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We present BAJES, a parallel and lightweight framework for Bayesian inference of multimessenger
transients. BAJES is a PYTHON modular package with minimal dependencies on external libraries adaptable
to the majority of the Bayesian models and to various sampling methods. We describe the general workflow
and the parameter estimation pipeline for compact-binary-coalescence gravitational-wave transients. The
latter is validated against injections of binary black hole and binary neutron star waveforms, including
confidence interval tests that demonstrate the inference is well calibrated. Binary neutron star postmerger
injections are also studied using a network of five detectors made of LIGO, Virgo, KAGRA, and Einstein
Telescope. Postmerger signals will be detectable for sources at ≲80 Mpc, with Einstein Telescope
contributing over 90% of the total signal-to-noise ratio. As a full scale application, we reanalyze the
gravitational-wave transients catalog-1 black hole transients using the effective-one-body TEOBResumS

approximant and reproduce selected results with other approximants. BAJES inferences are consistent with
previous results; the direct comparison of BAJES and BILBY analyses of GW150914 shows a maximum
Jensen-Shannon divergence of 5.2 × 10−4. GW170817 is reanalyzed using TaylorF2 with 5.5PN point mass
and 7.5PN tides, TEOBResumSPA, and IMRPhenomPv2_NRTidal with different cutoff frequencies of 1024 and
2048 Hz. We find that the former choice minimizes systematics on the reduced tidal parameter, while a
larger amount of tidal information is gained with the latter choice. BAJES can perform these analyses in
about 1 day using 128 CPUs.
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I. INTRODUCTION

Bayesian inference has become a standard method for
the analysis of astrophysical and cosmological events, e.g.,
[1–5], since it offers a generic statistical framework to
rigorously test hypothesis against observational information.
Given a set of parametric models (hypothesis) and assump-
tions on the parameters (prior), Bayesian inference allows
one to infer the parameters in terms of probability distribu-
tions and also to select the best-fitting model among
competing hypotheses. In particular, Bayesian methods
are central tools used in gravitational-wave (GW) astronomy
to determine the source properties of an observed signal
[6–8] and the related applications. Some examples are tests of
general relativity [9,10], astrophysical population studies
[11], inferences of the neutron star matter properties [12] and
cosmology [13,14]. Furthermore, Bayesian inference offers
the optimal framework to combine different observational
datasets from multimessenger astronomical observations,
like GW170817 and the electromagnetic (EM) counterparts
[15–22]. Multimessenger inference of astrophysical phe-
nomena such as binary neutron star (BNS) mergers is a
fundamental resource to clarify the mechanism at the origin
of the radiation, to obtain accurate inferences on the proper-
ties of the source, and to improve theoretical models gaining
information from observational data (e.g., [23–25]).

In the last years, many efforts have been made by the
scientific community in the development of sophisticated
parameter inference tools for astronomical observations. In
the context ofGWdata analysis, LALSuite [26] is the official
software provided by the LIGO-Virgo Collaboration [27,28]
and it offers a variegated framework for generic analysis of
GW data. Other mature software for parameter estimation of
GW transients are also available; some examples are the
semianalytical integrator RIFT [29,30], the user-friendly
library BILBY [31], and the inference module of the PYCBC

package [32]. Bayesian software for parameter inference of
other astrophysical transients have also been developed, such
as tools for high-energy photons from compact objects and
galaxy clusters [33–35], neutrino radiation [36], supernovae
transients [37–39], pulsar arrival timings [40–42], and for
cosmological inferences [43–46]. Current pipelines for the
analysis of astrophysical and cosmological observations are
targeted to specific applications. However, within a multi-
messenger framework, it is essential to develop a flexible
pipeline capable of combining different datasets and physical
models. This issue can be tackled allowing the infrastructure
to merge different Bayesian models, extending the consid-
ered parameter space and generalizing the definition of the
likelihood function. This implies the use of large amounts of
data and computationally expensive models. It follows that
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efficient parallelization techniques and well-calibrated pro-
posal methods are necessary to optimize the performances of
such a flexible pipeline.
In this work, we present BAJES [baIεs], a PYTHON

package for Bayesian inference developed at Friedrich-
Schiller-Universtät Jena. Our goal is to provide a simple,
complete, and reliable implementation capable to robustly
perform Bayesian inference on arbitrary sets of data, with
specific functionalities for multimessenger astrophysics.
The software is designed to be state of art, simple to use,
and light weighted with minimal dependencies on external
libraries. The paper is structured as follows. In Sec. II, we
recall the basic concepts of Bayesian theory of probability.
In Sec. III, we describe the design and the workflow of the
BAJES software. Section IV describes the tools and the
methods implemented in BAJES for the analysis of GW
transients, including the available templates. In Sec. V, we
describe the GW pipeline and the Bayesian framework of
the GW model. In Sec. VI, we present a survey of injection
studies and validation tests performed with artificial binary
merger signals. Section VII shows the results of the BAJES

pipeline on the GW events observed by the LIGO-Virgo
interferometers [1,47]. Finally, we conclude in Sec. VIII.
The paper concludes with Appendixes on the implemented
sampling methods, the proposal methods, and a simple use
example.

II. BAYESIAN INFERENCE

The task of a Bayesian inference is the formulation and
the computation of conditional probabilities. It is possible
to classify this topic in two main problems: parameter
estimation (PE) and model selection (MS). With PE, we
mean the evaluation of the characteristic distribution for the
parameters that define the model of interest. On the other
hand, with MS we refer to the discrimination between
competing models in light of the data, comparing the
suitability of different assumptions directly on the obser-
vation. In order to discuss how these tasks are achieved,
in the following sections we recall the basic concepts of
Bayesian theory of probability. By convention, we label the
natural logarithm as log throughout all the paper.

A. Bayes’ theorem

Given a set of observed data d and a set of parameters θ,
that characterizes our model within some background
hypothesis H, it is possible to estimate the posterior
distribution for θ using the Bayes’ theorem [48–50],

pðθjd; HÞ ¼ pðdjθ; HÞpðθjHÞ
pðdjHÞ ; ð1Þ

where pðdjθ; HÞ is the likelihood function, pðθjHÞ is the
prior distribution, and pðdjHÞ is the evidence. The like-
lihood function describes the probability of observing the

data d given θ and assuming that the hypothesis H is true.
Therefore, it encodes the observational information and
it predicts the agreement between the observed data d and
the expected outcome for every given sample θ of the
parameter space. The prior distribution pðθjHÞ depicts the
knowledge on the parameters before performing the esti-
mation. Usually, the functional form of this term is chosen
in accordance with geometrical and/or physically motivated
argumentation. The term pðdjHÞ is labeled as evidence and
it represents the probability of observing the data d given
the hypothesis H. The evidence is also called marginalized
likelihood since, according to the marginalization rule, it
can be expressed as

pðdjHÞ ¼
Z
Θ
pðdjθ; HÞpðθjHÞdθ; ð2Þ

where the integral is extended over the entire parameter
spaceΘ. Subsequently, the posterior distribution pðθjd; HÞ
represents the probability of the parameters θ in light of the
data overhauled by our a priori information. The knowl-
edge of pðθjd; HÞ allows us to compute the expectation of
the statistical quantities of interest. For example, the mean
values E½θ� can be estimated as

E½θ� ¼
Z
Θ
θpðθjd; HÞdθ; ð3Þ

and, analogously, it is possible to infer the expectation of a
generic function of the parameters θ,

E½fðθÞ� ¼
Z
Θ
fðθÞpðθjd; HÞdθ: ð4Þ

From this argumentation it follows that, in order to perform
PE, we have to introduce a prior distribution pðθjHÞ and a
likelihood function pðdjθ; HÞ; then, the properties of the
model are encoded in the posterior distribution pðθjd; HÞ
that can be computed imposing Eq. (1).

B. Model selection

In Eq. (1), for a fixed set of assumptions H, the evidence
acts like a normalization constant; however, this quantity
plays a crucial role in the context of MS. If we are interested
in comparing two competing hypotheses, HA and HB,
quantifying which one is better explaining the data, in the
Bayesian framework it is natural to introduce the odds ratio,

OB
A ¼ pðHBjdÞ

pðHAjdÞ
¼ pðHBÞ

pðHAÞ
pðdjHBÞ
pðdjHAÞ

: ð5Þ

The term pðHijdÞ represents the posterior probability
for the ith hypothesis given the observed data and the
ratio OB

A encodes the will of the data in favoring one model
over another. Assuming that the two hypotheses are
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equiprobable pðHBÞ ¼ pðHAÞ, it is possible to reduce the
computation to the ratio of the evidences, also known as
Bayes’ factor,

BB
A ¼ pðdjHBÞ

pðdjHAÞ
: ð6Þ

If BB
A < 1, then the hypothesis A is preferred by the data;

otherwise, B is favored if BB
A > 1. However, this rule is not

always straightforward since the estimation of the Bayes’
factor might suffer from uncertainties [51,52]. Then, in a
realistic scenario, more stringent bounds are required in
order to prefer a hypothesis [53].

C. Joint distributions

Let us assume that we performed two independent
observations, d1 and d2, and each of them can be modeled
using two sets of parameters, respectively, θ1 and θ2. In
general, it is possible to apply Bayes’ theorem, Eq. (1),
separately to every set of measurements. However, if the
two events are not independent (e.g., the same physical
process observed by two different observatories), the joint
posterior distribution can be written as

pðθ1;θ2jd1;d2;HÞ¼pðd1;d2jθ1;θ2;HÞpðθ1;θ2jHÞ
pðd1;d2jHÞ ; ð7Þ

where pðd1;d2jθ1; θ2; HÞ is the joint likelihood function
and pðθ1; θ2jHÞ is the joint prior distribution. If the
employed set of parameters θ1 and θ2 are independent,
the joint probabilities simply correspond to the product of
the single probability terms. However, if θ1 and θ2
correlate, the problem could easily become nontrivial;
e.g., the intersection between the two parameter spaces
Θ1 ∩ Θ2 could be not empty, or the value of the two sets of
parameters could be related with each other θi ≡ θiðθjÞ, or
unexpected correlations might appear introducing a larger
parameter space.

D. Samplers

In a realistic scenario, the form of the likelihood function
is not always analytically determinable and the parameter
space has usually a large number of dimensions. For these
reasons, the evaluation of the posterior distribution and the
estimation of its integral are performed with stochastic
techniques. In particular, sampling methods have proven to
be reliable and generic tools for the analysis of non-
analytical forms and multidimensional parameter spaces
[7,46,54,55], capable to give robust and stable results.
Markov-chain Monte Carlo (MCMC) methods are suit-

able tools to perform PE, exploring the parameter space
through random walks and collecting samples along the
evolution. Subsequently, the posterior distribution is esti-
mated using the set of independent samples of the

parameter space. Nevertheless, the nested sampling [56]
is an advanced algorithm capable to extract posterior
samples and perform accurate estimation of the evidence,
which is the key quantity for MS. In order to solve this task,
each sample is assumed to be the representative of a
isoprobability contour. Then, the evidence is computed
as the sum of the likelihood values weighted on the
respective prior volume, estimated resorting to Bayesian
calculations. The details of the sampling methods are
discussed in Appendixes A and B.

III. DESIGN OF THE CODE

BAJES is a pure PYTHON software that aims to provide a
versatile and robust framework for generic Bayesian
inference within a simple and clear approach. In order to
achieve this task, the software relies on a modular and
composed architecture and it implements logically special-
ized objects. Furthermore, we decide to keep a light-weight
setup with minimal dependencies on external libraries.
These properties make BAJES a simple and general tool with
a wide range of applicability. The body of the BAJES

software is constituted by two components: the INF module,
which represents an implementation of the Bayesian logic,
and the OBS module, which contains the tools to manage
and process physical data.
The INF module is the Bayesian skeleton of the software

and contains the methods required to instantiate the model
to be inferred. Section III A describes the tools imple-
mented in BAJES.INF and the general workflow of the
module. The Bayesian approach is constituted by three
fundamental stages [57]: formulating a model, comparing
the model with the data, and inferring the properties of the
model. The goal of the INF module is to provide a flexible
and general interface capable to adapt itself to a broad
variety of problems. This structure promotes usability and
applicability, supplying a comprehensive and unique archi-
tecture that allows the user to tackle specific problems. In
order to enforce these concepts, the software is developed
promoting an intuitive manageability and the simplicity of
use: providing the necessary basic information, the user can
easily set up a full Bayesian analysis. Appendix D shows an
example of a practical PE analysis with BAJES tools.
In the context of data analysis, the statistical infra-

structure has to be flanked by the physical characterization
of the experimental data with the purpose of defining a full
Bayesian model. This is necessary in order to connect the
statistical properties with the actual observable quantities.
Obviously, the specific physical model to be used depends
on the nature of the analyzed data, on the assumptions
made to build the model, and, in general, different physical
events will require tailored treatments and specialized tools.
To address this, BAJES provides the OBS module, which is a
container of methods needed to characterize and handle
specific physical observations. This module is designed
aiming to the analysis of GWs and EM counterparts.
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Currently, BAJES.OBS includes two submodules: GW and
KN. The GW module contains the tools necessary to deal
with GW analysis and it is described in Sec. IV. The KN

module supplies a framework for the analysis of kilonovae
light curves generated by BNS collisions, following our
early work [25]. The implementation of the KN module is
inspired by the approach presented in Refs. [25,58] and it
will be detailed in a follow-up work.

A. Workflow

In order to fulfill the generic tasks of Bayesian inference,
BAJES provides the tools necessary to instantiate a Bayesian
model [59] and to extract the statistical quantities of
interest, such as posterior distribution or evidence.
The BAJES.INFmodule supplies a PRIOR and a LIKELIHOOD

objects, and their combination defines the Bayesian model.
The PRIOR provides the implementation of a generic prior
distribution: this object can be instantiated with list of
PARAMETER, which will define the parameter space of the
model. It is also possible to introduce constant and variable
quantities to be carried along the sampling. Subsequently,
it is possible to introduce a likelihood function customizing
the specific LOG_LIKE method of a LIKELIHOOD object.
Furthermore, BAJES implements JOINTPRIOR and
JOINTLIKELIHOOD objects in order to handle joint posterior
distributions. Additionally, planned extensions include hier-
archical models (e.g., [38,60]) and Bayesian methods to deal
with error propagation.
Once the Bayesian model is defined, it is possible to fit

the model to the data estimating its properties. The INF

module provides a SAMPLER method that wraps the
provided model and initializes the requested sampling
algorithm. As mentioned in Sec. II D, the sampler explores
the parameter space aiming to reconstruct the posterior
distribution. In order to conduct an accurate analysis, the
SAMPLER objects rely on auxiliary functions such as the
proposal methods described in Appendix C: these are
statistical techniques that aim to extract independent
samples and to conduct the sampler toward more likely
regions of the parameter space (see Appendixes A and B).

When the Sampler completes the analysis, the algorithm
returns the conditioned probability of interest and the
properties of the model can be inferred. This information
allows us to compute the statistical quantities that charac-
terize the model and make it possible to test competing
hypotheses and verify different assumptions. Moreover,
from these results it is possible to understand the limits
of the involved description; then, in general, the model can
be improved and the workflow can be iterated with the
reviewed model, improving the understanding and the
modeling of the observed event. Figure 1 shows a sche-
matic representation of the described workflow.

