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An impressive effort is being pursued in order to develop new strategies that allow an efficient
computation of multi-loop multi-leg Feynman integrals and scattering amplitudes, with a particular
emphasis on removing spurious singularities and numerical instabilities. In this article, we describe an
innovative geometric approach based on graph theory to unveil the causal structure of any multi-loop multi-
leg amplitude in quantum field theory. Our purely geometric construction reproduces faithfully the
manifestly causal integrand-level behavior of the loop-tree duality representation. We find that the causal
structure is fully determined by the vertex matrix, through a suitable definition of connected partitions of
the underlying diagrams. Causal representations for a given topological family are obtained by summing
over subsets of all the possible causal entangled thresholds that originate connected and oriented partitions
of the underlying topology. These results are compatible with Cutkosky rules. Moreover, we find that
diagrams with the same number of vertices and multi-edges exhibit similar causal structures, regardless of
the number of loops.
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I. INTRODUCTION

Nowadays, one of the most successful descriptions of
nature is based on quantum field theory (QFT). Impressive
calculations are being performed in order to extract highly-
precise theoretical predictions, which must be confronted
with the highly-accurate data collected from the current
and future experiments [1–8]. Any tiny discrepancy in the
theory-experiment comparison might open the path to huge
discoveries regarding the fundamental building blocks of
the Universe. Moreover, the challenge to achieve further
improvements in the computational techniques behind QFT
is originating several profound discoveries about the
underlying mathematical structures of gauge theories.
Due to the high complexity of gauge theories and QFT

in general, exact solutions are unknown for most of the
experimentally relevant observables. In the context of
high-energy physics, the perturbative approach turns out
to be the most suitable, since it allows us to express
experimentally accessible quantities (such as cross sec-
tions) in terms of power series; to increase the precision of
the results, higher orders must be included. These higher-
order contributions involve dealing with vacuum quantum

fluctuations which are encoded through complicated multi-
loop multi-leg Feynman diagrams.
In the last twenty years, there was enormous progress

towards more efficient loop calculations. Several tech-
niques were developed, such as sector decomposition
[9–12], Mellin-Barnes transformations [13–18], algebraic
reduction of integrands [19–26], integration by parts
[27,28], semi-numerical integration [29–31], among other
highly creative and powerful ideas [32–34]. In this direc-
tion, the loop-tree duality (LTD) [35–38] constitutes a
novel strategy to tackle higher-order calculations by open-
ing loops into trees, thus recasting the virtual states into
configurations that resemble real-radiation processes.
The purpose of LTD is twofold. On one side, expressing

the virtual and real-radiation contributions on similar
integration spaces allows us to infer a natural way to
combine them at the integrand level. This unified formal-
ism produces an integrand-level representation of physical
observables which is locally free of infrared singularities
[39–42]. On the other hand, there are tremendous simpli-
fications in the description of the causal and singular
structure of multi-loop Feynman integrals and scattering
amplitudes, that leads to a more compact and numerically
stable representation of the loop integrands in the Euclidean
space of the loop-three momenta [43–45]. Several studies
that took advantage of a simplified treatment of singular-
ities within LTD were carried out [46–50]. Regarding the
causal structure of scattering amplitudes, there are previous
studies using different techniques [51–53]. Very recently,
LTD was applied to remove unphysical threshold singu-
larities and obtain a manifestly causal integrand-level
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definition of multi-loop scattering amplitudes [54–61].
All these LTD-based techniques were implemented in an
automatized framework [62].
It is known that geometry and graph theory can be used to

reinterpret the physical meaning of scattering amplitudes.
Moreover, Cutkosky rules [63,64] and Steinmann relations
[65–67] establish a deep connection among geometrical
properties of Feynman diagrams (cuts or partitions) and the
structure of discontinuities of the underlying amplitude.
Inspired by these ideas, we investigated similar ideas with
the purpose of reconstructing the whole amplitude at
integrand level using a manifestly causal representation.
Even more, in a recent article, we explored the application of
novel quantum algorithms to efficiently detect causal con-
figurations in multi-loop diagrams, by identifying acyclic
graphs with Grover’s algorithm [68].
The outline of this article is the following. In Sec. II, we

briefly recall the basic ideas behind the loop-tree duality
theorem, and we introduce its connection with the causal
structures in multi-loop multileg scattering amplitudes.
Then, in Sec. III, we establish the geometrical concepts
required to describe Feynman integrals and multi-loop
amplitudes. Introducing the concepts of multi-edges, ver-
tices, and the vertex matrix, we explain how to generate all
the possible causal propagators involved in their causal
representations in Sec. III A. After that, in Sec. IV, we
describe a set of geometrical rules to unveil the causal
structure of any amplitude. These rules explain how to
combine compatible causal propagators, associated to
different thresholds, leading to the concept of compatible
causal entangled thresholds. We present a detailed example
based on four-vertex topologies in Sec. V. A discussion
about more complicated configurations, including the
causal structure of N-vertex topologies at one loop, is
given in Sec. VI. Finally, the conclusions and outlook are
presented in Sec. VII.

II. LOOP-TREE DUALITY AND CAUSALITY

In order to provide a proper description of multi-loop
multi-leg scattering amplitudes, it is mandatory to identify
and classify the kinematical variables involved. So, let us
consider a generic L-loop N-point amplitude. First, we
define L primitive-loop momenta fligi¼1;…;L which cor-
respond to the integration variables.
Then, we group the momenta of the internal lines, I,

associated to a Feynman diagram (or topology) into n sets,
according to their dependence on the primitive variables.
In this way, the set s contains all the internal momenta of
the form

qis ¼
X
j

βsjlj þ kis ; ð1Þ

where kis represents a linear combination of external
momenta fprgr¼1;…;N and βsj ∈ f−1; 0; 1g. The linear

combination of primitive momenta βsjlj remains fixed
for each is ∈ s. Here, external momenta are considered
outgoing and the shorthand notation qi ≡ i is used when
there is only one element per set (i.e., #ðsÞ ¼ 1 for every s).
At this point, we introduce the concept of maximal loop

topology (MLT), which describes those diagrams or fam-
ilies of diagrams with the minimal number of sets for a
given number of loops; i.e., n − L ¼ 1. This naturally
defines a topological classification of diagrams through the
so-called topological complexity, k̃≡ n − L, as previously
discussed in Refs. [57,58,60,69]. In this way, MLT corre-
sponds to k̃ ¼ 1; the next to maximal loop topology
(NMLT) to k̃ ¼ 2, and so on. In Fig. 1, we show generic
examples of MLT (left), NMLT (center), and N2MLT
(right) diagrams. It is worth appreciating that the lines
drawn in the diagrams represent sets, which might contain
several external particles attached to them.
Once the notation has been established, we can use it to

write any L-loop N-point diagram in the Feynman repre-
sentation as

AðLÞ
N ¼

Z
l1;…;lL

N ðfligL; fpjgNÞ ×GFð1;…; nÞ;

where n ¼ Lþ k̃ is the total number of momentum sets, k̃
is the corresponding topological complexity of the diagram
and N represents a generic numerator that depends on all
the kinematical variables, i.e., any possible scalar product
involving fpjg and flig. In this expression

