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The tidal deformabilities and radii of strange quark stars are studied via the quasiparticle model which
includes the nonperturbative features of QCD in the low-density region. The results show that the mass
constraint ofMTOV > 2.0 M⊙ rules out the EOSs which are soft at low densities, while the constraint on the
tidal deformability of Λ1.4 < 800 from GW170817 rules out the EOSs which are too stiff in the low density
region. The range for the radius of a 1.4 M⊙ strange quark star is 11.12 km < R1.4 < 11.98 km. Λ1.4 has a
strong correlation with R1.4, and the empirical correlation function is Λ1.4 ¼ 2.86 × 10−5ðR=kmÞ6.92, which
is larger than that for neutron stars. The lower bound of Λ1.4 > 513.66 is also obtained. Λ̃ is a
monotonically increasing function of the mass ratio η, but the slope is very small. And we conclude that the
range of Λ̃ for GW190425 is 184.81 < Λ̃ < 320.08.
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I. INTRODUCTION

In order to study the properties of strange quark stars,
such as the mass-radius relation and the correlation
between tidal deformablity and radius (or mass), an
equation of state (EOS) for strange quark matter should
be specified. The latter describes the relation between the
pressure and the energy density in strange quark matter.
In the center of strange quark stars, the baryon number

density nB reaches ð4 ∼ 7Þn0, where n0 is the nuclear
saturation density and n0 ≃ 0.16 nucleons per fm3 [1], a
range of densities which even the terrestrial heavy-ion
experiments cannot access. Since quantum chromodynam-
ics (QCD) has complicated nonperturbative effects in the
low energy region, perturbative QCD (pQCD) calculations
are valid only for nB ≳ ð10 ∼ 100Þn0. Moreover, due to the
sign problem, lattice QCD cannot calculate the EOS at
finite chemical potential and zero temperature, either.
Therefore, at present, it is still a big challenge to get the
exact EOS of strange quark matter from the first principles
of QCD. Hence, many phenomenological models that
incorporate some basic features of QCD are commonly
used in studying strange quark matter at finite chemical
potential and temperature [2–6].
In this paper, the quasiparticle model which has been

widely used to simulate the properties of the quark-gluon
plasma (QGP) at finite temperature (T) and chemical
potential (μ) [7–9] is adopted to produce the EOS for
strange quark matter at finite chemical potential and zero

temperature. Then, we choose the mass constraint of
MTOV > 2.0 M⊙ that comes from the observations of the
pulsars PSR J0348þ 0432 (m ¼ 2.01� 0.04m⊙) [10] and
PSR J1614-2230 (m ¼ 1.928� 0.017m⊙) [11] and the
tidal deformablity constraint of Λ1.4 < 800 that is obtained
from the direct detection of the gravitational wave (GW)
originated from a binary system inspiral by LIGO and
Virgo network [12] to analyze the features of astrophysi-
cally compatible EOSs, the mass-radius relations, the
correlation between tidal deformablity and radius, and
the combined tidal deformablities for the cases of
GW170817 and GW190425. The results present some
interesting features of strange quark stars, which are
evidently different from that of neutron stars.
This paper is organized as follows: In Sec. II, we give an

introduction to the quasiparticle model and present the
formula of the EOS for strange quark matter. Under the
mass and tidal deformablity constraints, the results of mass-
radius relations, the correlation between the tidal deform-
abilities and the radii for 1.4 M⊙ strange quarks, and Λ̃ for
GW170817 and GW190425 have been exhibited in detail in
Sec. III. Finally, we give a summary of this work in Sec. IV.