B. Parallelization

By default, BAJES analyses can be performed taking
advantage of the parallel-threading multiprocess PYTHON

library. However, with this method, the number of available
processes is strictly limited by the size of the single
machine and for nontrivial problems this could be a strong
limitation. For this reason, the BAJES software implements a
customized method for multinodes communication based
on the message passing interface (MPI) protocol.
For ideal scaling, the execution time of a machine

computation is inversely proportional to the number of
central processing units (CPUs) that leads to a linearly
increase of the speed-up. However, in a realistic scenario,
the scaling performances of sampling techniques are
affected by unavoidable computational steps serially per-
formed (e.g., temperature swapping in parallel chains
and live points collection of nested sampling) and by the
continuous exchange of information between different
processes, required to adapt the evolution of the algorithm.
MCMC and nested sampling algorithms require separate

treatments. The performances of MCMC sampling are
typically quantified in terms of proposal acceptance and
correlation length of the chains [7,61–65], and generally
the overall execution time is determined by several con-
tributions, such as the total number of chains, the complex-
ity of the parameter space, and the employed proposal
techniques. Estimations of MCMC execution times [66–68]

Data

Estimation Inference

Improve description

Formulation

PriorLikelihood

Hypothesis

Sampler

Proposal

Posterior
Evidence

Compare assumptions

Infer properties

Parameters

FIG. 1. Schematic representation of the workflow described in Sec. III A. The scheme highlights the three stages of the Bayesian
formalism: formulation of the model, fitting the model to the data, and inference of the model properties. The gray box constituted by
likelihood function and prior assumptions represents the Bayesian model to be inferred. The dashed back-propagating line refers to the
case in which the analysis is iterated with an improved description.
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have shown that the efficiency drastically decreases for an
increasing number of parallel chains. On the other hand, the
parallelization performances of the nested sampling are
well studied [46,69–72] and the theoretical speed-up factor
SNS of this algorithm is expressed as a sublinear scaling,

SNSðnlive; ncpuÞ ¼ nlive · log

�
1þ ncpu

nlive

�
: ð8Þ

For nlive ≫ ncpu, the values predicted by Eq. (8) are
comparable with a linear trend.
Figure 2 shows the measured speed-up factors in the

execution time as a function of the number of CPUs for
different samplers and different parallelization methods.
The speed-up factors are computed with respect to the
execution time measured from the serial job. The execution
times are estimated from the BAJES GW pipeline (see
Sec. V) using GW150914 [73] as target signal (see

Sec. VII A). Moreover, Fig. 2 shows the respective effi-
ciency rates that encode the deviation from the ideal linear
scaling. The efficiency is computed as the percentage ratio
between the measure speed-up factor and the number of
employed CPUs. Ideal linear scaling has an efficiency
of 100%.
For the parallel-temperedMCMC (PTMCMC) algorithm

implemented in BAJES, we estimate the speed-up perform-
ing 103 iterations with 128 × 4 tempered chains, while, for
nested sampling, we employ the dynesty software with
1024 live points and tolerance equal to 0.1. The PTMCMC
is not optimal in terms of execution-time scaling, mainly
due to the serial swapping routine. However, it gives
acceptable scaling performances with efficiency ≳40%
up to ncpu ≃ 16 using multithreading methods. The results
with MPI are worst compared to multithreading due to the
data communication.
Regarding the nested sampling, for a very small number

of processes, roughly ncpu ≲ 2, the multithreading method
gives more efficient results, since the MPI protocol requires
additional time for data communication. For an increasing
number of CPUs, roughly ncpu ≳ 6, the two parallelization
methods give comparable results. However, the strength of
MPI parallelization is the capability of accessing multiple
CPUs located in different physical machines: the MPI
interface implemented in BAJES gives an efficiency greater
than 70% up to ncpu ≃ 100, which is the typical size of
standard PE job.

C. Dependencies

The BAJES software is compatible with PYTHON 3.7 or
higher versions, and it can be easily installed using the
standard PYTHON setup tools. It relies on essential modules,
preferring those that can be easily installed via pip. The
BAJES software mandatory requires the following libraries:
NumPy [74] for algebraic computations and array managing,
SciPy [75] for advanced mathematical tools, and ASTROPY

[76] is invoked for astrometric computations. However, in
order to execute the pipeline supplied with BAJES (see
Sec. V), other libraries might be required: GWPY [77,78] is
used to access the gravitational-waves open science center
(GWOSC) archive [47,79,80], MATPLOTLIB [81] and
CORNER [82] are employed for plotting. Moreover, if the
MPI parallelization is requested, the software needs the
installation of the MPI4PY library [83–85].
In order to perform the sampling, BAJES implements a

PTMCMC algorithm based on PTEMCEE [65] or can use
additional external packages. In particular, we interface the
MCMC EMCEE [63] and the nested sampling algorithms of
CPNest [86] and DYNESTY [87].

IV. GRAVITATIONAL WAVES

The BAJES.OBS.GW module contains the functions
and the tools needed to deal with GW transients that are

FIG. 2. Scaling plot for the BAJES pipeline (see Sec. V). Top
panel: the square markers are the measured speed-up factors with
respect to the serial execution time. The execution times for the
PTMCMC (orange squares) algorithm are estimated performing
103 iterations with 128 × 4 tempered chains. The nested sampling
execution times (pink squares for multithreading and green
squares for MPI) are computed employing the dynesty software
with 1024 live points and tolerance equal to 0.1. The blue solid
line is the ideal linear scaling and the yellow solid line is the
theoretical scaling of nested sampling. Bottom panel: same
quantities discussed in the previous panel expressed in terms
of efficiency.
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mainly provided by signal processing and matched-filtered
techniques [8].
Ground-based GW detectors measure the local pertur-

bations of the spacetime as time series. Then, if we can
believe that a physical GW transient is recorded in the data,
the detector output dðtÞ is assumed to be the sum of the
noise contribution nðtÞ and the GW strain sðtÞ, such as

dðtÞ ¼ nðtÞ þ sðtÞ: ð9Þ

If nðtÞ respects the conditions of Gaussianity and statio-
narity and if we dispose of a template hðtÞ able to reproduce
the real signal sðtÞ, then it is possible to filter out the noise
contribution revealing the presence of a signal in the
observed data. It is useful to introduce the inner product
between two time-domain series, aðtÞ and bðtÞ, as

ðajbÞ ¼ 4ℜ
Z

∞

0

a�ðfÞbðfÞ
SnðfÞ

df; ð10Þ

where aðfÞ is the Fourier transform of the time series aðtÞ,

aðfÞ ¼
Z þ∞

−∞
aðtÞe−2πiftdt; ð11Þ

and analogously for bðfÞ, while SnðfÞ is the power spectral
density (PSD) of the noise nðtÞ.
In order to perform inference on GW data, it is necessary

to provide an infrastructure capable to process data seg-
ments, characterize the noise contamination, localize
sources and detectors, and to generate waveform templates.
In the following sections, we discuss how these tasks are
achieved by the OBS.GW module.

A. Time and frequency series

A realistic portion of data measured by an interferometer
is a time series with constant sampling rate Fs and finite
duration T. The restriction to a finite domain leads to
approximate Eqs. (10) and (11) numerically, taking the
advantage of the fast Fourier transform (FFT) algorithm
[88].Within this framework, the time stepΔt ¼ 1=Fs and the
duration T of the time-domain series are reflected in the
spacing Δf ¼ 1=T of the frequency bins and in the maxi-
mum frequency accessible from the data fNyq ¼ Fs=2,
known as Nyquist’s frequency. Then, we can approximate
Eq. (10) as

ðajbÞ ≈ 4

T
ℜ
X
i

a�ðfiÞbðfiÞ
SnðfiÞ

; ð12Þ

where fi ¼ i · Δf and the index i takes integer values from 0
to FsT=2. Generally, this summation is performed on a
restricted frequency band, identified by a lower and an upper
cutoff frequencies, respectively, fmin and fmax, in order to
neglect irrelevant portion of the spectrum. From Eq. (10), or

its approximation Eq. (12), it is possible to introduce the
signal-to-noise ratio (SNR) as

ρ ¼ ðdjhÞffiffiffiffiffiffiffiffiffiffiffiðhjhÞp ; ð13Þ

which estimates the power of the signal hðtÞ enfolded in the
data dðtÞ weighted on the variance of the background noise.

BAJES implements a SERIES object designed to manage
time-domain and frequency-domain series. This instance
stores the input series and it computes the FFT (or the
inverse FFT) of the given data in order to provide both
representations of the series. The SERIES object supplies
also an interface capable to perform tapering, filtering, and
padding of the input series: we make use of the Tukey
window for the tapering, while the filtering is performed
using a Butterworth filter. Furthermore, the SERIES object
implements a summation and a product between objects
of the same type, defined in the frequency domain, and
contains methods to compute inner products and SNRs.

B. Noise characterization

As shown in Eq. (9), the measured data dðtÞ are
intrinsically related with the noise fluctuations nðtÞ. The
noise of a GW detector is represented by stochastic
fluctuations [8] that propagate to the output. The primary
noise sources in a ground-based interferometer are gravity
gradients and seismic motions [89–91], thermal agitation
[92,93], quantum perturbations [94,95], and internal opto-
mechanical resonances [96,97]. Moreover, the time series
recorded by a GW detector are also affected by external
nongravitational signals [98], such as the ac power grid
transmission responsible for the 60 Hz peak of LIGOs and
the 50 Hz one of Virgo. The noise fluctuations are assumed
to be Gaussian distributed and stationary on a relatively
large timescale [8]. Then, the PSD shows the distribution of
the noise power for every frequency component and it can
be computed as

E½jnðfÞj2� ¼ T
2
SnðfÞ; ð14Þ

where the expectation is computed with the temporal
average over a period T. In other words, the PSD character-
izes the uncertainty of the observed data in frequency
domain as the variance of the associated noise spectrum.
The amplitude spectral density (ASD) is usually defined as
the square root of the PSD,

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
.

The PSD is a key quantity in order to estimate the
product Eq. (10), since it describes the weight of each
frequency component. It follows that a full characterization
of the noise sources and a proper estimation of its
contribution are essential in order to perform accurate
measurements of GW transients. A general tool for
estimating PSD is the Welch’s method [99], consisting
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in the average of the spectral densities computed on chunks
of the full noise segment. However, this is not the only
technique suitable for this task [100,101].
Aiming to data analysis purposes, BAJES implements a

NOISE object. This component is capable to estimate the
PSD of a given noise time-domain series using the Welch’s
method, generate an artificial segment of stationary and
Gaussian noise from a given PSD, and it disposes of
methods for PSD interpolation. Figure 3 shows a com-
parison of artificial noise segments generated with BAJES

and with the PyCBC routines [32,102–104], where the total
length of the artificial segment is 1024 s. The histograms
and the PSDs show that the generated noise fluctuations
respect the conditions of Gaussianity and stationarity with a
frequency spectrum described by the requested PSD.

C. Ground-based interferometers

The current ground-based observatories for GW detec-
tion are L-shaped Michelson interferometers with Fabry-
Perot cavities [106,107]. Each arm has a length of
L ≈ 3–4 km, depending on the actual detector [27,28],
and it is constituted of two mirrors acting like test masses.
The detector performs measurements of the gravitational
strain as a difference in length of the orthogonal arms,

dðtÞ ¼ ΔLðtÞ
L

; ð15Þ

where ΔL ¼ ΔLx − ΔLy is the difference between the
displacements along the two orthogonal arms. The projec-
tion of the signal on the detector can be computed from the
GW polarization components hþ;× as

hðtÞ ¼ DijhijðtÞ ¼ FþhþðtÞ þ F×h×ðtÞ; ð16Þ

whereDij is labeled as detector tensor and it depends on the
geometry of the interferometer, while Fþ;× are the antenna
pattern functions for each polarization. The antenna pat-
terns Fþ;× characterize the detector sensitivity in the
different regions of the sky for every given time [108].
Generally, in standard observing conditions, the observa-

tions of GW transients are performed simultaneously by a
worldwide network of ground-based interferometers.
Thanks to this, it is possible to correlate strains observed
independently in different locations, improving the estima-
tion of the astrophysical origin of the transients [109,110].
The necessity to localize a GW observatory in a fixed

frame arises in order to project the expected signal on the
detector and to estimate the light travel time from each
detector in the network. For these tasks, BAJES disposes of a
DETECTOR class able to characterize a ground-based inter-
ferometer. This object is identified with the coordinates
of the site of the interferometer (latitude, longitude, and
altitude) and the angles of the two arms (azimuth and tilt).
It is also possible to initialize the DETECTOR object to
precomputed detector configurations using the two-digits
string identifying a ground-based interferometer, e.g., H1
for LIGO-Hanford [27], L1 for LIGO-Livingston [27],
V1 for Virgo [28], G1 for GEO600 [106,111], K1 for
KAGRA [112,113], and ET for Einstein Telescope (con-
figuration D) [114,115].

D. Waveform templates

The last ingredient necessary to complete the framework
is a waveform template, i.e., a model able to compute the
expected representation of the signal hðt; θÞ (or hðf; θÞ)
for every given set of parameters θ. The WAVEFORM object
is a class that accesses the methods disposable in the
BAJES.OBS.GW.APPROX submodule and computes the
expected GW polarization components for every given
set of parameters. The frequency-domain waveform in
Eq. (16) can be written in terms of the amplitude AðfÞ
and the phase ϕðfÞ,

hðfÞ ¼ AðfÞe−i½ϕ0þ2πt0fþϕðfÞ�; ð17Þ
where ϕ0 and t0 are, respectively, phase and time
references.

BAJES directly implements and interfaces with all the
most advanced GW templates for quasicircular compact

FIG. 3. Top left panel: comparison of artificial noise segment
produced using BAJES (blue) and PyCBC (orange). The segments
are computed using LIGO design sensitivity P1200087 [105]
with a lower cutoff frequency at 20 Hz and a sampling rate of
4096 Hz. The panel shows a 2 s segment extracted from a
segment with total duration of T ¼ 1024 s. Top right panel:
histograms of the time-domain samples computed using the
whole artificial segment of length T ¼ 1024 s. Bottom panel:
ASDs reconstructed from the artificial noise segments using the
Welch’s method. The spectra are computed using the whole
segments with a chuck length of 4 s and an overlap fraction of
99%. The black dashed line represents the original ASD.
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binary mergers, and includes state-of-art templates for
eccentric and hyperbolic binary black hole (BBH) mergers
[116,117] as well as for BNS postmerger [118]. In
particular:

(i) TaylorF2: The post-Newtonian (PN) framework
[119–124] represents a milestone for the description
of the two-body problem. This approach solves the
dynamical evolution of a compact binary with a
perturbative method assuming low velocities and
weak field approximations, which are reflected in
the condition v ¼ ðπGMfÞ1=3 ≪ c, where v is the
characteristic velocity in the binary, M ¼ m1 þm2

is the total mass, and f is the GW frequency. The
exact analytic solution of the gravitational radiation
emitted by a point-particle compact binary is known
up to the 3.5PN order. BAJES also implements a
pseudo-5.5PN accurate description of the point mass
baseline, as derived in Ref. [125]. Pure tidal cor-
rections are implemented up to 7.5PN [126,127] and
include the recently computed tail terms (6.5, 7.5
PN) of [128], whereas spin-quadrupole terms are
included up to 3.5PN [129].