Z
l
≡ − {μ4−d

Z
ddl
ð2πÞd ; ð2Þ

corresponds to the standard d-dimensional loop integration
measure. The product of Feynman propagators is given by

GFð1;…; nÞ ¼
Y

i∈1∪���∪n
ðGFðqiÞÞαi ; ð3Þ

FIG. 1. General examples of MLT (a), NMLT (b), and N2MLT
(c) topologies. We indicate with a single line each of the the sets
defined by Eq. (1). As explained in the text, we can attach an
arbitrary number of external particles to each line, which
corresponds to enlarging the sets s by adding more propagators
on them.
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where αi ∈ N. Individually, each Feynman propagator is
expressed according to

GFðqÞ ¼
1

ðq0 − qðþÞ
0 Þðq0 þ qðþÞ

0 Þ
; ð4Þ

where q ¼ ðq0; q⃗Þ is the momentum carried by the particle

and qðþÞ
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq⃗Þ2 þm2 − {0

p
is the associated positive on-

shell energy. This emphasizes that any internal line of a
loop amplitude can be interpreted as the quantum super-
position of two off-shell states flowing forward and back-
ward in time, respectively. We will recall this interpretation
later in Sec. IV.
The LTD representation of Eq. (2) is obtained by

integrating out one degree of freedom per loop through
the Cauchy residue theorem. The application of the nested
residues leads to a collection of diagrams with as many on-
shell cuts as loops, in such a way that each loop diagram is
open into a sum of nondisjoint trees. After adding together
all the dual terms, the final result only involves same-sign
combinations of on-shell energies in the denominator; these
are the so-called causal propagators [57,58,60,69]. The
causal propagators are associated to threshold discontinu-
ities or singularities, as those predicted by the optical
theorem and reconstructed through Cutkosky’s rules [63].
As already investigated in previous articles, the LTD

offers an excellent opportunity to disentangle the causal
structure of scattering amplitudes. In particular, starting
from Eq. (2) and computing the nested residues, we claim
that [57,58,60,70]

AðLÞ
N ¼

X
σ∈Σ

Z
l⃗1;…;l⃗L

N σðfqðþÞ
r;0 g; fpj;0gÞ
xn

×
Yk
i¼1

1

−λσðiÞ
þ ðσ ↔ σ̄Þ; ð5Þ

fully describes the causal structure of any multi-loop multi-
leg Feynman diagram of order k. The order of a diagram is
given by

k ¼ I − L; ð6Þ

namely, the number of remaining off-shell propagators after
opening the loops into trees through L iterated cuts. In
Eq. (5) the causal propagators have the generic form

λ�j ≡X
i∈oj

qðþÞ
i;0 � kj; ð7Þ

where kj denotes a sum of external momenta and oj
represents the internal lines that are on-shell in the
associated threshold singularity. The set Σ contains all
the subsets of products of k causal propagators, σ, which

fulfill certain compatibility criteria. Also, σ̄ is obtained
from σ through the replacement λ�j ↔ λ∓j , namely by
reversing simultaneously the momenta flow of all the
internal lines. Additionally, we introduce the short-hand
definitions

Z
l⃗
≡μd−4

Z
dd−1l
ð2πÞd−1 ; xn ¼

Y
i∈1∪…∪n

2qðþÞ
i;0 ; ð8Þ

which encode, respectively, the Euclidean dual integration
measure and the normalization factor coming from the
iterated application of Cauchy’s residue theorem.
Regarding the numerator, N σ is given by the application
of an operator depending on the subset σ (whose explicit
form might be obtained from a direct calculation of the
residues) and only involves on-shell energies of the internal
lines and the energies for external particles. It is worth
appreciating that, for scalar integrals, we obtainN σ ≡ 1 for
all σ ∈ Σ. Thus, a possible path to recover Eq. (5) consists
in performing a reduction to scalar integrals and then
computing their causal representations [62,70].

III. GEOMETRICAL DESCRIPTION
OF MULTI-LOOP AMPLITUDES

Multi-loop multi-leg scattering amplitudes are built from
Feynman diagrams, i.e., geometrical structures described
by graphs made of vertices and lines. The lines are
understood as propagators that carry momenta and connect
the different vertices. The vertices describe interactions
among particles and impose momentum conservation
involving internal and/or external particles. Propagators
connect exactly two vertices, and there could be more than
one propagator connecting two vertices. In that case, we
substitute the sum of all the momenta flowing through
propagators connecting to two vertices by a single multi-
edge; thus a multi-edge corresponds to a bunch of lines,
with the same origin and end, which are merged together.
The set of all the multi-edges defines a basis Q, which is
extended to include external momenta as well.
Let’s consider a multi-loop Feynman diagram with N

external particles, L loops, and V interaction vertices.
These vertices are connected through I propagators, which
can be reduced to M multi-edges by merging those
connecting the same vertices. Thus, the same Feynman
diagram can be described in two equivalent ways:
(a) Standard Feynman diagram: a graph with L loops, I

propagators (lines) and V vertices satisfying

V − 1 ¼ I − L; ð9Þ

i.e., Euler’s formula.
(b) Reduced Feynman diagram: a graph with V vertices

connected by M multi-edges, which satisfies an
analogous conservation equation,
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V − 1 ¼ M − L̃; ð10Þ