II. THE QUASIPARTICLE MODEL

In this section, we will introduce a nonperturbative
method, the quasiparticle model, to describe the micro-
scopic interaction between quarks and gluons, and finally
to obtain the formula for the equation of state of strange
quark matter. The formulas in this section are given in
natural units.
The quasiparticle model provides a phenomenological

method to study the thermodynamic properties of
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QGP [13,14]. In recent years, explicit analytic expression
for the EOS at zero temperature and finite chemical
potential by means of the path integral method with an
effective quark propagator was obtained [15,16]. In this
paper, we follow the work in Refs. [15,16] and use the
coupling g obtained in the two loop approximation to
construct the EOS of strange quark matter.
Assuming to know the full quark propagator at zero

temperature T and finite chemical potential μ, the quark
number density can be obtained via [15],

ρfðμÞ ¼ −Nc

Z
d4p
ð2πÞ4 trDfγ4Sfðp; μÞg; ð1Þ

where Sfðp; μÞ is the full quark propagator, Nc is the
number of colors which is given by Nc ¼ 3, and the
trace operator “trD” is taken over all Dirac indices.
Unfortunately, till now, the exact form of the full quark
propagator at finite chemical potential μ and zero T is still
unknown from the first principles of QCD. Hence, an
effective quark propagator that has the same form as
the free quark propagator but with a density dependent
effective quark mass is used as an approximation of the full
quark propagator in the dense matter. Here, we take the
form of the effective quark propagator proposed in [16],

Sfðp; μÞ ¼
1

iγ · p̃þmfðμÞ
; ð2Þ

where p̃≡ ðp; p4 þ iμÞ is the four momenta of the quark at
finite μ, and in Euclidean space, the gamma matrices satisfy
fγμ; γνg ¼ 2δμν. The effective quark mass which depends
on μ reads [7,17,18],

m2
fðμÞ ¼ ðmf0 þmqðμÞÞ2 þm2

qðμÞ; ð3Þ

with

m2
qðμÞ ¼

Nfμ
2g2ðμÞ

18π2
; ð4Þ

wheremf0 is the mass of current quark (u, d, or s),Nf is the
number of quark flavors which is given by Nf ¼ 3, and
gðμ2Þ is the effective coupling constant obtained in the two
loop approximation [19,20],

αsðμÞ¼
g2ðμÞ
4π

¼ 6π

ð33−2NfÞlnðaμÞ
�
1−

3ð153−19NfÞ
ð33−2NfÞ2

lnð2lnðaμÞÞ
lnðaμÞ

�
;

ð5Þ

where a ¼ 1.91=ð2.91ζÞ, and ζ is a phenomenological
parameter of the quasiparticle model, which characterizes
the strength of the nonperturbative effect.

With the full quark propagator specified and using the
contour integration method [21], we can obtain the quark
number density for each quark flavor

ρfðμÞ ¼
Nc

3π2
ðμ2 −m2

fðμÞÞ3=2θðμ −mfðμÞÞ: ð6Þ

Since there is a step function on the right-hand side of Eq. (6),
it is obvious that the quark number density will vanish when
the quark chemical potential μ is smaller than a critical value
μc. This phenomenon qualitatively agrees with the general
conclusions in Ref. [22]. In this model, the critical value
depends on the current quark massmf0 and the parameter ζ.
In the case of chiral limit where the masses vanish, i.e.,
mf0 ¼ 0, the critical value is given by μc ≐ 2.23ζ.
Then, according to Refs. [21,23], the pressure of the

quark matter at finite μ and zero T can be written as,

PðμÞ ¼ PðμÞjμ¼0 þ
Z

μ

0

dμ0ρðμ0Þ; ð7Þ

where PðμÞjμ¼0 is the pressure at μ ¼ 0, which represents
the vacuum pressure. Here we can rewrite it as
PðμÞjμ¼0 ≡ −BðB > 0Þ, where B is also a phenomenologi-
cal parameter in the present model. Please note that the
parameter B is a positive number, since we treat it as the bag
constant in the MIT bag model. The vacuum pressure must
be negative, which preserves the confinement of quarks. It
should be also noticed that Eq. (7) is a model independent
formula, for the pressure PðμÞ at finite μ and zero T can be
determined by the quark number density ρðμÞ (up to a
constant PðμÞjμ¼0). Therefore, assuming to know the quark
number density ρðμÞ that matches the phenomena of QCD,
one can obtain the pressure that satisfies the behavior of
QCD at finite chemical potential μ and zero temperature T.
In strange quark stars, there are u, d, s quarks in the