(ii) TEOBResumS: The effective-one-body (EOB) formal-
ism [130–138] is a Hamiltonian approach that
reduces the two-body problem to a single orbiting
object in an effective potential. TEOBResumS [139] is
an EOB approximant for spinning coalescing com-
pact binaries [140,141] (black holes or neutron stars)
inspiralling along generic orbits. It includes tidal
effects [142–144] and subdominant modes
[145,146] up to l ¼ 5, as well as a description of
precession-induced modulations up to merger [147].
When considering systems evolving along quasicir-
cular orbits, the computational performance of the
model is enhanced by means of a postadiabatic
description of the early inspiral [148]. Moreover, the
model includes the implementations of hyperbolic
encounters [117], eccentric mergers [116], and a
frequency-domain approximation valid for quasicir-
cular BNS coalescences, labeled as TEOBResumSPA

[149]. The model is publicly available at [150] and
used in BAJES from the provided PYTHON interface.

(iii) NRPM: BNSmerger remnants are expected to be loud
sources of GWs [151–153] that convey unique
information on the equation of state of hot matter
at extreme densities [12,154,155]. NRPM [118] is an
analytical model based on numerical relativity BNS
simulations. The model is tuned on a set of simu-
lations covering the range q ≤ 1.5 and Λ1;2 ≳ 400.
For smaller values of the tidal parameters, the model
is identically zero since it is not expected to have a
postmerger signal in these cases, due to prompt
black-hole formation [156–158]. NRPM is directly
implemented in BAJES and it can be attached to
the TEOBResumS premerger template, obtaining a

complete model for the gravitational radiation ex-
pected from BNS coalescences.

(iv) MLGW: Machine learning tools can be employed to
construct accurate representations of GW signals.
The MLGW package [159,160] takes advantage of
these methods to generate fast and reliable GW
templates for BBH coalescences. The model is
composed by contributions extracted with principal
component analysis and a linear combination of
regression models, which maps the orbital param-
eters of the black holes to the reduced representation
of the wave. A complete model includes two
principal component models, for both phase and
amplitude of the wave, and a mixture of regression
models for each of the principal components con-
sidered. The algorithm is trained on time-domain
models and tested only for aligned-spin BBHs.
Currently, the released software provides the repre-
sentations of EOB templates, TEOBResumS [139] and
SEOBNRv4 [161].

(v) GWSURROGATE: The templates provided by the
GWSURROGATE package [162] implements fast
waveforms based on reduced-order models [163]
trained on numerical relativity simulations. The
NRSur7DQ4 model [164] is a precessing extension
of the model presented in Ref. [165] trained on a set
of simulations with q ≤ 4 and χ1, χ2 ≤ 0.8 that
contains all higher-order modes with l ≤ 4. On the
other hand, NRHYBSUR3DQ8 [166] and its tidal
version [167] are calibrated using hybridized wave-
forms in order to increase the number of orbits of the
training templates, improving the quality of the
approximation. This model is tuned in a wider range
in the mass ratio, q ≤ 8, but it does not include
precession contributions.

(vi) LALSimulation: The LIGO Algorithm Library LALSuite

[26] is the official LIGO-Virgo Collaboration soft-
ware and it provides the largest variety of waveform
template models. BAJES implements the waveform
generator of LALSimulation, a module of LALSuite. For
the results of this paper, we make use of this
implementation in order to employ IMRPhenomPv2

approximant [168,169] and its tidal extension, IM-

RPhenomPv2_NRTidal [170]. A list of all the approx-
imants available through LALSimulation can be
found at [171].

V. PIPELINE

BAJES provides a customized and automatized pipeline
for the analysis of GW transients and EM counterparts. In
this section, we discuss the model implemented to perform
PE analysis on GW transients with BAJES.
In the context of GW data analysis, we introduce the

working hypotheses that are going to define the employed
Bayesian model. We call the assumption that the data
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contain a nonvanishing GW transient signal hypothesisHS,
i.e., dðtÞ ¼ nðtÞ þ sðtÞ with sðtÞ ≠ 0. On the other hand,
the noise hypothesis HN is the condition for which the
recorded data correspond only to pure noise realization, i.e.,
dðtÞ ¼ nðtÞ. Then, in the signal hypothesis condition, a
GW signal emitted by a quasicircular compact binary
coalescence (CBC) can be fully characterized with a set
of 17 parameters according to general relativity. Precisely,

θcbc ¼ fm1; m2; χ 1; χ 2;Λ1;Λ2; DL; ι; α; δ;ψ ; t0;ϕ0g; ð18Þ

where
(i) m1;2 refer to the detector-frame masses of the two

objects, taken with the convention m1 ≥ m2.
(ii) χ 1;2 are the dimensionless spin vectors,

χ i ¼
cSi

Gm2
i
; i ¼ 1; 2; ð19Þ

where S1;2 are the spins of the two objects, c is the
speed of light, and G is the gravitational constant.

(iii) Λ1;2 are the dimensionless tidal polarizability param-
eters that encode the quadrupolar deformability of
the ith object under the effect of an external force,

Λi ¼
2

3
k2;i

�
c2Ri

Gmi

�
5

; i ¼ 1; 2; ð20Þ

where k2;i and Ri are, respectively, the second Love
number and the radius of the ith object (k2 is
identically zero for black holes).

(iv) DL is the luminosity distance of the source from the
observer.

(v) ι is the angle between the line of sight and the total
angular momentum of the system and it takes value
in the range ½0; π�.

(vi) fα; δg are, respectively, right ascension and decli-
nation angles that identify the sky position of the
source.

(vii) ψ is the polarization angle and it takes value in the
range ½0; π�.

(viii) ft0;ϕ0g are, respectively, reference time and refer-
ence phase.

The sampling is performed promoting the chirp mass M
and the mass ratio q,

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

; q ¼ m1

m2

≥ 1; ð21Þ

over the single mass components, since they appear to be
less correlated for this type of signals [6,7]. For spinning
binary mergers, we define the effective spin parameter
χeff as

χeff ¼
m1χ1;z þm2χ2;z

m1 þm2

ð22Þ

that encodes the aligned-spin contribution and it can lead to
narrower uncertainties than the single spin components
[172]. Furthermore, in the context of BNS mergers, it is
useful to introduce the reduced tidal parameter Λ̃,

Λ̃ ¼ 16

13

�ðm1 þ 12m2Þm4
1Λ1

M5
þ ð1 ↔ 2Þ

�
; ð23Þ

and the asymmetric tidal parameter δΛ̃,

δΛ̃ ¼
�
1 −

7996

1319

m2

m1

−
11005

1319

�
m2

m1

�
2
�
m6

1Λ1

M6
− ð1 ↔ 2Þ;

ð24Þ

where M ¼ m1 þm2. The tidal parameters Λ̃ and δΛ̃ are,
respectively, proportional to the leading order and the
next-to-leading-order tidal contributions according to PN
expansion.
Generally, concerning GWanalysis, it is common to label

θint ¼ fm1; m2; χ 1; χ 2;Λ1;Λ2g as intrinsic parameters, since
they affect the physical dynamics of the system; while, the
extrinsic parametersθext ¼ fDL; ι; α; δ;ψ ; t0;ϕ0g are related
with the observed signal by trivial geometrical argumenta-
tion.Moreover, it is possible to include in the pipeline further
parameters in order to take into account the calibration of the
input quantities, such as calibration envelopes and PSD
uncertainties. For a detailed discussion about these topics,
see Sec. V D.
In the following sections, we present the implementa-

tions available in the BAJES GW pipeline.

A. Data segments

The default GW routine implemented in BAJES is
designed for binary mergers analyses. In general, the
pipeline is able to access to the open-source database
of GWOSC [47,79,80] to all the data released with
gravitational-wave transients catalog-1 (GWTC-1) [1]
and to the expected PSD curves for current and next-
generation detectors [114,115].
The input data to be analyzed by the pipeline can be

gathered in different ways. The GW pipeline provides a
customized injection generator capable to produce artificial
data given a prescribed set of parameters and the detector
sensitivity curves. Moreover, the BAJES pipeline allows to
access the observational data recorded by the LIGO-Virgo
interferometers [27,28,105] from the GWOSC, specifying
the central value of the GPS time and the duration of the
segment.
When the data information is gathered, the pipeline

initializes the LIKELIHOOD function and the PRIOR with the
requested parameters belonging to the set θcbc, and it passes

BAYESIAN INFERENCE OF MULTIMESSENGER … PHYS. REV. D 104, 042001 (2021)

042001-9



these arguments to the requested sampler which performs
the Bayesian inference.

B. Prior distributions

The prior distribution for the masses is chosen flat in the
components fm1; m2g that can be written in terms of
fM; qg as

pðM; qjHSÞ ¼
M

ΠMΠq

�
1þ q
q3

�
2=5

; ð25Þ

where ΠM and Πq are the prior volumes limited by the
bounds ½Mmin;Mmax� in chirp mass and ½1; qmax� in mass
ratio,

ΠM ¼ 1

2
ðM2

max −M2
minÞ;

Πq ¼ 5

�
22=5

ffiffiffi
π

p
Γð4

5
Þ

Γð 3
10
Þ − 2F1ð− 2

5
;− 1

5
; 4
5
;−qmaxÞ

q1=5max

�
; ð26Þ

where 2F1ða; b; c; zÞ is the hypergeometric function and
ΓðxÞ is the Euler function.
The spin vectors can be written in the polar frame of the

binary as χ i ¼ fχi; ϑi;φig, where χi is the spin magnitude,
ϑi is the tilt angle, and φi is the complimentary azimuthal
angle between χ i and the orbital angular momentum L
of the binary. The prior distribution for these quantities
is specified by the maximum value of spin magnitude
χmax ≥ 0 and it can be chosen between the following:

(i) Isotropic prior with precessing spins: The prior on
the angular components fϑi;φig is isotropic over the
solid angle, while the spin magnitude is uniformly
distributed in the range ½0; χmax�,

pðχi; ϑi;φijHSÞ ¼
sinϑi
4πχmax

: ð27Þ

(ii) Isotropic prior with aligned spins: This case is
identical to the isotropic one except for the
assumption of aligned spins, ϑi ¼ 0; π. The xy
components of the spin vectors are marginalized,
obtaining the form [30]

pðχi;zjHSÞ ¼
1

2χmax
log

���� χmax

χi;z

����: ð28Þ

(iii) Volumetric prior with precessing spins: The distri-
bution is taken uniform in all Cartesian components,
i.e., flat over the sphere with radius χmax. This prior
can be written as

pðχi; ϑi;φijHSÞ ¼
3

4π

χ2i sinϑi
χ3max

: ð29Þ

(iv) Volumetric prior with aligned spins: The same of
volumetric case with aligned components; the mar-
ginalization over the xy components leads to the
form

pðχi;zjHSÞ ¼
9

16π

χ2max − χ2i;z
χ3max

: ð30Þ

The prior distribution for the sky position parameters
fα; δg is taken isotropic over the entire solid angle, such
that α ∈ ½0; 2π� and δ ∈ ½−π=2;þπ=2�,

pðα; δjHSÞ ¼
cos δ
4π

; ð31Þ

and analogously for the inclination ι in the range ½0; π�,

pðιjHSÞ ¼
sin ι
2

: ð32Þ

Regarding the luminosity distance, the bounds are specified
by the lower and the upper bounds ½Dmin; Dmax�, and the
analytic form of the prior can be chosen between the
following:

(i) Volumetric prior: General analysis assumes that the
source is uniformly distributed over the sphere
centered around the detectors, then

pðDLjHSÞ ¼
3D2

L

D3
max −D3

min

: ð33Þ

(ii) Comoving-volumetric prior: In order to take into
account the cosmological expansion of the Universe,
a prior uniformly distributed over the comoving
volume VC is a more suitable physically motivated
choice. Within this assumption, the prior on the
luminosity distance can be written as

pðDLjHSÞ ∝
dVC

dDL
: ð34Þ

The luminosity distance DL and the comoving
volume VC are related through the redshift z for a
fixed cosmological model; by default, BAJES ac-
quires the values of the cosmological constants from
Ref. [173].

(iii) Source-frame prior: As shown in Refs. [4,14],
Eq. (34) does not take into account contributions
due to time dilatation. Then, we can introduce a prior
distribution uniformly distributed in the source-
frame volume as

pðDLjHSÞ ∝
1

1þ z
·
dVC

dDL
; ð35Þ
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where the factor ð1þ zÞ−1 converts the merger rate
from the source frame to the detector frame.

(iv) Log-uniform prior: It could be useful to introduce a
uniform prior in logDL, then

pðDLjHSÞ ¼
D−1

L

log ðDmax=DminÞ
: ð36Þ

For the remaining parameters, i.e., fψ ; t0;ϕ0g and
fΛ1;Λ2g (if required), their prior distributions are taken
uniform within the provided bounds. Then, the overall prior
is the product of the priors of the single parameters.

C. Likelihood function

The key ingredient of the inference is the likelihood
function that encodes the capability of a given model
hðt; θcbcÞ to match the observed data dðtÞ. For Gaussian and
stationary noise nðtÞ, we expect the mean of the noise
fluctuations to be centered around zero with a variance
described by the PSD in the frequency domain, i.e.,

pðnjHNÞ ∝ e−
1
2
ðnjnÞ: ð37Þ

It follows that within the signal hypothesis HS and
supposing that we dispose of a template hðt; θcbcÞ capable
to reproduce the real signal sðtÞ for a given set of θcbc, the
log-likelihood function can be written as the frequency-
domain residuals between the recorded data and the
template with the product defined in Eq. (10),

pðdjθcbc; HSÞ ¼
1

N
e−

1
2
ðd−hjd−hÞ; ð38Þ

where N is the normalization constant that can be
expressed in terms of the PSD using the numerical
approximation Eq. (12),

N ≈
Y
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πTSnðfiÞ

2

r
: ð39Þ

Then, the Bayes’ factor of the signal hypothesis against the
noise assumption can be computed as

BS
N ¼ pðdjHSÞ

pðdjHNÞ
¼
Z
Θ
exp

�
ðdjhðθcbcÞÞ−

1

2
ðhðθcbcÞjhðθcbcÞÞ

�

×pðθcbcjHSÞdθcbc: ð40Þ

Combining Eq. (38) with Eq. (17), it is possible to write
the explicit dependency of the likelihood with respect to the
reference parameters fϕ0; t0g; since these values have no
physical relevance, we marginalize the posterior distribu-
tion with respect to fϕ0; t0g in order to increase the
efficiency of the sampling. The marginalization over ϕ0

can be computed analytically and the solution can be
written in terms of the modified Bessel function of the
first kind [174]. For the time-shift t0, the computation is
semianalytical since the values of the likelihood are
evaluated on an equally spaced grid resorting on the
FFT computation [175].

D. Additional implementations

In order to perform accurate and reliable inferences of
GW transients, the pipeline requires refinements and
auxiliary control systems. In this section, we discuss some
of the additional tools implemented in the GW pipeline
supplied with BAJES.

