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Aromatic organic compounds, because of their small excitation energies ∼Oðfew eVÞ and scintillating
properties, are promising targets for detecting dark matter of mass ∼OðfewMeVÞ. Additionally, their
planar molecular structures lead to large anisotropies in the electronic wave functions, yielding a significant
daily modulation in the event rate expected to be observed in crystals of these molecules. We characterize
the daily modulation rate of dark matter interacting with an anisotropic scintillating organic crystal such as
trans-stilbene, and show that daily modulation is an ∼Oð1Þ fraction of the total rate for small DM masses
and comparable to, or larger than, the ∼10% annual modulation fraction at large DMmasses. As we discuss
in detail, this modulation provides significant leverage for detecting or excluding dark matter scattering,
even in the presence of a non-negligible background rate. Assuming a nonmodulating background rate of
1=min =kg that scales with total exposure, we find that a 100 kg · yr experiment is sensitive to the cross
section corresponding to the correct relic density for dark matter masses between 1.3–14 MeV
(1.5–1000 MeV) if dark matter interacts via a heavy (light) mediator. This modulation can be understood
using an effective velocity scale v� ¼ ΔE=q�, where ΔE is the electronic transition energy and q� is a
characteristic momentum scale of the electronic orbitals. We also characterize promising future directions
for the development of scintillating organic crystals as dark matter detectors.

DOI: 10.1103/PhysRevD.104.036011

I. INTRODUCTION

Dark matter-electron scattering is a promising search
strategy for sub-GeV dark matter (DM) [1–53]. In molecu-
lar or solid-state systems, atoms are close enough that
electronic orbitals overlap significantly, lowering the elec-
tronic excitation energies to the eV scale and thus allowing
detection of DM particles with ∼MeV-scale mass which
carry eV-scale kinetic energy. Moreover, solid-state sys-
tems can exhibit anisotropic electronic wave functions (see
for example [9,16,20,27,28,33]), enabling directional
detection schemes which leverage the characteristic sig-
nature of the daily modulation of the direction of the DM

wind in the lab frame (first noted in the context of multiple
scattering from terrestrial overburden in [54–56], followed
by the connection to directional detection in [57]).
In this paper, we focus on, and advocate for, a particular

class of detector materials for DM-electron scattering:
aromatic organic crystals. These compounds have numer-
ous advantages, both practical and theoretical, over existing
detectors. Their molecular structures consist primarily of
hexagonal carbon rings with alternating single and double
bonds (see Fig. 1), and the excited molecular electronic
levels at Oð5 eVÞ above the ground state can deexcite by
emitting a scintillation photon with Oð1Þ bulk quantum
efficiency. As a subset of the authors showed in a previous
paper [30], simple organic liquids like benzene and its
analogs have superior reach per unit target mass compared
to single-electron threshold semiconductor detectors for
DM heavier than about 10 MeV. Furthermore, as noted in
[30] and as discussed at length in the present work, the
planar structure of the molecules leads to a marked
anisotropy in the electronic wave functions which is absent
in silicon and germanium detectors and which allows for
directional detection: even though the scintillation emission
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is isotropic, the excitation rate to the scintillation level
depends strongly on the direction of the incoming DM.
Building on our previous work, in this paper we focus on

larger organic molecules which are solids at room temper-
ature with known bulk quantum efficiencies at cryogenic
temperatures. Furthermore, we focus on molecules with
reduced in-plane symmetry. This additional asymmetry
means that the lowest-energy transitions are not suppressed,
distinguishing them from simpler molecules like benzene.
The crystal lattice effects in these organic crystals are small
enough that the electronic structure closely resembles that
of the isolated molecules. Single-crystal scintillators can
have Avogadro’s number of unit cells containing the same
relative orientations of the molecules, allowing the aniso-
tropic response to persist. From a practical standpoint,
single-crystal samples of trans-stilbene (t-stilbene), which
we focus on in this paper, can be manufactured at kilogram
scale with order-1 scintillation efficiency, such that even a
single scintillation photon produced from a DM scattering
event has a high probability of being detected from a large-
mass sample [59].
These practicalities suggest that running a t-stilbene

experiment with a large exposure is feasible in the near
future, so we consider possible interpretations of plausible
near-future experimental data. As most sources of back-
ground noise (such as radioactive impurities in the target
material) are constant in time, daily modulation provides a

way to detect dark matter even without reducing the
background rate to zero. Cosmic rays, the primary time-
varying external background, have a daily modulation that
has been constrained to be below the level of 0.1% in
underground facilities [60], so a modulating signal with a
significantly larger amplitude would provide a clear detec-
tion of dark matter.
For example, assuming an average observed rate of

1=60 Hz kg−1, and without incorporating expectations for
daily modulation, the assumed (constant) background rate
would limit the reach to approximately an order ofmagnitude
above the interesting parameter space, with no prospects for
improvement over time or with a larger experiment.
However, a 1 kg · yr exposure reaches DM relic density
targets if the data are interpreted with the expected modu-
lation information. The sensitivity of a modulation analysis
continues to scale with ðexposureÞ1=2 even without mitigat-
ing backgrounds, so a larger 100 kg · yr exposure improves
the reach by an order of magnitude. This probes the relic
density target forDMmasses 1.3≲mχ ≲ 14 MeV if theDM
interacts through a heavy mediator, or the range 1.5≲mχ ≲
1000 MeV if the DM achieves its relic abundance through
freeze-in via a light kinetically mixed dark photon. Solid-
state organic scintillator detectors would therefore greatly
reduce the necessity for a low-threshold zero-background
experiment in order to conclusively discover or exclude DM.
As a consequence of our analysis of organic crystals, we

point out a generic feature of DM-electron scattering in
condensed matter systems: daily modulation is governed by
the relationship between the DM velocity and an effective
electron velocity v� ≡ ΔE=q�, where ΔE is the energy of
an electronic transition and q� is the typical momentum
scale for the electron wave functions governing the
transition. A necessary condition for daily modulation is
anisotropy of the molecular form factor for electronic
transitions, but for the anisotropy to be kinematically
accessible, the transition needs to be either near a kinematic
threshold (for small DM masses) or have v� close to, but
smaller than, the maximum DM velocity in the lab frame
vmax (for large DM masses). Intriguingly, this suggests that
daily modulation, like annual modulation, is driven by the
high-velocity tail of the DM velocity distribution. The
centrality of these kinematic relations has recently been
noted by [38], which discusses v� in the context of
maximizing the total rate, and by [61], which uses a related
v� to study modulation in the context of single-phonon
production.
This paper is organized as follows. In Sec. II, we review

the quantum chemistry relevant for describing the molecu-
lar orbitals in t-stilbene. In Sec. III we describe the crystal
structure of t-stilbene and justify our use of the isolated-
molecule orbitals based on experimental measurements of
the absorption and emission spectra. In Sec. IV we set up
our calculation of the DM scattering rate, including the
relevant molecular form factors and the daily modulation of