system, and the baryon number density is defined by,

ρBðμÞ≡ 1

3
ðρuðμuÞ þ ρdðμdÞ þ ρsðμsÞÞ; ð8Þ

and the pressure of such system is given by,

PðμÞ ¼ −Bþ PuðμuÞ þ PdðμdÞ þ PsðμsÞ þ PeðμeÞ: ð9Þ

Taking into account the electroweak interactions, we
should take the constraints of chemical equilibrium and
charge neutrality conditions,

μd ¼ μu þ μe; ð10Þ

μs ¼ μu þ μe; ð11Þ

2

3
ρu ¼

1

3
ρs þ

1

3
ρd þ ρe; ð12Þ
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where the number density of electrons at zero temperature
is given by [24],

ρeðμeÞ ¼
μ3e
3π2

: ð13Þ

Due to the constraints given by Eqs. (10), (11), and (12),
there is only one independent chemical potential left. Here,
we choose μu, and the other chemical potentials, namely μd,
μs, and μe, can be treated as a function of μu.
Finally, the energy density of the model is given by

ϵ ¼ −Pþ μ ·
∂P
∂μ ¼ −Pþ

X
f¼u;d;s;e

μfρfðμfÞ: ð14Þ

As we can see from Eq. (14), the EOS constructed from the
quasiparticle model depends on the masses of current
quarks, the parameter ζ, and the vacuum pressure B.

III. TIDAL DEFORMABILITIES AND RADII
OF STRANGE QUARK STARS

After the EOS of strange quark matter is established, it is
now straightforward to explore the properties of strange
quark stars. The formulas in this section are expressed in
geometric units where G ¼ c ¼ 1. We will follow the
perturbation scheme developed in Refs. [25–28] to com-
pute the l ¼ 2 dimensionless tidal Love number k2 and the
associated tidal deformalbility Λ. The tidal Love number
describes how easily a substantial part of a star is deformed
by an external tidal field, as discussed in Refs. [26,29,30],
and k2 is associated with the dominant contribution to the
stellar deformation, while the tidal deformability describes
the ratio of each star’s induced mass quadrupole moment
to the tidal field of its companion [29,31,32]. They are
related by,

Λ ¼ 2

3
k2

�
R
M

�
5

: ð15Þ

In order to calculate the tidal deformability with our EOS
table, we should solve the Tolman-Oppenheimer-Volkoff
equations

dPðrÞ
dr

¼ −
ðϵþ PÞðM þ 4πr3PÞ

rðr − 2MÞ ; ð16Þ

dMðrÞ
dr

¼ 4πr2ϵ; ð17Þ

simultaneously with

dHðrÞ
dr

¼ β; ð18Þ

dβðrÞ
dr

¼ 2

�
1−2

M
r

�
−1
H

�
−2π½5ϵþ9PþfðϵþPÞ�

þ 3

r2
þ2

�
1−2

M
r

�
−1
�
M
r2

þ4πrP

�
2
�

þ2β

r

�
1−2

M
r

�
−1
�
−1þM

r
þ2πr2ðϵ−PÞ

�
; ð19Þ

where f is given by

f ¼ dϵ
dP

ð20Þ

for slow changes in matter configurations. Equations (18)
and (19) are integrated outward starting just outside the
center via the expansions: HðrÞ ¼ a0r2, and βðrÞ ¼ 2a0r
as r → 0, where a0 is a constant which determines how
much the star is deformed by an external tidal field and can
be chosen arbitrarily as it cancels in the expression for the
Love number k2. Hence, in our calculations, we choose
a0 ¼ 1 for simplicity.
For the internal solution, the l ¼ 2 tidal Love number

