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We examine the propagation and flavor oscillations of neutrinos under the influence of gravitational
waves (GWs) with an arbitrary polarization. We rederive the effective Hamiltonian for the system of three
neutrino flavors using the perturbative approach. Then, using this result, we consider the evolution of
neutrino flavors in stochastic GWs with a general energy density spectrum. The equation for the density
matrix is obtained and solved analytically in the case of three neutrino flavors. As an application, we study
the evolution of the flavor content of a neutrino beam emitted in a core-collapsing supernova. We obtain the
analytical expressions for the contributions of GWs to the neutrino fluxes and for the damping decrement,
which describes the attenuation of the fluxes to their asymptotic values. We find that the contribution to the
evolution of neutrino fluxes from GWs, emitted by merging supermassive black holes, dominates over that
from black holes with stellar masses. The implication of the obtained results for the measurement of
astrophysical neutrinos with neutrino telescopes is discussed.
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I. INTRODUCTION

Neutrinos provide a unique possibility to explore physics
beyond the standard model with the help of nonaccelerator
methods. Such achievements of neutrino physics became
possible after the observation of oscillations of atmospheric
and solar neutrinos [1]. These experimental facts are the
straightforward indications of the nonzero masses and
mixing between different neutrino flavors. External fields,
e.g., the neutrino interaction with background matter [2]
and electromagnetic fields [3], are known to modify the
process of neutrino oscillations.
The gravitational interaction, in spite of its weakness,

was found in Refs. [4–6] to contribute to the neutrino
oscillations dynamics. In the majority of studies, neutrino
oscillations in curved spacetime were examined when
particles move in static gravitational backgrounds, e.g.,
in the vicinity of a black hole (BH). It is interesting to
analyze the propagation and oscillations of astrophysical
neutrinos in time-dependent metrics, e.g., induced by a
gravitational wave (GW).
The studies of the fermion evolution in GWs were

carried out in Refs. [7,8]. Neutrino spin oscillations, i.e.,
when we deal with transitions between active left-polarized

and sterile right-polarized particles, in background matter
under the influence of GW were discussed in Ref. [9].
Neutrino flavor oscillations in GWs, as well as in gravi-
tational fields caused by metric perturbations in the early
Universe, were considered in Ref. [10].
In this paper, we continue the research in Refs. [11,12],

where the influence of stochastic GWs on neutrino flavor
oscillations was considered. The main problem of
Refs. [11,12] was the consideration of astrophysical neu-
trinos emitted in decays of charged pions. Although such
neutrinos form the major cosmic neutrinos background,
their sources are distributed rather uniformly in the
Universe. Thus, the integral flux in a terrestrial detector
should be averaged over the propagation distance of such
neutrinos. This fact makes it difficult to separate the
contribution of stochastic GWs on the measured flavor
composition. To avoid this difficulty, we decide to examine
the effect of stochastic GWs on supernova (SN) neutrinos. If
an explosion of a core-collapsing SN happens in our Galaxy,
firstly, it emits a sizable neutrino flux to bemeasured even by
existing neutrino telescopes [13]. Secondly, SN is almost a
pointlike neutrino source. Hence one should not average
over the neutrino propagation distance. In this situation, we
expect that the effect of stochastic GWs is not smeared.
The present work is motivated by the recent direct

detection of GWs by the LIGO-Virgo collaborations
[14]. There are active multimessenger searches of GWs
and high energy neutrinos by existing detectors [15,16] and
suggestions to implement them in future ones [17]. There
are also attempts to observe stochastic GWs [18,19], with
various methods for their detection being developed [20].
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SN neutrinos were reliably detected in 1987 after the
SN explosion in the Large Magellanic Cloud (see, e.g.,
Ref. [21]). Since then, the experimental techniques in
construction of neutrino telescopes made great achieve-
ments. Now, if a nearby SN in our Galaxy explodes, a huge
number of events will be recorded [22]. As mentioned
above, a simultaneous detection of GWs and SN neutrinos
may be possible. Besides a direct neutrino signal from a
certain SN, all collapsing stars in the Universe emit
neutrinos which form the diffuse SN neutrino background.
There are prospects to measure it by existing and future
neutrino telescopes (see, e.g., Ref. [23]).
Thiswork is organized in the followingway. In Sec. II, we

formulate the problem of the propagation of flavor neutrinos
in a plane GW with an arbitrary polarization. Then, we
derive the equation for the densitymatrix for flavor neutrinos
if we deal with stochastic GWs. This equation is exactly
solved for the arbitrary energy spectrum of GWs. Then, in
Sec. III, we apply our results for the description of the
interaction of SN neutrinos with stochastic GWs. We find
the corrections to neutrino fluxes and the damping decre-
ment in an explicit form. Finally, we summarize our results
in Sec. IV. The effective Hamiltonian for flavor oscillations
under the influence of GW is rederived in the Appendix.

