
Hierarchy problem and fine-tuning in a decoupling approach
to multiscale effective potentials

S. Biondini
Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland

D. Boer and R. Peeters
Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,

NL-9747 AG Groningen, The Netherlands

(Received 4 May 2021; accepted 5 August 2021; published 30 August 2021)

In many realizations of beyond the Standard Model theories, new massive particles are introduced,
leading to a multiscale system with widely separated energy scales. In this setting the Coleman-Weinberg
effective potential, which describes the vacuum of the theory at the quantum level, has to be supplemented
with a prescription to handle the hierarchy in mass scales. In any quantum field theory involving scalar
fields and multiple, highly differing mass scales, it is, in general, not possible to choose a single
renormalization scale that will remove all the large logarithms in the effective potential. In this paper, we
focus on the so-called decoupling method, which freezes the effects of heavy particles on the
renormalization group running of the light degrees of freedom at low energies. We study this for a
simple two-scalar theory and find that, while the decoupling method leads to an acceptable and convergent
effective potential, the method does not solve the fine-tuning problem that is inherent to the hierarchy
problem of multiscale theories. We also consider an alternative implementation of the decoupling approach,
which gives different results for the shape of the potential, but still leads to similar conclusions on the
amount of fine-tuning in the model. We suggest a way to avoid running into this fine-tuning problem by
adopting a prescription on how to fix parameters in such decoupling approaches.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is our
present-day reference for a detailed understanding and
description of the fundamental building blocks of matter
and the interactions among them. Despite its success, some
new physics is expected because of various compelling
observations and measurements that still require clarifica-
tion, such as the nature and generation of neutrino masses,
the hierarchies among fermion masses, the nature of dark
matter, the baryon asymmetry in the Universe and the
origin of electroweak symmetry breaking. The current view
of the SM, which has developed over the past few decades,
is that of an effective low-energy theory of some unknown
ultraviolet (UV) completion.
If the theory that extends the SM is meant to solve one of

the aforementioned open questions, it is likely that new
degrees of freedom couple with the SM particles. The

Higgs sector is especially interesting in this regard, as the
Standard Model Higgs boson is often taken as a portal
between the visible and a dark sector [1–6]; it enters the
interactions with right-handed neutrinos in the leptogenesis
framework to account for the baryon asymmetry [7], and
the origin of the electroweak symmetry breaking could be
explained if the Higgs couples to additional scalar particles
[8–11]. However, the existence of interactions between the
Higgs boson and any heavier state of new physics comes at
the price of generating quantum corrections to the Higgs
mass that are quadratic in the mass of the heavy particle
[12–16]. These corrections cannot be avoided on the basis
of symmetry arguments and make the Higgs mass
extremely sensitive to high-scale physics, which is viewed
as unnatural [14,17]. This constitutes the so-called hier-
archy problem: how to explain why the electroweak scale is
so small if there is any beyond the Standard Model physics
at high scales.
The hierarchy problem can also be viewed as a fine-

tuning problem, as the parameters of new high-scale
physics have to be chosen very carefully in order to result
in the observed low-energy parameters. Besides in the
vacuum energy density, this effect is most pronounced in
the mass parameter, which receives large corrections in the
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renormalization group (RG) running from high to low
energies when there is a large hierarchy between the
different scales. There are some well-known theories that
address the hierarchy problem by introducing new physics
at the TeV scale, like supersymmetric extensions [18–21],
composite Higgs [22–24], and extra dimensions [25–27].
However, the minimal versions of these models are nowa-
days rather fine-tuned in order to stay compatible with
experiments [17,28–30].
In this paper we do not consider specific theories that aim

to solve the hierarchy problem, but will take a closer look at
various aspects of the hierarchy problem from the per-
spective of the effective potential, also referred to as the
Coleman-Weinberg (CW) potential [31].1 The CW poten-
tial describes the vacuum of the theory at the quantum level,
i.e., the true minimum of the theory. At the level of the CW
potential, the hierarchy problem shows up through large
loop corrections. It is well known that in any quantum field
theory involving scalar fields and multiple, highly differing
mass scales, it is, in general, not possible to choose a single
renormalization scale that will remove all the large loga-
rithms in the effective potential and as a consequence, in its
derived quantities, such as the vacuum expectation value
(VEV) and the mass of the low-energy scalar field. To be
specific, the loop expansion of the effective potential
contains logarithms of the ratio m2

i =μ
2, with mi being

the mass eigenvalues of the model, and μ the renormaliza-
tion scale. In a model with a hierarchy in mass scales, it is
impossible to choose a value for μ such that all logarithms
containing the ratio m2

i =μ
2 are small at the same time. The

remaining large logarithms will appear with higher powers
at higher orders, invalidating the loop expansion. The
nonconvergence of the perturbative expansion of the
effective potential in the presence of a multiscale system
will hamper its predictiveness.
To address this problem various approaches to the CW