k2 is

k2¼
8C5

5
ð1−2CÞ2½2þ2CðyR−1Þ−yR�

×f2C½6−3yRþ3Cð5yR−8Þ�
þ4C3½13−11yRþCð3yR−2Þþ2C2ð1þyRÞ�
þ3ð1−2CÞ2½2−yRþ2CðyR−1Þ� lnð1−2CÞg−1; ð21Þ

where C ¼ M=R is the compactness of the star, and yR ¼
yðRÞ ¼ ½rβðrÞ=HðrÞ�r¼R.
As discussed in Refs. [33,34], if there is a first-order

hadron-quark phase transition in the EOS, there is a jump of
Δϵ in the energy density at constant pressure Ptr, hence this
delta-function behavior should be added in Eq. (20) as

f ¼ dϵ
dP

����
P≠Ptr

þ δðP − PtrÞΔϵ: ð22Þ

This leads to an extra term for the solution of yðrÞ across rtr,
which is given by

yðrþtr Þ − yðr−trÞ ¼ −
4πr3trΔϵ

MðrtrÞ þ 4πr3trPðrtrÞ
; ð23Þ

where rtr is the position where this first-order hadron-quark
phase transition happens, Δϵ ¼ ϵðr−trÞ − ϵðrþtr Þ, and r�tr ¼
rtr � δr where δr is an infinitesimal distance around rtr.
For strange quark stars, since there is a finite energy

density discontinuity in the vicinity of the surface R, we
should also add this extra term to yðRÞ and we obtain
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yR ¼ RβðRÞ
HðRÞ −

4πR3Δϵ
M þ 4πR3PðRÞ : ð24Þ

Here Δϵ ¼ ϵðR−Þ is the energy density just inside the
surface, and the pressure at the surface is given byPðRÞ ¼ 0.
The parameters are set up in the following ways. ζ is

changing from 0.05 GeV to 0.095 GeV, for in this region the
running coupling constant αsðμÞ varies consistent with the
experimental data [35]. The vacuum pressure B varies from
ð0.098 GeVÞ4 to ð0.148 GeVÞ4, which ensures the surface
energy density is always larger than 2.80×1014gcm−3.
The mass of u or d quark is very small, and we set
mu0 ¼ md0 ¼ 0 MeV. The mass of s quark varies from
0 MeV to 120 MeV.
In all the figures of this paper, the results are presented in

three represented colors (cyan, blue and red). The quantities
shown in cyan represent the results calculated from the
EOSs with the maximum strange quark star mass smaller
than 2.0M⊙, while the quantities shown in blue represent
the results calculated from the EOSs with the maximum
strange quark star mass larger than 2.0M⊙ and the tidal
deformability for a 1.4 M⊙ strange quark star smaller than
800, and the quantities shown in red exhibit the results
calculated from the EOSs with the maximum strange quark
star mass larger than 2.0M⊙ but the tidal deformability for a
1.4M⊙ strange quark star larger than 800.
The equations of state are displayed in Fig. 1. The gray-

dashed line stands for P ¼ ϵ. We can see from this picture
that the mass constraint 2.0M⊙ from the observables
PSR J1614-2230 (M ¼ 1.928� 0.017M⊙ [11]) and PSR
J0348þ 0432 (M ¼ 2.01� 0.04M⊙ [10]) rules out the
EOSs that are soft at low densities, and the constraint on the
tidal deformability of Λ1.4 < 800 from GW170817 [12]
rules out the EOSs that are too stiff in the low density
region. These conclusions are consistent with the cases of
neutron star EOSs [36].

