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Piazzale Aldo Moro 5, 00185 Roma, Italy

(Received 1 March 2021; accepted 8 July 2021; published 5 August 2021)

Black hole superradiance is a powerful tool in the search for ultralight bosons. Constraints on the
existence of such particles have been derived from the observation of highly spinning black holes, absence
of continuous gravitational-wave signals, and of the associated stochastic background. However, these
constraints are only strictly speaking valid in the limit where the boson’s interactions can be neglected. In
this work we investigate the extent to which the superradiant growth of an ultra-light dark photon can be
quenched via scattering processes with ambient electrons. For dark photon massesmγ0 ≳ 10−17 eV, and for
reasonable values of the ambient electron number density, we find superradiance can be quenched prior to
extracting a significant fraction of the black-hole spin. For sufficiently largemγ0 and small electron number

densities, the in-medium suppression of the kinetic mixing can be efficiently removed, and quenching
occurs for mixings χ0 ≳Oð10−8Þ; at low masses, however, in-medium effects strongly inhibit otherwise
efficient scattering processes from dissipating energy. Intriguingly, this quenching leads to a time- and

energy-oscillating electromagnetic signature, with luminosities potentially extending up to ∼1056 erg=s,
suggesting that such events should be detectable with existing telescopes. As a by-product we also show
that superradiance cannot be used to constrain a small mass for the Standard Model photon.

DOI: 10.1103/PhysRevD.104.043006

I. INTRODUCTION

Black hole (BH) superradiance is the process by which
low-energy bosons can extract the rotational energy of a
spinning BH [1–6] (see Ref. [7] for an overview). This
process is at play for modes with frequency ω < mΩ,
where Ω is the angular velocity of the BH and m the
azimuthal quantum number of the mode. If this radiation is
confined near the BH, the energy extraction may happen at
an exponential rate, leading to a so-called “BH bomb”
instability [4]. It has long been appreciated that the very
mass of a particle can serve as such a confining mechanism
[7–10], as Kerr BHs have quasibound state orbits with

support within and just outside the ergoregion for particles
with Compton wavelength roughly comparable to the BH
horizon.
This phenomenon has garnered much attention over the

last decade as the search for exotic light particles, such as
axions and dark photons, has intensified. Most studies thus
far have focused on understanding the growth and evolu-
tion of a BH-boson condensate forming through the
superradiant instability, under the simplifying assumption
that the boson field is noninteracting. In this case, and if the
boson mass mb ≲M−1 (being M the mass of the BH; we
use G ¼ c ¼ ℏ ¼ κB ¼ 1 units hereafter), one expects the
superradiant boson cloud to be able to extract up to ≈10%
of the angular momentum of a highly spinning BH over
extremely short timescales [11–13]. The presence of gaps
in the BH mass-spin “Regge” plane could then serve as an
indirect observation of the existence of such bosons
[14,15]; equivalently, the observation of highly spinning
BHs can be used to constrain the existence of exotic
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particles [16–23]. In addition, if the boson cloud remains
bound to the BH after the superradiant condition has
saturated (i.e., when the BH spin has been reduced to a
point where ω ≃mΩ), its (spinning) dipolar structure
produces nearly continuous quadrupolar gravitational
waves at a frequency set by the boson mass. Negative
searches for such continuous signals [16,17] and for the
stochastic background produced by unresolved sources [18–
21] in LIGO and Virgo have set some further constraints on
themass of ultra-light bosons in a narrow range aroundmb ∼
10−13 eV [22]. Future space-based interferometers such as
LISAwill probemuch smallermasses [18,19] and could also
detect other effects, such as the gravitational and environ-
ment effects of the bosonic cloud on the evolution of extreme
mass-ratio inspirals [24–27]. Overall, current and future
(both electromagnetic and gravitational-wave) probes of
superradiance can explore the ultralight boson frontier
roughly in the range mb ∈ ð10−21; 10−11Þ eV, see [7] for
a summary of the latest constraints and for their dependence
on the particle’s spin.
The above description of the superradiant instability is

strictly speaking valid only when the boson field is non-
interacting. However, superradiance generates enormous
number densities, and thus interactions that would conven-
tionally be considered as weak may be sufficient to destroy
or quench the evolution of the superradiant cloud. The
investigation of quenching mechanisms, and complemen-
tary signatures that may arise even when the BH spin is not
significantly altered, has received attention in recent years
[14,15,28–33]. Given the stringent nature of the super-
radiance constraints, and the enormous energy densities
typically involved in the problem, understanding when and
how various models undergo quenching is of utmost
importance.
We focus here on the role of ultralight dark photon

interactions during the superradiant growth, identifying
parameters and model-dependent features for which
quenching occurs, and illustrating that electromagnetic
signatures may arise when quenching is important.
Models featuring the existence of a dark photon are
ubiquitous in extensions of the Standard Model (SM) of
particle physics [34–37]. Frequently referred to as the
“vector portal,” these models present a very generic
possibility—together with the Higgs and the neutrino
portals—to broadly characterize connections between the
SM and dark sectors [38]. Over the last several years, the
vector portal has become one of the most important
paradigms in particle physics models, and is routinely
invoked to explain existing experimental anomalies in
high-energy physics and cosmology, see, e.g., [39–47].
It is then relevant not to leave any stone unturned, and
explore the diverse phenomenological consequences aris-
ing from BH superradiance in such models.
We find that despite an initial in-medium suppression

[48,49] of the interaction strength (especially relevant at

low dark-photon masses), dark photons which kinetically
mix with the SM photon will quench if their mass mγ0 ≳
10−16 eV and vacuum mixing χ0 ≳ 10−7 (quenching may
still occur for smaller mixings at larger masses, and larger
mixings at masses down to ∼10−17 eV, however the details
depend on the local electron number density which can
span many orders of magnitude). Furthermore, we argue
that the superradiant growth of such particles may give rise
to a unique, time-dependent, electromagnetic signature that
may be detectable using current telescopes.
The outline of this paper is as follows. In Sec. II we

present an overview of vector superradiance. We then
present the dark photon model in Sec. III. In Sec. IV we
discuss the relevant scattering processes that are respon-
sible for inhibiting the growth of the cloud, and estimate the
luminosity from the semi-Compton scattering off, and
synchrotron emission of, the ambient electrons. We then
discuss additional model-dependent quenching mecha-
nisms that do not rely on the existence of the kinetic
mixing. Section V includes a brief discussion on implica-
tions for the SM photon, with particular reference to
implications for superradiant bounds that have been derived
on the potential existence of a bare photon mass. We
conclude in Sec. VI.