potential of multiscale systems have been put forward:
(i) multiscale renormalization methods [33–36], (ii) a
decoupling method in mass-independent renormalization
schemes [37–39], (iii) a single-scale renormalization-group
improvement for multiscale effective potentials [40], and
(iv) effective field theory (EFT) techniques [41,42]. As
emphasized in [42], one should not confuse an EFT
approach to calculating the CW potential with calculating
the CW potential of a low-energy EFT. In [42] the former is
done, whereas in [41] the CW potential of the low-energy
EFT is matched onto the CW potential of the full theory at
the scale of the high mass modes. In [42] it was shown that
the EFT approach reproduces the CW potential and the
accompanying matching conditions in the decoupling
method for the Higgs-Yukawa model [39] at the two-loop
level. In Ref. [39] it was furthermore shown within the

Higgs-Yukawa model that the decoupling method is equiv-
alent to the multiscale method used in [34,35]. In contrast,
the single-scale improvement is not equivalent to the other
methods, as it does not always resum the leading loga-
rithms [40].
Each of these approaches proposes a way to handle the

heavy modes and the large quantum corrections in order to
arrive at a predictive/convergent effective potential. For
each of these approaches, one may wonder whether the
hierarchy problem still manifests itself or if that has been
solved at the level of the effective potential at least. In the
approach of [41] the hierarchy problem in its original form
appears in the matching condition for the low-energy scalar
mass, where one has to require a very fine cancellation
between two large quantities when imposing the lightness
of the mass of a scalar ϕ at a high-energy scale μS (in our
notation):

m2
ϕ;LEðμSÞ ¼ m2

ϕðμSÞ −
α2

8π
μ2S; ð1Þ

where mϕ;LE is the ϕ-scalar mass in the low-energy theory,
whereas mϕ is the mass in the high-energy theory. Slightly
changing the value of the high-energy parameter mϕ at
μ > μS, where the heavy modes contribute, and running it
down to μ ¼ μS, would have a significant impact on Eq. (1)
and it would spoil the lightness of mϕ;LE. Note that in this
expression the significant impact is due to the quadratic
correction, not due to the large evolution step, i.e., μ=μS
does not need to be very large. This is different from the
logarithmic case which is usually deemed acceptable (e.g.,
small changes of αs atMZ do not lead to big changes at the
GeV scale due to the logarithmic running). One concludes
that the hierarchy problem is present as a fine-tuning
problem in the matching condition. In the EFT approach
of [42] this fine-tuning problem shows up in the matching
condition for the effective potential, but is avoided by
selecting a convenient scale. It is chosen such that the high-
energy and low-energy fields do not mix at this scale. The
hierarchy problem for the energy density cannot be
removed at the same time though. Therefore, some remnant
of the hierarchy problem remains, but predictions for the
quantities derived from the CW potential can be made free
of any fine-tuning upon choosing the right matching scale.
In this paper we investigate this same issue for the

decoupling method of [39], which to some level agrees with
the approach of [42]. For concreteness, we consider a
simple model with two scalar fields, where we take the
mass parameters with a large scale separation. Moreover,
the light scalar field undergoes spontaneous symmetry
breaking (SSB) at tree level, whereas the additional heavy
scalar field, which mimics the new physics, does not (see
Refs. [41,43] for a similar model and for a model where
both scalars undergo SSB see [42]). The two-scalar
model comprises the main ingredients to inspect fully

1See Ref. [32] for an extensive review of the effective potential
both at zero and finite temperature.
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the hierarchy problem and it may resemble the Standard
Model Higgs sector extended with an unknown high-
energy completion. Our goal is to address two main aspects
of the hierarchy problem when implementing the decou-
pling approach: (i) checking whether the SSB still occurs at
the quantum level in the presence of high-energy degrees of
freedom, and to which extent the minimum of the potential
and the mass of the light scalar are affected and (ii) inspect-
ing the fine-tuning of the model parameters.
The paper is organized as follows. In Sec. II we introduce

the two-scalar model and highlight the different aspects of
the hierarchy problem in the context of the effective
potential. Then, in Sec. III, after the decoupling method
is introduced, we address the numerical evaluation of the
VEV of the low-energy scalar field, its stability under
radiative corrections, and its mass in Sec. III A, while in
Sec. IV the connection between fine-tuning and the
effective potential is studied. In Sec. V we compare to a
different implementation of the decoupling method put
forward in the literature and consider a prescription to fix
parameters in order to avoid the fine-tuning problem.
Finally, we summarize our conclusions in Sec. VI.