1. Calibration envelopes

The necessity of calibration envelopes [176] arises due to
imperfect knowledge of the interferometer response to
differential arm length changes [177–179], which affects
the transfer functions of the detector components intro-
ducing systematic errors that propagate to the recorded
data. These uncertainties are estimated by inspecting the
detector control systems and propagating the measurements
into a frequency-dependent probability distribution.
Subsequently, the information on calibration errors must
be taken into account when inferring the astrophysical
parameters of GW signals. In order to achieve this task, it is
useful to introduce two auxiliary functions δAðfÞ and
δϕðfÞ that characterize, respectively, the amplitude and
the phase uncertainties of the measured data segments.
Then, the calibration envelopes fδAðfÞ; δϕðfÞg can be
taken into account in the Bayesian model as

hðfÞ → ½1þ δAðfÞ�eiδϕðfÞhðfÞ: ð41Þ

This procedure is accomplished specifying the values of
the calibration envelopes at predefined logarithmic-spaced
frequency nodes fj and linearly interpolated over the
interested frequency axis. The calibration parameters
fδAðfjÞ; δϕðfjÞg are introduced in the sampling and
estimated along with the signal parameters. The prior for
calibration envelopes fδAðfjÞ; δϕðfjÞg is a multivariate
normal distribution with variance specified by the mea-
sured calibration errors.

2. PSD uncertainties

The usage of a fixed estimated PSD might generate
biases due to nonstationary effects and unaccounted slow
variations in the noise spectrum. Then, it arises the
necessity to take into account the uncertainty of the PSD
estimate during the inference of the properties of a GW
signal. For this reason, the pipeline allows the possibility to
include PSD uncertainty weights ηj [7]: the Fourier domain
is dived in predefined logarithmic-spaced bins ½fj; fjþ1�
and the weights are included such that
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SnðfÞ → ηjSnðfÞ; for fj ≤ f < fjþ1; ð42Þ

where ηj is taken constant in respective frequency bin. The
full set of fηjg parameters, one for every frequency bin, is
introduced in the sampling and they are estimated during
the exploration with the signal parameters. The prior
distribution for the PSD uncertainty ηj is take normal with
mean zero and variance 1=Nj, where Nj is the number of
data sample enclosed in the bin ½fj; fjþ1�. This scheme has
shown to improve the robustness of the GW inference
[180], and it offers a flexible model capable to quantify the
differences between the estimated PSD and the spectrum of
the analyzed data.

VI. INJECTION STUDIES

In this section, we show the results coming from a set of
injection studies performed with the BAJES pipeline in order
to test the sampling routines with the GW infrastructure.
An injection is a simulated GW signal that has been added
into a time-domain segment. For our studies, we generate
artificial noise segments according with a prescribed
PSD assuming Gaussian and stationary fluctuations, as
discussed in Sec. IV B. Subsequently, the artificial signal
hðtÞ is simulated according with the input parameters θcbc,
projected on the requested detectors and included in the
data segment. Finally, the data are analyzed by the BAJES

pipeline resorting to the framework described above. The
sensitivity curves employed for these studies correspond to
the noise spectra expected at design sensitivity for current
ground-based detector [27,28,105,107,112,181] and for
next-generation interferometers [114,115]. The properties
of the injected signals are described in the following
paragraphs depending on the particular kind of source.

A. Binary black holes

The first example corresponds to an aligned-spinning
BBH coalescence with intrinsic parameters fM ¼ 30 M⊙;
q ¼ 2; χ1;z ¼ 0.3; χ2;z ¼ 0:g. located at a luminosity dis-
tance DL ¼ 3 Gpc with inclination angle ι ¼ 0. The signal
is injected such that the merger occurs at GPS time
1126259462.0 with a sampling rate of 4096 Hz and a signal
length of 16 s. The data are analyzed using two detectors,
H1 and L1, with LIGO design sensitivity P1200087
[27,105,181]. The sky location of the source corresponds
to the position of maximum sensitivity for the detector H1,
fα ¼ 0.372; δ ¼ 0.811g. The injected signal is generated
with TEOBResumS waveform model (employing only the
dominant mode) with a network SNR of 14, corresponding
to 11 in H1 and 9 in L1.
The recovery of the posterior distribution is performed

with PTMCMC sampling with 8 tempered ensembles and
128 chains per ensemble. Moreover, we requested 8 × 103

burn-in iterations. The injected strain is analyzed in the
frequency domain from 20 Hz to 1 kHz employing three

different templates: TEOBResumS, IMRPhenomPv2, and
NRSur7DQ4. The likelihood is marginalized over reference
time and phase. We set the chirp mass prior in ½23; 37� M⊙
and the mass ratio in [1, 8]. The spins are kept aligned with
an isotropic prior in the range ½−0.9;þ0.9� for every
component. We employ volumetric prior for the luminosity
distance in the support ½100 Mpc; 5 Gpc� and the prior
distributions for the remaining parameters are chosen
according with Sec. V B.
Figure 4 shows the acceptance fractions for the analysis

performed with TEOBResumS waveform model. The infer-
ences performed with other approximants show similar
behaviors. The untempered ensemble required less than 104

iterations to converge to the maximum-posterior value.
After the requested burn-in, the untempered ensemble
shown an average acceptance of 15% and, averaging over
all the tempered ensembles, the sampler advanced with a
global proposal acceptance of ∼45% and with a global
swapping acceptance of ∼50%. The final autocorrelation
length (ACL) of the untempered ensemble corresponds to a
lag of 70 iterations and the sampler collected a final amount
of 1.5 × 104 independent posterior samples.
Table I shows the recovered mean values, and Fig. 5

shows the recovered marginalized posterior distribution for
some exemplary parameters. The marginalized posterior
distributions enclose the injected values within 90% credi-
ble intervals for all the waveform approximants. The
estimated evidences slightly prefer TEOBResumS waveform,
accordingly with the injected template. However, these
values lie in the same range for all the analyses, leading to a
not fully resolved model selection. This is due to the large
uncertainties associated to the evidence estimation of the
PTMCMC and with relatively low SNR of the injected
signal. For the latter reason, it is also not possible to reveal

FIG. 4. Sampler acceptances during the BBH injection study
performed with TEOBResumS described in Sec. VI A. The blue
line is the proposal acceptance of the untempered ensemble
averaged over the chains, the yellow and the green lines are,
respectively, the proposal and the swapping acceptances of whole
sampler averaged over all the tempered ensembles. The solid
lines represent the median values and the shadowed areas are the
90% credible regions. The vertical black line is the requested last
burn-in iteration.
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systematic differences between the different approximants
[182], and the results of the employed templates are largely
consistent between each other.

B. Binary neutron stars inspiral

In this section, we analyze an inspiralling nonspinning
BNSmergerwith intrinsic parameters are fM ¼ 1.188 M⊙;
q ¼ 1; Λ1 ¼ Λ2 ¼ 600g. The source is located at a lumi-
nosity distanceDL ¼ 120 Mpcwith inclination angle ι ¼ 0.
The signal is injected such that themerger occurs atGPS time
1126259462.0 with a sampling rate of 4096 Hz and a signal
length of 128 s. The data are analyzed using two detectors,
H1 and L1, with LIGO design sensitivity P1200087
[27,105,181]. The sky location of the source corresponds

to the position of maximum sensitivity for the detector H1,
fα ¼ 0.372; δ ¼ 0.811g. The injected signal is generated
with TEOBResumS waveform model with a network SNR of
20, corresponding to 15 in H1 and 13 in L1.
The recovery of the posterior distribution is performed

employing nested sampling algorithm with 1024 live point
and tolerance equal to 0.1. Furthermore, we set, respec-
tively, the minimum and the maximum number of iterations
for every MCMC subchain to 32 and 4 × 103. The injected
strain is analyzed in the frequency domain from 20 Hz to
1 kHz employing three different templates: TEOBResumSPA,
IMRPhenomPv2_NRTidal, and TaylorF2 including 5.5PN point-
mass corrections and 6PN tidal contributions. We set the
chirp mass prior in ½0.8; 2� M⊙ and the mass ratio in [1, 4].
The spins are kept aligned with an isotropic prior in the

FIG. 5. Posterior distributions for fq; χeffg and fDL; ιg recovered from the injection studies performed on a BBH signal with two
interferometers (H1þ L1) at design sensitivities with network SNR of 14. The artificial signal has been generated with TEOBResumS

model and the injected parameters are marked with black lines and squares. The contours represent the 50% (thick) and the 90% (thin)
credible regions. The recovery has been performed with four different approximants analyzing the frequency range from 20 Hz to 1 kHz.
The estimation of the luminosity distance is affected by the degeneracy with the inclination angle [183], due to the correlations in the
strain amplitude for aligned-spin sources.

TABLE I. Recovered parameters during the BBH injections studies. The signal has been injected in H1þ L1 using design sensitivity
curves, with an overall network SNR of 14. The data have been analyzed with the BAJES PTMCMC sampling. The reported values
correspond to the medians with the 90% credible regions. The last column reports the estimated logarithmic Bayes’ factor and the
associated standard deviation.

Approximant M ½ M⊙� q χ1;z χ2;z χeff DL ½Gpc� ι ½rad� α ½rad� δ ½rad� logBS
N

Injected 30.0 2.0 0.3 0.0 0.2 3.0 0.0 0.372 0.811 …

TEOBResumS 30.63þ1.84
−1.64 1.56þ0.78

−0.49 0.24þ0.36
−0.41 0.17þ0.59

−0.63 0.23þ0.14
−0.15 2.49þ1.29

−1.17 0.82þ2.05
−0.63 2.17þ4.05

−2.13 0.21þ1.10
−1.09 73.29þ2.64

−2.64
IMRPhenomPv2 30.34þ1.77

−1.69 1.50þ0.83
−0.46 0.17þ0.43

−0.43 0.17þ0.57
−0.60 0.19þ0.14

−0.16 2.47þ1.30
−1.22 0.80þ2.06

−0.62 2.34þ3.88
−2.31 0.17þ1.13

−1.05 73.16þ2.66
−2.66

NRSur7DQ4 30.35þ1.75
−1.60 1.56þ0.82

−0.53 0.18þ0.37
−0.39 0.17þ0.59

−0.63 0.19þ0.56
−0.63 2.49þ1.25

−1.23 0.84þ2.02
−0.64 2.11þ4.12

−2.07 0.21þ1.10
−1.09 73.11þ2.72

−2.72
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range ½−0.9;þ0.9� for every component. The tidal param-
eters are extracted in the range [0, 5000]. We employ
volumetric prior for the luminosity distance in the support
½10; 400� Mpc and the prior distributions for the remaining
parameters are chosen according with Sec. V B.
Figure 6 shows the number of iterations of the MCMC

subchains employed to propose a new point as a function of
the prior mass X (see Appendix B for the definition). The
actual values extracted from the sampler have been
smoothed with a Savitzky-Golay filter for visualization
purposes. The shadowed region shows the difference
between the actual MCMC-chain lengths and the filtered
estimation. Large values of MCMC-chain length (say
≳250) characterize the more expensive steps, where the
proposal method requires more iterations in order to
propose new samples and estimate the boundaries of the
current contour. During the initial stages (X ≈ 1), the
boundaries defined by the current live points were com-
parable with the prior and the sampler required many
iterations in order to propose new samples. Subsequently,
for logX ≲ 104, the sampler identified the region that
encloses the majority of the posterior volume and the
algorithm advanced spending ∼100 iterations to propose a
new sample. The length of the MCMC-chain slightly
increases again during the latest stages, since the sampler
has to reach the bulk of the posterior distribution restricting
the boundaries to a neighborhood of the maximum-
likelihood values.
Table II shows the recovered median values, and Fig. 7

shows the marginalized posterior distribution for some
exemplary parameters. The recovered values are in agree-
ment with the properties of the injected signal: the posterior
distribution encloses the injected sample for all the param-
eter in the 50% credible region, with a small bias in the in
the maximum-posterior value for the reduced tidal

parameter Λ̃, corresponding to roughly ∼150. However,
this behavior is expected [184–188] considering that we
employed an upper cutoff frequency of 1 kHz1 combined
with the large aligned-spin prior.2 The estimated evidences
slightly prefer TEOBResumSPA approximant, accordingly
with the injected model; however, due to the low SNR,
they do not show any strong preference.

C. Binary neutron stars postmerger

We perform a set of BNS postmerger injections using a
five-detector network which includes H1 and L1 with LIGO
design sensitivity P1200087 [27,105,181], V1 with Virgo
design sensitivity P1200087 [28], K1 with KAGRA design
sensitivity T1600593 [107,112], and the third-generation
interferometer ET (configuration D) P1600143 [114,115].
The injected signals are generatedwith NRPM and correspond
to the postmerger radiations of nonspinning BNSs
with intrinsic parameters fM ¼ 1.188 M⊙; q ¼ 1; Λ1 ¼
Λ2 ¼ 600g. The signal is injected such that themerger occurs
at GPS time 1126259462.0 with a sampling rate of 8192 Hz
and a signal length of 4 s. The sky location of the source
corresponds to the position of maximum sensitivity for
the detector ET, fα ¼ 2.640; δ ¼ 0.762g. The signals are
injected at different luminosity distances in order to simulate
different SNRs, spanning the range from 8 to 32, which
corresponds to DL ∈ ½20; 80� Mpc. We observe that, for
these kinds of signal, ET is the most relevant detector and it
concurs in the determination of the SNRwith a weight larger
than 90% for all the analyzed cases.
For these studies, we employ the PTMCMC sampler

using eight tempered ensembles with 128 chains and
2 × 104 burn-in iterations. The injected strain is analyzed
in the frequency domain from 1 kHz to 4 kHz employing
NRPM waveforms.3 We set the chirp mass prior in
½0.8; 2� M⊙ and the mass ratio in [1, 1.5]. The spins are
kept fixed to zeros for every component. The tidal
parameters are extracted in the range [0, 5000]. We employ
volumetric prior for the luminosity distance in the support
½5 Mpc; 400 Mpc� and the prior distributions for the
remaining parameters are chosen according to Sec. V B.
As shown in Ref. [190], the postmerger GW radiation of

a long-lived BNS merger is characterized by a main
frequency peak in the Fourier domain (f2) that can be
parametrized with quasiuniversal (EOS-insensitive) rela-
tions involving the tidal polarizability parameters. The
NRPM model is constructed using these relations that allow
one to constrain Λ̃ from postmerger observations and at the

FIG. 6. Length of the MCMC subchains during the nested
sampling performed with TEOBResumSPA described in Sec. VI B.
The actual values extracted from the sampler have been smoothed
with a Savitzky-Golay filter for visualization purposes. The
shadowed region shows the difference between the actual lengths
and the filtered estimation. The values are lower bounded by the
requested minimum value, set equal to 32.

1For typical BNS, the information on the tidal parameters is
gathered in frequency range above 800 Hz [127,188].

2Large spin effects can mitigate the tidal contributions, leading
to an underestimate of the tidal parameters [187].