II. VECTOR SUPERRADIANT INSTABILITY

We consider the dynamics of a light vector boson A0 with
mass mγ0 on the background of a rotating BH with mass M
and dimensionless spin ã≡ J=M2, where J is the angular
momentum of the BH. Assuming that the vector field is
noninteracting and neglecting backreaction on the metric,
its evolution is governed by the Proca equation,
∇σF0σν −m2

γ0A
0ν ¼ 0, on the Kerr spacetime. Originally,

the superradiant instability in this case was studied in the
Fourier domain and in the slow-rotation approximation [50]
up to Oðã2Þ by expanding the field in a basis of vector
spherical harmonics with indices ðl; mÞ, yielding a system
of ODEs in which modes with different l number and
opposite parity are coupled to each other [51,52]. More
recently, the eigenvalue problem was solved for arbitrary
values of ã both analytically in the Newtonian approxi-
mation (α≡mγ0M ≪ 1) [53,54], and numerically in the
generic case, either by solving a system of PDEs [54,55] or
by using the recently discovered separability [56] of the
Proca equations in the Kerr metric [56,57]. The Newtonian
approximation is typically sufficiently accurate to capture
the order of magnitude of the instability timescale when
α≲ 0.1. For a mode with ω ¼ ωR þ iωI, the real part and
imaginary parts of the frequency are approximately given
by [51–53]

ω2
R ≃m2

γ0

�
1 −

�
α

lþ nþ Sþ 1

�
2
�
; ð1Þ
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ωI ¼
2γSl
M

rþðmΩ − ωRÞα4lþ5þ2S; ð2Þ

where rþ ¼ Mð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2

p
Þ is the horizon radius,

Ω ¼ ã=ð2rþÞ, l ¼ 1; 2; ::: is the total angular momentum
number of the mode, m is the azimuthal number (such that
jmj ≤ l), n ¼ 0; 1; 2;… is the overtone number, S ¼
−1; 0; 1 the polarization, and γSl a numerical coefficient
[7]. The fastest growing mode corresponds to S ¼ −1,
l ¼ 1 (yielding γ−11 ¼ 4) and the superradiant timescale is
approximately given by [51,52]

τs ≃
Mα−7

ãγ−11
≃
102

ã

�
M

10 M⊙

�
s; ð3Þ

where in the last step we assumed a fiducial value α ∼ 0.1.
The typical radius of the superradiant cloud is roughly
given by rcloud ≃M=α2, and ranges from rcloud ∼ 100M for
the fiducial value above down to rcloud ∼ 10M for α ∼ 0.3.
If efficient, i.e., if τs is small relative to the rate at which

the BH’s angular momentum grows (e.g., through accre-
tion), the superradiant cloud will grow until it extracts
sufficient amount of the angular momentum and saturates
the superradiant condition; in the case of a nearly extremal
BH, this occurs after the cloud has extracted up to ≈10% of
the BH total energy [11–13]. Given a cloud with mass
Mcloud, the angular momentum loss is ΔJ ¼ mMcloud=ωR
[7]. Thus, assuming such light degrees of freedom exist,
one should not observe highly spinning BHs with
M ∼ ð2mγ0 Þ−1; or equivalently, since no such feature has
been observed so far, the existence of highly spinning BHs
can be used to constrain these light vector bosons. The BH
accretion rate, controlling the characteristic timescale over
which one can adopt a constant BH mass, can be con-
servatively estimated to be given by a fraction of the
Eddington accretion timescale,

τEdd ¼
M
_M
∼

ϵσT
4πmp

∼ 1.4ϵ × 1015 s; ð4Þ

where σT is the Thomson cross section, mp the proton
mass, and ϵ an efficiency factor. The timescale above with
ϵ ¼ Oð1Þ can be considered as a conservative lower bound,
since accretion can be much less efficient. We notice that
the Eddington timescale is much larger than the super-
radiant timescale of interest, Eq. (3). Therefore we can
safely neglect accretion in the rest of the work.
The superradiant growth can be impeded, or quenched,

should processes exist that deplete the abundance of the
ultralight bosons at a rate faster than that of superradiant
growth, or should the mass, and thus the bound states, of
the boson be significantly modified. It is important to
emphasize that the interaction responsible for the quench-
ing does not need to be considered by conventional
standards to be strong—the very large energy densities

achieved during the superradiant growth can often com-
pensate for highly suppressed scattering processes.

III. THE DARK PHOTON IN A PLASMA

Dark photons interact with the SM through a kinetic
mixing with the SM photon [34]. Working in a basis in
which the quadratic action is diagonal, the Lagrangian
reads

L ¼ −
1

4
FμνFμν −

1

4
F0
μνF0μν

þm2
γ0A

0
μA0μ − eJμðAμ þ sin χ0A0

μÞ; ð5Þ

where Fμν and F0
μν are the field strength tensors of the

photon and dark photon, respectively, sin χ0 is the bare
kinetic mixing (assumed to be always much smaller than
unity, sin χ0 ≪ 1), mγ0 is the dark photon mass, and Jμ is a
SM electric current. In this basis we therefore have a direct
coupling between the hidden photon and the SM electric
current. Notice that here we indicate by A0

μ the dark
interaction eigenstate. The propagating dark state, found
after the diagonalization of the mass matrix, will be instead
named Adp.
For large dark photon masses, one can effectively

decouple the Proca field solution from the intrinsic dynam-
ics of the electrons and ions (that is to say, the motion of the
electrons may be driven by the presence of the dark photon,
but the dark photon is not affected by the presence of the
plasma); in the small mass limit, however, the motion of
these particles can induce in-medium effects [48,49] which
cause, e.g., the dark photon and photon to fully decouple in
the mγ0 → 0 limit [58]. Thus, in this case it is necessary to
jointly solve for the dynamics of the entire system.1

The motion of the electrons (and ions, which we neglect
in what follows due to the fact that their velocity is much
lower than that of the electrons) in the presence of an
electromagnetic field, including the effect of electron-ion
collisions and assuming a cold plasma (i.e., with temper-
ature T ≪ me), is given by

∂p⃗e

∂t þðv⃗e ·∇Þp⃗e

¼−eðE⃗þ sinχ0E⃗
0 þ v⃗e× ðB⃗þ sinχ0B⃗

0ÞÞ−νðp⃗e− p⃗iÞ;
ð6Þ

1Recently the linearized dynamics of the SM electromagnetic
field in a cold plasma and in curved spacetime has been studied in
detail [59]. Although the dynamics is quite rich, the final result in
terms of quasibound states is in qualitative agreement with what
predicted by the dispersion relation of plane waves. In the
following we shall therefore use the latter, much simpler
approach, postponing a complete dynamical analysis of the
system to future work.
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where v⃗e and p⃗e are the velocity and momentum of the
electrons, p⃗i the momentum of the ions (which in the rest
frame can be expressed as −p⃗e), and ν is the electron-ion
collision frequency. This equation must be solved simulta-
neously with the electromagnetic and Proca equations,
given by

□Aμ ¼ eJμ; ð7Þ
□A0μ þm2

γ0A
0μ ¼ e sin χ0Jμ: ð8Þ

In full generality this problem is intractable, and thus in
what follows we identify various limiting regimes of
interest and use these solutions to determine how the dark
photon field will evolve.