The mass-radius relations for strange quark stars are
shown in Fig. 2. The black-dotted line stands for
M ¼ 2.0M⊙.
The astrophysically compatible EOSs (the blue-solid

lines) are selected by the constraints of MTOV > 2.0M⊙
and Λ1.4 < 800, where MTOV is the maximum mass of the
solution of TOV equations. There are many reasonable
parameters that can fullfill these two astrophysical con-
straints. For definite ζ and ms0 the upper limit of B is
determined by the mass constraint while the lower limit of
B is determined by the constraint of Λ1.4 < 800. For
instance, for ζ ¼ 0.05 GeV and ms0 ¼ 90 MeV, the
astrophysically compatible EOSs are obtained for
ð0.130 GeVÞ4 ≲ B≲ ð0.133 GeVÞ4. For larger values of
ζ or with increasing ms0, both upper and lower limits of B
are shifted to lower values.
Assuming low spin priors for the two compact stars in

the analysis of GW170817 [12], the component masses
are m1 ∈ ½1.36; 1.60�M⊙ and m2 ∈ ½1.16; 1.36�M⊙. The
range of the radius of a 1.36M⊙ strange quark star
obtained by the astrophysically compatible EOSs is
11.04 km < R1.36 < 11.91 km, while for the neutron
star EOSs, a 1.36M⊙ neutron star has a radius of
10.4 km (WFF1), 11.3 km (APR4), 11.7 km (SLy),
12.4 km (MPA1), 14.0 km (H4), 14.5 km (MS1b), and
14.9 km (MS1) [37]. These radii are similar to our results,
except that the last three EOSs (H4, MS1b, MS1) lying
outside of the 90% credible region of GW170817 give
much larger radii. The range of the radius of a 1.16M⊙
strange quark star calculated by the astrophysically com-
patible EOSs is 10.62km < R1.16 < 11.48 km, and the
range of the radius of a 1.6M⊙ strange quark star
obtained by the astrophysically compatible EOSs is
11.42 km < R1.6 < 12.26 km. These results show a little
bit narrower range of the radius of strange quark stars
across all mass priors in GW170817 than that in Ref. [38]
where they have found a robust measurement of the
common radius of the neutron stars across all mass priors

FIG. 1. Equations of state for strange quark stars. The gray-
dashed line stands for P ¼ ϵ.

FIG. 2. Mass-radius relations for strange quark stars. The black-
dotted line stands for M ¼ 2.0 M⊙.
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of 8.9 ≤ R ≤ 13.2 km with a mean value of hRi ¼
10.8 km. Also, the LIGO and Virgo collaboration [39]
measure the two neutron star radii as R1 ¼ 10.8þ2.0

−1.7 km
for the heavier star andR2 ¼ 10.7þ2.1

−1.5 km for the lighter star
at the 90% credible level, which covers our ranges for the
radii of the two compact stars.
Assuming low spin priors for the two compact stars in

the analysis of GW190425 [40], the component masses are
m1 ∈ ½1.60; 1.87�M⊙ and m2 ∈ ½1.46; 1.69�M⊙. And our
results show that the range of the radius of a 1.46M⊙
strange quark star is 11.22 km < R1.46 < 12.07 km, the
range of the radius of a 1.69M⊙ strange quark star is
11.51 km < R1.69 < 12.35 km, and the range of the
radius of a 1.87M⊙ strange quark star is 11.56 km <
R1.87 < 12.53 km.
Among the results obtained from the astrophysically

compatible EOSs, the lowest maximum mass 2.0 M⊙
corresponds to R2.0 ¼ 11.07 km, while the largest maxi-
mummass is 2.17 M⊙ that corresponds toR2.17¼12.00km.
The range for the radius of a 1.4M⊙ strange quark star is
11.12 km < R1.4 < 11.98 km, which is consistent with
that obtained in Ref. [41]. In that article, the authors
construct the equations of state constrained by chiral
effective field theory and marginalized over these using
the gravitational-wave observations. Combining this with
the electromagnetic observations of the merger remnant that
imply the presence of a short-lived hypermassive neutron
star, they find that the radius of a 1.4M⊙ neutron star is
R1.4 ¼ 11.0þ0.9

−0.6 km (90% credible interval).
The lower bound of Λ1.4 > 513.66 is also obtained for a