3The same template model is used for both injection and
recovery in order to avoid noise contributions different from the
simulated detector noise.
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same time map the properties of a postmerger signal into
the inspiral parameters of the binary [118]. Furthermore,
numerical relativity simulations [118,191] have shown that
the postmerger frequency peak f2 can be related to the
radius Rmax of the maximum mass configuration of a
nonrotating neutron star. For the injected sources, we get
f2 ¼ 2.94 kHz and Rmax ¼ 10.8 km.
Table III shows the recovered mean values and Fig. 8

shows the marginalized posterior distributions for f2 and
for Λ̃ recovered during the survey described above, and
Fig. 9 presents the recovered postmerger signal recovered
in the ET detector for the case with SNR 16. The Bayes’

factors show evidence of signal from SNR 9; however, in
order to estimate f2 with an accuracy of Oð0.1 kHzÞ, the
method requires a SNR≳ 12. The mean values estimated
from the marginalized posteriors agree with the injected
properties of the signal within the 90% credible intervals;
however, it is interesting to observe that, due to the
correlations induced by the EOS-insensitive relations, the
sampler explores nontrivial degeneracy between the intrin-
sic parameters. The same behavior has been shown in
Ref. [118]. These correlations strongly affect the estimation
of Λ̃ and PE of a postmerger signal is only capable of
imposing an upper bound for this parameter. For example,

TABLE II. Recovered parameters during the inpiralling BNS injections studies. The signal has been injected in H1þ L1 using design
sensitivity curves, with an overall network SNR of 20. The data have been analyzed with the nested sampling provided by DYNESTY. The
reported values correspond to the medians with the 90% credible regions. The last column reports the estimated logarithmic Bayes’
factor and the associated standard deviation.

Approximant M ½M⊙� q χeff Λ̃ DL ½Mpc� ι ½rad� α ½rad� δ ½rad� logBS
N

Injected 1.188 1.00 0.00 600 120 0.00 0.372 0.811 …

TEOBResumSPA 1.1880þ0.0002
−0.0002 1.20þ0.42

−0.17 0.01þ0.05
−0.01 435þ305

−248 113þ19
−38 0.60þ1.98

−0.42 0.48þ0.26
−0.12 0.86þ0.20

−0.21 564.6þ0.3
−0.3

TaylorF2 1.1880þ0.0005
−0.0001 1.28þ1.16

−0.25 0.01þ0.10
−0.01 392þ415

−260 106þ26
−38 0.82þ1.91

−0.56 0.75þ3.51
−0.33 0.81þ0.28

−1.56 564.3þ0.3
−0.3

IMRPhenomPv2NRT 1.1880þ0.0002
−0.0001 1.25þ0.36

−0.21 0.01þ0.02
−0.01 316þ304

−215 111þ20
−50 0.76þ1.98

−0.55 0.63þ3.54
−0.21 0.79þ0.24

−1.49 563.9þ0.3
−0.3

FIG. 7. Posterior distributions for fq; Λ̃g and fα; δg recovered from the injection studies performed on an inspiralling BNS signal with
two interferometers (H1þ L1) at design sensitivities with network SNR of 20. The artificial signal has been generated with TEOBResumS

model and the injected parameters are marked with black lines and squares. The recovery has been performed with three different
approximants analyzing frequency range from 20 Hz to 1 kHz. The degeneracy in the sky location can be removed introducing a third
detector [189], and it is due to the correlations between longitudinal and latitudinal angles that concur in the estimation of times of arrival
in the different interferometers.
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with SNR 32, it would be possible to constrain the value of
Λ̃ with an uncertainty of ∼104 that is a much larger value
compared with the uncertainties coming from the analysis
of the inspiral data (see Table II). Nevertheless, the
observation of a postmerger signal would extraordinarily
extend our knowledge regarding neutron star matter
[154,157,192], allowing us to verify our current models
and to constrain the extreme-density properties of the EOS,
such as the radius of the maximum mass star Rmax and the
inference of softening effects at high densities [118,193].
These constraints can be further improved with the inclu-
sion of the inspiral information within a full inspiral-
merger-postmerger analysis of the observed BNS signal.

D. Confidence interval test

The confidence interval (CI) test has become a standard
control check to verify the reliability of a GW pipeline
(e.g., [2,7,194]), since it ensures that the recovered prob-
ability distributions are truly representative of the inferred

confidence levels. For each parameter employed in the
analyses, the CI test measures the fraction of true values
that follow below a given credible level and, if the
algorithm is well calibrated, we expect these two quantities
to be proportional. The test is performed using a large set of
injected signals with parameters extracted from a popula-
tion prior pðθcbcÞ. Then, we conduct PE analyses in order to
recover the posterior distributions for every injection and
the CIs can be estimated from the posterior distributions by
determining the quantiles under which the true parameters

TABLE III. Recovered parameters during the BNS postmerger
injection survey. The reported values correspond to the medians
with the 90% credible regions.

SNR M ½M⊙� Λ̃ f2 ½kHz� Rmax ½km� logBS
N

Injected 1.188 600 2.94 10.8 …

8 2.2þ0.8
−1.5 2700þ1800

−1800 0.8þ2.1
−0.3 27þ10

−19 0.2þ0.2
−0.2

9 1.3þ1.6
−0.7 2350þ1900

−1700 1.7þ1.2
−1.1 14þ22

−6 2.6þ1.3
−1.3

10 0.8þ2.2
−0.2 2830þ1630

−1910 2.7þ0.3
−2.0 8.9þ2.8

−0.9 11.0þ4.8
−4.8

12 0.8þ2.1
−0.2 1860þ2570

−1410 2.9þ0.7
−2.3 9.0þ2.7

−0.8 13.9þ6.3
−6.3

16 0.78þ0.43
−0.18 1780þ2640

−1220 2.93þ0.02
−0.39 8.9þ2.0

−0.8 45.2þ4.2
−4.2

32 0.80þ0.45
−0.12 1730þ730

−1220 2.93þ0.02
−0.03 9.0þ2.1

−0.6 271þ29
−29

FIG. 9. Frequency-domain amplitude strains in the ET detector
for the analysis at SNR 16 corresponding to a luminosity distance
of 40 Mpc. The plotted quantities correspond to the injected
signal (black), the full artificial data strain (gray), and the
recovered template (blue), where the solid line is the mean value
and the shadowed area is the 90% credible region.

FIG. 8. Marginalized posterior distributions for ff2; Λ̃; Rmaxg recovered in the BNS postmerger injection survey using a five-detector-
network H1þ L1þ V1þ K1þ ET at design sensitivities varying the luminosity distance and locating the source in the position of
maximum sensitivity for ET. The injected signals have been generated with NRPM template and recovered with the same model.
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lie. Then, the population prior pðθcbcÞ is used as input prior
distribution for the analysis of the injected signal.4

For our CI test, we inject 100 BBH signals employing
the prior distribution used for the parameters of GW150914
(see Sec. VII A) that includes nine parameters. The signals
are generated using MLGW waveform template and injected
in the two LIGO detectors, H1 and L1, at design sensitivity
using segments of duration 8 s. The analyzed frequency
range goes from 20 Hz to 1 kHz. We use the nested
sampling provided by DYNESTY with 1024 live points and
tolerance equal to 0.1. The likelihood function is margin-
alized over reference phase and time shift. Figure 10 shows
the recovered fractions of events found within an increasing
confidence level. The fraction of event is expected to be
uniformly distributed if the prior distributions are a good
approximation of the underlying injected population
distributions.
For each parameter, we compute the p-value of

Kolmogorov-Smirnov (KS) test, quantifying the consis-
tency with uniformly distributed events. The results are
shown between round brackets in Fig. 10. From these
results, we estimate the combined p-values quantifying the
probability that the individual p-values are extracted from a
uniform distribution. We estimate an overall p-value of
58%, according with analogous computations performed
with a set of nine random uniformly distributed samples.

Furthermore, we compute the Jensen-Shannon (JS) diver-
gence between the distribution of fraction of events with
respect to a uniform distribution. The results lie around
2 × 10−3 for all the parameters, in agreement with analo-
gous estimations performed on a set of 100 uniformly
distributed random samples. These results confirm that the
pipeline is well calibrated.

VII. LIGO-VIRGO TRANSIENTS

In this section, we apply the BAJES pipeline to the GW
transients [1] observed by the LIGO-Virgo interferometers
[27,28,105]. For all the analyses, the data are extracted
from the GWOSC archive [47,79,80] with a sampling rate
of 4096 Hz resorting to the GWPY facilities. The analyzed
strains are centered around the nominal GPS time.
Subsequently, the strains are windowed and transformed
in the Fourier space, using the tools described in Sec. IV.
PSD curves and calibration uncertainties are taken from the
official LIGO-Virgo data release of GWTC-1 [1,195,196].
We use the nested sampling implemented in DYNESTY,
employing 2048 live points with a tolerance equal to 0.1.
With these settings, we collect ∼5 × 104 samples from each

FIG. 10. Fraction of events found within a confidence interval
for test described in Sec. VI D, for which a set of 100 BBH
injections was used. For every parameter, the label shows the
p-value of the KS test. The recovered p-values are uniformly
distributed with a p-value of 58%.

FIG. 11. Waveform template reconstructed from the analysis of
GW150914 with TEOBResumS compared with the LIGO-Hanford
(top panel) and LIGO-Livingston (bottom panel) data. The black
lines are the whitened strains recorded by the LIGO interferom-
eters, where we applied a band-pass filter in the frequency
window ½20 Hz; 480 Hz� only for visualization purposes. The
colored lines are the median recovered template projected on the
respective detector (orange for LIGO-Hanford and green for
LIGO-Livingston), and the shadowed areas represent the 90%
credible regions. The estimated network SNR of the signal
corresponds to 22.

4We observe that in order to perform an accurate test the
employed prior has to be a good representation of the population
distribution. In our case, this is ensured by definition since the
injected signals are extracted from the employed prior pðθcbcÞ.
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PE analysis. The measured quantities reported in the text
correspond to the median values and to the 90% credible
regions, except when explicitly mentioned.
We note that the prior assumptions employed in BAJES

slightly differ from the ones of the official LIGO-Virgo
analysis. In the latter, the sampling is performed imposing
additional bounds in the mass components [12,15,73,197];
while, in BAJES, the samples are extracted from the entire
square defined by the fM; qg bounds. Moreover, the
strains analyzed by the BAJES pipeline are slightly shifted
in time with respect to the official LIGO-Virgo segments
due to different reference conventions.

A. GW150914

In this section, we discuss the results obtained from
the analysis of the first GW transient observed by the
LIGO interferometers, GW150914 [73,183,198,199]. For
all the discussed cases, the analyzed strains correspond
to the GWTC-1 release [1] of LIGO-Hanford and LIGO-
Livingston data centered aroundGPS time 1126259462with
a sampling rate of 4096 Hz and a duration of 8 s. We set the
lower cutoff frequency to 20 Hz and the highest frequency to
1 kHz. The employed prior is isotropic in spin components
and volumetric in luminosity distance, and it spans the ranges
M∈½12;45�M⊙, q ∈ ½1; 8�, χ1;2 ∈ ½0;0.99�, and DL ∈ ½100;
5000� Mpc. We include eight spectral nodes for the calibra-
tions of the analyzed strains.

We discuss first the PE analysis employing TEOBResumS

model with aligned spins, including all high-order modes
up to l ¼ 5 with m ¼ �l, i.e., ð2;�2Þ, ð3;�3Þ, ð4;�4Þ,
ð5;�5Þ. Figure 11 shows the recovered waveform template
compared with the whitened strains recorded by the LIGO
interferometers, and Fig. 12 shows the recovered posterior
distribution. We estimated a network SNR of 23. The
results are consistent with similar studies performed
with the same approximant [139,146], recovering the
signal of a nonspinning equal-mass BBH merger with
M ¼ 31.57þ0.82

−0.70 M⊙. The inference of the extrinsic param-
eters shows a source located at a luminosity distance of
∼490 Mpc, and the area covered by the 90% isoprobability
level of the sky location posterior distributions corresponds
to ∼670 deg2. The estimated Bayes’ factor corresponds to
logBS

N ¼ 267.8� 0.2, where the uncertainty is given by
the standard deviation.
We repeat the PE analysis with IMRPhenomPv2 template

employing precessing spin components. In Fig. 13, the
marginalized posterior distribution of the recovered masses
is compared with the official LIGO-Virgo posterior samples
release with GWTC-1 [1] performed the LALInference rou-
tines [7,26] using the same waveform approximant. The
two analyses are consistent with each other, recovering a
BBH signal with chirp mass M ¼ 31.00þ1.52

−1.49 M⊙ and
mass ratio well constrained around the equal mass case,
q ¼ 1.18þ0.36

−0.17 . The inference of the effective spin parameter
is consistent with zero and the posterior distribution of the

FIG. 12. Posterior distributions for the intrinsic (left) and extrinsic (right) parameters of GW150914 estimated with BAJES pipeline
employing TEOBResumS waveform model with aligned-spin components. All higher-order modes up to l ¼ 5 (with m ¼ �l) have been
used to generate the waveform models. The chirp mass is expressed in solar masses M⊙, the luminosity distance is expressed in
megaparsec Mpc, while the angles fι; α; δg are in radiants. We report the median value and the 90% credible regions for each parameter
and the contours represent the 50% and the 90% credible regions.

BRESCHI, GAMBA, and BERNUZZI PHYS. REV. D 104, 042001 (2021)

042001-18



spin components does not show evidence of precession,
according to Refs. [183,197,198]. Also, the extrinsic
parameters show an overall good agreement with previous
estimations performed with the same approximant, locating
the source at a luminosity distance of DL ¼ 458þ123

−169 Mpc
with a posterior sky-location area of ∼640 deg2 at the 90%
credible level.
The main difference between the TEOBResumS posterior

and IMRPhenomPv2 one is the uncertainty on the mass ratio
parameter, for which TEOBResumS admits a largest value of
1.28 at the 90% credible region, while the IMRPhenomPv2

posterior reaches 1.94 with the same confidence. However,
this disagreement is mainly due to the different spin
assumptions employed for the two analyses [183,197].
Moreover, the posterior distribution recovered with
IMRPhenomPv2 shows slightly smaller M and larger DL
compared with the TEOBResumS inference, as shown also in
Ref. [139].
Finally, we verify the compatibility of the recovered

posterior distribution against of existing GW pipelines. In
particular, we employ the BILBY pipeline [31,72,194] in
order to estimate the posterior distributions of GW150914,
using the same prior assumptions and settings discussed
above. We observe that GW150914 is a suitable candidate
to test the statistical significance of the results and the
agreement between the pipelines: due to the loudness of
this event (corresponding to a SNR > 20), the overall

impact of statistical noise fluctuations on the recovered
posterior distribution is expected to be less determinant
compared with the other BBH mergers presented in
GWTC-1 [1]. Figure 14 shows the probability-probability
(PP) plot of the marginalized posterior distributions recov-
ered for every parameter. A PP plot compares the cumu-
lative distributions estimated with two methods, plotting
one against the other. Then, if two probability distributions
are identical, the associated PP plot is represented by a
bisector line. In our case, the results coming from the two
pipelines are largely consistent between each other, with
observed deviation fully consistent with statistical fluctua-
tions. This fact is confirmed by the p-values computed
between the marginalized distributions of each parameter:
the values are comparable to or larger than 0.4 except for ϑ2
and DL parameters, for which we, respectively, get p-
values of 0.15 and 0.11. Furthermore, the legend in Fig. 14
shows the square root of the JS divergence of the margin-
alized posterior distributions for the employed parameters:
the largest recovered value corresponds to 5.2 × 10−4 bit
for the tilt angle ϑ2.