A. Collisional regime

Let us first consider the effect of electron-ion collisions
(note that the propagation of the ultralight dark photon in
this regime was first studied by [49]), the frequency of
which is given by

ν ≃
nee4 logΛ
2πm2

ev3e
; ð9Þ

where ne andme are the electron number density and mass,
ve is the electron velocity in the rest frame of the proton,
and Λ is the Coulomb logarithm which takes on a value of
logΛ ∼ 10 in plasmas of interest. The typical order of
magnitude of ne near an astrophysical BH is discussed in
Appendix A. To remain agnostic relative to the uncertain-
ties of the ambient density and accretion flow, we shall
assume ne ∈ ð10−4; 104Þ cm−3. Correspondingly, the
plasma frequency

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnee2

me

s
≈ 10−13

�
ne

10−4 cm−3

�
1=2

eV; ð10Þ

ranges from 10−9 eV to 10−13 eV.2

The characteristic timescale for electron-ion collisions

τei ¼ ν−1 ∼
�
104 cm−3

ne

��
ve
10−3

�
3

s ð11Þ

should be compared with the oscillation period of the
electric field,

2π

ωR
∼ 4 × 10−4

�
10−11 eV

mγ0

�
s; ð12Þ

to determine whether collisions are important. In the
absence of collisions (i.e., when τei ≫ 2π=ωR), an oscil-
lating electric field will induce oscillations in the plasma;
the net work done on the plasma over a period of oscillation
however will be zero, and thus energy in the field is not
dissipated. As collisions become important (i.e., when
τei ≲ 2π=ωR), electrons and ions accelerated by the fields
scatter prior to completing a full oscillation, dissipating
energy in the process. Thus the expectation in the strong
collisional regime is that the plasma may effectively absorb
the dark photon field, prior to or during superradiance.
Notice that for the largest number densities and smallest

velocities considered in this work, collisions become
important for dark photonmassesmγ0 ≲ 10−15 eV and initial
thermal velocities ve ≃ 10−3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=ð104 KÞ

p
. However, if the

electrons are accelerated by the (superradiantly grown) dark
photon, the collisional rate will decrease dramatically and
will become irrelevant for all dark photonmasses of interest,
given the strong dependence on ve of the Coulomb collision
rate [Eq. (9)]. As we will show in a moment, the electrons
will be always accelerated up to relativistic speeds on the
timescales of interest. Therefore we expect collisions could
play an important role only in the initial stages of the
superradiant growth.
For small electron velocities (valid for the early stages of

superradiance), one can drop both the magnetic field term
as well as the nonlinear gradient contribution to Eq. (6),
yielding an electron velocity

v⃗e ¼
−e

meðν − iωÞ ðE⃗þ sin χ0E⃗0Þ: ð13Þ

Writing the photon and hidden photon fields in Fourier
modes, taking the nonrelativistic limit, and decomposing
the transverse and longitudinal field components yields two
coupled sets of differential equations:

0¼

2
64ð−ω2þk2Þþ

0
B@

ω2
p

ð1þiν=ωÞ
sinχ0ω2

p

ð1þiν=ωÞ
sinχ0ω2

p

ð1þiν=ωÞ
sin2χ0ω2

p

ð1þiν=ωÞþm2
γ0

1
CA
3
75�AT

A0
T

�

ð14Þ

and

0 ¼

2
64−ω2 þ

0
B@

ω2
p

ð1þiν=ωÞ
sin χ0ω2

p

ð1þiν=ωÞ
sin χ0ω2

p

ð1þiν=ωÞ
sin2χ0ω2

p

ð1þiν=ωÞ þ
m2

γ0
ð1−k2=ω2Þ

1
CA
3
75�AL

A0
L

�
:

ð15Þ

The eigenvalues and eigenvectors of the mass matrix
allow us to identify the mass and composition of the
propagating states.

2As originally recognized in Refs. [60,61], the plasma fre-
quency can be in the mass scale for which superradiance is
effective for astrophysical BHs in various mass ranges. We note,
however, that in our case superradiance is not plasma-induced,
but triggered by the bare mass of the dark photon.
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The limit mγ0 ≫ ωp is trivial; in this case in-medium
effects are not important and the eigenstates of the
propagating mode with mass mγ0 coincides with A0.
In the limit mγ0 ≪ ωp instead, the dark photon Adp is

identified as the propagating state with mass mγ0 and is
comprised of a linear combination of A and A0, with

A ∼ − sin χ0Adp

�
1þmγ0

2ð1þ iν=mγ0 Þ
ω2
p

�
ð16Þ

A0 ∼ Adp

�
1 −

mγ0
2sin2χ0ð1þ iν=mγ0 Þ

ω2
p

�
: ð17Þ

The observable electric field is then given by the
combination

Aobs ¼ Aþ sin χ0A0 ∼ − sin χ0
imγ0ν

ω2
p

Adp: ð18Þ

Note that Aobs ¼ 0when χ0 ¼ 0, since we are focusing only
on the dark electromagnetic field (which we shall occa-
sionally refer to simply as the electromagnetic field, as the
SM Maxwell field is irrelevant for our analysis).
We see here that an effective in-medium suppression

of the mixing proportional to mγ0ν=ω2
p arises at

small masses. Physically, this happens because the
plasma can efficiently move in response to the external
field, oscillating in such a way so as to induce a partial
cancellation.
The frequency of the dark photon field can be obtained

by solving the coupled differential equations expressed in
Eqs. (14) and (15), and is in general complex. In the
nonrelativistic limit, the real part can be identified with the
mass of the propagating state, while the imaginary part
induces dissipation in the medium; this effect is akin to the
concept of a skin-depth, where the imaginary part identifies
the length scale over which the field drops by an e-fold
[49]. The skin-depth of the dark photon field in the limit
mγ0 ≪ ωp is given by

δdp; i ∼
�
ν
m2

γ0

2ω2
p
sin2χ0

�−1

: ð19Þ

From this we see that the skin-depth of the dark photon is
always much larger than any of the scales of interest. As a
consequence, one can conclude that dissipation effects in
the medium surrounding the BH are not sufficient to inhibit
the growth of the dark photon field. Thus, the dark photon
field will grow, and the (dark) electric field generated via
this process will drive the electrons and ions to larger
velocities until the electron-ion collision timescale has
become longer than the characteristic driving frequency
for all dark photon masses of interest. The immediate
consequence is that the effect of collisions can be

neglected. Therefore in the next section we will focus on
the collisionless regime.