1.4M⊙ strange quark star from the astrophysically compat-
ible EOSs, which is similar to the result of Λ1.4 > 510.058
inferred from Eq. (3) in Ref. [2] using the MIT bag model.
Figure 3 shows the correlation between the tidal defor-

mablity and the radius, both of which are calculated for
strange quark starswith 1.4 M⊙. The purple-solid line stands
for the empirical function Λ1.4¼2.86×10−5ðR=kmÞ6.92 in
this work, while the other solid lines show the empirical
functions for model calculations of neutron stars. The
blue-solid line is the empirical function of Λ1.4 ¼ 2.88 ×
10−6ðR=kmÞ7.5 from Ref. [36] using a family of EOSs
constructed that interpolate between a chiral effective theory
EOS below saturation density and a perturbative QCD EOS
at high densities. The green-solid line stands for the empirical
function of Λ1.4 ¼ 1.53 × 10−5ðR=kmÞ6.83 from Ref. [42]
analyzing a fully comprehensive set of relativistic nuclear
mean field theories. The red-solid line is the empirical
function of Λ1.4 ¼ 1.41 × 10−6ðR=kmÞ7.71 from Ref. [43]
using the EOS of symmetric nuclear matter. And the
magenta-solid line shows the empirical function of Λ1.4 ¼
5.22 × 10−5ðR=kmÞ6.35 from Ref. [44] via several nucleonic
EOSs with a nucleon-quark phase transition.
For neutron stars, the LIGO-Virgo measurement can give

a limit of radii via the correlation functions. The 90% limit

of Λ1.4 < 800 lead to an upper limit of R1.4 < 13.6 km (the
blue-solid line), R1.4 < 13.49 km (the green-solid line),
R1.4 < 13.66 km (the red-solid line), R1.4 < 13.54 km (the
magenta-solid line).
For strange quark stars, Λ1.4 also exhibits a very strong

correlation withR1.4, and it is natural that strange quark stars
with larger radius have largerΛ, forΛ quantifies thedeviation
of the stellar gravitational field from that of a point-like
object. Obviously, theΛ-R correlation of strange quark stars
is quite different from that of neutron stars. The tidal
deformabilities of 1.4M⊙ strange quark stars are larger than
that of the neutron stars with the same radius. The reason is
that there is finite large energy density at the surface of
strange quark stars, which makes the y term of strange quark
stars in Eq. (21) much smaller than that of neutron stars, see
Eq. (24), and ends up to k2 of strange quark stars much larger
than that of neutron stars. This feature might be used to
distinguish strange quark stars from neutron stars.
We now consider the combined tidal deformabilities of

two compact stars in the binary inspiral. For the chirp mass
enters the phase evolution at the lowest order, it is the best
measured parameter for systems displaying a long inspiral,
which reads

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

; ð25Þ

where m1 and m2 are the masses of the two compact stars.
And to the leading order in tidal deformabilities, the
gravitational-wave phase is determined by the combination:

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
; ð26Þ

FIG. 3. Λ-R correlation for 1.4 M⊙ strange quark stars.
The purple-solid line stands for the empirical function in
this work: Λ1.4 ¼ 2.86 × 10−5ðR=kmÞ6.92. The other lines
show the empirical functions for model calculations of neutron
stars: Λ1.4 ¼ 2.88 × 10−6ðR=kmÞ7.5 (the blue-solid line), Λ1.4 ¼
1.53 × 10−5ðR=kmÞ6.83 (the green-solid line), Λ1.4 ¼ 1.41×
10−6ðR=kmÞ7.71 (the red-solid line), and Λ1.4 ¼ 5.22 ×
10−5ðR=kmÞ6.35 (the magenta-solid line).