with L̃ the number of graphical loops.
Whilst in the standard representation each loop is associated
to a loop integration, the graphical loops only designate
a topological characteristic of the reduced Feynman graph
[71]. In order to clarify these concepts, we sketch the
distinction between them in Fig. 2 for a four-vertex topology.
On the left side, we show the standard Feynman graph
with L ¼ 8 and I ¼ 11. By merging lines into multi-edges,
we obtain the reduced graph in the right side, which is
composed by M ¼ 5 multi-edges and L̃ ¼ 2 graphical
loops. Additionally, if the multi-edge e1 is the result of
merging the lines fi1;…; irg, the associated energy is

qe1;0 ≡
Xr

j¼1

qij;0; ð11Þ

and the corresponding on-shell energy is given by

qðþÞ
e1;0

≡Xr
j¼1

qðþÞ
ij;0

: ð12Þ

The last definition is supported by the behavior of the
LTD representation of MLT-like insertions in multi-loop
Feynman diagrams. As rigorously proven in Ref. [69], when
several lines connect two vertices, they can be replaced by an
equivalent propagator whose equivalent on-shell energy is
the sum of the on-shell energies of each individual line [72].
In general, we notice that combining Eq. (6) with

Eqs. (9) and (10), we obtain

k ¼ V − 1; ð13Þ

which indicates that the order of a diagram is directly
related to the number of vertices. It turns out that the
reduced Feynman diagrams are more suitable to infer the

causal structure of Feynman integrals (or amplitudes), as
we will explain in the rest of the article. This assertion is
also supported by similar studies based on algebraic
properties of multi-loop Feynman diagrams constructed
from vertices and multi-edges [70].
Moving forward with the formulation of the geometrical

framework, we define the basis of multi-edges and external
momenta Q. For a given reduced Feynman diagram, we
choose the ordering

Q ¼ fQ1;…; QM;p1;…; pN−1g; ð14Þ

where we implicitly impose
P

pi ¼ 0 due to momentum
conservation. For each vertex, we have a unique momen-
tum conservation equation; momentum is conventionally
considered positive (negative) if it is outgoing (incoming).
In this way, a vertex v ∈ V is spanned over the basisQ, as a
linear combination of multi-edge momenta with coeffi-
cients f�1; 0g. For instance, given the vertex v with multi-
edges Q1 and Q2 outgoing, Q4 incoming and the external
outgoing momentum p2 attached to it, we introduce the
representation

v ¼ ð1þ; 2þ; 4−; 2̂þÞ
≡ ð1; 1; 0;−1;…; 0; 0; 1;…; 0Þ; ð15Þ

with the shorthand notation ĵ ¼ pj. The vertex v corre-
sponds to the momentum conservation equation

v∶ → Q1 þQ2 −Q4 þ p2 ¼ 0: ð16Þ

Then, we define the vertex matrix V as the V×ðMþN−1Þ
rectangular matrix whose rows corresponds to the coor-
dinates of all the vertices spanned on the basis Q. For
example, if the first vertex is the one given in Eq. (15), the
generic structure of V would be

V ¼

0
B@

1 1 0 −1 � � � 0 1 0 � � �
0 −1 1 0 � � � 0 0 1 � � �

� � � � � �

1
CA;

ð17Þ

where the vertical line separates internal (left) and
external (right) momenta.
All the kinematic information encoded in V is enough to

unveil the causal structure of the underlying diagram as we
will explain in the following. Global momentum conser-
vation implies that

RankðVÞ ¼ V − 1 ¼ k; ð18Þ

since the information of the momenta entering (exiting) to
(from) a given vertex is constrained by the whole system.
We can make two direct observations. First, the rank of the

(a) (b)

FIG. 2. Comparison between the standard Feynman (left) and the
reduced graph (right), for a four-vertex topology. Vertices are
labeled with bold numbers. Whilst the diagram in a has 11
propagators and 8 loops, the reduced one in b has only 5 multi-
edges and 2 graphical loops. Multi-edges 1 and 4 are the result of
collapsing 3 lines;multi-edges 2 and 3 originate from2propagators;
andmulti-edge 5 is composed by a single line in the standard graph.
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vertex matrix agrees with the order of the diagram, by
virtue of Eq. (13). Second, we can implement a practical
criterion to identify linear combinations of multi-edge
momenta that are compatible with momentum conserva-
tion. Explicitly, given q ¼ P

aiQi we have a unique
coordinate representation in the Q basis and we can attach
the corresponding row to the vertex matrix; if the extended
matrix fulfils RankðV�Þ ≤ V − 1, then q≡ 0 because of
momentum conservation. This last property is useful to test
the compatibility rules that define all the possible entangled
thresholds.

A. Generation of causal propagators

Here, we explain how the causal propagators are
generated using concepts from graph theory. To do so,
we consider reduced Feynman diagrams, i.e., we only rely
on the information concerning vertices and multi-edges.
Then, we define a binary partition of the reduced graph as a
nontrivial partition of the set of vertices V ¼ fv1; v2;…g
with two components; since one is the complement of the
other, we identify each partition with the smaller subset of
vertices. In general, we have

PV ¼ ff1g; f2g;…; f1; 2g; f1; 3g;…g; ð19Þ

with the notation j≡ vj. PV is the quotient set of all the
possible subsets of V, constrained by the equivalence
relation r≡ rc where rc ¼ V=r.
Since Feynman diagrams fulfill momentum conservation

(and reduced graphs inherit this property), a physical
partition must also fulfill it. This means that vertices inside
each element of the partition must be connected through
oriented multi-edges in a consistent way. We can encode
this information by looking into the vertices contained in
each element of PV and its complement. By definition, a
single vertex is self-connected. A set of vertices is con-
nected if there exist multi-edges joining them two by two;
since multi-edges converge into a vertex and they have a
given orientation, this implies a consistent momentum flow
in each vertex belonging to the partition. Thus, we define a
connected partition PC

V as the subset of elements of p ∈ PV
such that p and pc are connected. The connection is defined
by the existence of at least one path that allows to go from
one vertex to any other inside the partition.
Let us use the reduced graph in Fig. 2 to illustrate the

concept of connection. The set of all the possible binary
partitions is given by

PV ¼ ff1g; f2g; f3g; f4g; f1; 2g; f1; 3g; f1; 4gg; ð20Þ

but not all of them are connected. This is the case of
p ¼ f1; 3g, which includes the vertices 1 and 3 connected
through the multi-edge 5. However, its complement, pc ¼
f2; 4g, involves disconnected vertices; there is not a multi-
edge joining 2 and 4. Consequently, p¼f1;3g∉PC

V .