B. GW170817

We analyze the LIGO-Virgo data corresponding to
GW170817 [12,15,185,200], the first GW signal observed
from a BNS merger. The employed data correspond to the
GWTC-1 release [1] of LIGO-Virgo data centered around

FIG. 13. Posterior distributions of the detector-frame mass
components fm1; m2g recovered in analysis of GW150914 with
IMRPhenomPv2 (blue line). The results are compared with the
official LIGO-Virgo posterior samples released with GWTC-1 [1]
(yellow line) computed using the LALInference routines [7,26]. The
central panel shows the 50% and the 90% credible regions.

FIG. 14. PP plot for the marginalized posterior distributions of
GW150914 parameters. On the x axis, the cumulative posterior
probabilities estimated with the BILBY pipeline and on the y axis
the same quantities computed with the BAJES pipeline. Different
colors refer to different parameters and the legend shows also the
square root of the JensenShannon divergence.
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GPS time 1187008857 with a sampling rate of 4096 Hz
and a duration of 128 s analyzing the frequency range
from 20 Hz to 2 kHz. The employed prior is isotropic in
spin components and volumetric in luminosity distance,
and it spans the ranges M ∈ ½1.18; 1.21� M⊙, q ∈ ½1; 8�,
χ1;2 ∈ ½0; 0.89�, Λ1;2 ∈ ½0; 5000�, and DL ∈ ½5; 75� Mpc.
We include four spectral nodes for the calibrations of
the analyzed segments.
Figure 15 shows the posterior distributions for the

parameters recovered employing TEOBResumSPA approxim-
ant (with l ¼ 2 and jmj ¼ l) with aligned spins. The
recovered detector-frame chirp mass corresponds to M ¼
1.1977þ0.0002

−0.0002 M⊙ and the mass ratio lies around the equal
mass case, q ¼ 1.56þ0.38

−0.27 . The spin components do not
show evidence of spin contributions, consistently with
Ref. [185], with an estimated effective spin of
χeff ¼ 0.04þ0.06

−0.03 . The primary tidal parameter Λ1 is con-
strained to be ≲950 at the 90% confidence level, while the
secondary component Λ2 is more broadly distributed over
the prior. The recovered tidal parameter posterior estimates
a value of Λ̃ ¼ 607þ477

−356 , in rough agreement with previous
estimations obtained from EOB models [1,149]. The
asymmetric tidal parameter δΛ̃ shows a posterior distribu-
tion centered around nonzero values, δΛ̃ ¼ 92þ200

−258 ; how-
ever, the hypothesis δΛ̃ ¼ 0 is confidently included in the
posterior support, corresponding to the 27th percentile.
Moreover, the measured Λ̃ is overall consistent with
independent estimations coming from the analysis of the

EM counterpart AT2017gfo [25,155]. Regarding the extrin-
sic parameters, we recovered a luminosity distance ofDL ¼
36.7þ6.2

−8.0 Mpc and a sky location at fα ¼ 3.42þ0.02
−0.02 rad;

δ ¼ −0.36þ0.04
−0.04 radg. The estimation of the extrinsic

parameters is generally consistent with previous estima-
tions [1,149,185].
Furthermore, the analysis of GW170817 is repeated with

a TaylorF2 waveform template that includes for the first time
5.5PN point-mass corrections [125] and 7.5PN tidal con-
tributions [126,127]. This analysis is performed using the
same prior assumptions described above and the posterior
distribution for the intrinsic parameters is shown in Fig. 16.
The mass parameters recover the values M ¼
1.1976þ0.0003

−0.0002 M⊙ and q ¼ 1.42þ0.79
−0.36 , while the effective

spin χeff ¼ 0.02þ0.07
−0.04 . The estimated luminosity distance of

DL ¼ 37.1þ10.3
−12.1 Mpc. The inference of the tidal compo-

nents roughly coincides with the estimations coming from
the analogous analysis with PN templates [1,185]. The
primary tidal component is constrained below Λ1 < 730 at
90% credible region, while the secondary is more broadly
distributed over the prior. The reduced tidal parameter is
measured to be Λ̃ ¼ 404þ701

−246 , and the asymmetric tidal term
δΛ̃ is well constrained around zero with an uncertainty of
∼150 at the 90% confidence level. The median values of the
sky location angles coincide with the estimation performed
with TEOBResumSPA.
The GW170817 PE studies are repeated with

IMRPhenomPv2_NRTidal template employing precessing spin

FIG. 15. Posterior distributions for the intrinsic (left) and extrinsic (right) parameters of GW170817 estimated with BAJES pipeline
employing TEOBResumSPA waveform model with aligned-spin components. The chirp mass is expressed in solar masses M⊙, the
luminosity distance is expressed in megaparsec Mpc, while the angles fι; α; δg are in radiants. We report the median value and the 90%
credible levels for each parameter and the contours represent the 50% and the 90% credible regions.
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components with high-spins prior (χmax ¼ 0.89) and low-
spins prior (χmax ¼ 0.05) in order to compare our results
with the official LIGO-Virgo posterior samples presented in
Ref. [185]. The recovered posterior distributions for the
mass parameters for the low-spin case show a chirp mass
of 1.1975þ0.0002

−0.0002 M⊙, and the mass ratio is constrained
below 1.46 at the 90% credible region. Regarding the
high-spin prior analysis, we recovered a chirp mass of
1.1976þ0.0002

−0.0002 M⊙ and the mass ratio favors more asym-
metric values, q ¼ 1.49þ0.35

−0.32 . Focusing on the tidal param-
eters, Fig. 18 shows the comparison of the posterior
distribution in the fΛ̃; δΛ̃g plane: the marginalized distri-
butions and the 90% credible regions coming from BAJES

are largely consistent with the official LIGO-Virgo sam-
ples, with estimated JS divergences below 10−4.
Finally, Fig. 17 shows the recovered reduced tidal

parameters Λ̃, where the posterior distributions have
been reweighted to uniform prior distribution. The figure
includes the results computed employing the same wave-
form models and using a smaller upper cutoff frequency
fmax ¼ 1 kHz. The main differences between the analyses
with different fmax lie in the results of the tidal sector.
Overall, the recovered tidal parameters with fmax ¼ 2 kHz
appear more constrained with respect to the cases with
fmax ¼ 1 kHz. This behavior is expected considering
that the tidal information is gathered in high-frequency

regimes [127,188]. On the other hand, the choice of fmax ¼
2 kHz enlarges multimodal and asymmetric behaviors in
the posterior distribution of the reduced tidal parameter and
systematic effects appear to be more relevant between
different template families, as well known from previous
studies [188,201,202]. The differences in the Λ̃ parameters
can be led back to the modeling choices of the employed
approximants [1,125,185][see][]. The results estimated
with TEOBResumSPA at 1 kHz show a posterior distribution
slightly shifted toward lower values with respect to the
analysis at 2 kHz, consistently with what has been observed
in the BNS injection study (Sec. VI B). The posterior
distributions for EOB and PN approximants show a good
agreement with fmax ¼ 1 kHz.

C. EOB catalog

As full scale application, we reproduce the analyses of
the BBH mergers published in GWTC-1 [1] employing the
BAJES pipeline and the time-domain EOB waveform model
TEOBResumS, including only the dominant (2,2) mode.
Table IV shows the priors used for each event, where
the nominal GPS time refers to the central value of the

FIG. 16. Posterior distributions for the intrinsic parameters of
GW170817 estimated with BAJES pipeline employing TaylorF2
(5.5PNþ 7.5PN) waveform model with aligned-spin compo-
nents. The chirp mass is expressed in solar masses M⊙. We report
the median value and the 90% credible levels for each parameter
and the contours represent the 50% and the 90% credible regions.

FIG. 17. Posterior distributions for the reduced tidal parameter
Λ̃ of GW170817 estimated using the BAJES pipeline with different
waveform approximants and different upper cutoff frequencies.
The posterior samples have been reweighted to uniform prior
distribution and the plot shows the original employed prior (gray
line). Solid lines refer to the results with fmax ¼ 2 kHz, while
dashed lines are estimated with fmax ¼ 1 kHz. TEOBResumSPA

(blue line) and TaylorF2 (yellow line) samples are computed
employing aligned spins, while precessing spin components were
included for IMRPhenomPv2_NRTidal (green line).
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analyzed time axis. For all the studies, the analyzed
frequency range goes from 20 Hz to 1 kHz and we assume
aligned-spin components with isotropic prior distribution
and volumetric prior for the luminosity distance. The
prior distributions for the other parameters are chosen

accordingly with Sec. V B. For these studies, we employ
eight calibration envelope nodes for each detector, the
phase ϕ0 is marginalized during the likelihood evaluations,
and the time-shift parameter t0 is sampled from a 2 s
window centered around the nominal GPS time.

FIG. 18. Comparison between the posterior distributions for the tidal parameters fΛ̃; δΛ̃g estimated with the BAJES pipeline (blue
lines) with the official LIGO-Virgo released samples [185] (yellow lines) computed with the LALInference routines [7,26]. The analyses
are performed with IMRPhenomPv2_NRTidal waveform approximant. The left panel shows the results with low-spin prior (χmax ¼ 0.05),
while the right panel presents the high-spin prior results (χmax ¼ 0.89)s. For both panels, the central plots show the 50% and 90%
credible regions. We estimate the JS divergences for the marginalized distributions, finding the values of 8.9 × 10−5 bit and
5.3 × 10−5 bit, respectively, for Λ̃ and δΛ̃ for the high-spin prior case. Regarding the low-spin prior studies, the JS divergences
correspond to 8.3 × 10−5 and 4.7 × 10−5 bit, respectively, for Λ̃ and δΛ̃.

TABLE IV. Prior and posterior information for the analyses of the BBH events of GWTC-1 with TEOBResumS. The GPS time refers to
the central value of the time axis. For all studies, we assume aligned spins with isotropic prior. The inferred values refer to the medians of
the marginalized posterior distributions and the uncertainties are 90% credible regions, except for the log Bayes’ factors logBS

N, for
which we report the standard deviations.

Data information Prior bounds Inferred values

Event
GPS

time ½s� Duration ½s�M ½M⊙� q χ1;2
DL½Mpc�

M
½M⊙� q χ1;z χ2;z χeff

DL½Mpc� logBS
N

GW1509141126259462 8 ½12;45� ½1;8� ½0;0.99� ½100;5000� 31.9þ1.1
−1.5 1.20

þ0.29
−0.17 0.07þ0.39

−0.28 0.00þ0.40
−0.42 0.05þ0.10

−0.13 471þ167
−231 267.1

þ0.2
−0.2

GW1510121128678900 16 ½12;45� ½1;8� ½0;0.99� ½100;5000� 18.3þ1.8
−1.0 1.86

þ2.86
−0.76 0.05þ0.33

−0.28 0.11þ0.53
−0.48 0.09þ0.22

−0.17 1039þ627
−626 16.0þ0.2

−0.2

GW1512261135136350 16 ½6.5;15� ½1;8� ½0;0.99� ½50;5000�9.71þ0.07
−0.07 2.04

þ1.59
−0.93 0.38þ0.23

−0.24 0.16þ0.58
−0.47 −0.05

þ0.45
−0.61 490þ222

−240 36.4þ0.2
−0.2

GW1701041167559936 16 ½12;45� ½1;8� ½0;0.99� ½100;5000� 25.6þ1.8
−2.1 1.56

þ0.86
−0.46 0.00þ0.29

−0.32 −0.04
þ0.40
−0.40 −0.03

þ0.21
−0.25 1069þ423

−446 58.4þ0.2
−0.2

GW1706081180922494 16 ½5;10� ½1;8� ½0;0.99� ½50;5000�8.49þ0.05
−0.04 1.48

þ1.22
−0.42 0.06þ0.30

−0.28 0.03þ0.58
−0.39 0.06þ0.27

−0.09 298þ146
−128 80.3þ0.2

−0.2

GW1707291187529256 4 ½25;175� ½1;8� ½0;0.99� ½100;7000� 51.4þ9.1
−9.6 1.84

þ0.95
−0.77 0.47þ0.39

−0.48 −0.05
þ0.83
−0.36 0.30þ0.28

−0.28 2495
þ1600
−1300 27.1þ0.2

−0.2

GW1708091185389807 16 ½12;45� ½1;8� ½0;0.99� ½100;5000� 30.3þ2.3
−2.0 1.45

þ0.72
−0.39 0.07þ0.33

−0.27 0.17þ0.58
−0.21 0.17þ0.24

−0.21 999þ473
−483 41.8þ0.2

−0.2

GW1708141186302519 16 ½12;45� ½1;8� ½0;0.99� ½100;5000� 26.8þ1.3
−1.0 1.29

þ0.52
−0.26 0.07þ0.39

−0.28 0.02þ0.49
−0.38 0.08þ0.16

−0.12 540þ224
−189 99.6þ0.2

−0.2

GW1708181186741861 16 ½12;45� ½1;8� ½0;0.99� ½100;5000� 31.8þ3.4
−2.9 1.48

þ0.96
−0.43 −0.08

þ0.27
−0.35 0.00þ0.45

−036 −0.06þ0.33
−0.27 1190þ594

−438 29.7þ0.2
−0.2

GW1708231187058327 4 ½25;175� ½1;8� ½0;0.99� ½100;7000� 37.4þ5.5
−5.1 1.57

þ0.94
−0.51 −0.01

þ0.42
−0.33 0.06þ0.56

−0.55 0.03þ0.30
−0.28 1690

þ1081
−880 39.5þ0.2

−0.2
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Figure 19 shows the posterior distributions marginalized
in the mass components and spin magnitudes planes for
all the analyzed BBH events. The mass components are
expressed in the source frame of the binaries assuming the
cosmological model presented in Ref. [173]. The detector-
frame mass components mi can be estimated in the source
frame of the binary as

msrc
i ¼ mi

1þ z
; i ¼ 1; 2; ð43Þ

where z is the cosmological redshift of the source. In
general, the recovered mass parameters show a predomi-
nance of equal mass binaries with mass ratio well con-
strained below q≲ 3, except for the low-mass binary
GW151012, that admits values of q ≃ 5 at 90% credible
level. The recovered mass components are distributed
between 7 M⊙ and 70 M⊙, with an abundance in the
range ½20 M⊙; 50 M⊙�. In terms of spin contributions, the
most interesting events are GW151226, whose posterior
distribution excludes the nonspinning case at 90% confi-
dence level, consistently with Ref. [1,160], and
GW170729, which recovers an effective spin of χeff ≈
0.3 and admits values up to χ1 ≳ 0.9. The other GW
transients show mitigated spin contributions, with χ1 ≲ 0.5
at the 90% credible level. Generally, the posterior distri-
butions for the secondary spin component χ2 are more
broadly distributed and less informative than those for the
primary component χ1.
Furthermore, Fig. 20 shows the posterior distributions of

final masses Msrc
f (estimated in the source frame) and final

spin magnitudes χf expected for the merger remnants. The
values are computed resorting to NR formulas presented in

Ref. [203], calibrated with aligned-spin BBH simulations.
The majority of the recovered final spins χf lie around
∼0.67 due to the moderated spin contributions of the
observed mergers. Regarding the extrinsic parameters,
Fig. 21 shows the posterior distributions of the sky location.

