbits, assuming that the inspiral rate is much
smaller than the circular velocity, r=τ ≪ vcirc. Assuming
that _r ∼ r=τ, ̈r ∼ r=τ2 and r=τ ≪ vcirc, Eq. (E6) implies
vφ ≈ vcirc. We can use this to write

−
rvφ
τ

¼ _rvφ þ r _vφ ≈ _rvcirc þ r _vcirc ðE7Þ

¼ 1

2
vcirc _r

�
1þ d lnM

d ln r

�
: ðE8Þ

Rearranging, we find

_r
r
≈ −

2

ð1þ d lnM
d ln r Þτ

: ðE9Þ

Using this,we can estimate the time it takes a test object to fall
from r0 down to r < r0:

tðr; r0Þ ¼
Z

r0

r

dr
2r

�
1þ d lnM

d ln r

�
τðr; vcircðrÞÞ: ðE10Þ

Given the mass profile of the halo, MðrÞ, and a DF model
encapsulated by τ, Eq. (E10) is a simple and quick estimate of
the inspiral time of a test object.
For eccentric orbits, the approximation above is less

justified. Defining eccentricity as e≡ ðrapo − rperiÞ=ðrapo þ
rperiÞ with apocenter radius rapo and pericenter radius rperi,
we numerically tested Eq. (E10) for e > 0. In these
calculations we defined r0 and r via ðrapo þ rperiÞ=2, where
rapo and rperi are obtained per cycle of the orbital phase.
With these definitions, in numerical experiments represen-
tative of Fornax GCs we find that Eq. (E10) holds to better
than 30% accuracy for e≲ 0.5.

APPENDIX F: THE RADIAL AND
PROJECTED CDF OF GCs

Consider a population of identical GCs (all with the same
mass), that start off their life at some initial time t ¼ 0 on
approximately circular orbits with a radial probability
distribution function (PDF) f0ðr0Þ with respect to an initial
radial coordinate r0. The CDF of initial GC positions is
F0ðr0Þ ¼

R r0
0 dyf0ðyÞ. We are interested in computing the

PDF and CDF of GC radial positions today, at t ¼ Δt; call
these fΔtðrÞ and FΔtðrÞ.
DF causes GC orbits to inspiral inwards, and by

integrating along the orbit we can compute the function
r ¼ rðr0;ΔtÞ and invert it to obtain r0 ¼ r0ðr;ΔtÞ.17
Neglecting tidal disruption, we have

17The monotonous decrease of r with time, that allowed this
inversion, is lost for noncircular orbits. We could accommodate
elliptical orbits approximately, by letting r represent the average
between the peri- and apocenter per cycle.
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FΔtðrÞ ¼ F0ðr0ðr;ΔtÞÞ: ðF1Þ

Now we can use explicit results for r0ðr;ΔtÞ to connect
FΔtðrÞ with F0ðr0Þ in different halo models. To this end we
can use Eq. (E10),

Δt ¼
Z

r0

r

dr0

2r0
ð1þ αðr0ÞÞτðr0Þ; ðF2Þ

where αðrÞ≡ d lnM=d ln r. Let us consider the general
features of FΔt for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo (i.e.,
the inner region of an NFW halo, where α ≈ 2) exhibits an
approximately power-law form for the DF time τ. For an
approximately constant α and power law τ ¼ τ̄ðr=r̄Þβ, it is
useful to define the critical radius rcr via