II. EVOLUTION OF FLAVOR NEUTRINOS
IN THE GWS BACKGROUND

The system of three active flavor neutrinos νλ, λ ¼ e, μ,
τ, with the nonzero mixing, as well as under the influence
of a plane GW with an arbitrary polarization, obeys the
following Schrödinger equation:

i_ν ¼ ðH0 þH1Þν; ð2:1Þ

where νT ¼ ðνe; νμ; ντÞ, H0 ¼ UHðvacÞ
m U† is the effective

Hamiltonian for vacuum oscillations in the flavor eigen-

states basis,HðvacÞ
m ¼ 1

2E diagð0;Δm2
21;Δm2

31Þ is the vacuum
effective Hamiltonian for the mass eigenstates ψa, a ¼ 1, 2,
3, Δm2

ab ¼ m2
a −m2

b is the difference of the squares of
masses ma of mass eigenstates, E is the mean energy of a
neutrino beam, and U is the unitary matrix which relates

flavor and mass bases: νλ ¼ Uλaψa. To derive HðvacÞ
m in

Eq. (2.1) we assume that neutrinos are ultrarelativistic and
subtract a proper diagonal term.
The mixing matrix U can be present in the form,

U ¼

0
BB@

1 0 0

0 c23 s23
0 −s23 c23

1
CCA ·

0
BB@

c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13

1
CCA

·

0
BB@

c12 s12 0

−s12 c12 0

0 0 1

1
CCA; ð2:2Þ

where cab ¼ cos θab, sab ¼ sin θab, θab are the correspond-
ing vacuum mixing angles, and δCP is the CP violating
phase. The values of these parameters can be found
in Ref. [24].
The Hamiltonian H1 in Eq. (2.1), which describes the

neutrino interaction with GW, has the formH1¼UHðgÞ
m U†,

where

HðgÞ
m ¼ HðvacÞ

m ðAchþ þ Ash×Þ; ð2:3Þ
is the Hamiltonian in the mass basis, Ac ¼ 1

2
sin2ϑcos2φ×

cos½ωtð1− cosϑÞ�, As¼ 1
2
sin2ϑsin2φsin½ωtð1− cosϑÞ�,

hþ;× are the amplitudes corresponding to “plus” and
“cross” polarizations of GW, ω is the frequency of GW, ϑ
and φ are the spherical angles fixing the neutrino momen-
tum with respect to the wave vector of GW, which is
supposed to propagate along the z-axis. To derive Eq. (2.3)
we assume that [11] ωLjva − vbj ≪ 1, a, b ¼ 1, 2, 3,
where L is the distance of the neutrino beam propagation
and va is the velocity of a mass eigenstate. Analogously to

HðvacÞ
m , we subtract the common diagonal term in HðgÞ

m

in Eq. (2.3).
The HamiltonianHðgÞ

m for a circularly polarized GWwith
hþ ¼ h× was obtained in Ref. [11] based on the exact
solution of the Hamilton-Jacobi equation for a test particle
in a plane GW. In the present work, we provide a more
straightforward perturbative derivation of the same result
which is given in the Appendix; cf. Eq. (A7). Of course, the

expression for HðgÞ
m coincides with that in Ref. [11] in the

limit hþ ¼ h×.
Now we consider the situation when a neutrino interacts

with stochastic GWs. In this case, the angles ϑ and φ,
as well as the amplitudes hþ;×, are random functions of
time. To study the neutrino motion in such a background,
it is more convenient to deal with the density
matrix ρ, which obeys the equation, i_ρ ¼ ½H0 þH1; ρ�.
Following Ref. [25], we introduce the density matrix in the
interaction picture, ρint ¼ expðiH0tÞρ expð−iH0tÞ. It satis-
fies the equation,

i_ρint ¼ ½Hint; ρint�; ð2:4Þ
where Hint ¼ expðiH0tÞH1 expð−iH0tÞ. Using the Baker–
Campbell–Hausdorff formula and the fact that that

both HðvacÞ
m and HðgÞ

m are diagonal, we get that
Hint ¼ H1. This result is valid even before setting va →
1 in the phase of the wave in Eq. (A6) and omitting the
common factors proportional to the unit matrix in both

HðvacÞ
m and HðgÞ

m . The initial condition for ρint coincides with
that for ρ: ρintð0Þ ¼ ρð0Þ≡ ρ0.
We assume that stochastic GWs form a Gaussian random

process. In this situation, all odd correlators of angle factors
Ac;s and the amplitudes hþ;× are vanishing. Moreover, we
take that hþ and h× are independent. After averaging, the
formal solution of Eq. (2.4) can be present in the form
of a series,
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hρinti ¼ ρ0 − ½H0; ½H0; ρ0��
Z