FIG. 19. Marginalized posterior distribution for the source-frame mass components fm1; m2g (left) and the spins fχ1; χeffg (right) of
the BBHmergers presented in GWTC-1 [1]. The PE studies have been performed with TEOBResumS model. The masses are expressed in
the binary source frame employing the cosmological model proposed in Ref. [173]. The contours refer to the 90% credible regions.

FIG. 20. Marginalized posterior distribution for the final
masses and spins fMsrc

f ; χfg for the remnants of the BBH mergers
presented in GWTC-1 [1]. The analyses are performed using the
BAJES pipeline and TEOBResumS waveform approximant. The
values have been computed from the posterior samples employ-
ing NR formulas presented in Ref. [203]. The final masses are
expressed in the source frame of the binary. The contours refer to
the 90% credible regions.
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The sky maps for GW170814 and GW170818 show
slightly larger bimodal behavior compared with the results
presented in GWTC-1 [1]. On the other hand, the 90%
credible region for GW170104 appears to be more con-
strained. Note that the aligned-spin assumption affects the

overall SNR and, then, the recovered posterior distributions
[204,205]. The measurements for the sky locations of the
other events do not show considerable deviations from the
GWTC-1 estimations [1]. Figure 22 shows the correlations
of the luminosity distance DL with the inclination angle ι

FIG. 21. Marginalized posterior distribution for right ascension and declination angles fα; δg (represented using a Mollweide
projection) for the BBH mergers presented in GWTC-1 [1]. The analyses are performed using the BAJES pipeline and TEOBResumS

waveform approximant. The right ascension α is expressed in hours, while the declination δ is reported in degrees. The contours refer to
the 90% credible regions.

FIG. 22. Marginalized posterior distribution for inclination angle and luminosity distance fι; DLg (left) and for luminosity distance
and total mass fDL;Mg (right) for the BBHmergers presented in GWTC-1 [1]. The analyses are performed using the BAJES pipeline and
TEOBResumS waveform approximant. The contours refer to the 90% credible regions.
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and with the total mass M ¼ m1 þm2 (estimated in the
detector frame). The luminosity distances are in agreement
with the GWTC-1 estimations, while the inclination angles
show slightly wider posterior supports due to the degen-
eracy introduced with the aligned-spins assumption [206].
For the GW150914 case, we can compare the analysis

with higher-order modes (presented in Sec. VII A) with the
results estimated using only dominant mode. First of all, the
results with l ≥ 5 show narrower uncertainties, consis-
tently with the inclusion of a larger amount of physical
information [10,207,208]. On the other hand, the estimated
Bayes’ factors do not show strong evidence in favor or
against the inclusion of higher-order modes, as expected for
this kind of source; higher-order modes are expected to be
more relevant for large mass ratios and edge-off binaries
[209,210]. Overall, the median values of the recovered
parameters are consistent between each other except for
the mass ratio that appears to be more constrained around
q ¼ 1 including higher modes.
In conclusion, we shown that TEOBResumS can be

effectively applied to BBH signals, obtaining robust and
consistent results [139]. The main limitation of the pre-
sented results comes from the aligned-spins assumption
that introduces degeneracy with other parameters and
induces biases in population inferences [211–213]. We
are planning to extend the presented catalog including
precessing spin terms [147] and verifying the importance of
eccentric contributions [116]. In terms of computational
cost, TEOBResumS shows an overall good behavior, perform-
ing the analysis of a typical BBH (with length of 8 s) in
∼14hours on 32 CPUs.

VIII. CONCLUSION

In this paper, we presented BAJES, a parallel, lightweight
infrastructure for Bayesian inference, whose main appli-
cation is the data analysis of gravitational-wave and multi-
messenger transients. BAJES is implemented in PYTHON and
comes with a versatile framework for Bayesian inference
and different state-of-art samplers. Furthermore, it provides
methods for the analysis of GW and EM transients emitted
by compact binary coalescences. We benchmarked BAJES

by means of injection-recovery experiments with BBH
merger, BNS inspiral-merger and postmerger signals. The
injection studies and statistical tests show that the BAJES

pipeline is well calibrated and it provides robust results,
within the expected statistical fluctuations.
The injections of BNS postmerger signals also offered

the first detectability study with a five-detector network
including LIGO, Virgo, KAGRA, and third-generation ET
[114,115]. We find BNS postmerger signal will be detect-
able for optimally oriented sources located at ≲80 Mpc.
This result is largely merit of the ET sensitivity [114,115]
that contributes to 90% of the SNR. According with recent
population studies [11] and using the distance threshold
estimated from our survey with the third-generation

network (∼80 Mpc), the detection rate of these sources
is expected to be 0.5–2 events per year. As discussed in
Sec. VI C, the detection of such a transient, combined with
the knowledge of EOS-insensitive relations, can reveal
essential properties of the nuclear matter at high densities,
improving significantly the EOS constraints [118].
We demonstrated the reliability of BAJES in analyzing the

observational data recorded by the LIGO-Virgo interfer-
ometers [1,47]. The posterior distributions for the param-
eters of GW transients computed with the BAJES are in
agreement with the results from other GW pipelines [7,30].
The direct comparison of the BAJES results on GW150914
with the ones obtained with the BILBY [31,72,194] pipeline
shows a maximum JS divergence of 5.2 × 10−4 bit for the
tilt angle ϑ2 and the marginalized posterior distributions
are largely consistent between each other. Furthermore, the
analyses of GW150914 with TEOBResumS approximant
slightly emphasize the relevance of higher-order modes
for improving the accuracy of the binary properties’
estimations.
We performed PE studies on GW170817 using

TEOBResumSPA, IMRPhenomPv2_NRTidal and, for the first time,
TaylorF2 including 5.5PNpoint-mass contributions and 7.5PN
tidal terms. The novel analysis with the extended PN model
shows a good agreement with previous estimations per-
formed with the same template family [1,185]. Using
IMRPhenomPv2_NRTidal template, we found full consistency
with previous results and the official LIGO-Virgo posterior
samples [1,185]. Posterior distributions for the reduced
tidal parameter Λ̃ recovered with upper cutoff frequency
fmax ¼ 2 kHz show larger systematic biases between
different waveform templates compared with the 1 kHz
analyses. However, using a larger fmax, it is possible to
take into account a larger amount of tidal information
that leads to more constrained measurements. The tidal
parameter Λ̃ estimated with TEOBResumSPA has slightly
larger values compared with the measure of TaylorF2 and
IMRPhenomPv2_NRTidal with fmax ¼ 2 kHz. The results of
EOB and PNmodels are in overall good agreement if fmax ¼
1 kHz is employed and also with independent analysis
of AT2017gfo [25]. We note that parallelization methods
are key for the PE of BNS signals associated to
long data segments ≳100 s. The BAJES runs discussed in
Sec. VII B were efficiently performed on 128 CPUs with
total execution time of ∼1 day.
Future work will present the validation and the appli-

cation of BAJES to multimessenger analyses, including EM
counterparts like kilonovae and γ-ray burst (e.g., [25,214]).
Moreover, we are implementing reduced-order quadrature
[215–217] and the relative binning [201,218] in order to
speed-up the likelihood evaluations in the GW studies.
Inferences on the properties of neutron star matter will be
supported with the inclusion of a parametrized EOS
sampling method [219,220]. Moreover, future BAJES

releases will include an extended set of nested samplers,
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in particular algorithms based on machine learning (e.g.,
[221]) and efficiently parallelizable routines (e.g., [222]).

BAJES is publicly available at [223] and contributions
from the community are welcome. The posterior samples
presented in Sec. VII C and the configuration files to
reproduce the runs are available on Zenodo [224].

ACKNOWLEDGMENTS

The authors would like to thank Walter Del Pozzo for
useful discussions. M. B. and S. B. acknowledge support by
the EU H2020 under ERC Starting Grant No. BinGraSp-
714626. R. G. and M. B. acknowledge support from the
Deutsche Forschungsgemeinschaft (DFG) under Grant
No. 406116891 within the Research Training Group RTG
2522/1. The computational experiments were performed on
the ARA cluster at the Friedrich Schiller University Jena
supported in part by DFG Grants No. INST 275/334-1
FUGG and No. INST 275/363-1 FUGG and ERC Starting
Grant, No. BinGraSp-714626. This research made use of
data obtained from the Gravitational Wave Open Science
Center [80], a service of LIGO Laboratory, the LIGO
Scientific Collaboration, and the Virgo Collaboration.
LIGO is funded by the U.S. National Science Foundation.
Virgo is funded by the French Centre National de Recherche
Scientifique, the Italian Istituto Nazionale della Fisica
Nucleare, and the Dutch Nikhef, with contributions by
Polish and Hungarian institutes.

APPENDIX A: MCMC AND PTMCMC

A generic MCMC algorithm explores the parameter
space moving forward region with increasing value of
the probability and returns a set of independent samples
representative of the target probability density. The MCMC
samplers implemented in BAJES is based on EMCEE [63]:
this routine represents a simple and complete implementa-
tion of a Metropolis-Hastings sampling that takes advan-
tage of parallel chains.
The MCMC algorithm can be summarized as follows. An

arbitrary number of chains, say nchain, are initialized with as
many random prior samples. For each chain, the last stored
sample is evolved and a new sample θ� is proposed according
to predefined proposal methods (see Appendix C). The new
sample θ� is accepted with probability

min

�
1;
pðθ�jd; HÞ
pðθijd; HÞ

qðθijθ�Þ
qðθ�jθiÞ

�
; ðA1Þ

where θi is the last sample of the chain and qðθijθjÞ is the
proposal density function computed between θi and θj. This
procedure is iterated for every chain of the ensemble and
samples are collected during the exploration. Note that,
according with prescription Eq. (A1), the probability of the
proposed sample is not required to be strictly greater than that
of the current sample. The initial exploration is called burn-

in, in which the chains randomly explore the surrounding
prior volume. The algorithm spends these iterations in order
to localize the maximum-probability region. After a certain
amount of iterations, depending on the complexity of the
parameter space, the chains can converge and the actual
collection of posterior samples starts. Subsequently, when
the algorithm reaches the stopping condition, the burn-in
portion is removed, the samples from different chains are
joined together, theACL is computed in order to estimate the
effective number of independent posterior samples, and the
final set of samples is extracted from the joined set according
with the value of ACL. The stopping criterion implemented
in BAJES for the MCMC algorithms is defined by the
requested number of output samples nout,

ði − nburnÞnchain
ACL

≥ nout; ðA2Þ

where i is the current iteration, nchain is the total number of
chains, nburn is the number of iterations required for burn-in,
and ACL is computed on the set of post-burn-in samples.5

The MCMC algorithm disposes of a light-weighted
settings and it is a fast and versatile algorithm. However,
when the parameter space becomes large or the distribu-
tions have multimodalities, this method could have many
issues, such as insufficient and inaccurate exploration of
the parameter space; some chains could get trapped in
local minima or the ensemble might not be able to reach
convergence. These issues can be mitigated resorting to a
large number of parallel chains or to specific proposal
methods (see Appendix C). Moreover, given a set of
posterior samples, it is possible to estimate the evidence
using the approximation

pðdjHÞ ≈ 1

nsamples

Xnsamples

i¼1

pðθijd; HÞ; ðA3Þ

where the index i ¼ 1;…; nsamples runs over the posterior
samples. However, in general, Eq. (A3) is unable to
perform accurate estimations of the evidence, since the
MCMC algorithm is not designed to minutely inspect all
the parameter space.
On the other hand, the parallel tempering MCMC

(PTMCMC) [227–229] performs improved exploration
of the parameter space and it provides a more accurate
estimations of the evidence integral compared to standard
MCMC techniques. The PTMCMC sampler implemented
in BAJES is inspired by PTEMCEE [65]. The PTMCMC
introduces an inverse temperature coefficient β ¼ 1=T ∈
½0; 1� in the computation of posterior distribution, such that

5We are planning to modify the current MCMC stopping
condition implementing the Gelman-Rubin diagnostic test
[225,226].
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pβðθjd; HÞ ∝ ½pðdjθ; HÞ�βpðθjHÞ: ðA4Þ

The set of all chains is grouped in equally populated
subensembles and a different value of β is associated to
each tempered ensembles. The default β ladder is geomet-
rically spaced in the range [0, 1]. The algorithm proceeds
as the usual MCMC for every chain using the tempered
posterior distribution Eq. (A4). For T ¼ 1, the tempered
posterior is identical to the original one and low-
temperature chains will move toward regions with large
likelihood values focusing on the estimation of the volume
of the bulge. However, the contribution of the likelihood
function is mitigated by increasing values of T, up to the
limit T → ∞, where the posterior is identically equal to the
prior. Then, high-temperature chains will be able to freely
explore the majority the prior support, inspecting the tails
of the targeted posterior distribution and providing a good
coverage of the entire prior volume. Furthermore, the
algorithm proposes swaps between consecutive pairs of
chains, received with acceptance

min

�
1;

�
pðdjθi; HÞ
pðdjθj; HÞ

�
βj−βi

�
; ðA5Þ

where θi and βi are, respectively, the last sample and the
inverse temperature of the ith chain, and analogously for j.
If the swap is accepted, the position of the two samples is
exchanged in the different selected chains. This procedure
allows the information of the high-temperature chains to
propagate to the low-temperature ones and vice versa,
improving the correlation between the samples. Another
key feature of parallel tempering is that it satisfies the
detailed balance condition [230], required for convergence
of the MCMC chains.
Finally, the stopping criterion Eq. (A2) is estimated for

the untempered chains; when it is satisfied, the sampler
stops and reproduces the posterior samples using only the
chains of the T ¼ 1 subensemble. Furthermore, using the
auxiliary coefficient β and thermodynamic integration
[231,232], it is possible to write the evidence as

logpðdjHÞ ¼
Z

1

0

Eβ½logpðdjθ; HÞ�dβ; ðA6Þ

where the expectation value is estimated using the tempered
posterior, i.e.,

Eβ½fðθÞ� ¼
Z
Θ
fðθÞ½pðdjθ; HÞ�βpðθjHÞdθ: ðA7Þ

Equation (A6) can be estimated through numerical inte-
gration. The terms Eβ½logpðdjθ; HÞ� are estimated over the
initial β ladder applying Eq. (A3) to the tempered posterior
samples and the integral is approximated using the trap-
ezoidal rule. The PTMCMC represents an improved

version of a standard MCMC technique that aims to
provide much accurate estimations of the evidence.
However, the accuracy of the estimation Eq. (A6) strongly
depends on the number of employed temperatures: in
complex situations, the total number of chains needed to
accurately estimate the evidence could overcome the
number of available processes, affecting the efficiency of
the sampler [233].