τðrcrÞ ¼
2β

1þ α
Δt: ðF3Þ

The physical meaning of rcr is that GCs that start their life
at r0 ≤ rcr arrive at the origin within t ≤ Δt. Using our
power-law form for τ, we have

rcr ¼ r̄

�
2β

1þ α

Δt
τ̄

�
1=β

: ðF4Þ

In terms of rcr, the solution of Eq. (F2) evaluates to

r0ðr;ΔtÞ ¼ rcr

�
1þ

�
r
rcr

�
β
�

1=β
: ðF5Þ

For GCs that satisfy r ≪ rcr today, we can expand their
starting point:

r0ðr;ΔtÞ ¼ rcr þ
rcr
β

�
r
rcr

�
β

þ � � �

¼ rcr

�
1þ 1þ α

2β2
τðrÞ
Δt

þ � � �
�
: ðF6Þ

In other words, for cuspy CDMhalos, GCs that are currently
seen at r ≪ rcr must have originated near r0 ≈ rcr. This
means that forGCswith r ≪ rcr today, the radial distribution
today is not very sensitive to the (difficult to predict) initial
distribution. We can make this point manifest by expanding
Eq. (F1), using Eqs. (F4) and (F6):

FΔtðrÞ ≈ F0ðrcrÞ þ
ð1þ αÞ
2β2

f0ðrcrÞrcr
τðrÞ
Δt

þ � � � ; ðF7Þ

where the ... refer to higher powers of the small ratio τðrÞ=Δt.
Above, the r-independent constant F0ðrcrÞ counts GCs that
have already settled to the center of the halo. These GCs

at r ≈ 0 were likely tidally disrupted, suggesting that in
actually counting GCs in the system, we should eliminate
the term F0ðrcrÞ on the rhs of Eq. (F7). We thus have
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, where A ¼ ð1þαÞ

2β2
f0ðrcrÞrcr is an

order-unity constant (r-independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are born
at r < rcr have arrived at r ≈ 0 by today and are plausibly
tidally disrupted. This means that observations today are
not sensitive to initial conditions, characterized by different
f0ðr0Þ, that differ from each other only at r < rcr, unless
stellar age and metallicity measurements can identify the
remnants and approximately count tidally disrupted GCs,
on time scales of Gyrs after the disruption. Second, the
radial CDF of GCs at small radii r ≪ rcr should follow
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, with order-unity A, irrespective of
initial conditions.
Figure 16 illustrates both of these two points, by showing

two examples of f0 and the resulting FΔt. The DF time τðrÞ
and the critical radius rcr are measurable given a model of
the DM halo, fitted to stellar kinematics, and given GC age
measurements that define Δt. This makes the predicted
shape of FΔt measurable, in principle. In practice, however,
projection effects (explained below) complicate the inter-
pretation. In addition, the collection of GCs in Fornax
seems too sparse to draw robust conclusions.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ. Equation (F2) is evaluated to

Δt ¼ 1þ α

2
τ ln

r0
r

ðF8Þ

and the radial CDF today is

FΔtðrÞ ≈ F0ðre
2Δt

ð1þαÞτÞ ≈ F0ðreΔt
2τÞ: ðF9Þ

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitivity
to initial conditions, the degree of possible fine-tuning in
the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order of
magnitude around 105 M⊙, and the instantaneous DF time
satisfies τ ∝ 1=m� up to logarithmic corrections that we
neglect here. It is therefore necessary to revise the

18For the inner region of an NFW profile, we have seen that
α ≈ 2 and β ≈ 2, so A ≈ 0.4Ncr, where Ncr ¼ f0ðrcrÞrcr counts
the number of GCs that were located in a region of order rcr
around rcr. Predicting the actual value of Ncr would require an
understanding of the initial cosmological formation of GCs,
which is still not under full theoretical control.
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prediction of the radial CDF of GCs to account for different
GC masses.
In the case of a cuspy profile, where τ ∝ rβ, the critical

radius scales as rcr ∝ m1=β
� . For example, using the NFW fit

of Fornax (which gives β ≈ 1.85), relevant GC masses, and
Δt ¼ 12 Gyr we have

rcr ≈ 0.7

�
m⋆

MGC4

�
0.54

kpc ðF10Þ

≈1.6
�

m⋆
MGC3

�
0.54

kpc: ðF11Þ

Suppose we have a set of GC masses m�i with initial
radial distribution functions f0;iðr0Þ. Summing over all GC
masses we find that as long as r ≪ rcr;i, Eq. (F7) predicts
that the total radial CDF today is (again omitting GCs that
have already settled to the center of the halo)

