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We relate the fundamental quadrupolar fluid mode of isolated nonrotating neutron stars (NSs) and the
dominant oscillation frequency of neutron star merger remnants. Both frequencies individually are known
to correlate with certain stellar parameters like radii or the tidal deformability, which we further investigate
by constructing fit formulas and quantifying the scatter of the data points from those relations. Furthermore,
we compare how individual data points deviate from the corresponding fit to all data points. Considering
this point-to-point scatter we uncover a striking similarity between the frequency deviations of perturbative
data for isolated NSs and of oscillation frequencies of rapidly rotating, hot, massive merger remnants. The
correspondence of frequency deviations in these very different stellar systems points to an underlying
mechanism and equation of state information being encoded in the frequency deviation. We trace the
frequency scatter back to deviations of the tidal Love number from an average tidal Love number for a
given stellar compactness. Our results thus indicate a possibility to break the degeneracy between NS radii,
tidal deformability, and tidal Love number. We also relate frequency deviations to the derivative of the tidal
deformability with respect to mass. Our findings generally highlight a possibility to improve gravitational
wave (GW) asteroseismology relations where the systematic behavior of frequency deviations is employed
to reduce the scatter in such relationships and consequently increase the measurement accuracy. In addition,
we relate the f-mode frequency of static stars and the dominant GW frequency of merger remnants. We find
an analytic mapping to connect the masses of both stellar systems, which yields particularly accurate mass-
independent relations between both frequencies and between the postmerger frequency and the tidal
deformability.

DOI: 10.1103/PhysRevD.104.043011

I. INTRODUCTION

Fluid oscillation frequencies are one of the most funda-
mental properties of a stellar system. In the case of isolated
neutron stars (NSs), the fundamental f-mode is one of the
main characteristics of the system and is particularly
important because it leads to strong emission of gravita-
tional waves (GWs) (see [1]). Similarly, binary neutron star
(BNS) mergers which do not lead to a prompt collapse to a
black hole, produce remnants in which fluid modes are
excited. At a frequency fpeak in the range of a few kHz, the
dominant fluid oscillation of the merger remnant is an
efficient emitter of GWs (see e.g., [2–12] as well as the
reviews [13–19] and references therein). Hence, it is an
important target of current GW searches. The sensitivity of
the LIGO and Virgo GW detectors was not sufficient to

detect the postmerger phase of the BNS merger GW170817
[20,21], or the likely BNS merger GW190425 [22].
However, a postmerger detection is expected to be achieved
in the near future, either with upgraded or next-generation
detectors [12,23–39].
The frequency of fluid oscillations depends on the stellar

structure. However, the equation of state (EoS) of NS
matter is only incompletely known e.g., [40–45]. In order to
decipher the high-density EoS, many different relations
have been proposed between the frequency of fluid
oscillations and stellar parameters which are uniquely
linked to the EoS. These relations are the basis of GW
asteroseismology. There exists a variety of relations with
different independent variables exhibiting a different
degree of accuracy for both the f-mode in isolated NSs
[46–49], as well as for the dominant fluid oscillation in
BNS mergers e.g., [7,8,10,11,50,51]. In practice, these
relations are obtained by fitting frequencies as function of*g.lioutas@gsi.de
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some chosen stellar parameter for a sizable number of EoS
models.
In this paper we present a systematic comparison

between previously proposed relations based on a consis-
tent data set. We investigate the accuracy of these relations
for isolated stars and merger remnants by quantifying the
scatter in these relations. As a figure of merit, we use
the mean and maximum deviation of data points from the
corresponding relations in Hz. By determining absolute
values of frequency deviations for all relations, we can
quantitatively compare different relationships based on the
set of EoSs considered here. Work along this direction for
the case of isolated NSs was carried out in the past, but for a
significantly smaller set of EoSs and a subset of the
relations considered here [52].
Furthermore, we focus on the exact distribution of points

with respect to these relations. This aspect is largely
unexplored and has not yet been addressed before.
Specifically, we investigate the point-to-point scatter com-
paring individual models, i.e., where a specific model is
located with respect to a fit to the complete set of models.
As the main result of this study, we point out that the
individual models follow a systematic behavior.
In particular, we uncover a striking similarity between

the frequency deviations with respect to a fit to the full
sample of models in isolated stars and merger remnants
described by the same EoSs. The agreement in how
individual points scatter is surprising, since the frequencies
refer to two very different systems and are obtained
independently using different approaches and numerical
codes. As a side note, this result further supports that the
dominant fluid oscillation in BNS merger remnants is
produced by the f-mode [6,13,53,54]. We further inves-
tigate the underlying mechanism for the frequency devia-
tions in both systems. We find that it is directly related to
the tidal Love number k2 [55–57] which indicates future
applications for improved EoS constraints based on an
understanding of the frequency deviations. Also, frequency
deviations can be related to the derivative of the tidal
deformability with respect to mass. Finally, with a deeper
understanding of the frequency deviations we explore
direct relations between the f-mode frequency of static
stars and the dominant postmerger frequency of BNS
merger remnants.
The paper is organized as follows: In Sec. II we describe

our data sets for both isolated NSs and merger remnants, as
well as the set of EoSs we employ in this study. In Sec. III
we systematically investigate the accuracy of proposed
relations between stellar pulsation frequencies and stellar
parameters. Initially we focus on relations for the f-mode
frequency in isolated NSs and then also investigate rela-
tions involving the dominant fluid oscillation frequency for
BNS mergers. In Sec. IV we point out the similarity in how
individual models distribute with respect to the respective
relation for isolated NSs and for BNS mergers. We further

investigate the source of these deviations and highlight
future applications. In Sec. V we introduce direct relations
between the f-mode and postmerger frequencies. Finally,
in the last section we provide a summary and conclusions.
Throughout the whole work we set c ¼ G ¼ 1, unless
otherwise specified.

II. PERTURBATIVE SETUP AND MERGER DATA

In this study we consider two different sets of data for
stellar pulsations. We discuss frequencies of static isolated
stars, which we determine based on perturbative calcula-
tions. Moreover, we describe the oscillation frequencies of
NS merger remnants. These data are based on relativistic
hydrodynamics calculations, where we extract the fre-
quency from the GW spectrum. In this section we provide
more details on the data.

A. Linear perturbations

Neutron star pulsations can lead to GW emission. Since
GWs carry away energy, they act as a damping mechanism.
In a perturbative approach the pulsations are treated as
damped linear oscillations, which are analyzed in terms of
quasinormal modes (QNMs). This ansatz assumes a eiωt

time dependency, where ω is the complex eigenfrequency
of the QNM. The complex nature of the eigenfrequency
accounts for the damping. It reads

ω ¼ 2πfpert þ
i

τdamp
; ð1Þ

where fpert is the pulsation frequency and τdamp the
damping time of the oscillation. Extensive reviews on
the formulation of linear oscillations can be found in [1,58].
We focus on the fundamental f-mode. We obtain the

frequencies using the code presented in [59]. We compute
perturbative frequencies for stellar models in the range
from 1.1 M⊙ to 1.9 M⊙ with a spacing of 0.05 M⊙ for
different EoSs. We do not include the most compact stellar
models for a given EoS, because our main purpose is to
compare with binary neutron star mergers, which for the
binary mass range under consideration do not reach such
high densities/compactness. The most massive merger
system we consider has a total mass of 3 M⊙ (see
Sec. II B). The central rest-mass densities ρc in these
systems are comparable to the rest-mass densities of static
stars up to about 1.9 M⊙.

B. BNS mergers data sets

We simulate binary neutron star mergers with a 3D
smoothed particle hydrodynamics (SPH) code employing
the results from [8,60–62]. The code adopts the conformal
flatness condition [63,64] to solve Einstein’s field equa-
tions. We choose a resolution of about 300,000 SPH
particles. For more details on the code and simulations
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we refer to [8,60–62]. For six EoS models which do not
provide the full temperature dependence, we add a thermal
pressure component with an ideal-gas index Γth ¼ 1.75
(see [65] for a detailed discussion).
We extract the dominant postmerger GW frequencies

(hereafter fpeak) for a total of 57 equal-mass binary systems.
Among them 16 are 1.2þ 1.2 M⊙ systems, 19 are 1.35þ
1.35 M⊙ systems, 16 refer to 1.4þ 1.4 M⊙ systems and
finally 6 correspond to 1.5þ 1.5 M⊙ systems. There are
only a few models with Mtot ¼ 3 M⊙ because for most
EoSs these binary systems lead to a prompt collapse of the
merger remnant [66]. A detailed overview of which EoSs
are simulated for the different binary systems can be found
in Table I. Section II C provides more information on the
different EoS models. We set up irrotational binaries, i.e.,
stars without intrinsic spin, and choose an initial orbital
separation such that the system completes about three orbits
before merging. For a subset of binary configurations we
test that the dominant postmerger GW frequency is largely
insensitive to the initial orbital separation and the reso-
lution. We further comment on this aspect below, and also
refer to e.g., [7,8] for additional tests and information. We
run all simulations for about 20 milliseconds after merging
until the GW amplitude sufficiently decays and the deter-
mination of fpeak is not affected by the simulation time.
Finally, we refer to [6,53] for evidence that the remnant’s

oscillation at fpeak is indeed produced by the f-mode,
which motivates a comparison between the frequencies in
static stars and in NS mergers.

C. Equations of state

We consider a set of 20 EoSs (ALF2 [67,68], APR [69],
BHBLP [70], BSK20 [71], BSK21 [71], DD2 [72,73],

DD2F [73–75], DD2Y [76,77], WFF2 [78], LS220 [79],
LS375 [79], GS1 [80], GS2 [80], NL3 [72,81], SFHO [82],
SFHOY [76,77], SFHX [82], SLY4 [83], TM1 [84,85],
TMA [85,86]) for which we calculate perturbative frequen-
cies. Postmerger GW frequencies are computed for a
slightly smaller subset of EoSs (see Sec. II B).
All of the EoSs in this study yield a maximum gravi-

tational mass larger than 1.97 M⊙, which is in agreement
with current observational constraints at the two sigma
level [87–91]. Most of the EoS models are compatible with
a tidal deformability of 1.37 M⊙ stars being smaller than
800. Thus, they are in agreement with the less strict tidal
deformability constraint from the analysis of the inspiral of
GW170817 [20,92]. Six EoSs (LS375, GS1, GS2, NL3,
TM1, TMA) yield Λ1.37 > 800. We still include them in
order to increase the available data set. This is useful,
because it strengthens the reliability of our relations and
allows us to verify our observations for a larger set of
models. No quark or hybrid EoSs are taken into account.
Figure 1 shows the gravitational massM versus radius R

relation for each EoS. EoSs which are excluded based on
current GW measurements are depicted with dashed
curves. Evidently, the EoS sample covers a broad range
in the M − R diagram.