Also, with this definition, all the remaining binary parti-
tions in Eq. (20) are connected.
The connected binary partitions originated from a

reduced graph are important since they codify the threshold
structure of the corresponding Feynman amplitude. Then,
we need to establish the relation among partitions and
causal denominators. In order to do this, given p ∈ PC

V , we
define its conjugated causal propagator as the sum of all the
energies of the associated multi-edge momenta connecting
the vertices inside the partition. If βj ∈ f�1; 0g and
γj ∈ f1; 0g, a generic conjugated causal propagator is
given by

λ̄p ¼
X
j

βjQj;0 þ
XN−1

i¼1

γipi;0; ð21Þ

where the coefficients βj reflects the freedom to choose the
propagator momenta flow in the Feynman representation
and λ̄p ¼ 0 when momentum conservation is fulfilled in all
the vertices associated to the partition p. External particles
are always labeled as outgoing, even if they carry negative
energy (which is equivalent to say that they are actually
incoming particles). It is worth appreciating that this
definition is consistent, i.e., we recover the same expression
for λ̄pc (i.e., by considering pc), because of global
momentum conservation. Also, we notice that λ̄p has a
strong physical meaning; it is the total momenta flowing
from (or to) a given binary partition of a reduced Feynman
diagram.
Once the conjugated causal propagators are defined, we

can generate all the possible causal propagators. They
originate from the overlap of momentum conservation and
the nested application of Cauchy’s residue theorem, leading
to causal same-sign combinations of on-shell energies.
Explicitly, we introduce the transformation

λ̄p → �λ�p ¼ �
X
j

jβjjQðþÞ
j;0 þ

XN−1

i¼1

γipi;0; ð22Þ

which is equivalent to fix a partition, evaluate the nested
residues (i.e., replace loop-energy components by positive

on-shell energies, QðþÞ
i;0 ) and consistently align all the

momenta involved.
To conclude this section, we shall recall the discussion

given in Eq. (4); propagators involve the superposition
of two off-shell modes, which implies that they can be
aligned in two possible directions once they become on
shell. Then, we appreciate that λ�p is determined modulo a
global sign. Besides that, we use the convention in Eq. (22)
since it implies λþ ¼ λ− in the absence of external
momenta attached to some vertices, thus simplifying the
expressions. Finally, we will equivalently denote the causal

GEOMETRICAL APPROACH TO CAUSALITY IN MULTILOOP … PHYS. REV. D 104, 036014 (2021)

036014-5



propagators by the vertices involved in the associated
connected binary partition, i.e., λp ≡ fvi1 ;…; virg.

IV. CAUSALITY AND COMPATIBILITY
CONDITIONS

As mentioned before, the connected binary partitions
of a reduced Feynman diagram and all the associated
causal propagators are in strict correspondence. Each
causal propagator corresponds to a different physical
threshold, as discussed in Refs. [54,57]. On the other
hand, multi-loop multi-leg Feynman diagrams involve a
superposition of several thresholds, that might occur when
different combinations of internal states become on shell.
Thus, from a geometrical point of view, the threshold or
causal structure of a given Feynman diagram is determined
by a set of specific combinations of connected binary
partitions. Each possible term in a representation like
Eq. (5) corresponds to entangled causal thresholds, using
the concepts defined in Ref. [60]. So, in this Section, we
explain how to determine all the allowed entangled causal
thresholds imposing geometrical selection rules to combine
the different causal propagators.
In first place, we notice that:
(1) Each possible entangled combination of causal

denominators involves the on-shell energies of all
the propagators.

This condition is related to the fact that we are cutting the
diagram into trees, and classifying these trees according to
their threshold structure. At one loop, this agrees with the
original Cutkosky’s rules [63]. Beyond one loop, there are
more possibilities to decompose the topologies into trees,
but the idea remains the same; identify all the causal
compatible tree-level structures inside a diagram. Here, two
tree-level blocks are causal compatible if they fulfill
momenta conservation and if they can be combined in
such a way that the momenta exiting one block consistently
enter into the other.
With the previous ideas, we can reinterpret the gener-

alization of Cutkosky’s rules in terms of vertices and causal
propagators. We claim that the fundamental objects to build
the causal representation are the elements of PC

V , since they
contain information about the momenta flow and the
propagators that can be simultaneously set on shell in each
contribution. Each λp is associated to a connected binary
partition of the original reduced Feynman diagram in which
internal lines are all entering or exiting the partition. Thus,
we motivate the following two compatibility criteria:
(2) Absence of crossing: Two compatible causal propa-

gators λp and λq must fulfill that the associated
connected sets of vertices are disjoint or one is
totally included in the other. Explicitly, if p is
smaller than q, then p ⊂ q or p ⊂ qc.

(3) Consistent multi-edge momenta orientation: A set of
causal propagators is compatible if the associated

λ̄p can be consistently oriented, i.e., if all the multi-
edges contribute to the entangled cuts with the same
orientation.

Regarding the last criterion, let us remember that a causal
propagator λ�p corresponds to a binary partition which splits
the reduced diagram into two connected pieces. At this
point, the causal denominators can be thought as aligned
contributions obtained from λ̄p by selecting either negative
or positive energy modes. Then, this criterion implies that
all the multi-edges crossing the cut must have the same
direction, i.e., they are all entering or exiting the partition.
In order to achieve this, we might have to reverse some
multi-edges. If a diagram involves several cuts or causal
thresholds, we have to look for a consistent orientation of
all the multi-edges of the reduced diagram. Consequently, it
could happen that when combining several λp, some multi-
edges can not be consistently aligned (for instance, because
qj ≡ −qj is required).
It turns out that imposing criterion 3 leads to a reduced

Feynman diagram without cycles, i.e., an acyclic oriented
graph. We call causal orientation of the multi-edges to a
configuration of momenta flow which converts the reduced
graph into an acyclic oriented graph. Thus, given a reduced
graph, we can first find all the causal orientations and then
look for those combinations of λp which fulfil criteria 1–3.
This problem can be tackled by studying the eigenvalues of
the adjacency matrix, which is build from the vertex matrix
introduced in Eq. (17) [73].
To illustrate the application of criteria 1–3, let us

consider a typical three-loop Mercedes-Benz diagram as
shown in Fig. 3. We assume that there is only one line per
multi-edge, in such a way that the reduced and the standard
Feynman diagram are the same. First, we define