II. A LARGE HIERARCHY IN THE EFFECTIVE
POTENTIAL

In order to set a reference for the decoupling approach,
we discuss the different problems that appear when we
naively apply the effective potential formalism to a theory
with a hierarchy in the mass parameters (referred to as the
nondecoupling approach). To this end, we work with a
simple model, which is a theory with two real scalar
particles. The model Lagrangian can be written as follows:

L ¼ 1

2
∂μϕ∂μϕþ 1

2
∂μS∂μS − Vðϕ; SÞ; ð2Þ

where the potential with bare parameters reads

Vðϕ; SÞ ¼ 1

2
μ2ϕϕ

2 þ 1

2
μ2SS

2 þ λϕ
4
ϕ4

þ λS
4
S4 þ αϕ2S2: ð3Þ

On the one hand, the parameters of the field ϕ are chosen to
achieve spontaneous symmetry breaking at tree level,
so we take μ2ϕ < 0 with the corresponding VEV

vϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ2ϕ=λϕ

q
. On the other hand, the mass parameter

for the S field already corresponds to a physical mass and
we take it to satisfy μ2S ≫ jμ2ϕj. As mentioned, the scalar
field S plays the role of a high-energy degree of freedom
and it belongs to the UV energy domain in our model (the
highest scale we shall consider when running the param-
eters will be μS). We remark that the heavy field does not
develop a VEV. This will still hold under radiative

corrections to the heavy scalar mass, since the corrections
from both μS and μϕ are not large enough to flip the sign of
μ2S. To ensure that the potential equation (3) is bounded
from below, there are some constraints on the quartic
couplings (see, e.g., Ref. [44]):

λϕ > 0; λS > 0; α > −
1

2

ffiffiffiffiffiffiffiffiffi
λϕλS

q
: ð4Þ

One can also consider this model with μS < 0, in which
case the scalar field S develops a VEVas well. However, for
generic couplings, both VEVs, and as a consequence both
scalar masses, will, in general, be an order of the high scale
due to themixing of the two scalar fields at tree level. In order
to achieve a hierarchy ofmasses in that case requires a careful
tuning of the couplings already at tree level, which adds
another fine-tuning problem to the one that the decoupling
method is meant to fix, namely, the one induced by loop
corrections. Therefore, we consider the μS > 0 case inwhich
a hierarchy is straightforward to achieve at tree level for
generic couplings. The two-VEVs option is explored in the
EFT approach to calculating the CW potential in [42].
Now we turn to the effective potential for the model. The

RG-improved effective potential in any mass-independent
renormalization scheme can be organized in a loop expan-
sion Veff ¼ Vð0Þ þ Vð1Þ þ � � �, where Vð0Þ is the RG-
improved tree-level potential and Vð1Þ is the one-loop
correction after renormalization which reads (using the
MS scheme):

Vð1Þ ¼ 1

4ð4πÞ2
�
m4

ϕ

�
log

m2
ϕ

μ2
−
3

2

�

þm4
S

�
log

m2
S

μ2
−
3

2

��
: ð5Þ

The masses in this expression are the tree-level masses, as a
function of the classical field value ϕc. They are found to be

m2
ϕ ¼ μ2ϕ þ 3λϕϕ

2
c; m2

S ¼ μ2S þ 2αϕ2
c: ð6Þ

According to our assumptions, the heavy scalar does not
develop a nonzero VEV by construction, so that we can set
Sc ¼ 0. Therefore, the masses in Eq. (6) are independent of
Sc. When extracting the counterterms of the effective
potential, one can see that μ2S, λS, and α do not run, in
contrast to λϕ and μ2ϕ. The resulting β functions for λϕ and
μ2ϕ are given by2

βλϕ ¼ μ
∂λϕ
∂μ ¼ 1

8π2
ð9λ2ϕ þ 4α2Þ; ð7Þ

2We checked that, when letting Sc have a varying field value,
we recover the full set of RGEs; see, e.g., Ref. [45].
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βμ2ϕ ¼ μ
∂μ2ϕ
∂μ ¼ 1

8π2
ð3λϕμ2ϕ þ 2αμ2SÞ: ð8Þ

In order to illustrate the behavior of this model, we will use
a benchmark point for the parameter space throughout the
paper. The parameter values are

μ2ϕðμminÞ ¼ −ð102 GeVÞ2; μ2SðμminÞ ¼ ð105 GeVÞ2;
λϕðμminÞ ¼ 0.8; λSðμminÞ ¼ 1.3; αðμminÞ ¼ �0.5:

ð9Þ

where μmin ¼ 100 GeV.3 Furthermore, we take μS as the
maximum value for the renormalization scale, so
μmax ¼ 105 GeV. As we will see, changing the sign of α
has a large effect on some of the results. Hence, we will use
both a positive and negative value for α in our benchmark
point. We adopt this set of parameters for all numerical
results presented in our paper, unless explicitly stated
otherwise. The running of the mass parameter μ2ϕ (and
the comparison with the constant μ2S) in this model is shown
in Fig. 1. One observes that μ2ϕ receives large corrections
from the high-energy modes already for small deviations
from the initial renormalization scale. This is an expression
of the hierarchy problem. When α > 0, the μ2S contributions
to the running of μ2ϕ are positive, and μ

2
ϕ flips sign already at

μ ¼ 100.008 GeV (solid orange line). At high energy, a

large positive value of μ2ϕ ≈ 109 GeV is reached. For α < 0,
there are only negative contributions to the running of μ2ϕ.
So the value at high energy will have the opposite sign as in
the case α > 0, but the absolute value is essentially the
same, since the small initial value of μ2ϕ at μmin has
practically no effect on the high-energy value.