FIG. 1. Top: the chemical structure of trans-stilbene. Following
the convention common in organic chemistry, vertices are taken
to be carbon atoms, single lines are carbon–carbon single bonds,
and double lines are carbon–carbon double bonds. Our number-
ing convention for the atoms is shown at each vertex, along with
the L̂ and M̂ unit vectors used in our coordinate system. Bottom:
a diagram of the unit cell of the trans-stilbene crystal, adopted
from Ref. [58]. Here b is the axis of symmetry for the crystal: the
positions of the molecules in the middle row are related to those
of the upper or lower rows by a translation of 1

2
b and a rotation of

180° about the b axis. The long axis of each molecule (L̂i) is not
perfectly perpendicular to the b crystal axis. Molecules (1) and
(−1) are shown with thin lines, (2) and (−2) with thick lines.
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the velocity distribution. In Sec. V we determine the daily
modulation signal from DM in the standard halo model
(SHM) and derive a convenient test statistic for daily
modulation in the presence of a nonmodulating back-
ground. In Sec. VI we study the kinematic features of t-
stilbene which lead to a large modulation amplitude, and
explore how a system with a different v� could lead to large
daily modulation even for DM up to the GeV scale. We
conclude in Sec. VII.

II. MOLECULAR ORBITAL MODEL

Here we determine the many-electron wave functions for
the electronic transitions which are responsible for the
electronic-optical properties of trans-stilbene, following
methods appropriate for all aromatic molecules. As shown
in Fig. 1 (top), t-stilbene is an alternate hydrocarbon
hosting two phenyl groups joined by an ethene bridge in
the trans configuration (trans-1,2-diphenylethylene). This
14-carbon molecule is planar in the solid state and presents
C2h molecular symmetry [62,63], which is a Z2 × Z2

symmetry group composed of a two-fold symmetry axis,
a center of inversion, a horizontal mirror plane, and the
identity. Since this is the symmetry of the Hamiltonian, the
electronic states of t-stilbene should transform as irreduc-
ible representations of C2h. In order to construct electronic
states which accurately describe the energy eigenstates of t-
stilbene, we first construct the Hückel molecular orbitals
(HMOs) using a simple linear combination of atomic
orbitals (LCAO) model taking into account only direct
bonding interactions. We then take into account the
configurational interactions and construct fully antisym-
metric many-body states following the method of Pople,
Pariser, and Parr (PPP) [64–66].
The HMOs, Ψi, of t-stilbene are constructed as linear

combinations of Slater-type atomic orbitals (SAOs)

Ψi ¼
X14
j¼1

cjiϕ2pz
ðr −RjÞ; ð1Þ

where cji are the coefficients to be determined, ϕ2pz
are the

atomic orbitals, and Ri are the equilibrium locations of the
carbon nuclei using the numbering conventions in Fig. 1.
The 2pz Slater atomic orbital is parametrized as

ϕ2pz
ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Z5
eff

25πa30

s
r cos θ
a0

exp

�
−
Zeffr
2a0

�
; ð2Þ

where a0 ¼ ðαmeÞ−1 is the Bohr radius and Zeff ¼ 3.15 is
the effective nuclear charge of the carbon 2pz orbital [65].
The HMOs diagonalize the 14 × 14 core Hamiltonian
matrix, Hlm¼hϕljHcorejϕmi, where hrjϕmi¼ϕ2pz

ðr−RmÞ
and only bonding atoms interact. Diagonalization is done
by solving the following system,

X14
j¼1

½ðHlj − EmδljÞcjm� ¼ 0; for m ¼ 1; 2;…; 14: ð3Þ

The core Hamiltonian contains two types of matrix
elements; diagonal on-site energies and off-diagonal inter-
action energies, with values given in the Appendix A. The
on-site energy is an empirical quantity which is determined
by the atomic species, while the off-diagonal energy is a
measure of the bonded nuclear interactions determined by
the effective charge and bond length. The ambiguity in the
construction of degenerate states is resolved by requiring
that all electronic states transform as irreducible represen-
tations of the C2h point group. Since the HMOs are
constructed from 14 SAOs, diagonalization of the core
Hamiltonian results in 14 HMOs Ψ1;…;Ψ14, numbered in
order of increasing energy (up to degeneracies). See [30]
for an example of this procedure performed on the simpler
benzene molecule containing only six carbon atoms.
In order to form antisymmetric many-electron wave

functions, we take Slater determinants of the filled
HMOs. The ground state jgi is approximately given by
the following combination of orbitals,

ψG ¼ jΨ1Ψ̄1Ψ2Ψ̄2Ψ3Ψ̄3Ψ4Ψ̄4Ψ5Ψ̄5Ψ6Ψ̄6Ψ7Ψ̄7j; ð4Þ

where j � � � j denotes the antisymmetrized product of the
HMOs and Ψ̄i is the opposite spin state as Ψi. Following
standard conventions in quantum chemistry, we label some
Z2 symmetries of the many-electron wave function by AðBÞ
and gðuÞ, corresponding to (anti)symmetry with respect to
transformation under 180° rotation about the z-axis normal
to the molecular plane and inversion through the center of
mass, respectively. Notice that the ground state represents
an electronic configuration in which the lowest 7 HMO’s
are filled by pairs of electrons in the spin-singlet configu-
ration. Therefore, the ground state transforms as the Ag

representation, being totally symmetric under the trans-
formations in the C2h group. This is a generic feature of the
ground state of alternant hydrocarbons. Reduction of the
14-dimensional t-stilbene representation of C2h predicts 7
Ag and 7 Bu states [62]. These states correspond to the
multi-electron configurations of the HMOs which each
have either Au or Bg symmetry [63].
We construct the multi-electron states starting with the Ag

ground state and proceeding upwards in energy through the
one-electron singlet excitation configurations, ψ j

i as follows,

ψ j
i¼

1ffiffiffi
2

p ðjΨ1Ψ̄1…ΨiΨ̄j…Ψ7Ψ̄7j−jΨ1Ψ̄1…ΨjΨ̄i…Ψ7Ψ̄7jÞ:

ð5Þ
The electronic repulsion is taken into account by appending
the electronic two-body interaction to the core Hückel
Hamiltonian:
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HPPP ¼ Hcore þ
X
hiji

4πα

rij
; ð6Þ

where α is the fine-structure constant, rij ¼ jri − rjj, and the
sum runs over all pairs of electrons hijiwith i ≠ j. This PPP
Hamiltonian perturbs the energy levels of the ψ j

i configu-
rations and mixes degenerate states of like symmetries to
produce PPPHMOs of eitherAg orBu symmetry [62,63,67].
The PPP energy eigenstates are expressed as a linear
combination of ψ j

i ,

jsni ¼
X
i;j>i

dðnÞij jψ j
ii;

X
ij

jdðnÞij j2 ¼ 1: ð7Þ

The leading coefficients dðnÞij (known as configuration
amplitudes) for the first n ¼ 1…8 excited states of t-stilbene
are tabulated in Table I [67]. To better match our analysis to
experimental data, we take the experimentally determined
energy eigenvalues, which are also listed in Table I [67].
The spin-singlet configurations we have focused on are

responsible for the radiative de-excitations known as
fluorescence that could be seen with single-photon detec-
tors in a DM experiment. The triplet states are classically
forbidden from decaying down to the ground state and
hence are responsible for the delayed fluorescence com-
ponent of photoluminescence which generically has a
significantly lower quantum yield [68].