λ1≡f1;3g; λ2≡f1g; λ3≡f3g; λ6≡f1;4g; ð23Þ

which corresponds to the identification among partitions
of vertices and conjugated causal propagators. On the left
graph, f1; 3g⊄f1; 4g and f1; 3g⊄f2; 3g ¼ f1; 4gc since
these are nondisjoint sets of vertices; criterion 2 is not

FIG. 3. (Left) Example of two incompatible causal propagators
with nondisjoint sets of vertices. (Right) Example of a forbidden
combination of causal propagators due to incompatible momenta
orientation.
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fulfilled here. On the right graph, the entangled threshold
corresponding to ðλ1λ2λ3Þ is considered. If we fix the
orientation of the lines exiting the partition f1; 3g≡ λ1, the
multi-edge connecting the vertices 1 and 3 can not be
consistently oriented. Thus, this combination of causal
thresholds is forbidden from the causal representation by
virtue of criterion 3.
After applying criterion 3 and ordering the multi-edges

to represent acyclic directed graphs, we need to keep the
information about those multi-edges that were reversed,
i.e., the causal orientations. This is important to apply the
transformation given in Eq. (22) and properly determine
whether it corresponds to select λþp or λ−p. In fact, we have
the following rule:
(4) Causal propagator orientation: Given a connected

binary partition in a causally oriented reduced
graph, if the external momenta and the oriented
multi-edges are both outgoing, then λ̄p → λþp .
Otherwise, λ̄p → λ−p .

Summarizing the procedure described up to now and
applying the criteria 1–4 to any reduced Feynman graph,
we can obtain the set of all the allowed entangled causal
thresholds describing that diagram. We will denote this
set as Σ̄.
However, some of the entangled thresholds defined by

criteria 1–4 might be degenerated due to global momentum
conservation. This is true when the number of multi-edges
is not enough to fully constrain the flow of the different cuts
involved in an entangled threshold. Equivalently, the
degeneration takes place if the number of multi-edges is
not maximal for the associated topology. This observation
motivates the following definition: a reduced Feynman
diagram is a maximally connected graph (MCG) if all the
vertices are connected to each other. In other words, the
associated adjacency matrix can be transformed into an
upper-triangular #V × #V matrix with all the entries equal
to 1. After exploring several topologies, we find the
last rule.
(5) Removing the threshold degeneration: Given a

nonmaximally connected graph, we select a pair
of disconnected vertices, i and j, and force the
condition pi ¼ −pj ≡ qMþ1. We repeat the pro-
cedure for all the disconnected vertices, till we
generate a maximally connected graph. Then, we
force the validity of criterion 3 including the
fictitious multi-edges fqMþ1;…; qMþR−1g.

This criterion determines the set Σ ⊂ Σ̄ in Eq. (5) and fixes
a causal representation of the diagram. Of course, this also
shows that there might be several equivalent causal
representations for a given Feynman graph, being all of
them related due to momentum conservation. Only when
the reduced Feynman graph is maximally connected, we
have Σ ¼ Σ̄. This condition is also true when the diagram is
next to maximally connected, in the sense that only two
vertices are disconnected. For more general cases, criterion

5 might take a more complicated explicit form; we defer for
future studies these configurations and the exploration of
their corresponding geometrical properties.

V. APPLICATION TO FOUR-VERTEX
TOPOLOGIES

After presenting the abstract geometrical formalism in the
previous sections, we will provide a concrete application.
But first, we want to recall that all the information about the
causal structure of any Feynman diagram is encoded within
the vertex matrix. Independently of the number of loops and
external legs, the computational complexity of a Feynman
diagram is given by the number of vertices and how they are
connected. Rephrasing a bit the last two sentences, all the
selection criteria described in Sec. IV can be implemented
through operations performed on V.
So, let us illustrate our framework for the case of the

scalar four-vertex topologies. We start with the case with 4
multi-edges depicted in Fig. 4 (left), i.e., a one-loop four-
point function. For the sake of simplicity, we consider that
each multi-edge is composed by a single propagator (i.e.,
the reduced and standard Feynman graphs are equal),
whose associated momenta are

q1 ¼ l1; q2 ¼ l1 − p1; q3 ¼ l1 − p1 − p2;

q4 ¼ l1 − p1 − p2 − p3; ð24Þ

and fpigi¼1;…;4 are the external momenta fulfilling
Σpi ¼ 0. The basic set of momenta is

Q ¼ f1; 2; 3; 4; 1̂; 2̂; 3̂g; ð25Þ

and 4̂ ¼ −1̂ − 2̂ − 3̂ because of global momentum con-
servation. The vertices are

v1 ¼ ð1−; 2þ; 1̂þÞ; v2 ¼ ð2−; 3þ; 2̂þÞ;
v3 ¼ ð3−; 4þ; 3̂þÞ; v4 ¼ ð4−; 1þ; 4̂þÞ; ð26Þ

which leads to the vertex matrix

FIG. 4. Four-vertex topologies with 4, 5 and 6 multi-edges,
respectively. These topologies involve four external particles.
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V ¼

0
BB@

−1 1 0 0 1 0 0

0 −1 1 0 0 1 0

0 0 −1 1 0 0 1

1 0 0 −1 −1 −1 −1

1
CCA: ð27Þ

By looking into the connected partitions of vertices, we find

PC
V ¼ ff1g; f2g; f3g; f4g; f1; 2g; f1; 4gg; ð28Þ

where we only keep the equivalence classes determined by
p≡ pc. We notice that f1; 3g≡ f2; 4g ∉ PC

V because both
of them involve nonadjacent vertices which can not be
connected. Associated to each element of PC