TIDAL DEFORMABILITIES AND RADII OF STRANGE QUARK … PHYS. REV. D 104, 043002 (2021)

043002-5



where Λ1 and Λ2 are the tidal deformabilities of the two
compact stars.
Assuming low spin priors for the two compact stars in

the analysis of GW170817 [12], the chirp mass is
M ¼ 1.186þ0.001

−0.001 M⊙, the component masses are m1 ∈
½1.36; 1.60� M⊙ and m2 ∈ ½1.16; 1.36� M⊙, and the mass
ratio is η ¼ m2=m1 ∈ ½0.72; 1.0�.
We can see clearly from Fig. 4 that the combined tidal

deformability Λ̃ is amonotonically increasing function of the
mass ratio η, but the slope is very small. The ratio of Λ̃jη¼0.72

to Λ̃jη¼1.0 is about93.38% ∼ 93.58%. ForM ¼ 1.186, when
η ¼ 1.0, one can getm1 ¼ m2 ¼ 21=5M ¼ 1.36M⊙, hence,
Λ̃ should be smaller thanΛjm¼1.36 M⊙

. This conclusion is very

useful for us to predict the upper bound of Λ̃ in the case
of GW190425. All of the Λ̃s calculated by the astrophysi-
cally compatible EOSs here are staying below the upper
bound of Λ̃ < 900 (90% credible interval) [37].
The two tidal parameters Λ1 and Λ2 are also shown in

Fig. 5 with the 50% and 90% probability contours for the
tidal deformabilities of the two stars measured by LIGO
and Virgo. The purple-dashed line and the purple-solid line
stand for the 50% and 90% probability contours given in
Fig. 5 of Ref. [12], respectively. The orange-dashed line
and the orange-solid line represent the 50% and 90%
probability contours given in Fig. 10 of Ref. [37], respec-
tively. Both of them are for the waveform models of
TaylorF2. The orange lines are calculated using a lower
starting frequency of 23 Hz instead of 30 Hz, resulting in
the upper bounds of Λ1 and Λ2 are about 20% smaller than
the purple lines. All of the astrophysically compatible
EOSs stay inside of the 90% probability contour from
Ref. [12], while more than half of the astrophysically
compatible EOSs stay inside of the 90% probability
contour from Ref. [37].
Assuming low spin priors for the two compact stars

in the analysis of GW190425 [40], the chirp mass is

M ¼ 1.44þ0.02
−0.02M⊙, the component masses are m1 ∈

½1.60; 1.87�M⊙ and m2 ∈ ½1.46; 1.69�M⊙, and the mass
ratio is η ¼ m2=m1 ∈ ½0.8; 1.0�. The combined tidal
deformabilities Λ̃s as a function of mass ratio η are shown
in Fig. 6. Here, the ratio of Λ̃jη¼0.8 to Λ̃jη¼1.0 is about
96.48% ∼ 96.95%, which is larger than that in the case of
GW170817. Hence the difference between Λ̃jη¼0.8 and
Λ̃jη¼1.0 is smaller than that in the case of GW170817.
For M ¼ 1.44, when η ¼ 1.0, one can obtain
m1 ¼ m2 ¼ 21=5M ¼ 1.65M⊙, hence, Λ̃ should be smaller
than Λjm¼1.65 M⊙

. The upper bound of Λ̃ can be obtained by
calculating the maximum value when η ¼ 1.0, while the
lower bound of Λ̃ can be obtained by calculating the
minimum value when η ¼ 0.8. Finally, we can obtain
that the range of Λ̃ calculated from the astrophysically

FIG. 4. Combined tidal deformability Λ̃ as a function of η
calculated for the case of GW170817 by the EOSs with
MTOV > 2.0 M⊙. The gray-dashed line stands for Λ̃ ¼ 900.

FIG. 5. ðΛ1;Λ2Þ obtained for the case of GW170817. The
purple-dashed line and the purple-solid line stand for the 50% and
90% probability contours given in Fig. 5 of Ref. [12], respec-
tively. The orange-dashed line and the orange-solid line represent
the 50% and 90% probability contours given in Fig. 10 of
Ref. [37], respectively.

FIG. 6. Combined tidal deformability Λ̃ as a function of η
calculated for the case of GW190425 by the EOSs with
MTOV > 2.0 M⊙. The gray-dashed line stands for Λ̃ ¼ 310.05,
which is the maximum value when η ¼ 0.8.
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compatible EOSs for GW190425 is 184.81 < Λ̃ < 320.08,
which satisfies the constraint Λ̃ < 600 that reported in
Ref. [40]. The two tidal parameters Λ1 and Λ2 are also
shown in Fig. 7.