III. CRYSTAL STRUCTURE

In the solid state, t-stilbene is a monoclinic crystal
belonging to the space group C52hðP21=cÞ, with unit cell
parameters a ¼ 12.29 Å, b ¼ 5.66 Å, c ¼ 15.48 Å, and
γ ¼ 112° [58]. In this convention, the crystal coordinate
basis is defined by a unit vector b̂ ¼ b=b that is orthogonal
to both â and ĉ, and γ is the opening angle between â and ĉ.
The coordinate system is right-handed, such that c × akb.
To form an orthonormal basis we define an â0 unit vector,
â0 ¼ b̂ × ĉ. The crystal is symmetric with respect to
translations of a and c, and to the twofold screw action
composed of the translation b=2with 180° rotation about b̂.
Four distinct molecules of t-stilbene inhabit each unit

cell of the crystal (see Fig. 1, bottom): an M1 and M2 with
different orientations, and an M−1 and M−2, which are the
images of molecules M1;2 (respectively) under the twofold
screw action along b [69]. In Table II we provide the
orientations of each of the four molecules in terms of their
unit vectors L̂ and M̂ identified in Fig. 1, in a crystal
coordinate system where the ẑ direction is assigned to the b
symmetry axis. The position of each molecule within the
crystal is listed in Refs. [58,69], but the DM–stilbene
scattering rate depends only on their rotational orientation
because the kinematics of the scattering process do not
permit coherent scattering over an entire unit cell (see
Secs. IV and V below).
The molecular orbital model derived in the preceding

section is empirically valid for macroscopic single-crystal
samples of t-stilbene. Although lattice effects are known to
perturb the energy bands of molecular crystals [70], the

TABLE I. The first eight excited states sn¼1…8, with their energy eigenvalues ΔEðsnÞ with respect to the ground state and coefficients
dðnÞij as calculated by Ting and McClure [67].

s Platt symbol Symmetry ΔE [eV] Configuration amplitudes

s1 1B Bu 4.240 d7;8 ¼ 0.94, d4;11 ¼ −0.24
s2 1G− Bu 4.788 d7;10 ¼ 0.53, d5;8 ¼ 0.53, d6;11 ¼ 0.37, d4;9 ¼ −0.37
s3 1G− Ag 4.800 d7;9 ¼ 0.53, d6;8 ¼ 0.53, d5;11 ¼ 0.37, d4;10 ¼ −0.37
s4 1ðC;HÞþ Ag 5.137 d7;11 ¼ 0.41, d5;9 ¼ −0.41, d6;10 ¼ −0.41, d4;8 ¼ −0.59
s5 1Hþ Bu 5.791 d5;10 ¼ 0.54, d6;9 ¼ 0.54, d7;12 ¼ 0.33, d3;8 ¼ 0.33
s6 1Gþ Ag 6.264 d7;9 ¼ 0.68, d6;8 ¼ −0.68
s7 1C− Ag 6.013 d7;11 ¼ 0.66, d4;8 ¼ 0.54,
s8 1Gþ Bu 6.439 d7;10 ¼ 0.65, d5;8 ¼ −0.65

TABLE II. The vectors L̂ and M̂ describe the orientations of each of the four molecular constituents of the unit
cell, shown here in the right-handed crystal basis x̂ ¼ ĉ, ŷ ¼ â0, ẑ ¼ b̂.

Molecule ðLx; Ly; LzÞ ðMx;My;MzÞ
(1) L̂ ¼ ð0.153; 0.988;−0.022Þ M̂ ¼ ð0.467;−0.068; 0.882Þ
(2) L̂ ¼ ð−0.809; 0.565; 0.162Þ M̂ ¼ ð−0.130;−0.458; 0.879Þ
(−1) L̂ ¼ ð−0.153;−0.988;−0.022Þ M̂ ¼ ð−0.467; 0.068; 0.882Þ
(−2) L̂ ¼ ð0.809;−0.565; 0.162Þ M̂ ¼ ð0.130; 0.458; 0.879Þ
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Davydov splitting of the molecular bands, which is due to
the dipole-dipole (and to a lesser extent quadrupole-quadru-
pole) interaction of neighboring molecules in a molecular
crystal, is known to be very small in single-crystal t-stilbene
[71]. Furthermore, the lowest two UV-absorption bands
(labeled A and B in the literature) of t-stilbene in the liquid
state remain relatively untouched when observed in the
solid state [72]. The A band is thought to arise from the
g → s1 through g → s4 transitions while the B band is
thought to arise from the g → s5 transition [62]. These
bands are a direct measurement of transitions between the
many-electron configurations described in the previous
section which represent the noninteracting single-molecule
electronic state, usually taken to be most like the molecular
environment of the low-temperature liquid or gas state.
Since these bands remain the same in the solid states, we
conclude that the PPP model accurately describes the
molecules of t-stilbene in the solid state where lattice
effects are only very weak.
A mole of t-stilbene has a mass 180.24 g and occupies a

volume of 185.69 cm3. Thus, a kilogram of detector
material can be fabricated from a cube of t-stilbene of
10.1 cm per side, or a 1 cm thin sheet of approximately one
square foot. These sizes will be convenient to instrument
with conventional photodetectors, such as photomultiplier
tubes or charge-coupled devices (CCDs).

IV. RATE CALCULATION

The interaction of DM with the electronic system of a
molecule produces a detectable signal through a process
analogous to photoluminescence. This process can be
separated into two stages: electronic excitation from
DM-electron scattering followed by radiative deexcitation.
Specifically, DM-electron scattering will produce detect-
able scintillation photons from t-stilbene at a rate given by
[30]

R ¼ ΦFBNAmT

mðt-stilÞ
mol

ρχ
mχ

σ̄e
μ2χe

X
i¼1

Z
d3q
4π

Z
d3ufχðuÞδ

×

�
ΔEðsiÞ þ

q2

2mχ
− q · u

�
F2
DMðqÞjfg→siðqÞj2: ð8Þ

Here, NA ≃ 6.022 × 1023 is Avogadro’s number; mT is
the total detector mass; the molar mass of t-stilbene is

mðt-stilÞ
mol ¼ 180.25 g; ρχ and mχ are the DM mass density

and mass, respectively; μχe is the DM–electron reduced

mass; σ̄e ≡ μ2χe
16πm2

χm2
e
hjMðq0Þj2i is a fiducial DM–electron

cross section proportional to the free-particle spin-averaged
squared matrix element hjMj2i for χ − e scattering, evalu-
ated at q0 ¼ αme; fχðuÞ is the DM velocity distribution in
the lab frame; FDMðqÞ is a form factor parametrizing the
fundamental DM-electron interactions, which has the limits
FDMðqÞ ¼ 1 for a contact interaction and FDMðqÞ ¼