V , we have the
corresponding conjugated causal propagator, i.e.,

λ̄1 ¼ ð−1; 1; 0; 0; 1; 0; 0Þ≡ f1g;
λ̄2 ¼ ð0;−1; 1; 0; 0; 1; 0Þ≡ f2g;
λ̄3 ¼ ð0; 0;−1; 1; 0; 0; 1Þ≡ f3g;
λ̄4 ¼ ð1; 0; 0;−1;−1;−1;−1Þ≡ f4g;
λ̄5 ¼ ð−1; 0; 1; 0; 1; 1; 0Þ≡ f1; 2g;
λ̄6 ¼ ð0; 1; 0;−1; 0;−1;−1Þ≡ f1; 4g; ð29Þ

being the internal (external) coordinates located to the
left (right) of the semicolon. Applying the transformation
described in Eq. (22)–(29), we obtain all the causal
propagators for this topology. Explicitly, we have

λ�1 ¼ qðþÞ
1;0 þ qðþÞ

2;0 � p1;0;

λ�2 ¼ qðþÞ
2;0 þ qðþÞ

3;0 � p2;0;

λ�3 ¼ qðþÞ
3;0 þ qðþÞ

4;0 � p3;0;

λ�4 ¼ qðþÞ
1;0 þ qðþÞ

4;0 � ðp1;0 þ p2;0 þ p3;0Þ;
λ�5 ¼ qðþÞ

1;0 þ qðþÞ
3;0 � ðp1;0 þ p2;0Þ;

λ�6 ¼ qðþÞ
2;0 þ qðþÞ

4;0 � ðp2;0 þ p3;0Þ; ð30Þ

by replacing the energy component of each multi-edge with

the associated aligned positive on-shell energies, i.e., qðþÞ
i;0 .

Once we generated all the connected binary partitions,
we need to identify the allowed entangled thresholds. First,
we notice that the order of this diagram is k ¼ 3, because it
is a four-vertex topology and we apply Eq. (13). Since there
are six causal propagators, the number of potential combi-
nations of thresholds is 20. The application of criteria 1 and
2 reduces the possibilities to only 16. More combinations
are discarded after considering criteria 3–4, which involve a
compatible ordering of the multi-edges. Thus, given an
entangled threshold, we test all the possible orderings of
multi-edges that leads to an acyclic graph; we retain only
those configurations where multi-edges are aligned when
entering/exiting all the binary partitions. This information

allows to define an ordering matrix that is used to
distinguish between λþi and λ−i . Thus, applying the trans-
formation rules in Eq. (22), we obtain

Σ̄ ¼ fð1þ; 2−; 3þÞ; ð1þ; 2−; 4þÞ; ð1þ; 2−; 6−Þ;
ð1þ; 3þ; 4þÞ; ð1þ; 3−; 5þÞ; ð1þ; 3−; 6−Þ;
ð1þ; 4þ; 5þÞ; ð2þ; 3−; 4−Þ; ð2þ; 3−; 5þÞ;
ð2þ; 4þ; 5þÞ; ð2þ; 4þ; 6þÞ; ð3þ; 4þ; 6þÞg;

ð31Þ

which is the set of all the compatible entangled thresholds.
Here, we use the short-hand notation i� ≡ λ�i . Notice that
the number of elements in ðΣ̄Þ is 12.
At this point, we appreciate that setting Σ ¼ Σ̄ and

N σ ≡ 1 for all σ ∈ Σ in Eq. (5) does not agree with the
result of the explicit nested residue calculation. This is
because there are degenerated entangled thresholds; in fact,

fð1; 2; 3Þ; ð1; 3; 4Þg≡ fð1; 2; 4Þ; ð2; 3; 4Þg; ð32Þ

because of momentum conservation. By including these
configurations we over-count the effect of some entangled
thresholds [74]. Thus, we need to break the degeneration by
applying criterion 5. So, we can choose to close the loop by
joining vertices 1 and 3, or 2 and 4. In the first case,
we obtain

Σ1 ¼ fð1þ; 2−; 4þÞ; ð1þ; 2−; 6−Þ; ð1þ; 3−; 5þÞ;
ð1þ; 3−; 6−Þ; ð1þ; 4þ; 5þÞ; ð2þ; 3−; 4−Þ;
ð2þ; 3−; 5þÞ; ð2þ; 4þ; 5þÞ; ð2þ; 4þ; 6þÞ;
ð3þ; 4þ; 6þÞg; ð33Þ

whilst in the second

Σ2 ¼ fð1þ; 2−; 3þÞ; ð1þ; 2−; 6−Þ; ð1þ; 3þ; 4þÞ;
ð1þ; 3−; 5þÞ; ð1þ; 3−; 6−Þ; ð1þ; 4þ; 5þÞ;
ð2þ; 3−; 5þÞ; ð2þ; 4þ; 5þÞ; ð2þ; 4þ; 6þÞ;
ð3þ; 4þ; 6þÞg; ð34Þ

where both sets contain ten elements. Following the func-
tional form presented in Eq. (5), causal representations of
the scalar one-loop four-vertex topology are given by

Að1−loopÞ
4−vertex ¼

Z
l⃗1

1

x4

X
σ∈Σr

Y3
i¼1

−1
λσðiÞ

þ ðλþi ↔ λ−i Þ; ð35Þ

with

x−14 ¼ 16qðþÞ
1;0 q

ðþÞ
2;0 q

ðþÞ
3;0 q

ðþÞ
4;0 ; ð36Þ
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using either r ¼ 1 or r ¼ 2, from Eqs. (33) and (34)
respectively.

A. Maximally and next-to-maximally connected
four-vertex topologies

Then, let us consider the remaining four-vertex topol-
ogies with 5 and 6 multi-edges. Starting from the two-loop
four-vertex topology in Fig. 4 (center), we generate all the
possible connected binary partitions. We immediately
realize that they are the same as for the one-loop four-
vertex case; i.e., the set PC

V is also given by Eq. (28).
However, the functional form of the corresponding causal
propagators changes because of the additional multi-edge.
Explicitly, we have

λ�1 ¼ qðþÞ
1;0 þ qðþÞ

2;0 þ qðþÞ
5;0 � p1;0;

λ�2 ¼ qðþÞ
2;0 þ qðþÞ

3;0 � p2;0;

λ�3 ¼ qðþÞ
3;0 þ qðþÞ

4;0 þ qðþÞ
5;0 � p3;0;