III. FREQUENCY RELATIONS OF THE f -MODE

In the case of isolated, static stars many relations have
been proposed relating fpert to stellar parameters such as the
mass M, radius R, moment of inertia I and tidal deform-
ability Λ ¼ 2

3
k2ðc2RGMÞ5 (see e.g., [46–49]). They exhibit a

different level of accuracy. Similarly, in the case of binary
systems, such relations involving fpeak have been proposed
for systems of different masses and binary mass ratios

TABLE I. EoSs simulated for each binary system. The first
column displays the masses of the binary system, while the
second column lists all EoSs simulated for these particular
masses.

System masses [M⊙] Simulated EoSs

1.2þ 1.2

APR, BHBLP, BSK20, BSK21,
DD2, DD2F, DD2Y, WFF2,
LS220, LS375, GS2, SFHO,
SFHOY, SFHX, SLY4, TMA

1.35þ 1.35

ALF2, APR, BHBLP, BSK20,
BSK21, DD2, DD2F, DD2Y,
WFF2, LS220, LS375, GS2,
NL3, SFHO, SFHOY, SFHX,
SLY4, TM1, TMA

1.4þ 1.4

APR, BHBLP, BSK20, BSK21,
DD2, DD2F, DD2Y, WFF2,
LS220, LS375, GS2, SFHO,
SFHOY, SFHX, SLY4, TMA

1.5þ 1.5
BHBLP, BSK21, DD2, LS375,
GS2, TMA

FIG. 1. Gravitational mass M versus radius R for all EoSs
considered in this work. Dashed curves refer to EoSs incompat-
ible with current constraints on the tidal deformability.
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([7,8,10,11,50,51]). These relations are sometimes pre-
sented for a broad range of masses, while in some cases
they focus on a fixed mass.
Relations involving the f-mode frequency of either a

static star or a merger remnant can be used to extract
information about the stellar parameters from GW obser-
vations. Generally tighter relations allow for a better
determination of the involved parameters. Hence relations
with a smaller scatter are favored. In this section we focus
on quantifying the scatter in different relations to enable an
objective comparison between them.
For static stars, we examine different relations proposed

in the literature and newly introduced in this work. We
discuss how the points scatter in each case. Furthermore,
we consider new relations involving only properties refer-
ring to the innermost part of the star, containing 90% of its
mass. Our results are then applied to binary mergers
as well.
As figure of merit to assess the tightness of a given

relation, we consider the maximum and mean deviation
between the data points and the respective fit to the data.
The maximum deviation may be biased by the most
extreme model and does not represent how most of the
points scatter. However, it may provide a conservative
measure of the accuracy of a relation and thus an upper
estimate of the error if the relation is employed in GW
measurements. Conversely, the mean deviation captures the
point distribution, but it may not be fully representative of
the error because the EoS sample is not a statistical

ensemble. Hence, the mean deviation may be less suited
to describe the error when using such relations to determine
stellar parameters. We present both deviations, since a
combination of the two provides a more complete picture.
Generally, we find a consistent behavior of both measures.
In terms of notation, given a set of data ðXi; YiÞ with N

points, we denote deviations by δXY. We define deviations
between the data points and the corresponding fit as

δXYi ¼ Yi − YfitðXiÞ; ð2Þ

for which we express the maximum and average deviation
as

max ðδXYÞ ¼ max
i
ðjδXYijÞ; ð3Þ

δXY ¼
P

N
i¼1 jδXYij
N

; ð4Þ

where j · j is the absolute value.

A. Isolated stars

We start by discussing relations between fpert and the
stellar mass M and radius R. All relations that we describe
in the following are provided in Table II based on our data.
Table II includes the deviations of the relations.
A very well known relation was proposed by Andersson

and Kokkotas in [46] between fpert and the mean density of

TABLE II. Relations between f-mode frequencies of static stars and different stellar parameters. The tightness of the relations is
quantified by the average and maximum deviation between fit and underlying data. First column provides a reference to the work where
the relation of the respective form has been proposed. Frequencies are in kHz, masses inM⊙, radii in units of GM⊙=c2 and moments of
inertia in units of G2M3

⊙=c
4. The tidal deformability Λ is dimensionless.

Reference Position Fit
Mean

deviation [Hz]
Max

deviation [Hz]

[46] Fig. (2a) fpert ¼ −0.133þ 47.23
ffiffiffiffi
M
R3

q
− 173.2 M

R3

31 102

This work Fig. (4a) fpert ¼ −0.2þ 37.68
ffiffiffiffiffiffiffiffiffiffiffi

M
ðR90%Þ3

q
− 92.14 M

ðR90%Þ3
12 34

This work Text fpert ¼ −0.106þ 37.15
ffiffiffiffiffiffiffiffiffi
Mcc

ðRccÞ3
q

− 57.56 Mcc

ðRccÞ3
19 54

[47] Fig. (2b) Mfpert ¼ −0.427þ 14.95M
R þ 14.43ðMRÞ2 19 49

This work Fig. (4b) Mfpert ¼ −0.626þ 13.69 M
R90% þ 11.67ð M

R90%Þ2 10 34

This work Text Mccfpert ¼ −0.586þ 13.67Mcc

Rcc þ 17.92ðMcc

Rcc Þ2 18 64

[48] Text Mfpert ¼ −0.117þ 3.966
ffiffiffiffiffi
M3

I

q
þ 18.97M3

I
0.9 5

[48] Text Mfpert ¼ −0.117þ 4.161
ffiffiffiffiffi
M3

I

q
þ 16.93M3

I þ 6.995ðM3

I Þ3=2 − 7.855ðM3

I Þ2
0.8 5

This work Fig. (3) Mfpert ¼ −0.656þ 12.26Λ−1=5 − 5.471Λ−2=5 3 17

This work Text Mfpert ¼ −0.24þ 7.726Λ−1=5 þ 11.877Λ−2=5 − 27.653Λ−3=5 þ 15.387Λ−4=5 0.12 0.7

[49] Text Mfpert ¼ 6.939–9.294 × 10−1 lnΛþ 3.267 × 10−2ðlnΛÞ2 4 19

[49] Text Mfpert ¼ 5.965 − 0.2814 lnΛ − 0.1214ðlnΛÞ2 þ 1.555 × 10−2ðlnΛÞ3
−5.619 × 10−4ðlnΛÞ4

0.14 0.8
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the star. Later, Tsui and Leung used a different scaling,
which accurately describes both fpert and τdamp, as well as
other families of modes [47]. By this, the mass-scaled
frequency Mfpert is found to yield a tight correlation with
the compactness M=R.
In Figs. 2(a,b) we plot our f-mode data for both

relations. The solid curves display second-order fits to
our data in both diagrams. The purpose of these fits is to
accurately quantify how the data scatter around the respec-
tive function. Table II provides the fit parameters and the
mean and maximum deviation of the data points from the
fit. Based on the deviations it is evident that the second
relation is more accurate, but still both fits exhibit some
scatter.1

Another relation was discussed by Lau et al. [48]
involving the moment of inertia. They remarked that the
previously suggested relations cannot describe quark stars,
because neutron stars and quark stars result in different
density profiles. They argued that the moment of inertia I is
sensitive to the matter distribution within the star. Thus
defining an effective compactness through I leads to a
relation which successfully describes both types of stars.
We include a second-order fit, which was also employed in
[48], as well as a fourth-order fit. The relation is very tight
(see mean and maximum deviations in Table II). Its
accuracy does not improve with the order of the fit.
Chan et al. [49] suggested that there should exist a tight

correlation between fpert and Λ (see also [93]) based on the
I-Love-Q relations [94], since fpert tightly correlates with
the moment of inertia I [48]. Consequently, they consider a
relation of the form MfpertðlnΛÞ.
Moreover, Λ−1=5 is directly related to the compactness.

This motivates a relation of the form MfpertðΛ−1=5Þ, which
we plot in Fig. 3 and model by a second-order fit.
According to the mean and maximum deviation of 3 Hz
and 17 Hz, respectively, this relation is very tight (see
Table II). For comparison, the mean and maximum
deviation for a second-order MfpertðlnΛÞ relation are
4 Hz and 19 Hz respectively. Considering fourth-order
fits, as proposed in [49], relations withΛ−1=5 and those with
lnΛ are identically accurate (see also bottom panel of Fig. 3
for relations with respect to Λ−1=5).
Interestingly, second-order fits involving Λ−1=5 or lnΛ

are less accurate than the relation involving the moment of
inertia I. However, increasing the order of the fits leads to
tighter relations for Λ, while the accuracy of the moment-
of-inertia relation remains practically the same regardless
of the order. As a result, fourth-order relations withΛ−1=5 or
lnΛ are more accurate than the fourth-order relation with I.

Comparing entries in Table II, it is clear that relations
with Λ are more accurate than those involving M and R.
One main difference between the tidal deformability and
the compactness is that the first is less sensitive to the low-
density parts of the star, in particular the crust [95,96]. One
may thus pose the question of whether the scatter in
relations involving M and R can be solely attributed to
the crust, since the radius R is somewhat sensitive to the
low-density EoS.

(a)

(b)

FIG. 2. Relations between fpert and the mass and radius of a
nonrotating neutron star. Panel (a) displays the relation between
the f-mode frequency and the mean density of the star as
proposed in [46]. In panel (b) we plot the mass-scaled frequency
versus the compactness as suggested in [47]. In both panels the
solid curve shows a second-order fit based on our data.