ðαme=qÞ2 for a long-range interaction; and ΔEðsiÞ is the
excitation energy for each si above the ground state as
given in Table I.
The detector-dependent quantities are the molecular

form factor jfg→siðqÞj2, representing the transition ampli-
tude from the ground state to a singlet excited state si, and
the bulk fluorescence quantum efficiencyΦFB, representing
the probability that a molecular excitation will produce a
photon through radiative deexcitation that will exit the
detector without being absorbed. As is the case with
photoluminescence, the emission lines are broadened by
vibrational energy sublevels, thermal motion, and lattice
effects. The emission spectrum of the single crystal is a
continuum of peaks which closely resembles the molecular
and micro-crystalline emission spectra but is modified by
self-absorption and lattice effects [73]. Here we focus on
computing the form factor and the quantum efficiency,
which determine the signal rate, leaving a detailed inves-
tigation of the emission spectrum (which determines the
signal photon wavelength and hence the detection mecha-
nism) for future work. We compute the molecular form
factors using the first 8 singlet transitions since these are the
transitions responsible for the first three lowest-lying
absorption bands of trans-stilbene [62]. Since the proba-
bility of interaction is suppressed for higher energy thresh-
olds (see Fig. 11), it is expected that the rate will be driven
primarily by the strongest low-lying excitations. Using a
simple, spherically symmetric DM velocity distribution, the
SHM, we also calculate daily modulation effects due to the
rotation of the Earth.

A. Molecular form factors

The molecular form factor as calculated for PPP con-
figurational states sn is given by the following,

fg→snðqÞ ¼ hψ snðr1…r14Þj
X14
m¼1

eiq·rm jψGðr1…r14Þi

¼
X
ij

dðnÞij hψ j
i jeiq·rjψGi

¼
ffiffiffi
2

p X
ij

dðnÞij hΨjðrÞjeiq·rjΨiðrÞi: ð9Þ

where rm is the position of electronm. In the second line we
have isolated the contribution from the singlet states which
only contain a single-electron excitation above the ground
state, and in the third line we have transformed to the basis
of HMOs, where the factor of

ffiffiffi
2

p
is effectively a spin

degeneracy factor. The matrix element of HMOs may be
readily computed from Eq. (1) in momentum space, where
the wave functions are simply the momentum-space 2pz
orbitals times a product of phase factors determined by the
positions of the carbon atoms [30]. An example of the
single-molecule form factor for the g → s1 transition is
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shown in Fig. 2 (see also Appendix A), showing strong
damping of the form factor beyond a characteristic momen-
tum scale given by q� ≃ Zeff=ð2a0Þ ≃ 6 keV. There are also
secondary “inner” peaks at q ≃ 2π=l ≃ 1.2 keV where l ≈
0.83 nm is the length scale of the long axis of t-stilbene.
Measurements of the spectrum of trans-stilbene observe

three absorption bands, A, B, and C, which have been
identified primarily with the s1, s5. and s8 molecular
transitions, respectively [62]. Compared with the B and
C bands, the A band is larger in magnitude and broader in
frequency space, overlapping with the s2…4 transitions. Our
analysis for dark matter scattering reproduces these fea-
tures: for example, the s1 transition dominates the scatter-
ing rate, comprising 50–70% of the rate both near-threshold
and at largemχ . Ifmχ is large enough that the higher-energy
excitations are kinematically accessible, the scattering rate
receives secondary contributions from s3 and s4, and
typically smaller contributions from s2, s5, and s8. The
s6 and s7 transition rates remain negligibly small at all
values of mχ . We provide additional detail regarding the
separate molecular transitions that contribute to the scatter-
ing rate in Appendix A 2.
In a t-stilbene crystal, the unit cell contains four

molecules of different orientations, as described in
Sec. III. As discussed in more detail below, the momentum
transfers required to deposit energy above ΔEðs1Þ are
sufficient to localize the interaction to a single molecule
within a unit cell, so to compute the rate we treat the
scattering as incoherent between different molecules, and

we sum over four different squared form factors jfðiÞg→sðqÞj2

rotated to give the appropriate orientations of each mol-
ecule with respect to q. The interaction rate of DM with a
crystal of t-stilbene then scales like the product of the rate
calculated as described with the total number of unit cells
Nuc ¼ Nmol=4 in the entire crystal, which is proportional to
the total crystal mass mT .

B. Quantum efficiency

Given the molecular fluorescence quantum efficiency
(ΦF), defined as the ratio of emitted photons to absorbed,
the probability ΦFB of a photon exiting the bulk target after
an excitation is then given by

ΦFB ¼ ð1 − axxÞΦF; ð10Þ

where axx is the probability of self-absorption. At liquid
nitrogen temperatures, ΦF ≃ 97% [74–76], approaching
unity at cryogenic temperatures. Furthermore, using the
photoluminescent spectra of t-stilbene in the liquid, micro-
crystalline, and macroscopic single-crystal state as mea-
sured via reflection and transmission, Birks et al. conclude
that axx ≈ 0.35 as the continuous reabsorption and emission
of the photon gradually redshifts the radiation into wave-
lengths to which the bulk crystal is transparent [73]. Thus,
the bulk fluorescence quantum efficiency of t-stilbene is at
least ΦFB ¼ 0.63 [59,77], likely approaching 0.65 at
cryogenic temperatures, though we use the lower value
to be conservative. We propose such a detector to be run
around 100K in order to maximize bulk quantum efficiency

FIG. 2. Molecular form factors for the g → s1 transition for momentum transfers q ¼ ðqx; qy; 0Þ in the plane of the molecule. Left:
contour plot of jfg→s1 j2, showing the hexagonal symmetry of the benzene ring with secondary inner peaks arising from the extended
structure of the joined benzene rings. Right: the product of jfg→s1 j2 with F2

DM for FDM ∝ 1=q2, proportional to the rate integrand Eq. (15)
for a light mediator (logarithmic color scale).
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while maintaining a high enough temperature to run CCD
based photo-detectors [41].

C. DM velocity distribution

We denote the velocity of a particle in the Milky Way
reference frame by v. We adopt the SHM ansatz for
the bulk of the Milky Way DM distribution. The DM
velocity is then distributed according to f0ðvÞ ¼
expð−jvj2=2σ20ÞΘðjvj2 − v2escÞ=N0, where the dispersion σ0
is related to the velocity of the local standard of rest by σ0 ¼
v0=

ffiffiffi
2

p
and the normalization is

N0 ¼ π3=2v30

�
erf

�
vesc
v0

�
−

2ffiffiffi
π

p vesc
v0

exp

�
−
v2esc
v20

��
: ð11Þ

Numerically, the local standard of rest has value v0 ≃
220 km=s and the escape velocity is near vesc ≃ 544 km=s
[78]; the uncertainties on these values are nonzero, but
≲10%. We use this velocity distribution in order to facilitate
comparison with previous studies, but future exploration of
the implications of more realistic velocity distributions will
be important for interpreting any future experimental results.
To calculate the rate in Eq. (8), we integrate over the

velocity measured in the laboratory u, which is related to
the velocity in the Milky Way frame by v ¼ uþ v⊕, where
v⊕ðtÞ is the velocity of the Earth as measured in the
Milky Way frame. Following the conventions of [27], we
use the energy conservation δ-function to resolve the
integral over the velocity distribution:

g0ðq; tÞ≡
Z

d3ufðv⊕ðtÞ þ uÞδ
�
ΔE − q · u −

q2

2mχ

�

¼ πv20
qN0

ðe−v2−=v20 − e−v
2
esc=v20Þ; ð12Þ

where

v−ðq; tÞ ¼ min

�
vesc;