λ�4 ¼ qðþÞ
1;0 þ qðþÞ

4;0 � ðp1;0 þ p2;0 þ p3;0Þ;
λ�5 ¼ qðþÞ

1;0 þ qðþÞ
3;0 þ qðþÞ

5;0 � ðp1;0 þ p2;0Þ;
λ�6 ¼ qðþÞ

2;0 þ qðþÞ
4;0 þ qðþÞ

5;0 � ðp2;0 þ p3;0Þ; ð37Þ

Again, there are 20 potential candidates to be entangled
thresholds (six causal propagators to be grouped in sets of
k ¼ 3 elements). Applying criteria 1–2, we discard eight
configurations. When imposing criteria 3–4, we realize that
the presence of an additional multi-edge (with respect to the
one-loop case) leads to stricter constraints and two other
configurations are eliminated. Thus, we obtain

Σ̄ ¼ fð1þ; 2−; 4þÞ; ð1þ; 2−; 6−Þ; ð1þ; 3−; 5þÞ;
ð1þ; 3−; 6−Þ; ð1þ; 4þ; 5þÞ; ð2þ; 3−; 4−Þ;
ð2þ; 3−; 5þÞ; ð2þ; 4þ; 5þÞ; ð2þ; 4þ; 6þÞ;
ð3þ; 4þ; 6þÞg; ð38Þ

which is the same set Σ1 presented in Eq. (33). This is not a
coincidence; this two-loop topology is a next to maximally
connected graph (NMCG), and removing the multi-edge q5
leads to the one-loop box described in the previous
discussion. Thus, using Eq. (5), we get

Að2−loopÞ
4−vertex ¼

Z
l⃗1l⃗2

1

x5

X
σ∈Σ

Y3
i¼1

−1
λσðiÞ

þ ðλþi ↔ λ−i Þ; ð39Þ

as a causal representation for the scalar two-loop four-
vertex topology, where

x−15 ¼ 32qðþÞ
1;0 q

ðþÞ
2;0 q

ðþÞ
3;0 q

ðþÞ
4;0 q

ðþÞ
5;0 ; ð40Þ

and Σ≡ Σ̄ given by Eq. (38).
Finally, let’s consider the four-vertex topology with

six multi-edges, shown in Fig. 4 (right). This topology is
straightforwardly a maximally connected graph; all the
vertices are connected. Using the identification between
conjugated causal propagators and the elements of the
connected binary partitions PC

V , we have

λ̄1 ≡ f1g; λ̄2 ≡ f2g; λ̄3 ≡ f3g; λ̄4 ≡ f4g;
λ̄5 ≡ f1; 2g; λ̄6 ≡ f1; 4g; λ̄7 ≡ f1; 3g: ð41Þ

Notice that f1; 3g≡ f2; 4g was not a connected binary
partition for the two previous topologies, but it contributes
to this one. The introduction of additional edges allows to
define a path connecting the vertices 1 and 3, as well as 2
and 4. Explicitly, the causal propagators are given by

λ�1 ¼ qðþÞ
1;0 þ qðþÞ

2;0 þ qðþÞ
5;0 � p1;0;

λ�2 ¼ qðþÞ
2;0 þ qðþÞ

3;0 þ qðþÞ
6;0 � p2;0;

λ�3 ¼ qðþÞ
3;0 þ qðþÞ

4;0 þ qðþÞ
5;0 � p3;0;

λ�4 ¼ qðþÞ
1;0 þ qðþÞ

4;0 þ qðþÞ
6;0 � ðp1;0 þ p2;0 þ p3;0Þ;

λ�5 ¼ qðþÞ
1;0 þ qðþÞ

3;0 þ qðþÞ
5;0 þ qðþÞ

6;0 � ðp1;0 þ p2;0Þ;
λ�6 ¼ qðþÞ

2;0 þ qðþÞ
4;0 þ qðþÞ

5;0 þ qðþÞ
6;0 � ðp2;0 þ p3;0Þ;

λ�7 ¼ qðþÞ
1;0 þ qðþÞ

2;0 þ qðþÞ
3;0 þ qðþÞ

4;0 � ðp1;0 þ p3;0Þ: ð42Þ

Regarding possible causal representations for this topology,
we have 35 entangled thresholds (i.e., all the possible
subsets of three causal propagators taken from the seven
available ones). Imposing criteria 1–2 eliminates 19 com-
binations, and we further reduce this set by requiring
criteria 3–4 to be fulfilled. The remaining 12 allowed
causal entangled thresholds are given by

Σ̄ ¼ fð1þ; 2−; 6−Þ; ð1þ; 2−; 7þÞ; ð1þ; 3−; 5þÞ;
ð1þ; 3−; 6−Þ; ð1þ; 4þ; 5þÞ; ð1þ; 4þ; 7þÞ;
ð2þ; 3−; 5þÞ; ð2þ; 3−; 7−Þ; ð2þ; 4þ; 5þÞ;
ð2þ; 4þ; 6þÞ; ð3þ; 4þ; 6þÞ; ð3þ; 4þ; 7þÞg:

ð43Þ

Again, we notice that the causal structure of this scalar four-
vertex diagram is

Að3−loopÞ
4−vertex ¼

Z
l⃗1l⃗2l⃗3

1

x6

X
σ∈Σ

Y3
i¼1

−1
λσðiÞ

þ ðλþi ↔ λ−i Þ; ð44Þ

with
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x−16 ¼ 64qðþÞ
1;0 q

ðþÞ
2;0 q

ðþÞ
3;0 q

ðþÞ
4;0 q

ðþÞ
5;0 q

ðþÞ
6;0 ; ð45Þ

and Σ≡ Σ̄ given by Eq. (43). As in the case of the two-loop
box, the set of causal entangled thresholds is not degen-
erated (i.e., criterion 5 is immediately fulfilled). For this
reason, we emphasize that it is the only possible causal
representation compatible with Eq. (5).
To conclude this section, we highlight that the procedure

followed here is only based on geometrical concepts. In the
three examples reported, we compared the reconstructed
causal representations with the integrand-level result of the
LTD representation (which was obtained through the
explicit computation of the nested residues). A perfect
agreement was found in all the cases.