B. Collisionless regime

Dropping the collision term in Eq. (6) dramatically
simplifies the problem at hand. In this case, one can derive
a general solution for the response of the plasma to an
oscillating transverse wave; we defer this derivation (gen-
eralizing previous electromagnetic solutions [62–64] to
include the presence of the dark photon) to Appendix B,
and only present the results here.
The mixing equation for the transverse modes in this

case can be expressed as

0 ¼

2
64−ω2 þ

0
B@

ω2
p

γ
sin χ0ω2

p

γ

sin χ0ω2
p

γ
sin2χ0ω2

p

γ þm2

1
CA
3
75�AT

A0
T

�
; ð20Þ

where γ is the time-averaged boost factor characterizing the
motion of the plasma. In general, the plasma motion will be
determined by the field itself, making this problem difficult
to solve self-consistently (this is because the field is
induced by the dark photon, which is a linear combination
of A and A0, but the appropriate weights must be determined
by solving the mixing equation, which itself depends on the
weights).
One can, however, identify various independent

regimes in which these equations can be solved. During
the initial stages of superradiance, the electric field induced
by the dark photon cloud is small and the electrons are
expected to be nonrelativistic. In this regime, one can take
either the limit in which mγ0 ≫ ωp or ωp ≫ mγ0, in each
case finding

Aobs ∼

( sin χ0Adp if mγ0 ≫ ωp

m2

γ0
ω2
p
sin χ0Adp if mγ0 ≪ ωp:

ð21Þ

The former of these is consistent with recovering the
vacuum mixing, while the latter experiences a strong in-
medium suppression. As the cloud continues to grow, the
plasma may be driven to relativistic speeds. Should
ωp;eff ≡ ωp=

ffiffiffi
γ

p ≪ mγ0 , one can see that Eq. (20)will reduce
to the vacuum solution with sin χ ∼ sin χ0. As shown in
Appendix B, the γ factor can be expressed in terms of the
applied electric field as γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðeEobs=ðmeωÞÞ2

p
. Thus,

for small dark photon masses mγ0 one must follow the
evolution of the plasma boost factor as the superradiant
cloud grows, assuming an observable electric field gener-
ated by the in-medium suppressed value show in Eq. (21), to
determinewhether the boost becomes sufficiently large so as
to remove the suppression altogether. In the numerical work
that follows, we implement this transition using a sharp
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cut-off; while this is clearly naive, the transition is expected
to occur rapidly and thus should represent a rough approxi-
mation to reality.

C. Summary of in-medium suppression
and effect of collisions

To summarize, the various regimes discussed include
(i) Vacuum regime: ν, ωp ≪ mγ0 . Here there are no in-

medium effects. The external induced fields oscillate
at a frequency larger than the natural oscillation
frequency of the plasma, driving the plasma in such
a way that no counterbalancing fields can be
generated. Dissipative effects are strongly sup-
pressed and can be neglected.

(ii) Collisional regime: mγ0 ≪ ν, ωp. The dark photon
interactions are initially suppressed by in-medium
effects, and the large electron-ion collision rate
induces an imaginary part of the dark photon
frequency; this is equivalent to saying that the dark
photon field dissipates energy continuously via
inverse bremsstrahlung absorption as it propagates.
For the environments of interest, this energy dis-
sipation is never large enough to significantly sup-
press or absorb the dark photon field, and thus
superradiance will occur and will drive ν → 0.
Notice also that in general as mγ0 → 0 the dark
photon fully decouples from electromagnetism.

(iii) Collision-less regime: ν ≪ mγ0 ≪ ωp. For small
field values, the dark photon will have an in-medium
suppression of the mixing. However, as the observed
electric field grows, the effective plasma mass will
be driven toward zero and the vacuum mixing will
be recovered.

As we will show below, this in-medium suppression can be
efficiently removed if the dark photon mass mγ0 ≳
10−16 eV and the vacuum mixing sin χ0 ≳ 10−7 − 10−8,
depending on the ambient electron density.

IV. QUENCHING THE GROWTH
OF THE DARK PHOTON

In this section we outline the dominant quenching
mechanisms for kinetically mixed dark photons. We show
that for sufficiently large kinetic mixings, dark photon
superradiance may produce time-oscillating electromag-
netic signatures arising from semi-Compton scattering and
synchrotron emission of the ambient electrons. In Table I
we provide a glossary for a number of fundamental
parameters which will control the superradiance quenching
(see also Fig. 1 for an illustration of the growth and
quenching process).

A. Scattering processes

The evolution and quenching of the superradiant insta-
bility in the context of the SM photon was recently studied
in-depth in [30,31]; the case of the dark photon can be
understood analogously with two notable exceptions. First,
unlike the SM photon, the dark photon has a bare mass that
will not be modified by the presence of strong electric fields
or by modifications to the local electron density. Second,
the dark photon scattering rate intrinsically depends on the
properties of the ambient plasma, which themselves may
depend on the energy density of the dark photon in a more
involved way than for the SM photon. In both cases,
however, one might expect the exponentially growing
boson cloud to generate strong (dark) electromagnetic
fields, and if these relativistic oscillations can be reached,
Compton scattering (or more appropriately semi-Compton
in the case of the dark photon) and synchrotron emission
may produce energy losses capable of balancing the energy
being extracted from the BH spin. The focus on what
follows is on identifying the dark photon parameter space
for which this occurs. It is important to note that we do not
require the dark photon to be the dark matter, as the
superradiant instability can be triggered for arbitrarily small
abundances.

TABLE I. Key parameters determining if and when dark photon superrradiance quenches. These parameters are: the kinetic mixing χ
and the mass mγ0 of the dark photon, ne the electron number density near the BH, the plasma frequency ωp, the dark photon number
density when superradiance begins extracting a significant fraction of the BH spin (equivalently this can be thought of the approximate
upper limit on the dark photon number density in the limit that the boson is truly noninteracting), time-averaged boost factor hγi, and the
dark photon number density when neutron hydrogen ionizes nionizationγ0 .

Parameter Description Typical values of interest

χ Kinetic mixing 10−8 − 10−2

mγ0 Dark photon mass 10−18 − 10−10 eV
ne Electron density 10−4 − 104 cm−3

ωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4παneÞ=me

p
Plasma frequency 10−13 − 10−9 eV

nsrγ0 Saturation number density limχ→010
57 cm−3 mγ0

10−11 eV

hγi Boost factor 1 − 1013

nionizationγ0 Number density requited to ionize hydrogen 1034 1
sin2χ

10−11 eV
mγ0

cm−3
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Owning to the kinetic mixing, the dark photon will
induce an electric force on the ambient electrons that
oscillates with frequency ωR. Assuming the motion of the
electrons to be dominated by that of the electric field (a
valid assumption at large number densities), one can
approximate the time-dependent boost factor of the
electrons as

γðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2χ

nγ0cos2ðωRtÞ
m2

emγ0

s
: ð22Þ

In the limit of large dark photon number density, the time-
averaged gamma factor is approximately given by hγi∼
sinχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ0=mγ0

p
=me≃5.4×103 sinχð nγ0

1021 cm−3Þ1=2ð10−12 eVmγ0
Þ1=2.

In this case the energy loss from semi-Compton scattering
γ0 þ e− ↔ γ þ e− is given by

dEsC

dt
¼ 4

3
ðγ2 − 1Þsin2χσTργ0ne

∼γ≫1 4

3
sin4χ

n2γ0

m2
e
σTne: ð23Þ

Similarly, the energy loss rate via synchrotron emission, is
given by

dEsyn

dt
¼ dEsC

dt
sin2 ζ; ð24Þ

where ζ is the angle between the electron velocity and the
induced magnetic field. We have verified explicitly that the
typical center of mass energy of the photons ∼γmγ0 is never
large enough that Klein-Nishina corrections become
important.