1Note that for a fair comparison, throughout the whole paper,
we compare absolute frequencies, also for relations with mass-
scaled frequencies.
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In order to investigate this point we define a new
effective radius R90% for static stars. It refers to the radius
of a sphere containing 90% of the gravitational mass of the
configuration. By disregarding the outer shell containing
10% of the mass, we obtain a radius which is insensitive to
the crust and the low-density EoS. Using this definition, we
excise the outermost 1.26–2.41 km of the stellar configu-
ration. An additional feature of this newly defined quantity
is that, for all EoSs and models considered, the pressure at
this radius corresponds to 3–5% of the central pressure pc.

2

Thus, one could equivalently define a fixed pressure
surface of e.g., p� ¼ 0.04 × pc.
Based on the newly defined radius we introduce the

mean density and compactness of the corresponding
sphere. In Fig. 4 we plot the relations shown in Fig. 2,
but employing the new quantities which omit the low-
density material. Both relations become tighter. This is
clearly shown in Table II, where we explicitly give relations
and characterize their quality by the corresponding mean
and maximum deviation. In particular, for the relation
involving the mean density the improvement is significant.
Both relations involving the redefined mean density and
compactness are practically identically accurate compared
to each other. We conclude that fpert is an excellent measure

of the mean density of the star, when referring to the interior
part comprising 90% of its mass.
In addition, we employ the crust-core transition density

ρcc to define a second excision procedure dismissing all
material with a density below ρcc. For most EoS models the
exact density of the crust-core transition is not publicly
available. Therefore, we estimate the crust-core transition

FIG. 3. Relation between mass-scaled f-mode frequency and
Λ−1=5. Solid curve displays a second-order fit based on our data.
Bottom panel shows the fractional error for the second-order fit
plotted in the upper panel, as well as the fourth-order fit discussed
in the text. The legend explains the symbols’ colors in the
bottom panel.

(a)

(b)

FIG. 4. Same as in Fig. 2, but the stellar parameters refer to a
sphere containing only 90% of the mass of the corresponding
configuration. Compared to Fig. 2 both relations get tighter.

2Whereas the pressure on the sphere containing 90% of the
mass is universally about 4% of the central pressure, the density
at this point in the star shows a larger scatter and corresponds to
about 25–47% of the central rest-mass density ρc.
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density by extracting approximately the slope of the
symmetry energy L from the EoS table for neutrinoless
beta equilibrium via the pressure at saturation density. We
then employ a relation between L and the dynamical crust-
core transition density from [97]. For each stellar model we
identify the radius of the crust-core transition Rcc, alongside
the mass Mcc contained within this radius.
Analogously to R90% we compute the mean density and

compactness of the core region defined through Rcc. In
Table II we provide relations of the same functional form as
in Fig. 2. The relation involving the mean densityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMcc=ðRccÞ3Þ

p
is almost twice as accurate compared to

the case where the whole stellar configuration is consid-
ered. On the other hand, the accuracy of the relation
considering the compactness does not change significantly.
Both relations can potentially become tighter if one
employs a more accurate definition of the crust-core
transition density for each EoS considered.
We note that the relation involving Λ−1=5 is still more

accurate than the relations involving R90% or Rcc. Although
low-density material has been removed, still some scatter is
visible. We thus conclude that the scatter in these relations

does not entirely result from the low-density description.
This implies that the distribution of data points with respect
to the fit may also contain additional information about
high-density properties of the EoS, which affect the f-mode
frequency.

B. Merger remnants

In the case of BNS mergers, tight relations have been
found for systems with fixed total binary mass relating the
dominant postmerger frequency to radii of static stars of a
fixed mass [7,8,98]. Employing radii of static stars is a
choice which is empirically found to yield tight relations
bearing in mind that one cannot define the mass and radius
of merger remnants in an unambiguous way. Mass-scaled
relations are not as accurate [11,13]. We consider relations
between fpeak and R90%, Rcc or Λ−1=5 to investigate whether
these relations also become tighter as those for static stars.
Table III lists empirical relations of the form fpeakðRxÞ,

fpeakðR90%
x Þ, fpeakðRcc

x Þ, and fpeakðΛxÞ for all binary sys-
tems considered in this study. Here x stands for the mass of
a static star. In order to choose an appropriate stellar mass
for each binary system, we consider the maximum rest-

TABLE III. Fits (third column) to the data of postmerger frequencies for different total binary masses (first column) employing various
independent variables given in the second column. Fourth and fifth column provide the average and maximum deviation between fit and
data in absolute frequencies. Frequencies are in kHz, radii R, R90% and Rcc in km and Λ1=5 is dimensionless. Deviations for all relations
are in Hz, so they can be directly compared to each other.

Binary masses
[M⊙]

Independent
variable Fit

Mean deviation
[Hz]

Max deviation
[Hz]

1.2þ 1.2 R fpeak ¼ 10.428 − 8.347 × 10−1R1.4 þ 1.749 × 10−2R2
1.4 41 109

1.2þ 1.2 R90% fpeak ¼ 12.963 − 1.449R90%
1.4 þ 4.604 × 10−2ðR90%

1.4 Þ2 31 58

1.2þ 1.2 Rcc fpeak ¼ 16.526 − 1.9593Rcc
1.4 þ 6.568 × 10−2ðRcc

1.4Þ2 45 112

1.2þ 1.2 Λ1=5 fpeak ¼ 9.74 − 2.994Λ1=5
1.4 þ 2.767 × 10−1Λ2=5

1.4
18 44

1.2þ 1.2 Λ1=5 fpeak ¼ 9.74 − 2.432Λ1=5
1.2 þ 1.771 × 10−1Λ2=5

1.2
39 72

1.35þ 1.35 R fpeak ¼ 12.61 − 1.134R1.6 þ 2.87 × 10−2R2
1.6 48 84

1.35þ 1.35 R90% fpeak ¼ 12.63 − 1.306R90%
1.6 þ 3.79 × 10−2ðR90%

1.6 Þ2 31 60

1.35þ 1.35 Rcc fpeak ¼ 14.653 − 1.5432Rcc
1.4 þ 4.597 × 10−2ðRcc

1.4Þ2 47 110

1.35þ 1.35 Λ1=5 fpeak ¼ 9.063 − 2.912Λ1=5
1.6 þ 0.276Λ2=5

1.6
26 61

1.35þ 1.35 Λ1=5 fpeak ¼ 8.886 − 2.147Λ1=5
1.35 þ 1.397 × 10−1Λ2=5

1.35
46 88

1.4þ 1.4 R fpeak ¼ 12.61 − 1.085R1.7 þ 2.54 × 10−2R2
1.7 53 151

1.4þ 1.4 R90% fpeak ¼ 15.16 − 1.716R90%
1.7 þ 5.51 × 10−2ðR90%

1.7 Þ2 38 130

1.4þ 1.4 Rcc fpeak ¼ 16.389 − 1.7824Rcc
1.4 þ 5.467 × 10−2ðRcc

1.4Þ2 53 148

1.4þ 1.4 Λ1=5 fpeak ¼ 11.11 − 4.584Λ1=5
1.7 þ 5.821 × 10−1Λ2=5

1.7
36 124

1.4þ 1.4 Λ1=5 fpeak ¼ 9.34 − 2.342Λ1=5
1.4 þ 1.533 × 10−1Λ2=5

1.4
65 159

1.5þ 1.5 R fpeak ¼ −34.89þ 6.19R1.75 − 2.519 × 10−1R2
1.75 29 76

1.5þ 1.5 R90% fpeak ¼ −7.534þ 2.275R90%
1.75 − 1.189 × 10−1ðR90%

1.75Þ2 25 64

1.5þ 1.5 Rcc fpeak ¼ −7.829þ 2.1565Rcc
1.4 − 1.0424 × 10−1ðRcc

1.4Þ2 41 88

1.5þ 1.5 Λ1=5 fpeak ¼ 3.74þ 0.755Λ1=5
1.75 − 3.798 × 10−1Λ2=5

1.75
30 73

1.5þ 1.5 Λ1=5 fpeak ¼ −9.88þ 8.624Λ1=5
1.5 − 1.427Λ2=5

1.5
52 109
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mass densities in the first few milliseconds of the post-
merger phase (for a more extensive discussion see
Appendix). Then, we determine the mass of static stellar

configurations, which have roughly comparable central
densities. For instance, we relate systems with a total mass
of 2.4 M⊙ to static stars of 1.4 M⊙. Similarly, 1.6, 1.7 and
1.75 M⊙ static stars are chosen for binary systems with a
total mass of 2.7, 2.8 and 3 M⊙, respectively. As an
example, Fig. 5 displays the empirical relations for 1.2þ
1.2 M⊙ systems.
Quantifying deviations in terms of frequencies allows us

to compare the quality of all relations to each other keeping
in mind that the quantitative results to some extent depend
on the chosen fiducial mass x. We find that using either
R90% or Λ−1=5 leads to tighter empirical relations compared
to R or Rcc (see Fig. 5 for an example with 1.2þ 1.2 M⊙
mergers). In the case of Rcc this is mostly an artifact of the
fiducial mass chosen in Table III, which leads to more
accurate relations for R90% than for Rcc (see Table VII for
more details). R90% relations are marginally less accurate
than those with Λ−1=5. This is in line with the findings for
the relations of static stars considering a large mass range.3

Furthermore, we point out that relations between fpeak and
the tidal deformability of static stars are more accurate for
fiducial masses higher than the mass of the inspiraling stars
for all binary systems considered (see Table III). We in
particular refer to the more thorough analysis of this aspect
in Appendix (see also [50] for relations for a range of
binary masses).
The analysis shows that using a frequency measurement

the determination of R90% is up to twice as accurate as that
of R as the maximum deviation should be included as an
error estimate. For all binary systems the mean deviation in
fpeakðR90%

x Þ is about 70m (based on the inverted relations
R90%
x ðfpeakÞ). Therefore, R90% of a fixed mass static star can

be determined with high accuracy from an observation of
an equal-mass binary system. We emphasize that R90% is as
informative about the EoS as R. As R, the redefined radius
R90% is uniquely linked to the EoS and, moreover, is only
sensitive to the high-density regime of the EoS.

IV. CONNECTION BETWEEN fpert AND f peak
FREQUENCIES

In this section we address how individual data points are
distributed with respect to the corresponding relation, i.e.,
with respect to the fit to all points.