ΔE
q

þ q
2mχ

þ v⊕ðtÞ · q̂
�
: ð13Þ

The momentum transfer q ¼ qq̂ has been related to the
velocity by the requirement that ΔE ¼ q · u − q2=ð2mχÞ,
and all dependence on the local velocity v⊕ is contained
in v−.
The rotation of the Earth over a 24-hour period enters the

rate by casting the direction of Earth’s velocity (more
precisely, the velocity vector of a fixed laboratory location
on the Earth’s surface) as a function of time [27]:

v̂⊕ðtÞ ¼

0
B@

cosβ − sinβ 0

sinβ cosβ 0

0 0 1

1
CA
0
B@

sinθe sinϑ

sinθe cosθeðcosϑ− 1Þ
cos2θe þ sin2θe cosϑ

1
CA;

ð14Þ

where ϑðtÞ ¼ 2π × ð t
24 hÞ, θe ≈ 42°, and we have chosen to

align the ðx; yÞ plane of the crystal to be perpendicular to
the direction of the DM wind at time t ¼ 0 with the initial
orientation of the crystal with respect to rotations about the
ẑ axis given by β. As is clear from Eq. (13), the only aspects
of the Earth velocity vector that we need to know when
calculating rates in the context of the SHM are the Earth’s
speed, for which we adopt jv⊕j≡ v⊕ ¼ 234 km=s, and the
angle between the Earth’s north pole and its velocity in the
Milky Way frame, θe. Our formalism is easily extended to
other velocity distributions by making the substitution in
Eq. (13) of v⊕ → v⊕ − hvi where hvi is the mean velocity
of the DM distribution as measured in the Milky Way
frame. The vector hvi is zero by definition for the SHM, but
would be nonzero for substructure in the form of a stream.
In terms of g0, the total (time-dependent) rate per unit

mass is

RðtÞ
mT

¼ ΦFBNA

mðt-stilÞ
mol

ρχ
mχ

σ̄e
μ2χe

X
i¼1

Z
d3q
4π

g0ðqÞF2
DMðqÞjfsiðqÞj2;

ð15Þ

where we emphasize that g0ðqÞ is implicitly also a function
of v⊕ðtÞ. Equations (12)–(15) indicate that, from the
perspective of kinematics alone, the largest modulation
will occur when v−ðqÞ modulates around vesc. However, as
we will see in Secs. Vand VI below, the morphology of the
molecular form factors will also play a large role in
determining the modulation.

V. DAILY MODULATION REACH

With the molecular form factors in hand, we can
compute the total DM-induced excitation rate by summing
over the eight lowest transitions si for a given choice of
velocity distribution and DM form factor. As we show in
Appendix A, the lowest-energy transition g → s1 domi-
nates both the daily modulation effect and the total average
rate. Near the mass threshold, mχ ≲ 10 MeV, the g → s3
transition contributes at the 20% level, with all other
transitions contributing less than 10% of the total rate.
Above 10 MeV the s1 transition remains dominant,
accounting for about 50% of the total rate for both DM
form factors. With FDM ¼ 1 andmχ ≳ 100 MeV the s3 and
s4 transitions contribute equally, at the 15% level. For the
same masses and FDM ∝ 1=q2, the s3 transition provides a
larger 20% correction to the total rate, compared to less
than 15% from s4 and less than 10% from each of the other
excited states. This behavior is distinct from the case of
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benzene, where the lowest-energy transition is dipole-
forbidden [30].
Figure 3 shows the modulating rate RðtÞ over a 24-hour

period (one sidereal day) for two different alignment angles
of the detector crystal, β ¼ 0° and β ¼ 90°, normalized by
the average scattering rate,

hRi ¼ ð24 hÞ−1
Z

24 h

0

dtRðtÞ: ð16Þ

We see that the peak-to-trough modulation amplitude is as
large as 60% (10%) for a low-mass (high-mass) DM
particle interacting via a heavy mediator, climbing to
70% (25%) for a low-mass (high-mass) DM particle
interacting via a light mediator. This is on the same scale,
or larger than, the annualmodulation amplitude for WIMP-
nuclear scattering well above threshold [79–83], as well as
for DM-electron scattering in semiconductors at high
masses [4,34].
Assessing evidence in favor of a signal will be an

important step in making a DM discovery, and the daily
modulation is an important handle for improving our
statistical power. As we discuss in more detail in
Appendix B, the statistical significance that we formally
assign to a modulating signal is

ΔL ¼ −2
X
k

nk ln½νmk ðθmÞ=ν0kðθ0Þ�; ð17Þ

where k labels the data bins, νmk is the number of expected
events in bin k assuming a modulating signal, ν0k is the
expected number of events in bin k assuming a constant
rate, and θm;0 are parameters describing the expected rate in
the modulating and nonmodulating scenario, respectively.
The values of ΔL are distributed as a χ2 distribution of the
number of additional degrees of freedom needed to
characterize the modulating (as opposed to the nonmodu-
lating) signal; in the case of two bins, this would be a χ2

with two degrees of freedom. Although we focus on the
two-bin case in the remainder of this analysis, we empha-
size that Eq. (17) is appropriate for any binning of data,
including an unbinned analysis. We provide more general
explorations of this test statistic in Appendix B.
A particularly simple limit of Eq. (17) is one for which

we take two bins per day and describe the modulation
simply by a single parameter, the integrated modulation
fraction f2, defined as the fractional difference in integrated
rate between the two bins, averaged over a day:

f2 ¼
1

ð24 hÞhRi
�Z

t0þ12 h

t0

dtRðtÞ −
Z

t0þ24 h

t0þ12 h
dtRðtÞ

�
:

ð18Þ

For a perfectly sinusoidal signal, f2 equals the peak-to-
trough amplitude divided by π. Our choice in Eq. (14) to

align the crystalline symmetry axis, b̂, with the lab frame
DM wind at t ¼ 0 ensures that the dominant part of the
modulation signal has a 24-hour period, with only small
contributions from higher harmonics. In this orientation,
the integrated modulation amplitude Eq. (18) is maximized
by t0 ≈ 18 hours, based on the results shown in Fig. 3. This
observable is particularly well suited for describing the
daily modulation, because it is unaffected by the non-
modulating background rate and thus does not require any
knowledge of the background.
As explored in detail in Appendix B, this simple binning

is amenable to analytic results in the large-N limit of the
Skellam distribution or in the small-modulation limit of
the Poisson distribution. In each case, we find that the
statistical significance we may assign to either the modu-
lating or nonmodulating hypothesis based on an experiment
in which Ntot events are observed is