t

0

dt1

Z
t1

0

dt2h½Acðt1Þhþðt1Þ þ Asðt1Þh×ðt1Þ�½Acðt2Þhþðt2Þ þ Asðt2Þh×ðt2Þ�i þ � � �

¼ ρ0 − ½H0; ½H0; ρ0��
Z

t

0

dt1

Z
t1

0

dt2ðhAcðt1ÞAcðt2Þihhþðt1Þhþðt2Þi þ hAsðt1ÞAsðt2Þihh×ðt1Þh×ðt2ÞiÞ þ � � � ; ð2:5Þ

where we show only two nonzero terms in order not to
encumber the text.
We can see that the series in Eq. (2.5) decays into

two independent ones corresponding to different polar-
izations of GW. Each of these series contains only either
hhþðtÞhþð0Þi or hh×ðtÞh×ð0Þi. In the following, we
account for all terms in the expansion in Eq. (2.5).
Further analysis of each of the series corresponding to
different GW polarizations is identical to that in Ref. [12].
Therefore we omit the details.
Now, let us consider the averaging of the angle factors.

We should mention that both the amplitudes hþ;×ðtÞ and the
angles ϑðtÞ and φðtÞ are random functions of time. Indeed,
we consider random distribution of GWs sources. It means
that, when a neutrino interacts with a certain GW, the angle
between a neutrino momentum and the wave vector of
GW is randomly distributed from zero to π. However,
unlike the correlators hhþ;×ðt1Þhþ;×ðt2Þi, which are taken
to be arbitrary, we suppose that both hϑðt1Þϑðt2Þi and
hφðt1Þφðt2Þi are proportional to δðt1 − t2Þ. This supposi-
tion is reasonable since it is based on the assumption of the
uniform distribution of the sources of GWs in the Universe.
The form of the correlators hhþ;×ðt1Þhþ;×ðt2Þi depends on
physical processes underlying the GWs production. Thus, it
is inexpedient to take that the amplitudes are δ-correlated.
We can study, e.g., the correlator hAcðt1ÞAcðt2Þi, which

has the form,

hAcðt1ÞAcðt2Þi

¼1

4
hsin2ϑ1sin2ϑ2cosð2φ1Þcosð2φ2Þcosα1cosα2i; ð2:6Þ

where α1;2 ¼ ωt1;2ð1 − cosϑ1;2Þ and the angles ϑ1;2 and
φ1;2 correspond to t1;2. Since the random variables ϑ and φ
are taken to be δ-correlated, we get that hcos α1 cos α2i ¼
1=2. Now, we should average Eq. (2.6) over directions of
incoming GWs,

hAcðt1ÞAcðt2Þi ¼
1

16π2

Z
π

0

dϑ sin4 ϑ
Z

2π

0

dφ cos2ð2φÞ

¼ 3

128
: ð2:7Þ

Analogously we show that hAsðt1ÞAsðt2Þi ¼ 3
128

.
The obtained correlators of the angular factors in

Eq. (2.7) should be used in Eq. (2.5). As we mentioned
above, Eq. (2.5) splits into two independent series.

Accounting for all terms in the expansions and applying
the results of Ref. [12], we get that hρinti obeys the
equation,

d
dt
hρintiðtÞ ¼ −gðtÞ 3

64
½H0; ½H0; hρintiðtÞ��; ð2:8Þ

where

gðtÞ ¼ 1

2

Z
t

0

dt1ðhhþðtÞhþðt1Þi þ hh×ðtÞh×ðt1ÞiÞ: ð2:9Þ

In case of circularly polarized GWs with hþ ¼ h×, we
reproduce the results of Ref. [12] in Eqs. (2.8) and (2.9).
To proceed with the analysis of Eq. (2.8), we define the

new matrix ρ0 ¼ U†hρintiU, which is the density matrix in
the interaction picture for the neutrino mass eigenstates.
After some matrix algebra, we get that ρ0 satisfies the
equation,

_ρ0 ¼ −g̃½HðvacÞ
m ; ½HðvacÞ

m ; ρ0�� ¼ −g̃M; ð2:10Þ

where g̃ ¼ 3
64
g. The matrix M in Eq. (2.10) has the

following entries: Mab ¼ ðEa − EbÞ2ρ0ab. Note that, here,

we use the original form of HðvacÞ
m before the energy

decomposition: ðHðvacÞ
m Þab ¼ Eaδab.