A. Point scatter in fpeak relations and fpert relations

In Fig. 5, we plot empirical relations between fpeak and
three different stellar parameters, namely R, R90%, and
Λ−1=5 for 1.2þ 1.2 M⊙ systems. Considering the exact

(a)

(b)

(c)

FIG. 5. Postmerger frequencies fpeak as function of various
stellar parameters of static stars with different EoSs. R1.4 (top
panel) refers to the radius of a 1.4 M⊙ nonrotating NS, R90%

1.4 .
(middle panel) is the radius of a star with artificially excised low-
density region (see Sec. III A) and Λ1=5

1.4 (bottom panel) is the
fifth-root of the tidal deformability. The frequencies refer to 1.2þ
1.2 M⊙ binary systems.

3We note that for 1.5þ 1.5 M⊙ systems the improvement is
not as pronounced. This results from the fact that less systems are
considered in this case, since many EoS models result in a prompt
collapse and thus the data set is significantly smaller compared to
the other binary masses.
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location of individual points in the plots, the points deviate
from the respective fit in a very similar way in all panels.
EoSs4 which lie above the fit in one plot, typically lie above
the fit in the other relations as well. The same holds for
EoSs lying below the fit. The data apparently follows the
same systematic behavior in all three relations. From the
fact that fpeakðR90%Þ shows the same trend (middle panel)
we conclude that this general observation of similar
frequency deviations is insensitive to the low-density
regime of the star. Furthermore, we find a similar pattern
in plots for other binary masses.
We now compare in more detail the point scatter in the

data from merger simulations to that of perturbation
calculations of static stars. In Fig. 6 we show six plots.
We first focus on the comparison between the panels on the
left. The upper left panel displays postmerger frequencies
for 1.35þ 1.35 M⊙ binary systems versus the radii R1.6 of
1.6 M⊙ static stars. The middle left panel is a plot of fpert
versus R1.6. Hence, we show both frequencies as function
of the same independent variable.
We compare how individual points scatter around the fits

by examining the location of each data point with respect to
the corresponding fits. We depict EoSs which are on the
same side of the fit in both plots as black crosses.
Remarkably, most data points follow this behavior,
although the frequencies describe very different systems.
We use yellow symbols for EoSs which lie on opposite
sides of the respective fits in these two plots (upper and
middle left panel) and which thus do not follow the
systematic behavior. This is a rather strict classification,
especially for points which lie relatively close to the fit. For
instance, changing the set of EoS models to construct the fit
or choosing another functional ansatz for the fit, would lead
to another fit function and thus possibly change the
character of the deviation. This is obvious for points which
are very close to the fit. Hence, one should not classify such
points as actual outliers, even if they do not formally fulfill
the corresponding quantitative criterion. We thus refine the
criterion to identify actual outliers.
We introduce green shaded bands around the fits. They

extend 15Hz towards both sides of the fits, resulting in a total
width of 30 Hz. EoSs which lie within these bands in both
plots are also displayed as black points andare not considered
outliers. If however models lie outside these green shaded
bands in at least one of the two plots, we mark them with
either black or yellow symbols as described above.
Adding such a band is well justified. As shown in

Table III, the mean deviation is 48 Hz for the fpeakðR1.6Þ
relation. Consequently, most points lie more than 15 Hz
away from the fit and they occur outside the green shaded
region at least in the fpeak − R plot. Thus, only a small

number of EoSs, lying very close to the fit, is captured by
this criterion. For 1.35þ 1.35 M⊙ mergers, only 4 points
out of 19 lie within the band in both plots with R1.6.
Based on the described classification, 17 out of 19 EoSs

spread in the same way with respect to the fits when
comparing fpert − R and fpeak − R relations shown in Fig. 6
(see also Fig. 10). We find a similar behavior for systems of
other binary masses, which we summarize in Table IV. We
also refer to the later discussion of Fig. 10 showing that in
fact the deviations of all data points follow the same trend.
Finally, we extend the comparison by considering data as

function of Λ1=5
1.35 in the right panels of Fig. 6. We show

postmerger frequencies and perturbation frequencies of
static stars in the upper and middle right panels of Fig. 6
withΛ1=5

1.35 as independent variable. Note that we employ the
perturbative frequency of a more massive star with 1.6 M⊙
(as in the middle left panel of Fig. 6). Frequencies deviate in
the same way in both relations (only one outlier). We also
notice a very similar distribution of data points in the upper
left and upper right panel as well as in the middle panels,
i.e., in all four plots. A similar behavior is found by
comparing the panels in Fig. 5.
We summarize the different comparisons in Table IV

employing the same criterion as described above to
quantify the behavior of the scatter in these relations.
We consider additional pairs of relations in Table IV and
determine the number of outliers for each of them.
Throughout all pairs of relations and binary masses the
number of outliers is very small. This corroborates our
observation that data points referring to two different
systems scatter in a similar way (see also Fig. 10).
The agreement is even more pronounced in cases where

the independent variable (R or Λ1=5) refers to static stars
with the same mass as the inspiraling stars. In these plots
the data points on average deviate more from the respective
fit. Hence, the location of data points with respect to the fit
is less sensitive to small changes of the fit and the
similarities in the frequency deviations become more
evident for overall larger deviations. This further substan-
tiates the observation that the location of individual data
points with respect to the fits, which represent some kind of
average behavior, follows a systematic pattern determined
by the EoS.
In a broader sense, we find that in fact all points behave

consistently in plots like Fig. 6. Considering for instance
clusters of points, we recognize very similar patterns of the
distribution of points in the corresponding plots. This
general consistency between the behavior in both sets of
frequency data is indeed remarkable, considering statistical
fluctuations and uncertainties, which stem from the com-
plexity of merger simulations.
The fact that we consider a large number of EoSs for

different binary masses makes the observation even more
remarkable. The fits are based on a significant number of
EoS models, which essentially cover the full viable range in

4For simplicity, in the following we will use the term “EoS” for
actually referring to the resulting frequency/data point obtained
from a calculation for this EoS.
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Panels (a) and (c) show postmerger frequencies fpeak for 1.35þ 1.35 M⊙ binary systems and perturbative frequencies for
1.6 M⊙ stars, fpert;1.6, respectively versus the radius of static 1.6 M⊙ stars, R1.6. Panels (b) and (d) display fpeak for 1.35þ 1.35 M⊙

binary systems and fpert;1.6 as function of Λ1=5
1.35 for static models with 1.35 M⊙. Panels (e) and (f) provide Λ1=5

1.6 versus R1.6 and Λ1=5
1.35,

respectively. In all plots the solid curve shows a second-order fit to the data points. We plot a band with a total width of 30 Hz around
frequency fits. See the main text for an explanation of the symbols’ colors.
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the M − R diagram and arguably somewhat beyond.
Including a few additional EoSs will not significantly alter
the fit and thus will not strongly affect the distribution of
the current data points with respect to it.
We emphasize once more that the agreement of fre-

quency deviations with respect to the fits in Fig. 6 and
Table IV is very remarkable and by no means expected.
fpert refers to the frequencies from pertubative calculations
of static, nonrotating stars with a mass of 1.6 M⊙, whereas
fpeak frequencies describe the dominant oscillation mode of
rapidly rotating, hot merger remnants of significantly
higher mass, which actually still undergo a dynamical
evolution while fpeak is extracted. We would like to make
two further remarks.
(1) Notably, the merger frequencies are obtained from a

three-dimensional relativistic hydrodynamical sim-
ulation code, which is computationally much more
complex than solving the equations of linearized
perturbations around a background equilibrium
model (see Secs. II A and II B). Clearly, the latter
code, in comparison, yields more robust and accu-
rate results. Therefore, it is generally encouraging
that the hydrodynamical simulations with the current
resolution are apparently able to uncover the

frequencies to a degree that the frequency deviations
resolve some underlying physics. This does not
necessarily mean that the accuracy of about
10 Hz, i.e., the level of frequency deviations, reflects
the full systematic uncertainties involved in the
numerical model nor that the frequencies are fully
converged with respect to the numerical resolution.
This said, we comment that data points which do not
follow the described behavior (yellow symbols),
may well be attributed to numerical artifacts since
the quoted frequency accuracy is certainly on the
edge of what a code of this type can achieve.
However, we argue below that the outliers also
behave (in some way) consistently.

(2) The striking similarity of frequency deviations very
likely points to an underlying mechanism respon-
sible for the frequency shift in a certain direction.
This implies that the frequency deviation on its own
encodes additional information about the EoS,
which is the only link between the two systems.
In the following section we further investigate this
point and identify which EoS properties, or equiv-
alently NS parameters, are causing the frequencies to
deviate in a certain way. We stress that, at least in
principle, the deviations may be measurable. If the
fits can be constructed based on simulations with
sufficient precision, measurements of the frequency
and the respective independent quantity inform
about the frequency deviation from the fit. The
radius or tidal deformability could be obtained either
from independent measurements or from the very
same merger event providing fpeak. Clearly, these
ideas require a high measurement accuracy. It may
also be possible that the frequency deviations
correlate with other features of the GW signal of
a NS merger. We note that secondary frequencies
apparently deviate in the same way as the main peak
(see Fig. 6 in [53]).

We also remark that additional simulations for DD2F and
SFHX with binary mass ratios5 of q ¼ 0.95 and q ¼ 0.9
yield frequencies very similar to the ones from the equal-
mass binary of the same total mass of 2.7 M⊙ (for q ¼ 0.95
and q ¼ 0.9 the frequencies deviate from the respective
equal-mass models by some 10 Hz, which seems to be
dominated by statistical fluctuations). This suggests that at
least within a relatively small range of q the influence of the
EoS on the frequency deviations is stronger than that of the
mass ratio.
Finally, we assess the robustness of the frequency

deviations performing additional simulations for 1.35 −
1.35 M⊙ binaries with the DD2F and SFHX EoSs. Both
EoS models result in a comparable R1.6 of about 12 km.

TABLE IV. Second and third columns list relations for which
we compare frequency deviations with respect to the fit (see main
text). Fourth column provides the number of data points lying on
opposite sides of the relations and outside the 30 Hz band in both
plots for the binary system given in the first column.