Nσ ¼
f2TexphRiffiffiffiffiffiffiffiffi

Ntot
p ; ð19Þ

where hRi is the time average of the signal event rate RðtÞ
defined in Eq. (16), and where Texp is the total exposure time
for the experiment. Since the number of signal and back-
ground events both grow linearly with exposure, the signifi-
cance of amodulating signal improves with exposure as long
as the integrated modulation fraction f2 is nonzero. Our
Eq. (19) matches the χ2sb statistic suggested by Ref. [28].
In Fig. 4 we show the expected results of a 1 kg · year

t-stilbene experiment operated under a number of different
assumptions. As a benchmark to facilitate comparison with
other experiments, we demonstrate the reachwith an entirely
background-free experiment using no modulation informa-
tion. The potential for parameter space exclusion in this
scenario is σ̄e ≃ 10−41 cm2ðfew × 10−41 cm2Þ for DM inter-
acting with a form factorFDM ¼ 1ðFDM ∝ 1=q2Þ and with a
mass in the range 5 MeV≲mχ ≲ 10 MeV. This is within a
factor of 2 or 3 from the expected reach of a silicon CCD
experiment like SENSEI or Oscura for an equivalent target
mass [3,84]. Taking the more realistic scenario that the
observed rate for a 1 kg detector isR ¼ 1 min−1 ¼ 1=60 Hz
(including both signal and background components), the
future reach depends on analysis strategy. Without leverag-
ing modulation information, the limit we obtain is slightly
stronger than the current exclusion from SENSEI [51]
at low masses below ∼5 MeV, and comparable at higher
masses.We also comment in passing on the prospects for the
detectability of the (nonmodulating) absorption ofDM: since
ρT ≃ 1 g=cm3, we anticipate a rate of ∼Oð1Þ=kg=min for a
dark photon kinetic mixing parameter of ϵ ≃ 10−13, assum-
ing a dielectric loss of order ∼Oð10−2Þ, similar to that in
benzene [85] and comparable to those in semiconductors
[86]. This setup would set leading limits on dark photons in
the mass range 4.2 eV < mA0 ≲ 10 eV.
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For DM scattering, our sensitivity to exclusion and
discovery can be dramatically extended by utilizing the
information in the rate via the simple two-bin analysis. Using
the significance from Eq. (19), a 1 kg, 1 year t-stilbene
experiment that observes a constant R ¼ 1 min−1 ¼
1=60 Hz event rate can exclude at 90% CL a DM particle
with a scattering cross section as small as σ̄e ≃ 10−37 cm2.
This cross section lies below the well-motivated line from
freeze-out production of scalar DM for 2 MeV≲mχ ≲
7 MeV with a heavy dark photon mediator, and also probes
awide range ofmasses 2 MeV≲mχ ≲ 200 MeV for freeze-
in production through a lightmediator [13]. The 3σ discovery
reach for a modulating signal for a total R ¼ 1=60 Hz=kg
background event rate is nearly as strong, reaching
just below (above) the cross section σ̄e ≃ 10−37 cm2 for
FDM ¼ 1ðFDM ∝ 1=q2Þ.
Very meaningfully, as shown in Eq. (19), the discovery or

exclusion significancegrowswith cumulative exposure, even
without background mitigation: this improvement in

significance is absent in a nonmodulating signal. We dem-
onstrate this explicitly in Fig. 5, displaying the 90% CL
exclusion and the 3σ discovery reach for a t-stilbene experi-
ment with a constant observed rate R ¼ 1 min−1 kg−1 and
increasing exposures of 0.01; 1; 100 kg · yr. For the lowest
exposure proposed here, the background rate is very nearly
equal to the 2e− rate observed by the SENSEI experiment
with a ∼2g detector [51]. The sensitivity improves withffiffiffiffiffiffiffiffi
Ntot

p
, so given the assumptionof constant total rate in counts

per unit time per unit mass, the sensitivity improves withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exposure

p
. This conservative expectation for scaling of the

background rate essentially assumes that bulk events will
dominate the background. There will be an irreducible
background from the low-energy tail of 14C decays which
would yield only a single scintillation photon, but assuming
scintillators can be manufactured with the 10−18 g=g 14C
levels achieved by Borexino [87,88], the total 14C decay rate
would be 0.01 events=min =kg, well below the background
rates we have assumed here. These background rates also

FIG. 3. Normalized modulation signals for a variety of DM masses, mχ ¼ 2–1000 MeV, for a crystal in β ¼ 0° and β ¼ 90°
orientations. Above 10 MeV, the rate relaxes into a function of time that is nearly independent of the DM mass and with modulation
amplitude only mildly dependent on the crystal orientation. The peak-to-trough modulation amplitudes are as large as 60% at low
masses and 10% at high masses for FDM ¼ 1, increasing to 70% at low masses and 25% at high masses for FDM ¼ ðαme=qÞ2.
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FIG. 4. The capability of a 1 kg · year t-stilbene experiment to detect or exclude DMmodels with FDM ¼ 1 (left) or FDM ¼ ðαme=qÞ2
couplings to electrons, shown with existing limits from SENSEI [51], XENON 10 [14], and XENON 1T [50]. The dotted and dashed
lines show the 90% CL exclusions that can be set from the total number of events, without considering modulation effects, for
R ¼ 1=60 Hz kg−1 (Nevents ≈ 5.26 × 105) and for Nevents ¼ 0, respectively. The orange shaded regions indicate parameter space that
leads to a sufficiently large modulation signal that a 1 kg · year experiment could observe a 3σ detection, given a total observed rate of
R ¼ 1=60 Hz kg−1. The solid black “ΔN ¼ 0” lines show the improved limit that can be set from a null result exhibiting no daily
modulation but the same total observed rate. Each plot also shows (in blue) a benchmark model from Ref. [13] as a target for the
experimental sensitivity. In the FDM ¼ 1 example the scalar DM abundance is set by freeze-out mediated by a dark photon of mass
mA0 ¼ 3mχ , while for FDM ∝ 1=q2 we show freeze-in via light mediator, mA0 ≪ 3 keV.

FIG. 5. As a demonstration of the utility of daily modulation, we show the 3σ discovery and 90% CL exclusion potential for a trans-
stilbene experiment with a background rate of 1=60 Hz kg−1, for exposures of 0.01 kg · year, 1 kg · year, and 100 kg · year. The dashed
lines, labeled “90% CL 1=60 Hz kg−1,” show the 90% CL exclusion from an analysis that does not consider the daily modulation
effects. The inclusion of daily modulation in the statistical analysis allows even the 0.01 kg · year exposure to set a significantly stronger
limit on σ̄e. For the FDM ¼ 1 and FDM ¼ ðαme=qÞ2 form factors we show the benchmark freeze-out and freeze-in models, respectively,
from Ref. [13].
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include radio contamination from heavy metals (e.g., Th
andU)whose beta decay spectrum is not compatiblewith the
one-photon signal that such an experiment will look for.
Finally, the cosmic ray background is expected to be the bulk
of the exogenous rate and the only major background that
might vary over the time scale of a day. This rate can be
minimized by running under sufficient overburden, and the
daily modulation of this background is constrained to be
≲0.1% in a deepunderground facility [60]. If thebackground
rate were dominated by the dark rate in the photodetector,
which would likely scale with area, a large-volume experi-
ment and/or light-focusing scheme would improve the
significance even further. We plan to return to these issues
in future work.