B. The evolution and quenching

In order for the above processes to be capable of
quenching the growth of the dark photon cloud, they must
be faster than superradiant itself, which injects energy
at a rate

dEsr

dt
≃ 2

mγ0nγ0

τsr
: ð25Þ

The dark-photon condensate will grow until the two
energy losses compensate each other, which happens at the
saturation particle density (for m ¼ 1, and assuming the
plasma is already relativistic)

nsatγ0 ∼
6m2

eã
neσTsin4χ

m2
γ0α

6

≈1021 cm−3 ã
sin4χ

�
104 cm−3

ne

��
mγ0

10−12 eV

�
2
�

α

0.1

�
6

;

ð26Þ

where ã is the initial dimensionless spin of the BH. At
saturation the field has extracted from the BH an amount of
energy given by

Mcloud ¼ mγ0nsatγ0 V; ð27Þ

where V ¼ 4π
3
r3cloud is the volume of the cloud. For a single

azimuthal mode (typicallym ¼ 1, see Ref. [65] for the case
of multiple modes), any energy extraction δM is propor-
tional to the angular momentum extraction δJ through
δM ¼ ωR=mδJ [7].
In order to evade current bounds coming from gaps in the

BH mass-spin plane or from gravitational-wave emission,
we require that quenching is sufficiently efficient so that it
would allow for extraction of a negligible amount of
angular momentum, i.e., δJ=J ≪ 1. Using the equations
above, this is equivalent to

Initial growth

Vanishing of 
in-medium effects

Quenching from
semi-Compton
scattering

P
otential Ionization

FIG. 1. Heuristic evolution illustrating the growth and quench-
ing of the superradiant dark photon cloud. For dark photons with
vacuum kinetic mixings χ0 ≳ χmin (i.e., the minimum mixing
required to quench superradiance) this behavior can be charac-
terized as follows: after an initial stage of growth, the in-medium
suppression of the mixing (should it exist) is removed due to the
large electric fields generated by the dark photon. At larger
number densities the growth fully saturates as semi-Compton
scattering removes energy at a rate equivalent to the energy
injection rate from superradiance. Depending on the dark photon
mass, the Stark effect may ionize all neutral hydrogen atoms in
the latter stages near saturation.
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sin4 χ ≫
8πm2

e

neσT
mγ0α: ð28Þ

Note that, as previously discussed, χ is the in-medium
coupling which depends on various parameters of the
system, including the number density of dark photons
(which controls whether the in-medium suppression has
been removed). In the next section we shall use this
condition to identify the parameter space in the sin χ0 −
mγ0 plane where the superradiant instability is efficiently
quenched; we heuristically outline the growth and saturation
of the cloud for a generic dark photon model in Fig. 1.
In order to determine whether a given dark photon

model, defined by mass and vacuum mixing angle,
quenches before extracting sufficient BH spin, one must
first define both the BH mass of interest, or equivalently the
superradiant coupling α≡mγ0M, and the local electron
number density. The former is responsible for setting the
superradiant timescale, and the latter controls the efficiency
of the semi-Compton and synchrotron emission. In order to
be conservative, we adopt a fiducial value of α ¼ 0.4, for
which τsr of a near-extremal BH is maximal, however
comparable values of α do not yield significantly different
results. The range of ne expected in the vicinity of a BH is
estimated in Appendix A and may span many orders of
magnitude. Rather than adopting a particular value, in what
follows we show results under various assumptions in order
to be as broad as possible.
A final word is in order regarding the electron number

density. The ambient gas around BHs after reionization or
in environments with large thermal accretion rates is
expected to be largely ionized. This may not necessarily
be the case however, implying the free electron number
density may be suppressed relative to that of neutral
hydrogen. This opens the possibility that the neutral
hydrogen can be ionized during the superradiant growth,
further increasingly the electron number density, and
subsequently the scattering rate. Ionization from the grow-
ing dark photons can occur via the Stark effect [31], in
which the induced electric field becomes large enough to
shift the ground state of neutral hydrogen from
13.6 eV → 0 eV. Following [31], the number density of
dark photons required to ionize the hydrogen is

nγ0 > nionizationγ0 ∼ 1035
1

sin2χ

�
10−12 eV

mγ0

�
cm−3; ð29Þ

which should be compared to Eq. (26), suggesting this may
happen when

sin2χ ≲ 2 × 10−14ã

�
104 cm−3

ne

��
mγ0

10−12 eV

�
3
�

α

0.1

�
6

:

ð30Þ

The above equation assumes nionizationγ0 is still sufficiently
low so that the black hole has not yet been spun down.
The minimum vacuum kinetic mixing χ0 capable of

quenching superradiance at each dark photon mass is
shown in Fig. 2 along with current constraints on dark
photons, derived from the cosmic microwave background
[66,67] (note that these constraints are derived assuming
dark photons do not constitute dark matter; in the case that
they do comprise a non-negligible fraction, the constraints
are many orders of magnitude stronger [67–69]). Here, we
show results for α ¼ 0.4 and ne ¼ 10−4 cm−3 (red),
1 cm−3 (purple), and 104 cm−3 (blue). We also show the
impact of adopting a local free electron fraction xe ≡
ne=nH ¼ 2 × 10−4 (consistent with the mean value of the
Universe prior to reionization)—at larger masses, the local
hydrogen can ionize via the Stark effect and superradiance
can be quenched for smaller kinetic mixings. The reduced
sensitivity at low masses arises because the in-medium
suppression of the kinetic mixing cannot be removed.
The overall physical trend is manifest: an increase in the

electron number density can be compensated for by
adopting a smaller mixing angle. We also note that a
smaller superradiance parameter α would imply a smaller
growth rate for the superradiant cloud dEsr

dt , thus allowing

FIG. 2. Lower bound on kinetic mixing χ0 for which quenching
of superradiance occurs, assuming local electron number den-
sities of 10−4, 1, and 104 cm−3 and α ¼ 0.4. Short dashed
lines account for the possibility that the Stark effect could
increase the local electron number density if the initial medium
is not fully ionized (see text for details; xe taken to be 2 × 10−4).
The approximate range of BH masses being probed is shown on
the upper x-axis, and is derived assuming α ¼ 0.4. Kinetic
mixings below the values shown here may still be capable of
spinning down massive BHs, depending on additional details
of the model. The gray region corresponds to current constraints
on dark photons, derived from the cosmic microwave
background [66,67].
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smaller scattering rates (achieved e.g., by lowering the
mixing angle) to induce quenching. Low dark photon
masses are notoriously difficult to probe due to the strong
in-medium suppression; nevertheless, it seems quenching
can be achieved to some degree for masses as small
as ∼10−17 eV.