Binary
masses [M⊙] Relation 1 Relation 2

Number of
outliers

1.2þ 1.2 fpert;1.4ðR1.4Þ fpeakðR1.4Þ 1=16
1.2þ 1.2 fpert;1.4ðΛ1=5

1.2 Þ fpeakðΛ1=5
1.2 Þ 0=16

1.2þ 1.2 fpert;1.4ðR1.2Þ fpeakðR1.2Þ 1=16
1.2þ 1.2 fpeakðΛ1=5

1.2 Þ fpeakðR1.2Þ 1=16

1.2þ 1.2 fpeakðR1.4Þ fpeakðR1.2Þ 1=16
1.35þ 1.35 fpert;1.6ðR1.6Þ fpeakðR1.6Þ 2=19
1.35þ 1.35 fpert;1.6ðΛ1=5

1.35Þ fpeakðΛ1=5
1.35Þ 1=19

1.35þ 1.35 fpert;1.6ðR1.35Þ fpeakðR1.35Þ 2=19
1.35þ 1.35 fpeakðΛ1=5

1.35Þ fpeakðR1.35Þ 1=19

1.35þ 1.35 fpeakðR1.6Þ fpeakðR1.35Þ 1=19
1.4þ 1.4 fpert;1.7ðR1.7Þ fpeakðR1.7Þ 3=16
1.4þ 1.4 fpert;1.7ðΛ1=5

1.4 Þ fpeakðΛ1=5
1.4 Þ 2=16

1.4þ 1.4 fpert;1.7ðR1.4Þ fpeakðR1.4Þ 2=16
1.4þ 1.4 fpeakðΛ1=5

1.4 Þ fpeakðR1.4Þ 1=16

1.4þ 1.4 fpeakðR1.7Þ fpeakðR1.4Þ 2=16
1.5þ 1.5 fpert;1.75ðR1.75Þ fpeakðR1.75Þ 1=6
1.5þ 1.5 fpert;1.75ðΛ1=5

1.5 Þ fpeakðΛ1=5
1.5 Þ 0=6

1.5þ 1.5 fpert;1.75ðR1.5Þ fpeakðR1.5Þ 0=6
1.5þ 1.5 fpeakðΛ1=5

1.5 Þ fpeakðR1.5Þ 0=6

1.5þ 1.5 fpeakðR1.75Þ fpeakðR1.5Þ 2=6

5We define the mass ratio as q ¼ M1=M2 ≤ 1, where M1 and
M2 are the masses of the individual stars in the binary system.
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DD2F yields a frequency increase with respect to the fit,
whereas SFHX results in a smaller fpeak. We perform
additional simulations with larger orbital separations
(resulting in 4 and 5 orbits before merging respectively)
and find that for both EoS models the resulting fpeak deviate
as expected with respect to the fit. For DD2F we also run
calculations with different resolution (about 100,000 and
600,000 SPH particles instead of our default choice of
300,000 particles) and observe that the frequency
differences in simulations with different resolution are
smaller than the frequency deviations from the fit.
Although the different setups lead to small statistical
fluctuations in fpeak of a few 10 Hz, the differences in
fpeak between the two EoSs are larger than those fluctua-
tions. Most importantly, calculations with another setup lie
on the correct side of the fit generated by our standard
setup. We do not find systematic trends with the SPH
particle number or the initial orbit. We are thus confident
that the frequency shifts are in fact mostly caused by the
physics of the underlying EoS. We finally compare our data
for 1.35 − 1.35 M⊙ binaries to another set of simulations
which we performed for 1.37 − 1.37 M⊙ binaries with the
same set of EoS models. In these calculations we used
another SPH kernel function (the C6 Wendland kernel
function [99,100]). Again we find that the individual data
points scatter in the exact same way from a respective fit to
the full data. This demonstrates the robustness against
certain details of the numerical scheme. Similarly, the fact
that a setup with a slightly different binary mass leads to the
same pattern of frequency deviations reassures that fre-
quency shifts are insensitive to numerics and represent a
physical effect of the EoS. In conclusion, the numerical
treatment does to some extent affect the exact frequencies,
but we employ the same numerical setup for our calcu-
lations. We thus expect that the pattern of the frequency
deviations is insensitive to the exact treatment and only
suffers from statistical fluctuations which are apparently
smaller than the typical frequency shifts.

B. Physical explanation for frequency deviations and
encoded EoS information

The fact that points scatter in a similar way in frequency
versus radius=Λ plots, for two very different systems,
suggests that there is a physical reason behind it. It is
clear that the EoS determines where individual points occur
in the diagram. In order to investigate this aspect, we focus
on perturbative frequencies. We already discussed that
fpert − Rx and fpeak − Rx diagrams show very similar
patterns. The perturbative data refer to a simpler system,
which is why we expect that relations for fpert are more
accurate and reliable. Hence, they are better suited to
identify what causes points to occur at a certain location.
For static stars with different masses there is a very tight

relation between the mass-scaled fpert and Λ−1=5 (see

Sec. III A, Fig. 3, and Table II). The corresponding relation
for a fixed mass shown in Fig. 7 is very tight with a
maximum deviation of only 2.2 Hz for 1.6 M⊙ stars (see
Table V). We find a similarly high accuracy for relations
with other fixed masses. Hence, one can consider fpert and
Λ−1=5 as being practically equivalent.
Comparing Figs. 6(c) and 7 we notice a drastically

different distribution of points. In the plot involving the
radius the points significantly scatter around the respective
relation. Employing the tidal deformability instead the data
points hardly exhibit any scatter.6

The comparison between these two figures indicates
which EoS properties cause the frequency deviations.
Figure 7 shows that there is an essentially exact relation
between fpert and Λ1=5 (for fixed mass), meaning that fpert
can be equivalently replaced by Λ1=5 in the relations in
Fig. 6. This implies that deviations in the fpert;1.6 − R1.6 plot
[panel (c) in Fig. 6] are tightly anticorrelated with devia-
tions in a Λ1=5

1.6 − R1.6 diagram [panel (e) in Fig. 6; compare
also panel (a) and (e)].
In Fig. 8 we verify that this is indeed the case for 1.6 M⊙

stars. We define deviations in terms of frequencies, denoted
by δRfpert, between data points and the second-order fit in

FIG. 7. fpert versus Λ
1=5
1.6 for nonrotating 1.6 M⊙ stars. There is

minimal scatter with a maximum deviation of 2.2 Hz.

6We remark that the frequency deviations are not related to the
low-density regime of the EoS, which affects radii stronger than
the tidal deformability. In Sec. III A, we introduce a newly
defined radius, R90%, such that it is insensitive to the EoS at lower
densities, and we find significantly tighter relations between fpert
and this new measure. Still, the relations feature a sizable point-
to-point scatter, from which we conclude that it does not entirely
result from the low-density EoS. In this context the term “low-
density” thus refers to the material in the outer shell of the star
containing 10% of its total mass. In addition, we extract the radius
Rcc based on the crust-core transition density. Relations involving
this radius also exhibit scatter, which further supports the
argument that frequency deviations are influenced by the high-
density EoS.
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panel (c) of Fig. 6. Similarly, deviations in terms of Λ1=5
1.6 ,

denoted as δRΛ1=5 in Fig. 8, are defined between data points
and a second-order Λ1=5

1.6 ðR1.6Þ fit. The deviations are
strongly anticorrelated and follow a linear trend. We find
a similar behavior of the deviations for any other fixed mass
within the mass range of static stars considered here.
The fact that deviations in fpertðR1.6Þ and Λ1=5

1.6 ðR1.6Þ are
tightly correlated implies that we can trace back and explain
frequency deviations in fpert, and ultimately in fpeak, by the

difference between R1.6 and Λ
1=5
1.6 [Fig. 6e exhibits the same

pattern of deviations as Fig. 6c and similarly for panels (f)
and (d)].
Therefore, the frequency deviations, i.e., the scatter in

frequency plots in Fig. 6, are directly linked to the tidal
Love number k2, which describes the difference between Λ
and R through Λ ¼ 2

3
k2ðc2RGMÞ5. k2 is known to roughly

correlate with the inverse compactness (R=M) [for instance
the relationΛ ≃ αðc2RGMÞ6 with α ¼ 0.0093� 0.0007 in [101]

implies an average kav2 ¼ 3
2
αðc2RGMÞ]. More specifically, the

scatter in Λ1=5
1.6 ðR1.6Þ, and thus the frequency deviations, are

determined by how much k2 deviates from an average kav2
estimate based on the compactness. We thus directly link
the frequency scatter to the detailed behavior of k2. This in
turn implies that observational constraints on the frequency
deviation, possibly only its sign, informs about properties
of k2 e.g., by how much it deviates from an average k2
given by the compactness and can be employed to break the
degeneracy between Λ, k2, and R.
In the upper panel of Fig. 9 we plot k2 versus R=M for

1.6 M⊙ static models. We include a second-order fit to the
data. Data points roughly follow the fit, but they partially
exhibit visible deviations from it. The gray shaded band
shows the maximum deviation in each panel. As argued,
the deviations are related to frequency deviations δRfpert.
Following the above reasoning about the equivalence

between frequency deviations δRfpert and differences
between Λ1.6 and R1.6, we introduce a correction to k2,
which is proportional to δRfpert. We obtain the proportion-
ality constant b by a single fit to the deviations in the upper
panel in Fig. 9. The resulting relation is shown in the
middle panel, which includes the same second-order fit
from the top panel and exhibits a very tight correlation of
the corrected k2 − bδRfpert with R=M. For this figure we
find b ¼ −0.2206 kHz−1 and observe a similar behavior
for other masses in the range 1.1–1.9 M⊙. Obviously, we
can also include the correction in R=M by changing the
independent variable, which becomes R=M − b0δRfpert

7

and directly determines k2.
In Fig. 10 we plot δRfpeak, the deviation of data points

from the fit in terms of postmerger frequencies in panel (a)
of Fig. 6, versus δRfpert;1.6. The green shaded area is a box
with a width of 30 Hz, which matches the band we
introduced in Fig. 6. The solid green line is a first-order
fit to the data, which we refer to as δRfjfit. Evidently, the
points approximately follow the line, which can be used to
obtain an estimate for δRfpert based on δRfpeak. This
estimate can then be employed to obtain a better estimate

TABLE V. Relations between f-mode frequencies or tidal deformabilities Λ1=5 of static stars and different stellar
parameters for a fixed mass. The third and fourth columns provide the average and maximum deviation between fit
and underlying data. Frequencies are in kHz, radii in km and the tidal deformability Λ is dimensionless. Deviations
for relations involving fpert;1.6 are in Hz, while deviations for the relation between the tidal deformabilities are
dimensionless.