Thus, Eq. (2.10) can be integrated straightforwardly

ρ0aaðtÞ ¼ ρ0aað0Þ ¼ const;

ρ0abðtÞ ¼ ρ0abð0Þgab; a ≠ b;

gabðtÞ ¼ exp

�
−ðEa − EbÞ2

Z
t

0

g̃ðt0Þdt0
�
; ð2:11Þ

where the initial condition ρ0ð0Þ has the form, ρ0ð0Þ ¼
U†hρintið0ÞU ¼ U†ρð0ÞU. It can be also expressed in the
components as ρ0abð0Þ ¼

P
σ U

�
σaUσbPσð0Þ, where we

assume that ρλσð0Þ ¼ δλσPσð0Þ. Here the emission proba-
bilities Pσð0Þ are proportional to the neutrino fluxes at a
source: Pσð0Þ ∝ ðFνσÞS.
Accounting for Eq. (2.11), we get the expression for the

density matrix for flavor neutrinos, ρ ¼ URρ0R†U†, where
ðRÞab ¼ δab expð−iEatÞ. The probability to detect a certain
flavor, after the neutrino beam passes the distance x ≈ t,
reads PλðxÞ ¼ ρλλðt ≈ xÞ. Using the components of U in
Eq. (2.2), it can be represented in the form,
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PðgÞ
λ ðxÞ¼

X
σ

Pσð0Þ
�X

a

jUλaj2jUσaj2

þ2Re
X
a>b

UλaU�
λbU

�
σaUσb expð−iφabxÞgab

�
;

ð2:12Þ

where φab ¼ Ea − Eb ¼ Δm2
ab

2E are the phases of neutrino
vacuum oscillations. Equation (2.12), which takes into
account the neutrino interaction with stochastic GWs,
should be compared with the analogous probabilities for

neutrino vacuum oscillations PðvacÞ
λ , which are derived, e.g.,

in Ref. [26]. The difference ΔPλ ¼ PðgÞ
λ − PðvacÞ

λ , which
reveals the effect of GWs on neutrino oscillations, has the
form,

ΔPλðxÞ¼2
X
σ

Pσð0Þ
X
a>b

�
Re½UλaU�

λbU
�
σaUσb�cos

�
2π

x
Lab

�

þIm½UλaU�
λbU

�
σaUσb�sin

�
2π

x
Lab

��

×

�
1−exp

�
−
4π2

L2
ab

Z
x

0

g̃ðtÞdt
��

; ð2:13Þ

where Lab ¼ 4πE
jΔm2

abj
are the neutrino oscillations lengths in

vacuum.
If we study the interaction between stochastic GWs and

neutrinos emitted by randomly distributed sources, we have
to average Eq. (2.13) over the propagation distance. It gives
hΔPλi ¼ 0. Therefore, the effect of stochastic GWs on
oscillations of such neutrinos is washed out. The fluxes at a
source will coincide with these accounting for only vacuum
oscillations. Thus, the claim in Ref. [12], that stochastic
GWs result in small changes of observed fluxes of
neutrinos from randomly distributed sources, is incorrect.
The deviation of fluxes, obtained in Ref. [12], is likely to
stem from an inexactitude of numerical simulations. We
avoid this inexactitude in the present work since we rely on
the analytical solution of Eq. (2.8).

III. APPLICATION TO SN NEUTRINOS

In this section, we apply the obtained results for the
description of the propagation of SN neutrinos in the
background of stochastic GWs.
A huge amount of energy is carried away by neutrinos

from a core-collapsing SN. The major neutrino luminosity
was reported, e.g., in Ref. [27] to take place during a νe-
burst, which happens because of the direct Urca process
e− þ p → nþ νe in the neutronazing matter of a proto-
neutron star (PNS). This burst occurs at ∼ð3–4Þ ms after
the core bounce and lasts ≲0.1 s [27]; see also references
therein. The neutrino luminosity can reach ∼1053 erg · s−1

during the burst, with almost all of emitted neutrinos being
of the electron type [27].
We start this section with the study of the interaction

between stochastic GWs and SN neutrinos emitted in a νe-
burst. In this situation, the fluxes at a source are
ðFνe∶Fνμ∶FντÞS ¼ ð1∶0∶0Þ. At later moments of time,
other neutrino flavors are emitted. The fluxes of different
flavors of SN neutrinos become almost equal by t ≈
ð0.05 − 0.1Þ s after the core bounce. Thus, the initial
neutrino fluxes are not in the ratio ð1∶0∶0Þ. The evolution
of SN neutrinos with such initial condition in the presence
of stochastic GWs is also discussed in this section.
A collapsing star, owing to its relatively small size, can

be considered as an almost pointlike neutrino source.
Indeed, the size of a neutrinosphere, i.e., an effective
sphere where neutrinos are trapped inside, is Lsource ≲
100 km at the moment of a νe-burst. The energy of SN
neutrinos is E ∼ 10 MeV [22]. The oscillations lengths are
L21 ≈ 330 km and L31 ≈ L32 ≈ 10 km for this energy and
Δm2

ab from Ref. [24]. Neutrinos are emitted from any point
of a neutrinosphere more or less isotropically. A terrestrial
detector can register all SN neutrinos emitted towards it.
Thus, we have to integrate the densities of the fluxes over
the area of a neutrinosphere, Ssource ∼ L2

source, and divide the
result by Ssource. We can call this procedure as the averaging
over the emission points. Thus, if we carry out this
averaging for ΔPλ in Eq. (2.13), the (31)- and (32)-
contributions are smeared. The only nonvanishing contri-
bution is from the solar oscillations channel (21).
As we mentioned above, other neutrino flavors are

emitted after a νe-burst, changing the ratio ð1∶0∶0Þ of
the initial fluxes. However, the absolute value of the SN
neutrino luminosity becomes smaller. The neutrinosphere
shrinks at these greater times. Nevertheless, its size remains
greater than 10 km. Thus, only the (21)-oscillations channel
gives a nonzero contribution to Eq. (2.13) even
for t > tburst.
We start by considering neutrinos emitted in a νe-burst.