X
i

FΔt;iðrÞ ≈ FΔt;1ðrÞ
X
i

f0;iðrcr;iÞ
f0;1ðrcr;1Þ

�
m�i
m�1

�1
β−1

; ðF12Þ

where FΔt;1ðrÞ is the radial CDF of GCs of mass m�1. We
see that Eq. (F12) simply reproduces Eq. (F7) up to a
modified overall multiplicative constant.

4. Projected radius distribution

In reality we only know the projected distance of GCs
from the center of Fornax, r⊥, and not the true radial
distance r. To obtain the CDF of projected radii, we can
start with the surface density of GCs,

ΣΔtðr⊥Þ ¼
Z

∞

−∞
dznðrÞ ¼ 2

Z
∞

r⊥
dr

rnðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2⊥

p ; ðF13Þ

where the 3D number density nðrÞ is related to the radial
PDF via n ¼ fΔtðrÞ=4πr2. Using this relation we have

ΣΔtðr⊥Þ ¼
1

2π

Z
∞

r⊥
dr

fΔtðrÞ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2⊥

p : ðF14Þ

The CDF in r⊥, that we define by F⊥
Δtðr⊥Þ, is given by

F⊥
Δtðr⊥Þ ¼ 2π

Z
r⊥

0

dRRΣΔtðRÞ

¼ FΔtðr⊥Þ þ
Z

∞

r⊥
drfΔtðrÞ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2⊥
r2

r �
:

ðF15Þ

The CDF of projected radii contains the CDF of true radii,
evaluated at r ¼ r⊥, plus another term that counts GCs
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FIG. 16. Initial radial PDF f0 (left) and resulting current radial CDF FΔt (right) for a cuspy halo with τðrÞ ∝ r1.85 and rcr ¼ 1.12 (units
on the x axis are arbitrary). Two different examples for f0 are shown, leading to nearly identical FΔt. The two versions of f0 are
normalized to yield FΔtð∞Þ ¼ 6. In both panels, rcr is marked with a vertical black line. On the left, the r ≪ rcr approximation
FΔt ≈ AðτðrÞ=ΔtÞ is shown by the red dotted curve.
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FIG. 17. The effect of projection. Solid blue: unprojected radial
CDF computed at the projected radius, FΔtðr⊥Þ. Dashed black:
CDF of projected radii F⊥

Δtðr⊥Þ.
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at r > r⊥ which are projected into R < r⊥. The added
projection term can exceed the unprojected term, meaning
that most GCs seen inside r < r⊥ could be physically
located at r > r⊥. The effect is illustrated in Fig. 17.

APPENDIX G: EXPLORATION OF INITIAL
CONDITIONS

The goal of this section is to explore the implications of
uncertainties due to the line-of-sight projection in the true
positions and velocities of GCs. Different projection angles
lead to different true positions and velocities of a GC,
affecting the orbital settling time under DF.
Consider the orbits of test bodies in a spherically

symmetric gravitational potential ΦðrÞ. A given orbit lies
on an orbital plane. In the coordinate system in Fig. 18,
one can parametrize the orbital plane with the unit vector
n̂ ¼ ðcos α sin β; sin α sin β; cos βÞ. On the orbital plane, the
radius rðφÞ and phase φðtÞ completely define the orbit. As
in Appendix E, defining r ¼ rtruex, t ¼ T0 t̄, T2