IV. SUMMARY

The tidal deformabilities and radii of strange quark stars
are calculated via the quasiparticle model which includes
the nonperturbative features of QCD in the low-density
region. Our results show that the mass constraint 2.0M⊙
rules out the EOSs which are soft at low densities, while the
constraint on the tidal deformability of Λ1.4 < 800 rules out
the EOSs which are too stiff in the low density region.
The ranges of the radii of 1.36 M⊙, 1.16 M⊙, and 1.6M⊙

strange quark star are 11.04 km < R1.36 < 11.91 km,
10.62km<R1.16<11.48km, and 11.42 km < R1.6 <
12.26 km, respectively. These results show a little bit
narrower range of the radius of strange quark stars across
all mass priors in GW170817 than that given in Ref. [38].
And our results also show that the ranges of the radii
of 1.46M⊙, 1.69M⊙, and 1.87M⊙ (mass bounds in
GW190425) strange quark star are 11.22 km < R1.46 <
12.07 km, 11.51 km < R1.69 < 12.35 km, and 11.56 km <
R1.87 < 12.53 km, respectively.
Λ1.4 has a strong correlation with R1.4 for strange quark

stars, and the empirical correlation function is Λ1.4 ¼
2.86 × 10−5ðR=kmÞ6.92. The range for the radius of a
1.4M⊙ strange quark star is 11.12km<R1.4<11.98km.
Λ1.4 of strange quark stars is much larger than that of
neutron star with the same radius, for there is finite large
energy density at the surface of strange quark stars. This
feature could be used to distinguish strange quark stars

from neutron stars. The lower bound of Λ1.4 > 513.66 is
also obtained for strange quark stars.
Λ̃ is a monotonically increasing function of η, but the

slope is very small. Assuming low spin priors for the two
compact stars in the analysis of GW170817, the ratio of
Λ̃jη¼0.72 to Λ̃jη¼1.0 is about 93.38% ∼ 93.58% and Λ̃ should
be smaller than Λjm¼1.36M⊙

. All of the Λ̃s calculated by the
astrophysically compatible EOSs are staying below the
upper bound of Λ̃ < 900 (90% credible interval). The two
tidal parameters Λ1 and Λ2 are also shown in Fig. 5 with
the 50% and 90% probability contours for the tidal
deformabilities of the two stars measured by LIGO
and Virgo. All of the astrophysically compatible EOSs
stay inside of the 90% probability contour from Ref. [12],
while more than half of the astrophysically compatible
EOSs stay inside of the 90% probability contour from
Ref. [37].
Assuming low spin priors for the two compact stars in

the analysis of GW190425, the ratio of Λ̃jη¼0.8 to Λ̃jη¼1.0 is
about 96.48% ∼ 96.95%, which is larger than that in the
case of GW170817. The difference between Λ̃jη¼0.8 and
Λ̃jη¼1.0 is smaller than that in the case of GW170817. and Λ̃
should be smaller than Λjm¼1.65M⊙

. The range of Λ̃ for
GW190425 obtained from the astrophysically compatible
EOSs is 184.81 < Λ̃ < 320.08. The two tidal parameters
Λ1 and Λ2 are also shown in Fig. 7.
While studying a strange quark star composed of u, d,

and s quarks, if the number densities of the three quarks
satisfy ρu ¼ ρd ¼ ρs, then this strange quark star is electri-
cally neutral. Actually, for the mass of s quark is larger than
that of u and d quarks, the electrons should come up with
number density ρe¼αðρuþρdþρsÞ where α≃10−5∼10−4.
The Fermi energy of the electrons is smaller than the mass
of muon, and the number density of leptons is very small.
Hence, even if we include muons at high energy density, the
picture we discussed in this paper will not change.
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