A. Properties of the light scalar
from the effective potential

In this section we address the shape of the potential and
the corresponding mass eigenvalue of the scalar field ϕ
when we include the one-loop corrections. Let us begin
with the study of the shape of the potential for different
values of the renormalization scale, and for both α > 0 and
α < 0, that we show in Fig. 2. The left plot shows the tree-
level result evaluated at the scale μmin. This potential
exhibits the well-known Mexican-hat behavior. In the right
plot, the one-loop contributions are added and the outcome
is quite different from the tree-level result. First of all, as
can be seen from Eqs. (5) and (6), there is a large constant
in the potential (∝ μ4S), that contributes to the vacuum
energy, or cosmological constantΛ, that we have set to zero
in (2). In order to normalize the potential to zero at ϕ ¼ 0
and better compare the shape of the potential with the tree-
level case, we subtract from the one-loop potential the
cosmological constant

Λ ¼ μ4S
64π2

�
log

μ2S
μ2

−
3

2

�
þ μ4ϕ
64π2

�
log

μ2ϕ
μ2

−
3

2

�
: ð10Þ

We note that the μ4ϕ-term in Eq. (10) is generally subdomi-
nant. Looking at the shape of the potential, there is a clear
difference between α > 0 and α < 0. When α > 0, there is
no nontrivial minimum anymore, hence, no spontaneous
symmetry breaking can occur (solid blue line). This
happens because the contributions proportional to m4

S
dominate the potential, and they are all positive [recall
the expression form2

S in Eq. (6)]. In the case α < 0, them4
S-

term in the potential gives both positive (α2ϕ4) and negative
(αμ2Sϕ

2) contributions. The competition between these
terms results again in a Mexican-hat shape, as can be seen
in the right panel of Fig. 2 (solid orange line). However, the
location of the VEV is very different from the tree-level

case, where a value for the one-loop VEV of vð1Þϕ ≈ 2.5 ×
104 GeV is much larger than the tree-level VEV

vð0Þϕ ≈ 112 GeV. In the figure, a band is shown for the
range μmin ≤ μ ≤ μmax, which demonstrates that the results
are largely independent of the chosen scale. We also note
that for small values of ϕ ¼ ϕc, both lines stop, which
happens because of the appearance of imaginary values of
the potential. This is a well-known feature that does not
imply a breakdown of the effective potential approach, but
rather signals a decaying state. For details we refer to [46].

FIG. 1. The RG running of the mass parameter μ2ϕ (orange) at
one-loop level using the benchmark point described in the text,
with α > 0 (solid line) and α < 0 (dashed line). The value of μ2S is
constant (solid blue), as explained in the text.

3Note that this does not mean that the parameters values are
fixed at the scale μmin, but just that they take these values at that
scale.
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Next, we want to see the effect of the one-loop
contributions on the mass of the light boson, as this is
important in understanding the hierarchy problem in this
model. In general, the mass of ϕ is given by the second
derivative of the potential with respect to ϕ. The full
expression contains the tree-level contribution and one-
loop contributions from the ϕ and S sectors. We single out
the dominant term, which is the one that depends on the
heavy scale μ2S:

m2;ð1Þ
ϕ ðμÞ ∼ α

16π2
ðμ2S þ 2αϕ2

cÞ
�
log

μ2S þ 2αϕ2
c

μ2
− 1

�
: ð11Þ

For μ ≉ e−1=2mS, this term is large and pushes the mass of
ϕ to large values. Notably, there is a large shift in m2

ϕ

already for μ ¼ μmin. This is how the hierarchy problem of
the Higgs mass manifests itself in this model.
As mentioned in the Introduction, the perturbative

expansion of the effective potential involves different large
logarithms when a large hierarchy in scales is present. As
can be seen from the expression for the one-loop potential
in Eq. (5), ratios of scales appear in the two logarithms:
m2

ϕ=μ
2 and m2

S=μ
2 with m2

ϕ ≪ m2
S. Because of this hier-

archy, it is not possible to find a value of μ such that both
logarithms in Eq. (5) are small at the same time. The loop
expansion is invalidated and the CW potential of the
Lagrangian (2) is not predictive: we see that the effect
of including the one-loop corrections is large for the shape
of the potential, the VEVof the low-energy field ϕ, and the
mass of ϕ. Even at the scale μ ¼ μmin, there are large
corrections to the location of the VEV and the mass of the
light scalar. The decoupling method has been proposed as a

possible solution to this problem and in the next section we
implement this approach.