C. Observable signatures

We have shown in the previous section that dark photons
with vacuum mixings χ0 ≳ 10−8, depending on the mass,
can quench superradiance prior to the spin down of the BH.
This quenching is a consequence of the fact that the
accelerated electrons radiate synchrotron emission and
semi-Compton scatter off the ambient dark photon.
These processes result in the direct emission of photons,
with the characteristic energy hEci of each processes
roughly given by the inverse semi-Compton formulas
∼γ2ωg and ∼γ2mγ0 , respectively, where ωg ¼ eB=ðmeγÞ
is the gyro frequency.
The luminosity of each process is roughly given by V ×

dE=dt at the saturation density (26). Assuming χ is
sufficiently large to saturate the growth, the maximum
luminosity and characteristic energy for the semi-Compton
process then yields

Lmax
sC ≃ 3 × 1058

erg
s
ã2
�

mγ0

10−12 eV

��
α

0.4

�
9

×

�
10−8

sin χ

�
4
�
104 cm−3

ne

�
; ð31Þ

Emax
sC ≃ 2.1 × 1015 eVã

�
α

0.4

�
6

×

�
10−8

sin χ

�
2

×

�
104 cm−3

ne

��
mγ0

10−12 eV

�
2

; ð32Þ

while in the case of synchrotron emission one finds

Lmax
syn ≃ sin2 ξLmax

sC ; ð33Þ

Emax
syn ≃ γ

eB
me

≃
sin χe
m2

e
nγ0 : ð34Þ

As expected, these are comparable processes, with semi-
Compton dominating due to the lack of dependence on
orientation. We also stress that Eqs. (31)–(34) are valid only
if superradiance is quenched. In particular, the maximum
luminosity reached can never exceed the upper limit set by
the physical scales in the problem ∼M=τs, which is always
well below Planckian luminosities [70].
We illustrate the dependence of the characteristic energy

of the semi-Compton up-scattered photon hEci (left) and
time-averaged luminosity arising from the time-dependent
in the gamma factor (right) in Fig. 3. Results are shown by
either fixing the kinetic mixing to the minimal value χmin
required for quenching (solid), or by taking χ0 ¼ 10 × χmin
(dashed), and for various electron number densities.
The luminosity is maximal for the smallest kinetic
mixings (because the latter correspond to higher saturation
density of the dark-photon cloud), reaching values near
∼1057 erg=s, well above the luminosities of, e.g., typical

FIG. 3. Left: characteristic time averaged energy hEci of up-scattered photons, given by γ2mγ, as a function of dark photon mass,
assuming various values of the local electron number density and for Mmγ0 ¼ 0.4. Solid lines take χ0 to be the minimum value capable
of quenching superradiance χmin, while dashed blue line takes χ0 ¼ 10χmin for one representative case. Approximate energy ranges over
which telescopes observe γ-rays, x-rays, and the CMB are highlighted. We also highlight the regime where γ-rays can scatter of CMB
photons and pair produce eþe−; this process may generate TeV halos in a similar mechanism to blazars. Right: time evolution of the
electromagnetic signal for mγ0 ¼ 10−14 eV, sin χ0 ¼ 10−7, and Mmγ0 ¼ 0.4.
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AGN. We have also highlighted in Fig. 3 various parts of
the electromagnetic spectrum where this signal may be
easily detectable, as well as the approximate threshold
where eþe− pair production may become important (see
text below). Intriguingly, because the electron boost factors
vary with time (due to the oscillating electric fields), both
Ec and the luminosity have a characteristic oscillatory
behavior; this is roughly illustrated in the right panel of
Fig. 3, where we show the evolution over part of a period of
oscillation for a particular dark photon candidate. Notice in
this figure we have drawn the fixed time emission as a
narrow line (importantly, this is an illustration, not a
calculation); this is because both the dark photon and
the plasma have narrow distributions in energy, the former
being nonrelativistic and the latter being driven by the
electric field. The line width is likely generated by non-
linearities in the dark photon field; while it is of great
interest to understand the spectral characteristics, we
consider determining this feature to be beyond the scope
of this work.
Given that these (ordinary) photons are produced near

the BH itself, a logical question to ask is whether they may
escape their local environment. Assuming the local gas is
ionized, the dominant interaction for photons with energies
E≲ 107 eV is again that of Compton scattering. In this
case, the optical depth can be calculated via

τ ¼
Z

dlneσT: ð35Þ

If we parameterize the electron number density with a
Bondi accretion profile, i.e., ne ∝ r−3=2 (see Appendix A),
this integral is dominated by the highest densities near the
BH itself. Approximating the lower limit of integration as
the Schwarzschild rs, we can write the optical depth as

τ ∼ 10−7
�

M
108 M⊙

��
ne;c

104 cm−3

�
; ð36Þ

where ne;c is the central electron number density at rs.
For higher energy gamma rays, the optical depth will be

set either by the possibility for photons to pair produce
eþe− by scattering off the extragalactic background light
(EBL) or via γ þ p → pþ eþ þ e−. The cross section for
the former is given by [71–73]

σγγ ¼
3σT
16

ð1 − β2Þ
�
2βðβ2 − 2Þ þ ð3 − β4Þ log

�
1þ β

1 − β

��
;

ð37Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

e=s
p

, and s ¼ 2EγEγEBLð1 − cos θÞ.
The mean free path for this can be expressed roughly
as [74]

λγγ ∼ 80

�
Eγ

10 TeV

�
−1

Mpc: ð38Þ

The scattering off ambient protons has a cross section [72]

σγp ¼ αr20

�
28

9
log

�
2Eγ

me

�
−
218

27

�
; ð39Þ

where r0 is the classical electron radius. Again assuming a
fully ionized medium and the radial taken from Bondi
accretion, one can compute the optical depth; we find this
the optical depth for this process is always quite small and
can be neglected. Thus, depending on the distance to the
BH of interest, the γγ scattering rate may be sufficient to
absorb the high energy photons. In this case, the electrons
produced could scatter off ambient light and generate
γ-ray halos around the BH in a similar manner to that of
blazars [74]. The detailed observational signatures are
certainly worth investigating, and something we leave to
future work.

D. Comments on UV completions

In the previous section we adopted a phenomenological
approach and simply assumed that a dark photon with a
given mass and kinetic mixing exists. It is however
interesting to understand whether the quenching mecha-
nism can depend on the origin of the dark photon mass.
One can generically consider two different scenarios: either
the mass is generated via the Stückelberg mechanism,
which can be obtained from the Proca Lagrangian by
introducing a fictitious gauge symmetry [75], or from the
Higgs mechanism with a new scalar field Φ acquiring a
vacuum expectation value hΦi ¼ v=

ffiffiffi
2

p
.