Position Fit Mean deviation [Hz] Max deviation [Hz]

Fig. (6c) fpert;1.6 ¼ 7.04 − 0.631R1.6 þ 1.708 × 10−2R2
1.6 15 36

Fig. (6d) fpert;1.6 ¼ 5.11 − 1.255Λ1=5
1.35 þ 9.618 × 10−2Λ2=5

1.35
17 45

Fig. (7) fpert;1.6 ¼ 4.988 − 1.539Λ1=5
1.6 þ 1.546 × 10−1Λ2=5

1.6
1 2.2

Fig. (6f) Λ1=5
1.6 ¼ 0.205þ 0.614Λ1=5

1.35 þ 0.036Λ2=5
1.35

0.073 0.029

FIG. 8. Deviations δRΛ1=5 between data points and a second-
order fit in a Λ1=5

1.6 − R1.6 diagram versus frequency deviations
δRfpert;1.6 in a fpertðR1.6Þ relation [see panels (e) and (c) of Fig. 6
respectively]. The solid line displays a first-order fit to the data.

7Note that b0 ≠ b. In order to obtain it one needs to quantify
horizontal deviations of data points from the fit in the upper panel
of Fig. 9. Fitting δRfpert;1.6 to these deviations determines b0.
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for k2, as shown in the bottom panel of Fig. 9. Data points
shifted bybδRfjfitðδRfpeakÞ deviate less from thek2ðR=MÞ fit
with the average and maximum deviation reduced by 33%
and 36% respectively. In particular, the improvement is
significant for most points, especially those with
R=M < 5.5. A single point with R=M ≃ 5.83 is the only
one which still arguably deviates from the fit. Furthermore,
we find that using deviations defined on fpeak versus radius
plots for various different choices of the mass to which the
radius refers, also leads to improved relations for k2. In
particular, δR1.35

fpeak produces even better results than the
bottompanel of Fig. 9, which is rather interesting asR1.35 can
potentially be extracted from the analysis of the inspiral.
Although estimating δRfpert through the linear fit is not

accurate and measuring δRfpeak may be challenging,
knowing whether δRfpert is positive or negative is already
useful. The sign of δRfpert informs whether the

corresponding point lies above or below the respective
k2ðR=MÞ fit. This suffices to reduce the error in determin-
ing k2 through the respective fit by half. In this context we
recall that frequencies of postmerger oscillations can be
recovered with ∼10 Hz accuracy with sufficient signal-to-
noise ratiowith future ground-based detector configurations,
which has been shown by simulated injections [23,24].
Hence, the prospects to infer frequency deviations rely
mostly on the challenge to construct by calculations reliable
theoretical relations between frequency and TOV properties,
to which measured frequencies can be compared.
In summary, these relations show that δRfpert or δRfpeak

can be used for a more accurate estimate of k2 (beyond a
relation with the compactness C) and thus to establish the
exact relationship between tidal deformability and radius,
which is for instance important for EoS constraints from the
GW inspiral. As we already mentioned quantifying the
exact frequency deviation for the merger data is challenging
and may also explain the few outliers in Fig. 6 and Table IV.
In this respect we also refer to Fig. 10, where one can
clearly see that in fact all data points do follow the same
trend including the two outliers. This exemplifies that our
criterion for defining outliers above is arguably too
conservative and could in principle be replaced by a better
classification scheme. At any rate, the consistent behavior
of all data points in Fig. 10 corroborates our observation
that frequency deviations are correlated.

C. Frequency deviations and the tidal deformability of
high-mass neutron stars

Finally, we connect frequency deviations with the
behavior of the tidal deformability ΛðMÞ as function of
mass. In Fig. 6(d) we plot the perturbative frequency
fpert;1.6 versus the tidal deformability Λ1=5

1.35. However, as

FIG. 9. Upper panel shows k2 as a function of R=M for 1.6 M⊙
static stars. Middle panel displays “corrected” tidal Love number
k2 − bδRfpert;1.6 as function of R=M. Bottom panel presents
“corrected” k2 using δRfpeak values via a first-order fit between
δRfpert;1.6 and δRfpeak (see Fig. 10). In the middle and bottom
panels b ¼ −0.2206 kHz−1. The gray shaded band represents the
maximum deviation in each panel. Solid curve is a second-order
fit to k2ðR=MÞ and identical in all panels.

FIG. 10. Frequency deviations as occurring in panels (a) and (c)
of Fig. 6 respectively. The green shaded box has a side length of
30 Hz and matches the bands introduced in Fig. 6. The solid
green line is a first-order fit to the data given by
δRfpert;1.6 ¼ 0.2697δRfpeak.
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already discussed, fpert;1.6 scales very tightly with the tidal

deformability of the stellar system with the same mass Λ1=5
1.6

(see Fig. 7). Hence, Fig. 6d practically displays the relation
between Λ1=5 referring to two different masses, namely
Λ1=5
1.35 and Λ

1=5
1.6 . The difference between these two values of

Λ1=5 approximates the derivative of Λ1=5 with respect to
the mass.

The upper panel of Fig. 11 shows the derivative
dΛ1=5=dM at M ¼ 1.35 M⊙ versus Λ1=5

1.35. The data points
in the upper panel follow a coarse trend described by a fit
(green curve), but they exhibit some sizable scatter because
the derivative may still be different for the same Λ1=5

1.35.
However, it is clear that the tidal deformability of some
higher mass NS does carry information about the behavior
of the slope of ΛðMÞ. We thus anticipate that the frequency
deviations in Fig. 6d (or any other frequency deviation
correlated to it like δΛ1=5

1.35
fpeak) can be employed to remove

the significant scatter in the upper panel.
Following a very similar procedure as in Fig. 9 the

additional information encoded in the frequency deviations
can be included. Employing either δΛ1=5

1.35
fpert;1.6 or δΛ1=5

1.35
fpeak

leads to tighter relations for the derivative dΛ1=5=dM (see
middle and bottom panel of Fig. 11 respectively). In
particular, in the case of δΛ1=5

1.35
fpert;1.6 the accuracy of the

relation improves significantly. The maximum deviation is
reduced by 80%.
The importance of Fig. 11 is that the observation of a

single BNS is in principle sufficient to determine both the
tidal deformability and its derivative with respect to mass.
This means the properties of ΛðMÞ at higher masses are
accessible without explicitly measuring the tidal deform-
ability at higher masses if information on the frequency
deviations is available (possibly from the same event).
We remark that it is not strictly necessary to pick the

mass 1.6 M⊙ for the deviations δΛ1=5
1.35
fpert;1.6. In principle

measuring fpert of any mass can be used to obtain a
corrected value for the derivative. In practice, values closer
to 1.35 M⊙ (or generally the mass of the inspiraling stars)
may even lead to a more significant improvement. We also
note that similar figures can be obtained for other binary
masses. Furthermore, we comment that the reasoning in
this subsection may also be reversed. It may be conceivable
to use information on the derivative dΛ1=5=dM, e.g., from
measuring Λ in two BNS events with different mass, to
provide a more accurate prediction of the postmerger
frequency.

V. DIRECT RELATIONS BETWEEN
FREQUENCIES OF STATIC STARS AND MERGER

REMNANTS

Both perturbative frequencies fpert and postmerger
frequencies fpeak scale tightly with stellar parameters of
static stars such as the radius R and the tidal deformability
Λ (see Figs. 5, 6, and 7). Furthermore, as discussed in
Secs. IVA and IV B, data points deviate from such relations
in a very similar way for fpert and fpeak. This implies that
there should also exist a direct correlation between the f-
mode frequency fpert and the dominant postmerger oscil-
lation frequency fpeak. One may expect such relations to
become particularly tight, because the frequency deviations

FIG. 11. Upper panel shows the derivative dΛ1=5=dM at a fixed
mass equal to 1.35 M⊙ as a function of Λ1=5

1.35. Middle panel
presents a “corrected” derivative using the deviations
δΛ1=5

1.35
fpert;1.6. Bottom panel displays a corrected derivative

through deviations δΛ1=5
1.35
fpeak (see Fig. 6(b)). The values of the

fit parameters are b1 ¼ −7.293 kHz−1 and b2 ¼ −2.029 kHz−1

respectively. The gray shaded area represents the maximum
deviation in each panel. Solid curve is a second-order fit to
the data points in the upper panel and identical in all panels.
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in fpert and fpeak, which we found to be correlated, may to
some extent cancel/compensate each other.
Figure 12 presents a mass-independent relation

between fpeakðMtotÞ scaled by the chirp mass Mchirp
8 and

fpertðMTOVÞ scaled by the mass of the corresponding static
star MTOV for all 57 equal-mass systems considered in this
work. We relate each binary configuration to a static NS by
choosing the mass of the static star such that the densities in
both systems are comparable. For instance, we find that the
choice MTOV ¼ 1.23 ×Mtot=2 serves this purpose for the
binary systems considered here based on an analysis similar
to the one we present in Appendix. We obtain fpertðMTOVÞ
(and Λ1=5ðMTOVÞ in Fig. 13) for any massMTOV by a cubic
spline fit to our perturbative data.
We find a highly accurate relation between

MchirpfpeakðMtotÞ and MTOVfpertðMTOVÞ. The average and
maximum deviation of the data from the fit are 30 Hz and
134Hz respectively. This is very small considering that this is
a mass-independent relation, while the relations in Table III
are in comparison only slightly more accurate. The high
accuracy of this relation further highlights the strong con-
nection between fpeak and fpert over the whole range of
densities realized in postmerger remnants.