III. THE DECOUPLING METHOD

The main idea behind the decoupling method [37–39] is
to decouple any particle in the theory as soon as the energy
is too low to excite its modes [47]. In practice, one
introduces step functions in the effective potential, such
that the contribution of particles with a mass larger than the
decoupling scale μdec is switched off. Using this prescrip-
tion, the full effective potential can be safely evaluated
down to the energy scale of the lightest particle. For the
model at hand, the one-loop contribution can then be
written as follows:

Vð1Þ
dec ¼

1

4ð4πÞ2
�
θðμ̃ −mϕÞm4

ϕ log
m2

ϕ

μ̃2

þθðμ̃ −mSÞm4
S log

m2
S

μ̃2

�
; ð12Þ

where we write μ̃2 ¼ μ2e3=2, in order to absorb the usual
numerical factor, which is 3=2 for scalars. We can deter-
mine the β functions by taking the derivative with respect to

the renormalization scale μ of Vð1Þ
dec.

4 In order to avoid some
clutter, we define θi ≡ θðμ̃ −miÞ. The decoupling is

FIG. 2. The shape of the scalar potential in the nondecoupling case. The left figure shows the tree-level result, evaluated at μ ¼ μmin.
The right plot shows the results including the one-loop contributions for α > 0 (blue solid line) and α < 0 (orange solid line). In the right
figure, the vacuum energy or cosmological constant Λ is subtracted (as explained in the text) to normalize the potential to zero at ϕ ¼ 0.
The solid lines in the right plot show the result for μ ¼ μmin, and a band is shown for the range μmin ≤ μ ≤ μmax.

4We note that the step functions do not contribute to this

derivative, since they give a factorm4
i δðμ̃ −miÞ log m2

i

μ̃2
. This factor

is always zero, because for the single value where the δ function is
nonzero, the logarithm vanishes. Also note that one could replace
the step functions by smooth versions, but this will not affect our
conclusions.
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inherited by the two parameters λϕ and μ2ϕ so that the β

functions now read

βλϕ ¼ μ
∂λϕ
∂μ ¼ 1

8π2
ð9λ2ϕθϕ þ 4α2θSÞ; ð13Þ

βμ2ϕ ¼ μ
∂μ2ϕ
∂μ ¼ 1

8π2
ð3λϕμ2ϕθϕ þ 2αμ2SθSÞ: ð14Þ

In our setting, when we run down from high energy, we
obtain first a decoupling of the heavy S field. For μ̃ < mS,
i.e., μ ≈ μmax=2, the effect of the heavy degree of freedom
on the running parameters is absent and the change with the
renormalization scale is only due to the lighter scalar ϕ.
Going further down μ̃ < mϕ, the couplings are frozen and
do not run anymore. So the decoupling method provides a
prescription for the renormalization scale μ [39], which is
setting it equal to or smaller than the lowest decoupling
scale μ� ≡mϕe−3=4 (which in our setting we take anyway
larger than μmin). In this way, the loop contributions are
absent, so the problematic logarithms disappear from the
potential. Only the RG-improved tree-level contribution
Vð0Þðμ < μ�Þ remains. This prescription ensures that
higher-loop contributions also vanish, restoring the pre-
dictivity of the perturbative expansion.5

In Fig. 3 (left) one finds the mass parameter μ2ϕ evolved
with and without decoupling in order to show the strongly
different behavior. The same benchmark point is used as in
the case without decoupling, with α > 0. This figure shows
that when using the decoupling method, μ2ϕ remains small
for most of the considered energy range since the high-
energy modes only start contributing at μ ≈ μmax=2.
Moreover, although the high-energy modes do contribute
to the RG running for μ̃ > mS, the final value of μ2ϕ at μmax

is 1 order of magnitude lower than in the case without
decoupling. The results are essentially the same for α < 0,
even though it changes the value of mS [cf. Eq. (6)] and
therefore the value of the decoupling scale. This effect will
be small, because we only consider small values for ϕc, so it
will not change the fact that the high-scale modes contrib-
ute above μ ≈ μmax=2.