0 ¼ r3true=
GMðrtrueÞ, one finds

x00 − xφ02 ≈ −
1

x2
MðrtruexÞ
MðrtrueÞ

; ðG1Þ

ðx2φ0Þ0 ≈ 0 ðG2Þ

where 0 is differentiation with respect to t̄. (Here we ten-
tatively neglect DF.) The initial conditions are xð0Þ ¼ 1,
φð0Þ ¼ 0, x0ð0Þ ¼ ð−Δvr cos θ þ Δvy sin θÞ=ðrtrue=T0Þ,
θð0Þ ¼ 0 and jφ0ð0Þj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δv2z þ ðΔvr sinθþΔvy cosθÞ2

q
=

ðxð0Þrtrue=T0Þ. Evidently, x0ð0Þ2 þ ðxð0Þφ0ð0ÞÞ2 ¼ ðΔv2r þ
Δv2y þ Δv2zÞ=ðrtrue=T0Þ2.
Given measured r⊥, Δvr and a model ΦðrÞ, we explore

the remaining orbital parameters which affect the inspiral
time. We start with the true radius rtrue. Given rtrue and, for
simplicity, assuming a circular orbit, the probability of
observing r⊥ < xrtrue is Pðr⊥=rtrue < xÞ ¼ ð2=πÞ arcsin x,
because sin θ ¼ r⊥=rtrue and θ is distributed uniformly
for a circular orbit. Numerically, Pðr⊥=rtrue < 1=2Þ ¼ 1=3.
We therefore explore orbits with a true radius in the
range rtrue ¼ r⊥ × ½1; 2�.
Next, consider the velocity. We explore a total velo-

city in the range vtrue ∈ ½maxðΔvr; 0.5VcircðrÞÞ;maxðΔvr;
1.5VcircðrÞÞ�. Defining the eccentricity e≡ ðrapo − rperiÞ=
ðrapo þ rperiÞ, we find a maximal e ∼ 0.2–0.5 for this range
of vtrue in the central ≲1 kpc of Fornax. We note that if we
decrease the lower bound of vtrue we expect smaller inspiral
times. Increasing the upper bound, however, results in
larger inspiral times—but also in more tuning. A test object
spends relatively little time near the pericenter. Specifically,

Tperi=Tapo ≡ ðrperi=vperiÞ=ðrapo=vapoÞ ≈ ð1 − eÞ2=ð1þ eÞ2,
yielding about 1=9 for e ¼ 0.5.
Considering the velocity components, we can take

Δvz > 0 without loss of generality. The sign of Δvy is,
however, important: under the transformation Δvy →
−Δvy, cos θ → − cos θ, so jφ0ð0Þj remains constant, but
x0ð0Þ → −x0ð0Þ. Since the specific energy is

ϵ ≈
v2

2
þΦðrÞ ¼ _r2

2
þ l2

2r2
þΦðrÞ; ðG3Þ

where l is the specific angular momentum, this trans-
formation returns the same orbit. The inspiral time is
therefore invariant under this transformation. Therefore,
in our study of initial conditions we explore positive or
negative cos θ and restrict Δvy > 0.
To sum up, for each GC (and a given model of the halo),

we scan the range rtrue ∈ ½1; 2�rproj. For each rtrue we scan
over V true ∈ ½0.5; 1.5�VcircðrtrueÞ. For each true velocity
we scan positive and negative cos θ. Finally, we test the
two cases, Δvy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2true − Δv2r

p
, Δvz ¼ 0 and Δvy ¼ 0,

Δvz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2true − Δv2r

p
. For each point in phase space, we

integrate the full equations of motion as in Appendix E. For
each integration, we stop when ðrapo þ rperiÞ=2≲ 0.3rinitial
or after 10 Gyr (the first of the two). We then denote the
integration time as τinspiral.

FIG. 18. The coordinate system that we adopt to analyze a
given GC. The galactic dynamical center is at the origin. The
observer is located at a very large X. The GC is located
somewhere on the line Z ¼ 0, Y ¼ r⊥. The true radius is
therefore rtrue ¼ r⊥= sin α. We assume Δvr, the component of
velocity in the X direction, can be measured. We assume that the
rest of the components cannot be measured for now. The dotted
line is the quasistable orbit of the GC.
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