Figure 12 further indicates that there is a tight mass-
independent relation between Mchirpfpeak and the tidal
deformability of static stars. As discussed in Sec. III A
(in particular Fig. 3), the mass-scaled fpert correlates
extremely tightly with Λ−1=5. Hence, we expect that a
similarly tight relation MchirpfpeakðΛ1=5Þ exists.
In Fig. 13 we replace MTOVfpertðMTOVÞ by Λ1=5ðMTOVÞ

of the corresponding static model. As expected, we find a
tight correlation between the data. The average and
maximum deviation of the second-order fit to the data is
31 Hz and 138 Hz respectively, which is perfectly in line
with the deviations of the MchirpfpeakðMTOVfpertÞ relation.
These deviations in the mass-independent relation corre-
spond to mass-scaled deviations of 37 M⊙ × Hz and
168 M⊙ × Hz respectively, which is significantly more
accurate than relation (4) in [51]. The fit parameters for
both relations are summarized in Table VI.
In order to consider a broader parameter range, we

extend our data set by also including unequal-mass binaries
and constructing relations of the same type. We directly
import the unequal mass data from Table II in [50] (except
for one EoS which is not considered in this study). We
include a total of 40 unequal-mass binary systems, with
mass ratios as low as 0.67. Each binary configuration is
related to a static star through

MTOV ¼ ½aþ b × ð1 − qÞ2� ×Mtot

2
; ð5Þ

with a ¼ 1.23 and b ¼ −0.67. The term in brackets
introduces a mild dependence on q since we realized that
unequal-mass results are better captured by a slightly
smaller MTOV. For q ¼ 1 the value of a reproduces the
relation between MTOV and Mtot which we introduced

FIG. 13. Dominant postmerger oscillation frequency
fpeakðMtotÞ scaled by the chirp mass MchirpðMtotÞ versus the tidal
deformability Λ1=5ðMTOVÞ of static stars. The masses of static
stars and symbol colors are as in Fig. 12. The solid black curve is
a second-order fit to the data. All points lie within the gray 4%
error band.

FIG. 12. Dominant postmerger oscillation frequency
fpeakðMtotÞ scaled by the chirp mass MchirpðMtotÞ as a function
of the perturbative frequency fpertðMTOVÞ scaled by the mass of
the corresponding stellar configuration MTOV. The quantities
MTOV and fpert refer to a stellar model with mass 1.23 ×Mtot=2
for binary systems with mass Mtot. Black symbols refer to
1.2þ 1.2 M⊙, blue to 1.35þ 1.35 M⊙, red to 1.4þ 1.4 M⊙
and green to 1.5þ 1.5 M⊙ systems. The solid black curve is a
second-order fit to the data. The gray shaded area illustrates the
4% error band. All points lie within the band.

8For binary systems with individual star masses M1 and M2,
the chirp mass is defined as Mchirp ¼ ðM1M2Þ3=5

ðM1þM2Þ1=5. Note that the
chirp mass is fully equivalent to the total mass for equal-mass
binaries.
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above. We fix b by an analysis similar to the one in
Appendix to approximately minimize the frequency devia-
tions for unequal-mass binaries.
Figure 14 displays all equal-mass data present from

Fig. 12 as black symbols, alongside unequal-mass data
denoted by red symbols. We find a highly accurate relation,
practically as tight as the one for equal-mass binaries. As
expected, an identically accurate relation exists between
MchirpfpeakðMtotÞ and Λ1=5ðMTOVÞ. We include the expres-
sions for both relations and their respective average and
maximum deviations in Table VI.

VI. SUMMARY AND DISCUSSION

In this study we consider the frequency of the funda-
mental quadrupolar fluid mode in isolated NSs and the
dominant oscillation of postmerger remnants. We compute
the oscillation frequencies fpert of isolated NSs with a
perturbative method. In contrast, we obtain the frequency
fpeak of the dominant postmerger oscillation from a full

dynamical simulation. We consider a large sample of
different high-density EoSs for both stellar systems and
vary the masses in a considerable range.
Considering these frequency data separately for both

types of objects we construct fits, which relate the fre-
quency to stellar parameters of nonrotating NSs that we
choose to characterize the EoS. We employ different stellar
parameters like radii and the tidal deformability as inde-
pendent variables and assess the accuracy of these relations
by quantifying the maximum and average deviations of the
individual data points from the least-square fit to all data
points. Some of those relations have been proposed
previously in the literature and by employing the same
set of data we can consistently compare between these fits
and evaluate their accuracy. By constructing second-order
fits we find that the relation involving the moment of inertia
I is the most accurate, while relations with the tidal
deformability as independent variable are only slightly
less tight. Extending these relations to higher order, in
particular the relations between the mass-scaled perturba-
tive frequency and the tidal deformability become even
tighter and essentially exact for all practical purposes. For
fixed masses, second-order relations of the form fpertðΛ1=5Þ
are practically exact throughout the whole mass range and
thus one can use fpert and Λ1=5 interchangeably.
Furthermore, we introduce a newly defined stellar radius

R90%, where we disregard the outer mass shells containing
10% of the total mass. By doing this we obtain a measure
for the stellar compactness, which is largely insensitive to
the low-density regime of the EoS [below approximately
ð1.27 − 4.88Þ × 1014 g=cm3]. Employing R90%, we
observe that relations for isolated stars as well as for
postmerger remnants become generally tighter with regard
to the mean and maximum deviations. For perturbative
results of isolated stars the deviations are more comparable
to those with Λ. These results indicate that oscillation
frequencies in both systems are predominantly determined
by the high-density regime of the EoS. Like the commonly
defined radius R at the stellar surface, R90% is uniquely
linked to the EoS, but unbiased by the low-density part,

TABLE VI. Mass-independent relations between fpeak or mass-scaled Mchirpfpeak and static star properties. First
column lists the figures presenting the corresponding relation, while third and fourth columns provide the average
and maximum deviation of each relation in Hz respectively. The frequencies are in kHz, masses inM⊙ and the tidal
deformability is dimensionless.

Fig. Systems Fit
Mean

deviation [Hz]
Max

deviation [Hz]

12 Equal-mass Mchirpfpeak ¼ 0.299þ 0.595MTOVfpert
þ1.392 × 10−1ðMTOVfpertÞ2

30 134

13 Equal-mass Mchirpfpeak ¼ 11.846 − 4.464Λ1=5 þ 5.139 × 10−1Λ2=5 31 138
14 All Mchirpfpeak ¼ 0.013þ 0.794MTOVfpert

þ1.042 × 10−1ðMTOVfpertÞ2
35 150

� � � All Mchirpfpeak ¼ 11.536 − 4.261Λ1=5 þ 4.806 × 10−1Λ2=5 36 151

FIG. 14. Same as in Fig. 12, but black symbols represent equal-
mass systems and red symbols denote unequal-mass symbols.
MTOV follows from Eq. (5). The solid black curve is a second-
order fit to the data. All data points lie within the gray 4.6%
error band.
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which presumably has a smaller influence on the oscillation
frequencies. Thus, a determination of R90% is likely more
informative about the high-density EoS than R, as the latter
may be “biased” by the low-density EoS. Employing R90%

relations may thus be preferable in GW asteroseismology
since it results in a more accurate determination if the
scatter in the fit formulas is taken into account as source of
error and since it represents a more direct measure of the
EoS properties in the relevant density regime.
Along these lines we also consider stellar configurations

with the radiusRcc truncated at the crust-core transition. For
isolated stars, the relation involving the mean density
defined via Rcc becomes tighter compared to relations
with the actual stellar radius and mass, while there are no
significant differences in a relation involving the compact-
ness. Relations for postmerger remnants also become
tighter, but only if Rcc refers to a stellar model with high
fiducial mass (see Appendix). Overall, we observe that
relations between perturbative frequencies and stellar
parameters characterizing the core of the stellar model still
exhibit some scatter. This further supports the argument
that the frequencies, and in particular the scatter of points in
such frequency relations, is at least partially influenced by
the high-density regime of the EoS.
However, we also notice that there are finite frequency

deviations in the fpeak relations for any of the independent
variable we tested, i.e., R, R90%, Rcc, or the tidal deform-
ability. With regard to this scatter, the main finding of this
study is that frequency deviations follow the very same
behavior in isolated NSs and in postmerger remnants if
frequencies are considered with respect to the same
independent variable: If fpert for a given EoS model is
slightly increased with respect to the fit to all data points of
the perturbative calculations of isolated stars, the post-
merger oscillation frequency for this EoS also occurs at
slightly higher frequency compared to fit to all merger
simulations. Similarly, data points for other EoS models
exhibit slightly reduced frequencies in both stellar systems.
The consistent behavior of frequency deviations in

relations describing isolated NSs on one hand and relations
for merger remnants on the other hand is very remarkable:
We compare the frequency of a cold, isolated, nonrotating
NS to oscillations of a hot, rapidly rotating, nonstationary,
massive merger remnant. We observe the correspondence
of frequency deviations in various relations for different
independent variables characterizing the EoS, and for
different (binary) masses. We identify, if at all, only a
very small number of outliers with respect to this behavior,
which is why it is unlikely that we describe a mere
coincidence. Instead, the agreement of the frequency scatter
points to some underlying physical mechanism which is
mediated by the EoS as the only common ingredient in both
types of calculations. Also, the relatively large number of
tested EoS models supports the argument of additional EoS

information being encoded in the frequency beyond the
gross scaling of universal relations.
In this regard, we stress that we compare frequencies

from perturbative calculations for isolated NSs, which one
should consider as rather robust and converged results, and
frequencies which are extracted from complex, three-
dimensional hydrodynamical simulations of the full merger
process using a different numerical code. Also, the merger
remnant has not yet reached a stationary configuration
when the dominant frequency peak of the GW emission is
shaped. We note that the magnitude of frequency deviations
is typically of the order of some 10 Hz. It is thus remarkable
that the hydrodynamical simulations apparently resolve
some systematic behavior of the frequency deviations,
which are of this magnitude. Since this level of precision
is certainly challenging for a hydrodynamical code of this
type, we may even speculate that the few outliers we
observed can be attributed to inaccuracies of the merger
simulations and that frequency deviations follow the
indicated trends even more closely.
We further investigate the source of frequency deviations

in GWasteroseismology relations like for instance fðRÞ. To
this end we exploit the correspondence between the
frequency increase or decrease in isolated NSs and merger
remnants, and thus focus on explaining the slight frequency
shifts for static stars. Moreover, we employ the fact that for
static NSs there is a practically exact relation between the
f-mode frequency and the tidal deformability. This implies
that frequency deviations in fðRÞ are fully equivalent to
deviations in ΛðRÞ. Hence, we can attribute frequency
shifts to the scatter in the relationship between the tidal
deformability and the stellar radius, which by definition is
given by the tidal Love number k2. The frequency devia-
tions thus encode by how much the tidal Love number
deviates from an approximate scaling of k2 with the stellar
radius.
This indicates new directions to exploit this result in