A. Properties of the potential in the
decoupling approach

Let us now use the prescription for the renormalization
scale in the decoupling method to evaluate the effective
potential. A comparison between the tree-level result and
the one-loop result in the decoupling method is shown in
Fig. 3 (right). It is worth stressing that the shape of the one-
loop effective potential (solid-orange line in Fig. 3) is
independent of the sign of α (whereas this affects severely
the one-loop effective potential in the naive implementa-
tion, see Fig. 2). This is due to the absence of α-dependent
terms at scales μ̃ < mS. In contrast to the case without
decoupling, we now see that the one-loop effective poten-
tial only introduces small corrections, signaling a good
perturbative expansion at least in the low-energy domain
and at this loop order. Moreover, one can see that a

FIG. 3. Left: The running of the mass parameters, with μ2S in blue, and μ2ϕ in solid orange for the case without decoupling, and in
dashed green for the case with decoupling, using α > 0. Right: A comparison between the shape of the tree-level potential evaluated at
μ ¼ μmin (blue line) and the tree-levelþ one-loop potential using the decoupling method (orange line). The potential is plotted in units
of V=μ4min.

5In order to find an appropriate renormalization scale, the
authors of Ref. [39] suggested two conditions: Vð1Þ

decðμÞ ¼ 0 (best
perturbative convergence) and dðV0 þ Vð1Þ

decÞ=dμ ¼ 0 (least μ
dependence). When choosing the renormalization scale smaller
than the smallest mass eigenvalues, the two prescriptions are fully
equivalent.
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nontrivial minimum is realized and spontaneous symmetry
breaking can occur, also for α > 0. The truncation of the
orange solid line is due to the squared mass eigenvalue m2

ϕ

turning negative for values ϕc ≤ 68 GeV for this choice of
the parameters. This makes it impossible to define a
meaningful decoupling scale, and leads to the aforemen-
tioned decaying state [46], but we will not address this
further here.
We have checked numerically that the good agreement

between the tree-level potential and the decoupling poten-
tial is not due to the specific choice of parameters in the
benchmark point. For different low-energy values of λϕ and
μ2ϕ, the shift in the value of the VEV vð1Þ is at the few-
percent level.
Let us now look at what happens to the mass of the ϕ

scalar when the decoupling method is used. Since the one-
loop contributions are absent from the potential in this case

(Vð1Þ
dec ¼ 0), the term that previously pushed mϕ to large

values no longer contributes. The mass of the ϕ boson is
now given by

m2
ϕðμ < μ�Þ ¼ μ2ϕ þ 3λϕϕ

2
c; ð15Þ

where all parameters are understood to be evaluated at the
same scale μ < μ�. In contrast to Eq. (11), there are no μ2S
contributions in Eq. (15), and the decoupling method
ensures the lightness of the ϕ boson.

IV. FINE-TUNING OF THE MODEL

The decoupling approach comes as a solution for the
issues related to the perturbative expansion of the CW

potential, and shields the mass parameter from large
corrections by choosing the renormalization scale below
the decoupling scale. The next step is to investigate whether
there is still fine-tuning present when this method is used.
As mentioned in the Introduction, the matching conditions
can be a source of fine-tuning in the EFT approach. We
want to see whether and how the fine-tuning appears in the
nondecoupling approach. In practice we shall make contact
between the effective potential, with and without the

FIG. 4. Left: Diagrammatic representation of the prescription for determining the amount of fine-tuning (pLE and pUV stand for the
parameters at low-energy and at the ultraviolet scale, respectively). There is running of the parameters from low to high energy, a shift of
the parameters throughF ft and running back to low energy. Right: The result of running the mass parameters up from low energy (dotted
line) and down from high energy after changing the high-energy parameters with X ¼ 0.01 (solid line), with α < 0.

FIG. 5. The effect of small variations in the high-energy value
of the parameters on the low-energy value μ2ϕ;LE ¼ μ2ϕðμminÞ,
using the benchmark point with α > 0. The results for the
decoupling (orange line) and nondecoupling (blue line) cases
are compared. A field value of ϕc ¼ 300 GeV is used.
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decoupling of the field S implemented, and the amount of
fine-tuning that is necessary at high energy (μmax) in order
to obtain a given small value for μ2ϕ at low energy (μmin).
To this end, we start with the model parameters specified

at the initial scale μmin. Then, we run the parameters up to
the high-energy scale μmax using the RG equations, (7) and
(8). Here, we implement a variation by multiplying the
parameters with F ft ¼ 1þ X, with X ∈ ½0; 1�, and then run
the parameters back down to μmin. A diagrammatic repre-
sentation of the prescription is given in Fig. 4 (left). We use
this same procedure for both the decoupling and non-
decoupling approach. As an example of the behavior in the
nondecoupling situation, we show in Fig. 4 (right) the
running of μ2ϕ from the low scale up to high scale, and then
back down after a variation at the high scale. With only a
1%-level variation at the high-energy scale, we see that
the low-energy value of μ2ϕ shifts from −104 GeV2 to