Accounting for the ratio of the initial fluxes, we get that
ΔPλ for such SN neutrinos takes the form,

ΔPλðxÞ¼ 2

�
Re½Uλ2U�

λ1U
�
e2Ue1�cos

�
2π

x
L21

�

þ Im½Uλ2U�
λ1U

�
e2Ue1�sin

�
2π

x
L21

��

× ½1− expð−ΓÞ�;

Γ¼ 4π2

L2
21

Z
x

0

g̃ðtÞdt: ð3:1Þ

In Eq. (3.1), we do not set the sine and cosine factors to zero
despite x ≫ L21. The propagation distance is huge, but it
is fixed.
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The correlators of the amplitudes of GWs
hhþ;×ðtÞhþ;×ð0Þi are related to the spectral density SðfÞ
of GW by [28]

X
ij

hhijðtÞhijð0Þi ¼ hhþðtÞhþð0Þi þ hh×ðtÞh×ð0Þi

¼
Z

∞

0

df cosð2πftÞSðfÞ; ð3:2Þ

where f is the frequency measured in Hz. In Eq. (3.2), we
use Eq. (A5). Then, we define the function ΩðfÞ ¼ f

ρc

dρGW
df ,

where ρGW is the energy density of a GW and ρc ¼ 0.53 ×
10−5 Gev · cm−3 is the closure energy density of the

Universe. Using Eq. (3.2), we get that ΩðfÞ ¼ πf3

8ρcG
SðfÞ,

where G ¼ 6.9 × 10−39 GeV−2 is the Newton’s constant.
The function g̃ðtÞ has the form,

g̃ðtÞ ¼ 3

128

Z
t

0

dt1ðhhþðtÞhþðt1Þi þ hh×ðtÞh×ðt1ÞiÞ

¼ 3Gρc
32π2

Z
∞

0

df
f4

sinð2πftÞΩðfÞ: ð3:3Þ

Now, choosing the source of stochastic GWs, which is fully
characterized by ΩðfÞ, we can evaluate ΔPλ.
We suppose that stochastic GWs are emitted by ran-

domly distributed merging supermassive BHs. In that case,
we can approximate ΩðfÞ by [29]

ΩðfÞ ¼
�Ω0; if fmin < f < fmax;

0; otherwise;
ð3:4Þ

where Ω0 ∼ 10−9, fmin ∼ 10−10 Hz, and fmax ∼ 10−1 Hz.
The main contribution to Γ in Eq. (3.1) results from fmin.
Hence we can put fmax → ∞ since fmax ≫ fmin.
We suppose that 0 < x < L, where L ∼ 10 kpc is the

maximal propagation length, which is taken to be compa-
rable with the Galaxy size ∼32 kpc. Using Eqs. (3.1) and
(3.3), we get the parameter Γ in the form,

Γ ¼ 3Gρc
8πL2

21

Z
fmax

fmin

df
f5

sin2 ðπfxÞΩðfÞ

≈ 7 × 109 × Iðτ; 324Þ;

Iðτ;ωminÞ ¼
Z

∞

ωmin

dω
ω5

sin2 ðωτÞΩðωÞ; ð3:5Þ

where τ ¼ x=L and ωmin ¼ πLfmin are the dimensionless
parameters. The function ΓðτÞ is shown in Fig. 1(a) for
ΩðωÞ corresponding to Eq. (3.4). In Fig. 1, we depict only
the normal mass ordering case since the inverted ordering is
almost excluded experimentally [30].
We can see in Fig. 1(a) that Γ tends to a constant value at

τ → 1. If we study neutrino fluxes at the Earth, we put
x ¼ L, or τ ¼ 1. Then, we suppose that the distance

between a source, SN, and a detector, the Earth, is great.
It corresponds to the limit ωmin ≫ 1. Accounting for
Eq. (3.4), we can rewrite Γ → Γ⊕ in the form,