APPENDIX B: NESTED SAMPLING

The nested sampling [50,56] is a finely designedBayesian
technique designed to accurately estimate the evidence
integral and, nevertheless, it provides a set of posterior
samples as final product of the algorithm. The strength of
this technique is the capability to succeed even in cases of
high-dimensional parameter space or multimodal distribu-
tions. Nested sampling computes the evidence identifying
nested isoprobability contours and estimating the amount of
prior volume enclosed by each level. The main advantage of
this technique is the reduction of the multidimensional
integral Eq. (2) to a one-dimensional problem [234,235],
introducing the variable

XðλÞ ¼
Z
pðdjθ;HÞ>λ

pðθjHÞdθ: ðB1Þ

The quantity XðλÞ is usually labeled as prior mass and it is
the cumulative prior volume covering all likelihood values
greater than λ. The prior mass takes values in the range [0, 1],
where X ¼ 1 corresponds to the entire prior volume. Then,
we can rewrite the likelihood as function of the prior mass,
i.e., pðdjXðλÞ; HÞ ¼ λ, from which follows

pðdjHÞ ¼
Z

1

0

pðdjX;HÞdX: ðB2Þ

Equation (B2) has a further advantage: by definition, the
likelihood pðdjX;HÞ is a monotonic decreasing function
of X. Then, for X → 0, the likelihood tends to its maximum
value. Accomplishing the transformation θ → X involves
dividing the unit prior mass range into small bins and sorting
them by likelihood.
A standard nested sampling routine requires an input

number of live points nlive and a real positive number ζ
representing the final tolerance of the computation. The live
points are samples of the parameter space that are evolved
during the routine: starting from a set of nlive initial samples
(usually extracted from the prior distribution), the live point
with lowest likelihoodvalue, say θi, is discarded and replaced
with a new point θ� extracted from the prior distribution
that satisfies the relation pðdjθ�; HÞ > pðdjθi; HÞ. The new
point θ� is usually proposed using internal MCMC routines
(see Appendix C). The procedure is repeated taking the
lowest-likelihood live point at every iteration, such that the
algorithm starts inspecting the entire prior volume (X0 ¼ 1),
and it moves toward lower value of the prior mass,
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0 < Xi < … < X2 < X1 < X0 ¼ 1; ðB3Þ

up to the most likely value(s), where the majority of the
likelihood volume is located. At the nth iteration, the
evidence is approximated from Eq. (B2) using trapezoidal
rule,

pnðdjHÞ ≈ 1

2

Xn
i¼1

ðXi−1 − Xiþ1Þpðdjθi; HÞ; ðB4Þ

where Xi is estimated with the expectation value [235]

E½Xi� ¼ e−i=nlive : ðB5Þ

From Eq. (B5), we can deduce that the average volume
occupied by a live point corresponds to the nliveth part of the
current prior mass. Then, increasing nlive, the sampling will
perform a finer grained inspection of the prior volume. In the
nested sampling context, the ith extracted sample is taken as
representative element of the respective isoprobability level
of likelihood and, since the algorithm accepts strictly
increasing likelihood values, it ensures that each level is
nested in the previous one. Then, the overall evidence is
computed summing all the likelihood contributions from
eachnested levelweighted on the expected difference in prior
mass, according with Eq. (B5). The specific stopping
condition depends on the requested sampler. In general, if
the algorithm converged to the global maximum-likelihood
value, at the nth iteration, the evidence is expected to vary at
most of

Δn ¼ max
i≤n

½pðdjθi; HÞ� · Xn; ðB6Þ

where maxi≤n½pðdjθi; HÞ� is the maximum likelihood dis-
covered up to the nth iteration. Then, the general stopping
criterion requires that the estimated evidence is not expected
to change more than a factor eζ, i.e.,

ζ ≥ log

�
1þ Δn

pnðdjHÞ
�
: ðB7Þ

When the stopping condition is satisfied, the sampler stops
and it includes the contributions of the remaining live points
to the overall evidence. Then, the posterior distribution can
be reconstructed by the chain of collected samples,weighting
each point according with its probability distribution

pðθkjd; HÞ ≈ ðXk−1 − Xkþ1Þ
2

pðdjθk; HÞ
pðdjHÞ ; ðB8Þ

where the index k runs over the extracted samples [236].
The nested sampling routine offers a much better

architecture for evidence estimation than MCMC tech-
niques. In general, the estimated log evidence carries a
statistical uncertainty inversely proportional to nlive due to

the marginalization over the prior mass; while, numerical
errors are dominated by the use of point estimates and
by the length of the MCMC subchains nMCMC used to
propose new samples, as shown in Ref. [6]. This ineffi-
ciency can be suppressed estimating the ACL of the
MCMC subchains and proposing a new sample indepen-
dent of the previous one. Note that also the estimation of the
posterior samples Eq. (B8) is affected by statistical and
numerical uncertainty [71].
The CPNest [86] software represents an exemplary imple-

mentation of a standard nested sampling: the code is
designed to be nicely interfaced with user-defined models
and its sampling methods can be easily customized. On the
other hand, DYNESTY [87] takes advantage of flexible
bounding methods [237,238] that aim to define isoprob-
ability contours in order to exclude least likely regions of
the parameter space improving the robustness of the
algorithm. Moreover, DYNESTY provides an implementa-
tion of dynamic nested sampling [239]: this technique
allocates an adaptive number of live points at each iteration
i, i.e., nlive ≡ nliveðiÞ. Since the change in prior volume at a
given iteration depends on the number of live points, as
shown in Eq. (B5), the possibility of varying nlive gives the
algorithm the freedom to control the effective resolution of
the sampling as a function of prior mass, adapting it to the
shape of the posterior in real time and improving the
evaluation of the posterior density. Since the architecture of
the dynamic nested sampling differs from the standard, it
requires modified methods in order to compute the evi-
dence and estimate the posterior. By default, the importance
of each sample for the evidence computation is propor-
tional to the amount of the posterior density enclosed in the
prior mass probed by that point.

APPENDIX C: PROPOSAL METHODS

The exploration of the parameter space is defined by
proposal methods which aim to move a sample toward a
more likely position in the parameter space independent
from the previous. The efficiency of the proposals deter-
mines the rate of acceptance of new samples and it affects
the final ACL and subsequently the efficiency of the whole
sampler. It follows that these tools are fundamental for the
chains progress and a generic, broad, and varied combi-
nation of proposal methods is needed to accurately inspect
the entire parameter space. For this reason, BAJES imple-
ments an assorted combination of proposal methods.
Before discussing the specific proposals implemented in

BAJES, we observe that a generic proposal method requires
the introduction of a proposal distribution q in order to
satisfy the detailed balance. A proposal distribution
qðθ�jθiÞ quantifies the probability of proposing θ� given
θi. A symmetric proposal is such that the proposed point is
fully independent from the initial sample, i.e., qðθ�jθiÞ ∝ 1
for every ðθ�; θiÞ. The interested reader might look at
Refs. [240,241] for details on Markovian process.
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(i) Prior proposal: A new point is extracted from the
prior distribution generating a sample uniformly
distributed over a hypercube and projecting it in
the current parameter space according with the
prescribed prior. This method could show low
acceptance on long timescales, especially for com-
plex posterior distribution. However, it can improve
the exploration of the parameter space and it does
not require expensive computations.

(ii) Stretch proposal: This method is introduced in
Ref. [242] and it make use of an auxiliary random
sample θa extracted from the history of the chains.
A new sample θ� is proposed from the initial
position θi according with

θ� ¼ θa þ ξðθi − θaÞ; ðC1Þ

where ξ is a scale factor. As pointed out in Ref. [243],
this proposal is symmetric if the probability density
of scaling factor gðξÞ satisfies the condition
gð1=ξÞ ¼ ξgðξÞ. The BAJES implementation adopts
the settings presented in Ref. [63]. In order to satisfy
the detailed balance, this proposal method requires
an acceptance factor,

qðθijθ�Þ
qðθ�jθiÞ

¼ ξndim−1; ðC2Þ

where ndim is the number of dimensions of the
parameter space. Equation (C2) is computed con-
ditioning of the target distribution on the trajectory
described by Eq. (C1). The method shows a good
adaptation to arbitrary shapes of the distributions
[242] but it might become inefficient for multi-
modal cases.

(iii) Random walk proposal: This method is introduced
in Ref. [242]. The new sample θ� is extracted from a
multivariate normal distribution, centered in the
initial sample θi and with covariance defined using
a subset of N auxiliary points randomly extracted
from the history of the chains. By default, BAJES

walk proposal uses N ¼ 25. This symmetric method
is efficient with unimodal distributions and it can
improve the correlation between the samples. How-
ever, it becomes inefficient in case of complex
posterior distribution since it is not capable to
arbitrarily adapt its shape.

(iv) Replacement proposal: This method is introduced in
Ref. [242]. A subset of N auxiliary points Θ̄≡ fθ̄kg
is randomly chosen from the history of the chains
and it is used to identify a probability distribution
pðθjΘ̄Þ from which the new samples will be ex-
tracted. The idea is to estimate pðθjΘ̄Þ such that is it
capable to approximate the target distribution, in-
creasing the acceptance. Moreover, the estimation

can be refined and adapted during the exploration of
the parameter space. In order to estimate pðθjΘ̄Þ, the
replacement proposal implemented in BAJES em-
ploys a Gaussian kernel density estimation with
N ¼ 25. However, this method does not access to
unexplored regions of the parameter space, with the
possibility of leading to highly correlated chains.
Furthermore, this method is not symmetric and the
proposal distribution is described by pðθjΘ̄Þ.

(v) Differential evolution proposal: This method is
introduced in Ref. [244] and it aims to solve
problems due to multimodal distributions using a
differential move based on the information on the
explored samples. Two auxiliary random samples
fθa;bg are extracted from the from the history of the
chains and a new sample θ� is proposed from θi as

θ� ¼ θi þ γðθa − θbÞ; ðC3Þ

where γ is a scale factor whose value is randomly
extracted when a new sample is proposed. The differ-
ential evolution proposal of BAJES assign γ ¼ 1 with
50% of probability in order to improve the mixing
between different modes. The remaining 50% of the
time the scale factor is extracted from a normal
distribution such that γ ∼ Nð0; 2.38= ffiffiffiffiffiffiffiffiffiffiffi

2ndim
p Þ, where

ndim is the dimension of the parameter space. This
choice has been proved to increase the acceptance of
the algorithm [245,245]. In general, differential evo-
lution is capable to capture linear correlations and
improve mixing between different modes; however, it
can perform poorly in more complicated scenarios.

(vi) Eigenvector proposal: This method computes the
covariance from history of the chains and estimates
the relative eigenvectors. Then, the new point is
proposed moving the initial sample along a random
eigenvector of the covariance with a scale prescribed
by the respective eigenvalue. As shown in Ref. [7],
this method can improve the efficiency of the
sampler and decrease the correlation of the chains.

(vii) Ensemble slice proposal: This method has been
introduced in Ref. [246] and it represents an en-
semble-based improvement of the standard slice
proposal [247]. Let us call θi and pi, respectively,
the initial sample and its probability. The method
extracts a value y ∼ Uð0; piÞ and estimates a direc-
tion in the parameter space η, resorting to the
information of the ensemble samples and using
differential and Gaussian estimations. Then, the
initial sample is moved along the slide defined by
the direction η and a new point θ� is proposed when
the associated probability value p� is greater than y.
With respect to standard slice sampling [247], this
method takes advantage of adaptive scale factors
refined during the evolution of the sampler that
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increase the efficiency of the proposal and drasti-
cally reduce the correlation between the collected
samples. On the other hand, the ensemble slice
proposal requires multiple likelihood evaluations;
then, when the likelihood is computationally ex-
pensive, it might affect the computational cost of the
whole algorithm.

(viii) GW-targeted proposal: As discussed in Refs. [6,7],
generic posterior distributions of GW signal param-
eters show many multimodalities and large correla-
tions between different parameters. Moreover, its
shape is usually elongated and nonregular. Then, in
order to properly and efficiently explore the param-
eter space, it is useful to inform the proposal method
with known structures expected in the posterior
distributions and it is possible to take advantage
of the determined analytical dependencies on the
extrinsic parameters. The GW-targeted proposal
implemented in BAJES explores most of the GW
specific methods introduced in Refs. [6,7] such as
sky reflection, Gibbs sampling for the luminosity
distance, and specific methods to explore the
phase polarization and the distance-inclination
correlations.

APPENDIX D: SIMPLE EXAMPLE

In this section, we show a simple example of Bayesian
inference performed with the samplers implemented in
BAJES. We use a three-dimensional parameter space
θ ¼ fθ1; θ2; θ3g bounded to θi ∈ ½−8;þ8� for i ¼ 1, 2, 3
with a uniformly distributed prior distribution. For the sake
of simplicity, we employ a fully analytical likelihood
function; however, we include multimodalities and non-
regular shapes in order to test the behavior of the samplers.
Introducing the auxiliary variables

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ21 þ ðθ2 ∓ 2Þ2

q
; ζ ¼ θ3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ θ22

q
; ðD1Þ

we define the likelihood as

pðdjθ; HÞ ¼ ½e−5ðrþ−2Þ2 þ e−5ðr−−2Þ2 �e−5ζ2 : ðD2Þ

To give an idea, the isoprobability contours described by
this function are roughly similar to the union of two
toroidal surfaces where the second is identical to the first
except for a rotation of π=2. The likelihood function in
Eq. (D2) can be numerically integrated using the quad-
rature rule, resulting in the evidence log pðdjHÞ ≈ −5.5583
with an error of the order of Oð10−5Þ.
In order to infer the described model, BAJES provides

a user-friendly and simple-to-use interface for generic
Bayesian inference. In order to define the prior distribu-
tions, it is sufficient to write a prior configuration file
specifying the name of the parameters and the bounds. For

the case discussed above, we can write the following
PRIOR.INI file.
Then, the likelihood function can be written in an

auxiliary PYTHON file defining a LOG_LIKE method. This
method will be imported by the BAJES routine and used to
determine the log-likelihood function for each sample. We
observe that the only argument of the customized LOG_LIKE
method has to be a dictionary whose keywords are
specified by the prior file. This procedure easily allows
the user the make use of the BAJES inference introducing
arbitrary external data or packages. Following our example,
we write the following pseudo code.
Once the model is defined, the PE job can be submitted

with the command PYTHON -M BAJES -P PRIOR.INI -L
LIKE.PY.6 For our exercise, we employ three samplers:
the PTMCMC, the nested sampling with CPNest, and the
dynamic nested sampling with DYNESTY. The PTMCMC
algorithm estimated a log-evidence equal to −6.4� 5.0,
where the reported uncertainty is the standard deviation.
The estimation agrees with the numerical result; however,
its uncertainty is of the same order of the measurement.
This reflects the inability of MCMC methods to meticu-
lously integrate the features of the targeted parameter space.
On the other hand, CPNest estimated a log-evidence equal to

FIG. 23. Posterior distribution for the parameters fθ1; θ2; θ3g
discussed in Appendix D. The blue lines correspond to the results
obtained with PTMCMC sampler, while the yellow and green
lines refer, respectively, to CPNest and DYNESTY results. The
marginalized contours are the 50% and 90% credible regions.

6The full list of input arguments can be visualized with the
command PYTHON -M BAJES–HELP.
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−5.50� 0.09 and the dynamic nested sampler of DYNESTY
returned the value of −5.58� 0.14. These results highlight
the strength of the nested sampling with respect to MCMC

techniques in the evidence evaluation. Figure 23 shows the
marginalized posterior distributions extracted from the
posterior samples.
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