VI. KINEMATICS AND TARGET SELECTION FOR
DAILY MODULATION

Given the large daily modulation amplitude present in
t-stilbene, and the associated improvement in discovery and
exclusion significance, it is worth examining which char-
acteristics of our target molecule govern the size of the
modulation, and whether other choices of organic mole-
cules could improve the modulation amplitude even further.
Indeed, in other systems sensitive to sub-MeV DM (Dirac
materials, for example), the modulation amplitude can be
even larger, Oð1Þ even for DM masses well above thresh-
old [27,28].

A. Daily modulation in t-stilbene

The peaks of the t-stilbene molecular form factors define
a preferred momentum scale q� ≃ 6 keV where the rate is
largest, so for the purposes of understanding the daily
modulation, we may approximate all DM interactions as
imparting momentum q�. The s1 transition has
ΔE ¼ 4.2 eV, which defines an effective velocity scale

v� ≡ ΔE
q�

≃ 200 km=s; ð20Þ

on the same order as v⊕ ≃ 230 km=s. For sufficiently small
mχ such that q�=ð2mχÞ ≃ vesc, Eq. (13) shows that v−ðqÞ
will be driven to vesc unless v⊕ is antiparallel to q, and
hence the rate will be nonzero only for a very narrow range
of directions of q.
Figure 6 illustrates this phenomenon, with the gridded

“bean-shaped” shaded regions representing the kinemati-
cally accessible region v−ðqÞ < vesc overlaid on contour
plots of the s1 molecular form factor at β ¼ 90° for DM
mass of 2 MeVand a heavy-mediator form factor FDM ¼ 1.
There are four such regions for the four different t-stilbene
orientations within a unit cell. The daily modulation arises
from the movement of the kinematically allowed region
over the course of a day, in particular as these regions rotate
out of the plane of the molecule and the peaks at qz ¼ 0
become inaccessible.

On the other hand, for sufficiently largemχ , q=ð2mχÞ → 0
and v−ðq�Þ < vesc for any direction of q̂. Thus, the kine-
matically allowed region in q-space always includes q� but
has inner boundary

qmin ¼
ΔE

vesc þ v⊕
≃ 1.6 keV: ð21Þ

Figure 7 provides the same information as Fig. 6 except now
for a heavier DM particle, with mass mχ ¼ 100 MeV. The
form factor remains the same, but the “beans” have now
expanded to fill in across the plane, leaving only circular
“holes”with inner boundary qmin. Because the kinematically
accessible region now includes the full peaks of the form
factor, the ratemodulation of the course of the day arises only
due to the mismatch of the circular inner boundary with the
hexagonal symmetry of the form factor and the presence of
the inner secondary peaks, compounded by the vector
addition of q̂ and v̂⊕. This leads to a smaller ∼10% peak-
to-trough modulation amplitude for all mχ ≳ 10 MeV.
For DM scattering through a light mediator, FDM ¼

ðαme=qÞ2, the rate integrand Eq. (15) is weighted toward
small q. In Fig. 8 we show the molecular form factors
multiplied byF2

DM; the rescaled form factors are peakedmore
strongly toward low momenta, as expected. Because the
inner peaks are kinematically forbidden for DM of all
masses, but the tails of these peaks are also probed by all
DM masses, this increases the magnitude of the peak-to-
troughmodulation amplitude to≃70% formχ ¼ 2 MeV and
remains as large as ≃30% for mχ ¼ 100 MeV.

B. Target selection for daily modulation

The analysis of Sec. VI A suggests a strategy for
designing target materials to obtain a large anisotropic
response to electron scattering, and correspondingly large
rate modulation, even in the limit of heavy DM. In this
limit, the time-independent part of the argument of v−
[Eq. (13)] is simply ΔE=q. Now consider a material with a
form factor peaked at a momentum q� and with a lowest-
lying excitation energy ΔE. To maximize the modulation,
we look for a material for which q� and ΔE are related by
q� ≃ ΔE

vmax
, where vmax ¼ vesc þ v⊕ is the maximum DM

velocity attainable in the lab frame. Equivalently, the
“effective velocity” characterizing the lowest-lying molecu-
lar transition, defined as v� ¼ ΔE=q�, should be v� ≲ vmax.
In t-stilbene, the primary outer peaks have v� ≃ 200 km=s,
which is a factor of a few too small to lead to the maximal
rate, whereas the secondary inner peaks have v�≃
1200 km=s, and these peaks are always kinematically
forbidden.
An ideal target for daily modulation would have either

larger ΔE or a larger spatial extent (smaller q�), so as to
match v� ≲ vmax for the primary peaks. To illustrate this,
Fig. 9 shows the molecular form factor for the g → s1
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transition in t-stilbene but with the kinematically allowed
region defined by a transition energy ΔE ¼ 8 eV, rather
than the 4.2 eV in t-stilbene. Here, we have chosen a form
factor FDM ∝ 1=q2, which weights the kinematically for-
bidden inner peaks more, but the modulation is still driven
by the forbidden region in q which has comparable radius
to the outer peaks. As the forbidden region moves in q-
space, the peak-to-trough modulation amplitude can be as
large as 20% for allmχ ≳ 20 MeV for the g → s1 transition
alone in this hypothetical material, almost a factor of 2
larger than the modulation amplitude for the equivalent
transition in t-stilbene.

Taking a broader perspective, the anisotropic response of
a condensed matter target to DM-electron scattering arises
from an interplay of preferred scales q� set by the molecular
size and a coincidence between the effective transition
velocity v� and the maximumDM velocity in the lab frame.
In the case of organic molecular solids, the conjugated π-
electron system provides two length (momentum) scales
given by the extent of the molecule along the molecular
plane (q� ≃ 1.2 keV for t-stilbene), and the extent of a
single 2p orbital ðq� ≃ 6 keVÞ, which sets both the carbon-
carbon bond length and the extent of the out-of-plane π
orbitals. The large hierarchy between these scales in large