Γ⊕ ¼ 3GρcΩ0

8πf4minL
2
21

ω4
min

Z
∞

ωmin

dω
ω5

sin2ðωÞ

→ 8 × 10−2 ×

�
Ω0

10−9

��
fmin

10−10 Hz

�
−4
: ð3:6Þ

If Ω0 ¼ 10−9 and fmin ¼ 10−10 Hz, Γ⊕ ¼ 8 × 10−2 in full
agreement with Fig. 1(a).
Although Eq. (3.6) is valid for ΩðfÞ in Eq. (3.4), we can

see that Γ⊕ → 0 at great fmin. This fact explains the result
of Ref. [12] that stochastic GWs, emitted by coalescing
BHs with stellar masses, do not change the fluxes of
neutrinos. Indeed, in that case [29], fmin ∼ 10−5 Hz ≫
10−10 Hz. Hence Γ⊕ → 0 andΔPλ → 0 despiteΩ is greater
for such sources.
If ðFνe∶Fμ∶FντÞS ¼ ð1∶0∶0Þ for SN neutrinos emitted in

a νe-burst, the probabilities at the Earth for vacuum
oscillations are [26]

PðvacÞ
λ ðxÞ ¼

X
a

jUλaj2jUeaj2

þ 2

�
Re½Uλ2U�

λ1U
�
e2Ue1� cos

�
2π

x
L21

�

þ Im½Uλ2U�
λ1U

�
e2Ue1� sin

�
2π

x
L21

��
; ð3:7Þ

where we accounted for the fact that the contributions
of the (31)- and (32)-oscillations channels are washed
out after the averaging over the neutrino emission points on
the neutrinosphere surface. The values of the neutrino

fluxes FðvacÞ
νλ ∝ PðvacÞ

λ in Eq. (3.7) are summarized in

Table I. Since the fluxes FðvacÞ
νλ are rapidly oscillating on

the distance L ¼ 10 kpc, in Table I, we present only the
mean values and the amplitudes of oscillations:
ðmean value� amplitudeÞ. We also give ðΔFνλÞ⊕ at
x≲ L, i.e., the asymptotic values, which correspond to
Figs. 1(b)–1(d). The mean value of ðΔFνλÞ⊕ equals to zero,
as explained above. Thus, we show only the amplitudes of
oscillations of ðΔFνλÞ⊕. One can see in Table I that the
relative contribution of stochastic GWs to the measured
neutrino fluxes is at the level of (5–7)%.
Now we turn to the discussion of neutrinos which are

emitted after a νe-burst, i.e., at t > ð3–4Þ ms after the core
bounce. As we mentioned above, the ratio of the emission
fluxes is not equal to ð1∶0∶0Þ. At these times, the fluxes of
different flavors eventually become almost equal. It hap-
pens at t ≈ 0.05 s after the core bounce (see, e.g., the
numerical simulation, carried out in Ref. [31]).
At t > 0.1 s, the absolute values of the fluxes start to
decrease [31].
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Let us study the influence of stochastic GWs on SN
neutrinos emitted at tburst < t < 0.1 s. We can use the
general Eq. (2.13) taking that the emission probabilities

are time dependent: Pσð0Þ → Pð0Þ
σ ðΔtÞ, where Δt ¼ t −

tburst and tburst ¼ ð3–4Þ ms is the νe-burst time. We can

approximate Pð0Þ
σ ðΔtÞ by the following dependence:

Pð0Þ
νe ðΔtÞ ¼

1

3
½1þ 2 expð−5KΔtÞ�;

Pð0Þ
νμ ðΔtÞ ¼ Pð0Þ

ντ ðΔtÞ ¼
1

3
½1 − expð−5KΔtÞ�; ð3:8Þ

where K ¼ 10 s−1 is the fitting factor. The emission

probabilities in Eq. (3.8) satisfy
P

σ P
ð0Þ
σ ¼ 1 at any Δt.

The initial fluxes ðFνλÞS ∝ Pð0Þ
νλ ðΔtÞ are shown in

Fig 2(a). The value of ðFνeÞS at Δt ¼ 0 corresponds to
the luminosity ∼1053 erg · s−1 in a νe-burst. One can see
that ðFνλÞS of different flavors become almost equal
at Δt ≈ K−1.
The detection probabilities in Eq. (2.13) depend on the

propagation length x. We consider the maximal values
of ΔPλ when neutrinos arrive to a terrestrial detector. They
are

ΔPðmaxÞ
λ ¼ 2½1 − exp ð−Γ⊕Þ�

X
σ

Pð0Þ
σ ðΔtÞ

×
X
a>b

jUλaU�
λbU

�
σaUσbj; ð3:9Þ

where Γ⊕ ¼ 8 × 10−2. Note that ΔPðmaxÞ
λ in Eq. (3.9)

depends on Δt.
The deviations of the maximal fluxes ðΔFðmaxÞ

νλ Þ⊕ ∝
ΔPðmaxÞ

λ , owing to the interaction with stochastic GWs,
for different post bounce emission times Δt are shown in
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FIG. 1. (a) The parameter Γ versus the neutrino beam propagation length x ¼ τL; (b)–(d) the corrections the neutrino fluxes ΔFνλ ∝
ΔPλ owing to the neutrino interaction with stochastic GWs. The parameters of the system are [22,24,29] Δm2

21 ¼ 7.5 × 10−5 eV2 and
E ¼ 10 MeV (L21 ¼ 3.3 × 102 km), θ12 ¼ 0.6, θ23 ¼ 0.85, θ13 ¼ 0.15, δCP ¼ 3.77, L ¼ 10 kpc, Ω0 ¼ 10−9, and fmin ¼ 10−10 Hz.
The normal neutrino mass ordering is adopted.