−107 GeV2. This indicates that in order to obtain the
desired low-energy value for μ2ϕ, a large amount of fine-
tuning is necessary, which is expected in the naive approach
to the CW potential with large hierarchies. When using this
procedure in the decoupling approach, one has to use the
corresponding RGEs, (13) and (14). The effect of a
variation at the high scale will be smaller compared to
the nondecoupling approach, as the mass thresholds reduce
the impact of the heavy degree of freedom on the low-
energy parameter.
In order to compare the sensitivity to the high-energy

parameters with and without the decoupling prescription,
and to be more quantitative, we show in Fig. 5 the value of
μ2ϕ evaluated at μ ¼ μmin as a function of X, respectively,
with the solid orange and solid blue line. One observes that
μ2ϕðμminÞ is considerably less sensitive to variations at the
scale μmax when using the decoupling method. However,

FIG. 6. The low-energy value μ2ϕ;LE ¼ μ2ϕðμminÞ as a function of X for different model parameter values. The fixed parameters have the
value of the benchmark point in Eq. (9) with α > 0. The solid lines show the results in the nondecoupling case, the dashed lines show the
decoupling results.
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there is still quite some fine-tuning necessary even when
using the decoupling method, since for a percent-level
variation of the high-energy parameters, jμ2ϕj changes more
than 1 order of magnitude. To illustrate the robustness of
these findings, we explore the behavior of μ2ϕ when varying
the model parameters λϕ, α, μ2ϕ, and μ2S. We aim both to
study how the fine-tuning depends on these parameters, and
to show that the choice for our benchmark point is not
special. In Fig. 6, the value of μ2ϕ at μ ¼ μmin is given as a
function of X. In each plot, a different parameter is varied
one at a time, while the remaining ones are kept at the same
value as in the benchmark point, with α > 0 in all plots
(negative α yielding qualitatively similar results). Both the
decoupling (dashed lines) and nondecoupling (solid lines)
results are shown. In the upper-left panel, there is almost no
dependence on the value of λϕ in the decoupling case (solid
lines). Therefore, the three lines overlap almost completely,
and only the result for λϕ ¼ 1.2 is visible.
We end this section by noting that the large sensitivity at

low energy to changes of the parameters of the model at
high energy is very different from the analogous sensitivity
to the standard logarithmic RG running one has in any
theory. Running the SM parameters up to the grand unified
theory (GUT) scale for instance and then changing the
parameters at the GUT scale by a little and then running
down will also generate a substantial difference at low
energies. The difference is that in the present case the
effects depend quadratically on the large scale as opposed
to logarithmically.

V. ALTERNATIVE IMPLEMENTATIONS OF THE
DECOUPLING METHOD

The decoupling theorem suggests that heavy degrees of
freedom cannot be excited, and hence cannot affect the
physics, at energies smaller than their masses. However, it
is not an exact recipe that specifies at which particular scale
the decoupling happens. In the former section, we chose
perhaps the simplest prescription [39], where the decou-
pling scale is fixed completely by the (scalar) particle
masses, the exact definition is μi ¼ mie−3=4.
In Ref. [43], a generalization of the decoupling method

for the effective potential is put forward. The main modi-
fication is the appearance of decoupling scales, μmi

, that are,
in general, different from the mass thresholds mi. In this
approach the one-loop potential in our model would read

Vð1Þ
dec ¼

X
i¼ϕ;S

m4
i

4ð4πÞ2

×

�
log

m2
i

μ2mi

þ θðμ − μmi
Þ logμ

2
mi

μ2
−
3

2

�
: ð16Þ

For μmi
¼ mie−3=4 the expression in Eq. (12) is recovered.

When μ is larger than all the μmi
, Eq. (16) corresponds to the

effective potential Eq. (5) with no decoupled particles. As the
authors in Ref. [43] suggest, a reasonable choice for the
decoupling scales isμmi

≃mi, as this improves thevalidity of
the perturbative expansion and follows the reasoning of the
decoupling theorem [47,48]. As mentioned, there is no exact
recipe that specifies at which particular scale the decoupling
happens, but we point out that choosing slightly different
scales for μmi

can have a large effect on the shape of the
potential. In order to make our point, we consider two
different choices for the decoupling scales to be inserted
in Eq. (16), namely, μmi

¼ mie−3=4, which is the value
of the decoupling scale in the potential (12), and
μmi

¼ 1.01mie−3=4. In the first case, as shown in Fig. 3
(right), we obtained a very good agreement between the tree-
level and one-loop potentials. In the latter case, despite the
decoupling scales being changed at the percent level, the one-
loop correction shifts the minimum far away from the tree-
level value (more than 1 order of magnitude), as clearly
shown in Fig. 7.6 The origin of the large sensitivity is the
residual log-term [the first term in the squared brackets in
Eq. (16)], which is multiplied by the large scale m4

S ∼ μ4S.
This term gives a large contribution to the potential for
μmS

≠ mSe−3=4. It is worth mentioning that if one takes
decoupling scales μmi

< mie−3=4 (even slightly smaller), the
minimum of the one-loop corrected potential disappears
because the overall sign of the residual large logarithm in
Eq. (16) is negative. This applies when α > 0, while the
situation is reversed when taking α < 0, so in that case

FIG. 7. The shape of the potential in the tree-level case
at μmin (blue) and when using the decoupling method Eq. (16)
(orange) for α ¼ 0.5. The decoupling scales are set to
μmi

¼ 1.01 ·mie−3=4.