The case in which the dark photon mass is generated via
the Stückelberg mechanism leads to no novel quenching
mechanisms, as no new interactions have been introduced.
It is worth mentioning, however, that the so-called swamp-
land conjecture, which is an attempt at identifying the
set of effective field theories consistent with a theory of
quantum gravity, presents a theoretical challenge for light
dark photons with masses generated in this way [76].
Specifically, it has been argued that, for a given mass and
mixing, one can compute the cut-off of the effective
theory—in order for this theory to remain meaningful,
the cut-off scale should likely be ≳Oð1Þ TeV, implying
kinetic mixings much stronger than those considered here.
In the case of the Higgs mechanism the situation

may be substantially different [28]. Consider the following
Lagrangian

L ¼ −
1

4
F0
μνF0μν þ 1

2
jDμΦj2 − VðΦÞ; ð40Þ

with Dμ ¼ ∂μ − igA0
μ being the covariant derivative and Φ

being the generic scalar field which is then assumed to
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acquire a vev, so that in the unitary gauge the field
may be expanded as Φ ¼ ðvþ σÞ= ffiffiffi

2
p

. In order
to be concrete, we consider here a potential of the
form VðΦÞ ¼ λðjΦj2 − v2=2Þ2.
After symmetry breaking, the dark photon acquires a

massmA0 ¼ gv; the mass of the scalar field can also be read
from the potential as mσ ¼

ffiffiffiffiffi
2λ

p
v. Notice that when the

vector field is amplified around the rotating BH, the scalar
field picks an extra term due to the large densities
VðΦÞ ⊃ 1

2
g2ðvþ σÞ2 × hAμAμi. One can check that in this

case if hAμAμi > λv2

g2 , the original symmetry is restored, and

subsequently the dark photons become massless and can
free stream away from the BH. However, unless one
chooses extremely small values of the scalar vev3 and
self-interaction λ, the symmetry restoration scale is never
achieved for the dark photon masses considered. It is also
worth mentioning that the operator jΦj2 would also couple
to any neutral operator built out of SM fields—should the
new vev be too low, one may also have to fine tune these
additional couplings around zero to be consistent with
current observations.
Finally, it is worth mentioning that the existence of any

light particle in a theory directly coupled to the dark sector
will allow for Schwinger pair production at sufficiently
high densities [78]. This may be particularly relevant for
models in which the dark photon serves as a mediator for
other dark fermions playing the role, for example, of dark
matter [79–81].
In the case of the SM photon, the Schwinger pair

production rate is given by [82]

ΓSchw ≃
m4

e

4π3

�
E
Ec

�X∞
b¼1

1

b2
e−bπ

Ec
E ; ð41Þ

where Ec ¼ m2
e=

ffiffiffiffiffiffiffiffi
4πα

p
and E is the electric field

strength. Analogously, given a dark sector fermion with
mass md—charged under the Uð1Þdark—with Lagrangian
Ldark ⊃ λdψ̄dγ

μψdA0
μ, the exponential suppression in the

particle production rate will be removed when the super-
radiant cloud has reached a number density

nSchwγ0 ∼
π2m4

d

λdmγ0
: ð42Þ

Comparing this value to the maximum achievable number
density by superradiance, one finds that in order to quench

superradiance the mass of the dark sector particle must
satisfy

md ≲ 6.7 × 106
�
λd
0.1

�
1=4

�
mγ0

10−12 eV

�
1=2

�
α

0.4

�
5=4

eV:

ð43Þ

V. A COMMENT ON THE SM PHOTON MASS

Despite the fact that the SM photon is generically
considered to be massless, there still exists the possibility
that it carries a nonzero bare mass; if this is the case, it
could shed light on many fundamental puzzles such as why
charge is quantized and the potential existence of charged
BHs [83]. Additionally, in the contest of bosonic strings,
the condensation of tensor fields generates a violation of
Lorentz symmetry and may dress the photon with a small
mass [84,85]. In view of these intriguing theoretical
possibilities, it is important to robustly constrain the
magnitude of the photon mass. Typical probes to date
involve: laboratory experiments using high-frequency tests
of Coulomb’s law [86], study of the sector structure of the
Solar wind in the presence of a finite photon mass [87,88],
and frequency-dependent dispersion in fast radio bursts
(FRB) [89]. In fact, if the photon has a bare massmγ, it may
trigger a superradiant instability in the sameway as the dark
photon, and the observation of highly spinning super-
massive BHs has been used as an argument to constrain
bare photon masses above ∼10−20 eV [51].
It is important however to stress that the propagating

mode, exciting the superradiance instability, will have an
energy gap in the dispersion relation coming from both the
Proca mass and the plasma contribution. Therefore, for low
photon masses mγ ≲ 10−13 eV (note that current observa-
tions of FRBs constrain bare mass contributions above this
level [89]), the plasma contribution will always be the
dominant one, even for low density environments, see
Eq. (10). This means that for massive BHs (M ≳ 104 M⊙)
superradiance will be exponentially suppressed because the
effective coupling Mωp ≫ 1 [7]. While it may be possible
for environmental factors (e.g., due to dynamical or
geometrical effects [30,59]) to suppress the contribution
to the effective photon mass, even if superradiance could be
triggered, Compton scattering will be efficient in quenching
superradiance long before extracting a significant fraction
of energy [31] (notice that the results presented in Fig. 2 for
the dark photon can be applied to the SM photon with a
bare mass in the limit ne → 0 and sin χ0 → 1); as such,
superradiance cannot be used to probe the bare photon
mass, should it exist.

VI. CONCLUSION

In this work we have investigated the validity of super-
radiant bounds on dark photons, and argued there exists
large regions of parameter space in which the dark photon

3Note that for very small dark photon and dark Higgs masses
the semi-Compton scattering will not be suppressed by in-
medium effect, as in this regime the dark photon would couple
to SM fermion as in a millicharge model [58,77]. However, the
interaction will anyway be likely suppressed by the smallness of
the required dark gauge coupling.
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interactions quench the superradiant growth before any
observable change to the BH spin has occurred; specifi-
cally, we have shown that this occurs for vacuum kinetic
mixings typically on the order of χ0 ≳ 10−8, however this
value depends on the mass of dark photon, the mass of the
BH, and the local electron number density. Additionally,
we comment on other model-dependent quenching mech-
anisms, such as the minimum fermion mass required for a
quenching via the Schwinger mechanism, or the restoration
of the gauge symmetry which could arise in models where
the dark photon arises from the Higgs mechanism. While
such mechanisms are interesting in their own right, they
require additional model assumptions beyond the simple
assumption of kinetic mixing made here.
While dark photons undergoing premature quenching of

the superradiant growth will likely leave no discernible
imprint on the BH spin distribution, we find that such
particles may be capable of generating enormous bursts of
light, with time-averaged luminosities extending up to
∼1057 erg=s. This signal should appear as a time- and
energy-oscillating line, which could provide a striking
signature of this phenomenon. This provides an alternative
observational strategy for identifying ultra light bosons
using BH superradiance.
The role of particle interactions in superradiant growth

offers a rich and largely unexplored phenomenology. This
work has focused on a single well-motivated extension of
the SM, and showed that large regions of parameter space
naturally evade conventional superradiant constraints,
opening up new opportunities for detection. We hope that
this will serve as a future guide toward understanding novel
signatures of BH superradiance.
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APPENDIX A: PLASMA FREQUENCY
AROUND BHS