VI. CAUSAL STRUCTURE OF MULTI-VERTEX
DIAGRAMS

Taking a step forward in complexity, we consider the
causal structure of scalar N-vertex reduced diagrams. The
possible number of multi-edges, M, fulfills

N ≤ M ≤
ðN − 1ÞN

2
; ð46Þ

where the upper bound corresponds to the maximally
connected topologies. By direct computation, we explored
several examples and computed the possible causal
entangled thresholds.
In first place, we studied the generation of all the possible

causal propagators λ�p starting from the sets of binary
connected partitions for different topologies. In particular,
we compared the results obtained with the geometric
algorithm with the expressions reported in Refs. [58,60],
finding complete agreement.
Then, we center into the generation of the allowed causal

entangled thresholds for different topologies. In particular,
we studied the causal structure of scalar maximally and
next-to-maximally connected graphs. Based on explicit
computational exploration, we conjecture that their causal
structures are given by

AðNÞMCG
N−vertex ¼

Z
l⃗1…l⃗L

1

xM

X
σ∈Σ

YN−1

i¼1

−1
λσðiÞ

þ ðλþi ↔ λ−i Þ; ð47Þ

where Σ≡ Σ̄, i.e., the set of allowed causal entangled
thresholds after applying criteria 1–4. It is worth appreci-
ating that the number of loops, L, only enters in this
formula through the integration measure and the explicit

dependence of each qðþÞ
i;0 (with i ∈ f1;…;Mg). Thus, this

supports the initial claim that the causal structure is
independent of the number of loops and propagators (only
depends of the vertices and multi-edges, as also reported
in Ref. [70]).

Finally, we explored the opposite limit, i.e., the possible
causal representations of N-vertex diagrams at one-loop.
It might sound counter-intuitive that one-loop topologies
are more complicated to describe than multi-loop ones. The
point is that the geometrical reconstruction algorithm
exploits the restrictions imposed by the momentum flow
among vertices. Thus, maximally connected graphs are
very constrained and the criteria 1–4 lead to a set of causal
entangled thresholds that is not degenerated. One-loop
N-point amplitudes are described by minimally connected
graphs, and there is an over counting of configurations. To
remove the degeneration, we need to apply criterion 5 and
force global momentum conservation. However, we found
an alternative way to select a nondegenerated set of causal
thresholds. Explicitly, for one-loop diagrams, we realized
that a particular choice of the selections rules dictated by
criterion 5 is:
(5) Removing the threshold degeneration (one-loop

case): Given an entangled threshold, we keep the
ordering matrix obtained after criteria 3–4 and apply
it to the corresponding conjugated causal propaga-
tors λ̄p. Then, we adjust the direction of the multi-
edges in such a way that they are all outgoing from
the associated partition. If they were entering the
partition, we reverse both of their fluxes ðqi → −qiÞ
and the direction of the external momenta attached to
that partition. If the external momenta are consis-
tently aligned, we include the configuration in Σ;
otherwise, we exclude it.

Criterion 5 can be implemented by constructing a matrix
whose rows are the coordinates of λ̄p in the basis Q,
and applying transformations on the rows and columns.
Also, we notice that this modified version of criterion 5
implicitly uses global momentum conservation, since
the direction of the external momenta is fixed by the
condition pN ¼ −

P
pi.

In this way, causal representations for scalar N-point
one-loop functions can be also described by Eq. (47) with
M ¼ N, L ¼ 1 and the set Σ determined with criteria 1–5.
We checked the validity of our claim with several scalar
one-loop N-point functions ðN ≤ 9Þ, finding a complete
agreement with the results computed through nested
residues.

VII. CONCLUSIONS

In this article, we presented a geometrical study of the
entangled causal structure of multi-loop multi-leg Feynman
integrals and amplitudes. We showed that all the informa-
tion concerning the causal decomposition of a topology is
encoded in the vertex matrix. Diagrams with different
numbers of legs and loops, but sharing the same number
of vertices and multi-edges, exhibit a similar causal
structure. We exemplified this situation studying the
four-vertex topologies with four, five, and six multi-edges,
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respectively. Moreover, we introduced a classification of
the different topologies based on graph theory: the order of
the diagram is given by k ¼ V − 1 (V number of vertices)
and it indicates the number of causal thresholds that must
be entangled.
In order to unveil the causal structure, we implemented

an algorithm to generate all the possible causal propagators
associated to a given (reduced) Feynman diagram by
inquiring into a more fundamental object: the connected
binary partitions of vertices. Then, we developed four
criteria to select all the allowed causal entangled thresholds.
We relied only on combinatorics, geometry and graph
theory. Specifically, we imposed restrictions that allow to
split the diagram into disconnected and nonoverlapping
tree-level graphs with a consistent momentum flow through
their multi-edges. To consistently align the momentum flow
of the multi-edges, we implemented transformations in the
vertex matrix to identify all the possible acyclic directed
graphs associated to the reduced Feynman diagram.
For the case of maximally and next-to-maximally con-

nected graphs (i.e., those where all the vertices are con-
nected or only one multi-edge is missing), it turns out that
criteria 1–4 lead to a set of entangled thresholds that seems
to reconstruct the causal structure conjectured in Eq. (5).
However, for topologies with M < ðN − 1ÞN=2, some
causal entangled thresholds are degenerated due to global
momentum conservation. In fact, criteria 1–4 only use
information regarding the vertices and how they are
internally connected through multi-edges. The momentum
conservation associated to external particles can be under-
stood as adding an additional vertex in which all external
momenta converge.
Thus, we introduced an additional selection criterion and

explored its consequences. In particular, we studied the
case of N-vertex one-loop diagrams (which we called

minimally connected graphs) and obtained a simplified
recipe to eliminate the degeneration due to momentum
conservation. Our results were in complete agreement
with the ones obtained through the explicit calculation
of nested residues.
The findings regarding our geometrical approach suggest

an strong connection with the algebraic framework pro-
posed in Ref. [70]. In that work, causal representations
were obtained from maximally connected graphs and
applying algebraic reduction relations. Thus, it would be
highly interesting to understand the interplay between these
two frameworks, since they tackle the same problem with
two very different approaches.
Finally, the discoveries reported in this article establish

an interesting connection between geometry, algebra and
causality in quantum field theory. Moreover, the effects of
imposing global momentum conservation on scattering
amplitudes deserve to be better understood, since they
lead to several equivalent causal representations. Inquiring
more on these findings might open new and more powerful
paths to explore and compute higher orders, breaking the
precision frontier and unveiling the hidden mathematical
structures in QFT.
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