6The change is not so dramatic if one compares pairs of scales
different from μSe−3=4, say μmi

¼ 1.01mi and μmi
¼ 1.02mi.

However, in that case the VEVs are both much larger than the
tree-level result.
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symmetry breaking will only occur when μmi
< mie−3=4.

Hence, just like the nondecoupling approach discussed in
Sec. II A, the effective potential in Eq. (16) leads to a strong
dependence of the low-energy physics on the sign of α, i.e.,
on the interactions involving the high-energy scalar. This
behavior was not present when using the decoupling imple-
mentation discussed in Sec. III according to Eq. (12). Our
conclusions on the large sensitivity at low energy to changes
of the parameters of the model at high energy still hold when
considering the more general decoupling approach (16),
since the RG running of the parameters is only slightly
altered compared to the RG running described in Sec. III.
It is clear from the above discussion that the extreme

sensitivity to changes in the parameters of the theory
appears only when one considers changes of parameters
above the decoupling scale. Usually it is natural to define
parameters at or around the scale at which they appear. For
example, SM parameters are often defined at the MZ,
whereas GUT parameters would be fixed at the GUT scale.
Since the decoupling scale is of the order of the scale of the
high-energy theory, one could avoid the fine-tuning prob-
lem by supplementing the decoupling method with the
requirement that all parameters of the theory are fixed at or
below the decoupling scale of the high-energy scalar. In
that way, there will be no large sensitivity to changes of the
parameters at this scale. Running downward will not lead to
large changes, while running upward will also not be very
dependent on variations of parameters at the scale where the
parameters are defined (we have numerically checked this
statement). The fine-tuning problem that we have addressed
arises from running upward beyond the decoupling scale,
then modifying the parameters at some higher scale and
running down again. In the case of one decoupling scale at
high energies, this prescription that all parameters of the
high-energy theory should be fixed at or below the
decoupling scale offers a way to avoid the fine-tuning
problem. When there are multiple decoupling scales, e.g.,
in case the sum in Eq. (16) includes a third particle with a
mass that is substantially higher thanmS, there will be large
sensitivity to changes of the parameters of the theory at the
highest of the decoupling scales (in practice a third particle
with a mass only twice as large as mS already gives rise to
sizable effects). Therefore, in order to avoid the fine-tuning
problem one should fix the parameters at or below the
decoupling scale of the degrees of freedom associated to
them. Needless to say, this is just a way to avoid in practice
the extreme sensitivity to changes in the parameters.

VI. CONCLUSION

In this paper we have carried out an analysis of the
hierarchy problem from the viewpoint of the effective

potential. Our study does not propose any solution to
the hierarchy problem, rather it aims to show that this issue
is present in the extraction of the observables from the
effective potential, even when using a decoupling
approach. For this purpose we have mainly concentrated
on the decoupling method of [39], which freezes the effect
of heavy particles on the running at low energies. Working
at the one-loop level, and within a simple two-scalar theory,
we disentangled the effects of the high-energy degree of
freedom on the shape of the potential and on the fine-tuning
of the model parameters. We find that while the decoupling
method leads to an acceptable and convergent effective
potential, the method does not solve the fine-tuning
problem that is inherent to the hierarchy problem of
multiple-scale theories. Compared to the nondecoupling
approach, the amount of fine-tuning is considerably
reduced. Nevertheless, the mass of the low-energy scalar
turns out to be still very sensitive to small changes of the
parameters at the scale of the high-energy sector.
We also considered another implementation of the

decoupling method which leads to different conclusions
on the impact of quantum corrections on the shape of the
potential, in particular on the VEVof the low-energy scalar
field. For the decoupling potential in Eq. (16), we find that
small deviations from the “reference” decoupling scale
μSe−3=4 make the minimum shift far away from the tree-
level value if μmi

> mie−3=4, whereas the minimum is
absent whenever μmi

< mie−3=4, when α > 0. The situation
is reversed when negative values for α are used. Therefore,
the decoupling method outlined in Eq. (16) reintroduces the
dependence of the shape of the potential, and the existence
of a nontrivial minimum, on the sign of the coupling α (as it
was for the nondecoupling approach described in Sec. II).
The fine-tuning problem is very similar in the two
implementations, however.
We ended by suggesting a way to avoid running into this

fine-tuning problem in such decoupling approaches by
adopting the prescription to fix parameters at or below the
decoupling scale of relevance to them. We emphasize that
this is a prescription to avoid running into the fine-tuning
problem, not to remove it altogether.
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