In this Appendix we estimate the typical plasma density
expected in the surrounding of an astrophysical BH.We use
a simple Bondi-Hoyle model for spherical accretion onto a
BH moving relative to a background baryonic density,

dM
dt

¼ 4πλρ∞veffr2B; ðA1Þ

where λ ¼ Oð1Þ is a model-dependent factor that accounts
for the nongravitational suppression of accretion, ρ∞ is the
gas density far from the BH, veff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2∞ þ v2rel

p
, where c∞

and vrel are the speed of sound and the relative BH-baryon
velocity far from the BH, respectively, and

rB ¼ M
v2eff

ðA2Þ

is the Bondi radius. For typical nonrelativistic effective
velocities, the Bondi radius is much bigger than the BH
gravitational radius, i.e., rB ≫ M. In this regime the total
infalling flow of baryons toward the BH is roughly
constant, i.e.,

neðrÞvffðrÞr2 ¼ const; ðA3Þ

where vffðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2eff þ 2M

r − 2M
rB

q
is the free fall velocity of

the gas, which reduces to veff at the Bondi radius.
Therefore, the electron density profile within the Bondi
sphere reads

neðrÞ ¼ n∞e
veffr2B
vffðrÞr2

; ðA4Þ

where n∞e ¼ ρ∞=me. At distances r ∼OðMÞ, vffðrÞ∼ffiffiffiffiffiffiffiffiffiffiffiffi
2M=r

p
≫ veff , so that

neðrÞ ∼ n∞e
veffffiffiffiffiffiffiffi
2M

p r2B
r3=2

; ðA5Þ

Finally, near the peak of the BH-boson condensate,
rcloud ∼M=α2, we get

neðrcloudÞ∼
n∞effiffiffi
2

p
v3eff

α3≈7×102n∞e

�
α

0.1

�
3
�
0.01
veff

�
3

; ðA6Þ

which is valid provided rcloud ≲ rB, i.e., α≳ veff . The above
estimate shows that the typical electron density in the
relevant region near the BH can be several orders of
magnitude larger than the “ambient” density at infinity,
n∞e , depending on α and veff . Correspondingly, the plasma
density ωp ∝ n1=2e can also vary by some orders of
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magnitude, see Eq. (10). In the main text we keep the local
density ne near the BH as a free parameter in the range
ne ∈ ð10−4; 104Þ cm−3, which should bracket the model
uncertainties.

APPENDIX B: NONLINEAR REGIME

In this appendix we rederive the results of Refs. [62,63],
extending them to the electrodynamics with a massive dark
photon. We can write Maxwell equations for both SM
photon:

∇ × E⃗ ¼ −∂B⃗=∂t; ðB1Þ

∇ · B⃗ ¼ 0; ðB2Þ

∇ × B⃗ ¼ 4πneev⃗e þ −∂E⃗=∂t; ðB3Þ

∇ · E⃗ ¼ 4πene; ðB4Þ

and for a dark electromagnetic field:

∇ × E⃗0 ¼ −∂B⃗0=∂t; ðB5Þ

∇ · B⃗0 ¼ 0; ðB6Þ

∇ × B⃗0 ¼ 4πneev⃗e þ −∂E⃗0=∂t −m2
γ0 A⃗

0; ðB7Þ

∇ · E⃗ ¼ 4πene −m2
γ0A

00: ðB8Þ

These equations should be considered together with the
electron equations of motion Eq. (7), ignoring the collision
term which we have seen to be not important for our goals.
We want to study the generic problem of wave motions of
the plasma, we therefore define the variable ξ ¼ ⃗i · r⃗ −Ut,
where ⃗i is a constant unit vector andU the phase velocity of
the wave. Using this new variable the equation of motion
for the electrons becomes

ð⃗i · v⃗e −UÞ∂p⃗e=∂ξ ¼ eE⃗obs þ eu⃗e × B⃗obs; ðB9Þ

where we defined the observable fields B⃗obs¼ B⃗þ sinχ0B⃗0,
E⃗obs ¼ E⃗þ sin χ0E⃗0.
Now take the vector product of this equation

with the wave vector ⃗i and consider only transverse waves
(⃗i · B⃗obs ¼ 0) to get

ð⃗i · v⃗e − UÞ⃗i × _p⃗e ¼ e⃗i × E⃗obs − e⃗i · v⃗eB⃗obs; ðB10Þ

where the overdot indicates a derivative respect to the wave
variable ξ. Using Faraday’s law, we can also derive

⃗i × E⃗obs ¼ UB⃗obs; ðB11Þ

where we neglected background magnetic fields, as we are
interested in a plasma which performs self-oscillations. We
then consider Ampere’s law, multiplied vectorially on the
left by ⃗i to obtain

_⃗Bobs¼
4πð1þ sinχ20Þene

ðU2−1Þ i⃗× v⃗e−
sinχ0m2

γ0

U2−1
i⃗× A⃗0; ðB12Þ

where the dark vector potential can be related to the dark

magnetic field via ⃗i × _A⃗
0 ¼ B⃗0. This latter term is important

in the limit of mγ0 ≫ ωp, when the propagating light mode
state—triggering superradiance—is aligned with A0 and we
can write A⃗0 ≃ −1=ðe sin χ0Þp⃗e. Consequently, we can take
the derivative of Eq. (B10) to arrive to a second order
differential equation for the electron momentum. In order to
directly compare with Refs. [62,63] let us rescale our
variables, defining ρ⃗ ¼ p⃗e=me and rescaling the wave
variable ξ → ξ=ωp. We then get

d2ρ⃗
dξ2

þ ρ⃗

ðβ2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p �
1þm2

γ0

ω2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

q �
¼ 0; ðB13Þ

which is our master equation. The first term in the brackets
is the one relevant when mγ0 ≪ ωp, while the second one
should be considered only in the regime mγ0 ≫ ωp.
Without loss of generality we can limit to consider the

simple case where ⃗i ¼ ẑ, obtaining the solutions

ρx ¼ ρ cosðωðt − z=UÞÞ; ðB14Þ

ρy ¼ ρ sinðωðt − z=UÞÞ: ðB15Þ

The frequency of oscillations is different depending on
the hierarchy between mγ0 and ωp. When ωp ≫ mγ0 , we
find a dielectric function ϵðωÞ≡ 1=U2 given by

ϵðωÞ ≃ 1 − ω2
pð1þ ρ2Þ−1=2=ω2: ðB16Þ

If instead ωpl ≪ mγ0 to start with, the shortest timescale in
the problem is always dictated by the oscillation of the dark
fields and the dielectric function then simply reads

ϵðωÞ ≃ 1 −m2
γ0=ω

2: ðB17Þ

The modulus ρ can be connected to the observed

magnetic and electric field using ⃗i × _p⃗ ¼ −eB⃗obs and
B⃗ ¼ 1=U⃗i × E⃗. We then find

ρ2 ¼ e2E2
obs=m

2
eω

2: ðB18Þ

We notice now that by definition the velocity of the
electrons is uie ¼ ρi=γ, where γ is the boost factor. We
can then plug this solution for the electron momentum back
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into the spatial current term of Proca equations Eq. (8).
Working in the non relativistic limit, we find the mass
matrix in Eq. (20), where the boost factor is a time-
averaged one, due to the sinusoidal functions in

Eq. (B15). A large boost factor for the electrons lower
the plasma frequency as in the SM case. When the electrons
move very fast, it will be very hard to have and excite any
collective mode.
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