TABLE I. Second column: the fluxes FðvacÞ
νλ based on Eq. (3.7)

for different neutrino flavors. Third column: ðΔFνλÞ⊕ corre-
sponding to Figs. 1(b)–1(d) for various neutrino types. The
parameters of neutrinos and GWs are the same as in Fig. 1.

FðvacÞ
νλ

ðΔFνλÞ⊕
νe 0.5421� 0.4144 �0.0321
νμ 0.1834� 0.1636 �0.0127
ντ 0.2745� 0.2587 �0.02

MAXIM DVORNIKOV PHYS. REV. D 104, 043018 (2021)

043018-6



Fig 2(b). One can see that ðΔFðmaxÞ
νλ Þ⊕ at Δt ¼ 0 coincides

with the values given in the third column in Table I. If

Δt → K−1, ðFνλÞ⊕ → 0. Indeed, Pð0Þ
σ ¼ 1=3 for any neu-

trino flavor at these emission times. Thus
P

σ U
�
σaUσb ¼

δab and ΔPðmaxÞ
λ ¼ 0, based on Eq. (3.9).

IV. DISCUSSION

In the present work, we have studied the propagation and
flavor oscillations of astrophysical neutrinos interacting
with stochastic GWs. We have rederived more straightfor-
wardly the effective Hamiltonian for such a system in the
Appendix. The analytical expression for the density matrix
of flavor neutrinos has been obtained in Sec. II. Then, in
Sec. III, we have applied the obtained results for the
description of SN neutrinos.
The present research has several advances compared to

Ref. [12], where the interaction of astrophysical neutrinos
with stochastic GWs was also studied. Firstly, we have
accounted for two independent polarizations of GWs
contrary to the case of a circularly polarized GW in
Ref. [12]. Secondly, now we have found the exact solution
of the equation for the density matrix in the general case of
three neutrino flavors. This fact allowed us to correct some
statements about the asymptotic behavior of neutrino
fluxes, which were made based on numerical simulations
in Ref. [12].
In Ref. [12], we studied the interaction between stochas-

tic GWs and astrophysical neutrinos emitted in decays of
charged pions. Sources of such neutrinos are distributed
more or less uniformly in the Universe. Thus one had to
average over the neutrino propagation distance to get the
fluxes at the Earth. This fact made it difficult to extract
the contribution of stochastic GWs to neutrino fluxes. In the
present work, we have considered neutrinos emitted in a
SN explosion. It enables us not to perform the averaging

over the propagation distance except for (31)- and (32)-
oscillations channels. It is valid since the oscillations length
L21 is greater than the radius of the neutrinosphere, i.e., the
size of the neutrino source. The distance L between a
possible SN explosion is great, but it is fixed. Therefore we
should not average over L=L21 in the probabilities for
neutrino flavors.
We have also obtained the analytical expression for

the damping decrement Γ; cf. Eq. (3.6). This result
allowed us to evaluate the contribution of other sources
of stochastic GWs, e.g., merging BHs with stellar masses,
to the evolution of neutrino fluxes. The straightforward
derivation of the effective Hamiltonian for flavor neutri-
nos oscillations, presented in the Appendix, can be
applied to different metrics perturbations besides GWs
considered here. Using this result, we can study, e.g., the
evolution of neutrinos in perturbations in the early
Universe [10,32].
In the present work, we have also studied the interaction

between stochastic GWs and SN neutrinos emitted in the
time interval tburst < t≲ 0.1 s. When t ≈ 0.1 s, the initial
fluxes are almost equal, ðFνe∶Fνμ∶FντÞS ¼ ð1∶1∶1Þ. We
have found in Sec. III that, in this situation, the contribution
of stochastic GWs to the evolution of SN neutrinos is
washed out; cf. Fig. 2(b). It means that the major effect is
for neutrinos emitted at a νe-burst, which corresponds to
ðFνe∶Fνμ∶FντÞS ¼ ð1∶0∶0Þ. The neutrino luminosity in a
SN explosion remains significant up to 10 s after the core
bounce, which is the time scale for the neutrino driven PNS
cooling [33]. However, the influence of stochastic GWs on
SN neutrinos emitted at t > 0.1 s is vanishing since such
neutrinos are emitted with almost equal probabilities. Thus,
in Sec. III, it is inexpedient to extend Δt beyond the 0.1 s
interval.
In Table I, we have summarized the contributions of

stochastic GWs to the fluxes of flavor neutrinos at the
Earth. They are at the level of a few percent. The current
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FIG. 2. The SN neutrino fluxes for different post bounce times Δt. The parameters of the neutrino system and GWs are the same as in
Fig. 1; KΔt ¼ 1 corresponds to t ¼ 0.1 s after the core bounce. (a) The fluxes ðFνλÞS at a source. The blue and green lines overlap since
the fluxes of νμ and ντ coincide [see Eq. (3.8)]. (b) The maximal values of the deviations of the fluxes ðΔFðmaxÞ