future measurements and theoretical studies particularly in
the context of merger remnants, where oscillation frequen-
cies might be more likely to be measured, although f-mode
frequencies of isolated stars may play a role during the
inspiral phase [102–105] and in other astrophysical sys-
tems. At least in principle, frequency deviations from an
expected universal relation, reflecting the average behavior
of a large class of EoS models, can be measured. As an
example, measuring the magnitude or at least the sign of a
frequency deviation from a universal relation can be
employed to break the degeneracy between radius and
tidal deformability and can thus lead to a more precise
determination of the tidal Love number and ultimately
properties of the EoS. We show an explicit case where k2 is
determined more precisely if additional information for the
frequency deviation is available. Also, understanding the
link between frequency shifts and stellar properties can be
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used to construct tighter universal relations between GW
frequencies like fpeak and stellar parameters by removing
the frequency shifts. Hence, more information can be
extracted from a measurement if more accurate asteroseis-
mology relations are available.
Along the same lines we explicitly show that a meas-

urement of the postmerger frequency and a measurement of
the tidal deformability in the same event can be combined
to yield information on the slope of ΛðMÞ. Here, we again
consider the deviation between the measured postmerger
frequency and the one expected from a universal relation
for the given tidal deformability. This reflects the additional
information about properties at higher densities being
encoded in the postmerger remnant. This is in line with
the observation that the dominant postmerger frequency
shows a particularly tight correlation with the tidal deform-
ability of a NS with a higher mass compared to that of the
inspiraling stars.
In this respect we also refer to the extensive analysis of

fpeakðΛÞ and fpeakðRÞ relations in Appendix. In particular,
we point out that fpeak relations for a fixed binary massMtot

are tighter if one relates fpeak to the tidal deformability of a
more massive fiducial star with M > Mtot=2, i.e., a mass
larger than that of the inspiraling star, similar to what has
been observed for frequency-radius relations [8]. This is
summarized by the comparison in Table III.
Since frequency deviations in static stars and merger

remnants are correlated, one can employ this correspon-
dence to partially remove the scatter in plots which directly
relate the perturbative frequency of static stars and post-
merger GW frequencies. In fact, we find very accurate
mass-independent relations. We emphasize that for such
type of relationships there is the freedom to choose a
fiducial mass of the static model corresponding to a given
binary mass. We identify a simple, analytic mapping
MTOV ¼ 1.23 ×Mtot=2 between both masses, which yields
particularly tight relations with an accuracy nearly com-
parable to that of correlations for fixed masses. Exploiting
the practically exact relationship between the f-mode
frequency of static stars and their tidal deformability, the
mapping equivalently implies a highly accurate mass-
independent relation between the postmerger frequency
and Λ. We extend the analysis by including data for
unequal mass binaries and verify that similar accurate
relations hold even when considering a large range of
mass ratios.
Finally, we remark that the striking similarity of the

frequency scatter in relations for f-modes of isolated NSs
and in relations for the dominant oscillation frequency of
merger remnants provides additional evidence that the
dominant oscillation in postmerger objects is linked to
the fundamental quadrupolar fluid mode in line with
previous arguments [6,13,53,54].
Future work should confirm that other hydrodynamical

codes find a similar behavior of the frequency deviations in

fpeak. As mentioned one should keep in mind that resolving
fpeak with this accuracy is certainly challenging and that the
frequency deviations are small in comparison to the typical
FWHM of a few 100 Hz of postmerger GW peaks. Other
simulations not finding similar frequency patterns would
not automatically imply that systematic frequency devia-
tions are not real but instead that these numerical models
are possibly more affected by numerical uncertainties. In
future studies one may check for consistency between the
frequency deviations of merger simulations and the fre-
quency deviations of static stars from either perturbative
calculations or simply from the expected frequencies
employing the very tight relations between f-mode fre-
quency and tidal deformability. By this one may benchmark
the quality of simulation data in larger surveys. Moreover,
we speculate that in future more accurate merger models
may yield frequency deviations that more closely follow the
quantitative dependencies, which we observed in this study,
similar to those for perturbative frequencies. This aspect
may also be addressed by perturbative calculations of
differentially rotating NSs in equilibrium resembling
merger remnants [106,107].
By purpose we did not include EoS models with a strong

phase transition in this study, which should be considered
in future work. The significant and sudden softening of the
EoS by a strong phase transition will lead to a strongly
increased postmerger frequency, i.e., an extreme frequency
deviation of some 100 Hz [108–110]. The effect on the
different relations presented here will however very sensi-
tively depend on the onset density of the phase transition
and at which mass the stellar structure is affected. Thus
choice of the dependent and independent variables is
critical (in an extreme case one quantity would be affected
by a phase transition, while another variable only being
sensitive to lower densities does not carry any information
about the EoS softening). Considering phase transitions
would introduce several new effective degrees of freedom
like the onset density, the density jump across the transition
and the stiffening of the EoS beyond the phase transition.
Such a variety can hardly be covered by a few models to
allow a comprehensive study. We thus omit such models
since they would severely affect the different fits represent-
ing an average behavior and thus the quantification of
frequency deviations of the purely hadronic models.
Physically, this approach is very well justified because
the extreme frequency deviations by a strong phase
transition would unambiguously indicate the presence of
exotic forms of matter as argued in [108] and thus caution
that the considerations of the present study may not be
applicable. Similarly, evidence for a phase transition may
be provided by other independent measurements or
observations.
More work should also be spend on concrete methods to

implement the findings of our study. This includes
extracting frequency deviations from GW signals and
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developing improved relations for GW asteroseismology
where the scatter is reduced by taking into account the
particular dependencies of the frequency deviations on EoS
properties. Other aspects involve the frequency scatter of
individual models in mergers of unequal mass, which we
did not cover in great detail, and the behavior of subdomi-
nant GW peaks, which we only briefly mentioned to follow
a similar trend.
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APPENDIX: ACCURACY OF RELATIONS
BETWEEN f peak AND STATIC STELLAR

PROPERTIES

Throughout this work we discuss relations between fpeak
for different binary systems and stellar properties of static
stars with a fixed fiducial mass (e.g., Table III and
Figures 5, 6, 12, and 13). In principle, the fiducial mass
of the static models can be chosen freely. However,
different choices for the fiducial mass lead to relations
of different accuracy (see also [8]), and the choice of the
mass of the static model should be justified.
We consider relations between fpeak and four indepen-

dent variables: the radius R, the radius R90% referring to
90% of the mass, the radius Rcc defined based on the crust-
core transition density, and the fifth-root of the tidal
deformability Λ1=5. In order to quantify the accuracy of
the respective relations, we examine three different figures
of merit. Specifically, the average deviations, maximum
deviations and the sum of squared residuals of the least-
squares fit.

In Fig. 15 we present the three accuracy metrics for the
relation fpeakðΛ1=5

M Þ for 1.35þ 1.35 M⊙ binaries as func-
tion of the fiducial mass M. All three figures of merit are
minimized within the mass range 1.55–1.65 M⊙. Thus, we
identify this mass range as the optimal for this particular
binary system and type of relation.
We summarize the analysis for other binary masses and

other relations in Table VII. We list the mass ranges of the
fiducial stellar model for which relations between fpeak and
the different independent variables become tightest.
Evidently, for a fixed binary mass, relations with respect
to different independent variables become tighter for
slightly different fiducial masses. In particular, relations
involving the radius tend to become more accurate for
higher fiducial masses than relations with respect to Λ1=5.
Obviously, the “optimal” fiducial mass, in the sense of
minimizing the deviations in frequency relations, is higher
for more massive binaries.9 In all cases the optimal fiducial
mass is higher than the mass of the inspiraling stars. This
reflects the fact that merger remnants are in comparison
more massive and that densities in the merger remnant are
higher because of compression.
Based on Table VII, for each binary system there exists a

fiducial mass range of about 0.25 M⊙ for which fpeak
relations become particularly tight. In order to understand
this observation, we consider the central rest-mass densities
ρc of the fiducial static models and the maximum rest-mass
densities in the merger remnants during the first few
milliseconds after merging. There is no unique way to

FIG. 15. Different figures of merit to quantify the accuracy of
fpeakðΛ1=5

M Þ relations for 1.35þ 1.35 M⊙ systems as function of
chosen fiducial masses M. The gray curve illustrates the
maximum deviation, blue curve depicts the average deviation
and green curve displays the normalized sum of squared residuals
of the least-squares fit. Dashed lines indicate minima of the
curves of the respective color.

9This is not the case for 1.5þ 1.5 M⊙ systems, because the
data set is significantly smaller since many EoS models promptly
collapse to a black hole.
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define a characteristic density of the remnant because it is
strongly oscillating and dynamically evolving. We pick the
maximum value of the maximum density ρmax

max which
occurs over the first few oscillation cycles after merging
(see [51,108]).10 In Fig. 16 we plot these densities for
binary systems of a total mass of 2.7 M⊙ and a static star
with a mass of 1.6 M⊙. The choice of static star mass is
motivated by the mass ranges in Table VII. Overall, we
notice an agreement between the two densities, which
explains why such a choice for the fiducial mass appears to

be optimal. For softer EoSs, i.e., at higher densities, the
densities in the remnant are in relation to those in the static
stars slightly higher. This is in agreement with the results in
Table VII showing that a higher fiducial mass represents the
optimal description of matter in 1.35þ 1.35 M⊙ systems.
Moreover, it indicates that the compression during the
merger process is more pronounced for softer EoSs.
In summary, we conclude that relations between fpeak

and different independent variables referring to stellar
properties of static stars become most accurate for different
values of the mass of the static star. Using different figures
of merit we can identify the mass range which leads to the
tightest relations. Typically this mass range refers to static
stars with central densities comparable to typical densities
realized in the merger remnants during the first few
milliseconds after merging. Finally, we remark that the
exact distribution of frequency deviations will depend on
the chosen set of candidate EoSs and may also be affected
by the numerical model. Thus, the optimal values of the
fiducial mass might be slightly different in other surveys. In
any case the extrema in Fig. 15 are relatively broad. Hence,
the exact choice of the fiducial mass is not essential, and we
expect that the ranges given in Table VII are robust and
representative.
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