νλ Þ⊕ in a detector, owing to
the interaction of SN neutrinos with stochastic GWs.
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neutrino telescopes are able to detect up to several thousand
neutrinos from SN in our Galaxy [13]. Future detectors,
like the Hyper-Kamiokande, can detect about 7.5 × 104

such events [34]. Thus, the interaction with stochastic GWs
can results in the change of the SN neutrinos fluxes by
∼� 350 events, in case of the Super-Kamiokande, and by
∼� 3750 events, for the Hyper-Kamiokande.
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APPENDIX: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

The action Saðx; tÞ of a neutrino mass eigenstate with the
mass ma, moving in the curved spacetime with the metric
gμν, obeys the Hamilton-Jacobi equation,

gμν
∂Sa
∂xμ

∂Sa
∂xν ¼ m2

a: ðA1Þ

The metric in Eq. (A1) is supposed to have the small
perturbation hμν of the Minkowski flat metric
ημν ¼ diagðþ1;−1;−1;−1Þ: gμν ¼ ημν þ hμν.
We look for the solution of Eq. (A1) in the form,

Sa¼Sð0Þa þSð1Þa þ���. Here, the zero order term Sð0Þa obeys

the equation, ημν∂μSð0Þa ∂νSð0Þa ¼ m2
a. The functionS

ð0Þ
a has the

form, Sð0Þa ðxÞ¼pμ
axμ, where pμ

a¼ðEa;pÞ, Ea¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

aþp2
p

,
and p is the constant neutrino momentum.
In the linear approximation in hμν, the first order term

Sð1Þa obeys the equation,

2ημνp
μ
a
∂Sð1Þa

∂xν þ hμνp
μ
apν

a ¼ 0: ðA2Þ

We can transform the term ημνp
μ
a∂νSð1Þa in Eq. (A2) as

ημνp
μ
a
∂Sð1Þa

∂xν ¼ Ea

�∂Sð1Þa

∂t þ ðva∇ÞSð1Þa

�
¼ Ea

dSð1Þa

dt
; ðA3Þ

where we use va ≡ vð0Þa ¼ p=Ea as the particle velocity. It
means that a neutrino is supposed to move along a straight

line. In general situation, one has that va ¼ vð0Þa þ δvaðtÞ in
curved spacetime. However, since δva ∝ hμν, this term can

be neglected in Eq. (A3) because Sð1Þa ∝ hμν already.

Finally, we get that dSð1Þa
dt ¼ − 1

2Ea
hμνp

μ
apν

a. The contribu-
tion to the effective Hamiltonian can be obtained as
ðHmÞaa ¼ dSa

dt . One can check the validity of this expression
in the vacuum case. Thus, we obtain that the neutrino
interaction with a gravitational field, induced by a metric
perturbation, contributes to the effective Hamiltonian in the
mass basis as

ðHðgÞ
m Þab ¼ −

δab
2Ea

hμνp
μ
apν

a: ðA4Þ

Note that we have to take hμν on the particle trajec-
tory, hμνðx; tÞ ¼ hμνðxðtÞ; tÞ.
If we choose a plane GW as the metric perturbation, one

has that [35]

hij ¼
�
hþ cosϕa h× sinϕa

h× sinϕa −hþ cosϕa

�
; i; j ¼ 1; 2; ðA5Þ

and h0μ ¼ h3μ ¼ 0. Here ϕa ¼ ωt − kz ¼ ωtð1 − va cosϑÞ
is the phase of the wave accounting for the neutrino motion
and hþ;× are the amplitudes of different polarizations of
GW. In Eq. (A5), we take the Cartesian coordinates
xμ ¼ ðt;xÞ. Using Eqs. (A4) and (A5), we obtain that

ðHðgÞ
m Þab¼−

p2

2Ea
δab sin2ϑ½hþ cos2φcosϕa

þh× sin2φsinϕa�;

→
m2

a

2E
δab
2
sin2ϑ½hþ cos2φcosϕþh× sin2φsinϕ�;

ðA6Þ

where ϕ ¼ ωtð1 − cosϑÞ. To derive Eq. (A6) we assume
that ωLjva − vbj ≪ 1 [11] and omit the common factor
proportional to the unit matrix. Finally, one gets that

HðgÞ
m ¼ HðvacÞ

m ðAchþ þ Ash×Þ; ðA7Þ

where Ac ¼ 1
2
sin2 ϑ cos 2φ cos½ωtð1 − cos ϑÞ� and As ¼

1
2
sin2 ϑ sin 2φ sin½ωtð1 − cos ϑÞ�.
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