FIG. 6. Molecular form factors and modulating rates for DM masses near threshold, mχ ¼ 2 MeV. In the contour plots, the gridded
shaded regions indicate the kinematically accessible momentum transfers q for the four moleculesM1;2;−1;−2 that comprise the unit cell
of the crystal, shown at t ¼ 0 and t ¼ 10 h. Here, q is given in the molecular basis, qx ¼ q · L̂, qy ¼ q · M̂, and the kinematically
accessible region is defined by v−ðqÞ < vesc, following Eq. (13). Top left: contour plot of the molecular form factor jfðqÞj2 for the
g → s1 transition in the ðqx; qyÞ plane, with qz ¼ 0. Bottom left: contour plot for fixed ϕ≡ arctanðqy=qxÞ ¼ 55°, showing the strong
anisotropy in qz with maxima at qz ¼ 0. Top right: the scattering rate (summed over all g → si transitions) as a function of time, RðtÞ,
normalized by the average daily rate Ravg. The modulation is dominated by the s1 transition (dashed). Bottom right: a closer look at the
form factor near the peak at ϕ ≃ 55°, plotting jfs1 j2 as a function of jqj for fixed θ ¼ 90° and various ϕ.
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organic molecules means that the excitation dynamics in
the plane are largely separated from excitations along the
normal to this plane. Transitions along the normal direction
will typically require larger imparted momenta than in the
extended directions, and thus the form factor for the lowest
transition will be peaked at qz ¼ 0, with peaks in the x–y
plane corresponding to the characteristic scales of the
molecular (sub)structure. The kinematically allowed
regions which dominate the rate integral rotate in q-space
over the course of the day, where the planar anisotropy (and
to a lesser extent, the hexagonal structure of a benzene ring
which breaks rotational symmetry to a discrete subgroup)
gives the modulation for smallmχ , and the anisotropy of the
two displaced benzene rings contributes significantly to the
residual modulation for large mχ . Having electronic tran-
sitions with v� slightly smaller than vmax (as in our
counterfactual example with ΔE ¼ 8 eV in Fig. 9) will
maximize the anisotropy for masses above threshold. That
said, there is an inevitable tradeoff between the modulation

amplitude and the total rate (consistent with the analysis of
Ref. [61] for single-phonon production) because as v�
approaches vmax, the kinematically allowed transitions rely
more and more on the high-velocity tail of the DM velocity
distribution.
From this perspective, we can understand why daily

modulation amplitudes are typically small or nonexistent
for electron scattering in conventional semiconductor and
noble liquid detectors. In noble liquids, the filled electron
shells are spherically symmetric (ignoring small effects due
to van der Waals attraction and dimerization between noble
atoms), and thus the form factor will be isotropic and no
daily modulation will occur. On the other hand, solid-state
lattices have only discrete translational symmetries, which
may be expected to lead to anisotropies like those due to the
hexagonal structure of the benzene rings. However, the
dominant low-energy electronic transitions in conventional
semiconductors with eV-scale gaps are due to delocalized
valence electrons, which lead to a continuous energy

FIG. 7. Same as Fig. 6 for large DM masses, mχ ¼ 100 MeV. Only the nearly spherical region near q ∼ 0 with inner boundary
qmin ≃ 1.6 keV is kinematically forbidden. As a result, the daily modulation amplitude is smaller, driven by the anisotropy of the inner
secondary peaks and the tails of the primary peaks.
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spectrum and smooth form factors without a preferred
momentum scale, at least for q smaller than the inverse
lattice spacing ∼3 keV.1 For larger q, scattering will probe
core electron shells of single atoms at individual lattice
sites, but these filled shells will be spherically symmetric
and give isotropic form factors. That said, more exotic
solid-state systems like Dirac materials, where a combina-
tion of a narrow gap (which permits small q) and an

anisotropic linear dispersion ΔE ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2xq2x þ v2yq2y þ v2zq2z

q
with the vi bracketing vmax, can have order-1 daily
modulation [27,28] and a fairly large overall rate [16].

Importantly, q� is related to the characteristic size of the
(sub)structure of the molecule as well as the symmetry of
the transition, which determines whether the transition is
dipole/quadrupole allowed. Meanwhile, the minimum ΔE
is set by the HOMO/LUMO gap which is sensitive to the
topology of the conjugated electron system, as well as the
presence of functional groups which could donate or accept
electronic density. For example, 1,2-diphenylacetylene is
the acetylene-bridged analog of t-stilbene and presents
a HOMO/LUMO gap of Oð10%Þ larger than that of
t-stilbene [89]. This implies that the two quantities are
somewhat decoupled and can be independently tuned, at
least for ΔE in the range 1–10 eV where the efficiency for
scintillation photon detection is high. Furthermore, theo-
retical computations of the DM form factor as detailed in
this paper can be verified by the complementary exper-
imental probe known as electron energy-loss spectroscopy
(EELS), which can be used to extract the generalized
oscillator strength (i.e., dielectric function) of the molecular

FIG. 8. Same as Figs. 6 and 7 (top) for a light mediator DM form factor FDM ¼ ðαme=qÞ2. Here, the contour plots show F2
DMjfðs1Þj2

which appears in the rate integrand Eq. (15); the scattering is dominated by the smallest kinematically allowed q. Top: molecular form
factors with qz ¼ 0 and rate modulations for mχ ¼ 2 MeV. Bottom: molecular form factors with qz ¼ 0 and rate modulations for
mχ ¼ 100 MeV.

1In fact, the form factors in silicon and germanium have peaks
at q ¼ 0 and ΔE ¼ 18 eV from the plasmon, as well as at v� ¼
vF ≃ 10−2 from the approximately free Fermi gas behavior of the
valence electrons, but neither of these peaks are kinematically
accessible for halo DM [38].
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excitations in a given target; such a measurement auto-
matically includes many-body effects [38] such as the ones
parametrized by the PPP Hamiltonian as well as multi-
electron excitations. Since t-stilbene and related chromo-
phores have been identified as good scintillators for decades,
their single-crystal synthesis ismature and can be scaled up to
Oð10 cmÞ crystals [90]. Therefore, it is entirely within the
reach of existing methods and technology to implement
Oð10 kgÞ of organic crystal scintillation target since
Oð10 cmÞ single crystals of anthracene, t-stilbene and
p-terphenyl are commercially available already, though
ensuring the radiopurity of samples will be paramount to
reduce backgrounds. In principle, this is nomore challenging
than obtaining radiopure liquid scintillator since crystals are
readily grown from liquid stock.

C. Daily modulation from dark matter kinematic
substructure

Another mechanism for exploring different scattering
kinematics is supplied in the form of a cold, corotating
stream of DM particles. The exemplary such subdistribution
of DM particles is the putative Nyx stream [91]. This stream
has velocity vNyx ≃ ð150; 0; 140Þ km=s [92] for components
ðvr; vθ; vϕÞ. In reality Nyx appears slightly anisotropic
[91,92], but it has a relatively low spatially average velocity
dispersion, σ̄Nyx ≃ 60 km=s. Given its inferred size, we can
attribute to it a low escape velocity wesc ¼ 150 km=s. To
calculate the rate for the Nyx stream, vNyx is subtracted from
v⊕ ≃ ð40; 10; 230Þ km=s [92,93] in Eq. (13) and σNyx and

wesc replace v0=
ffiffiffi
2

p
and vesc in Eq. (12), respectively.

Because of the smaller escape velocity wesc, activating
the 4.2 eV transition requires larger momentum transfers,
q≳Oð10Þ keV. As a result the inner peaks of jfsi j2 at
q ≃ 1.2 keV are kinematically inaccessible, and the peaks

at q� ≃ 6 keV are only accessible at the high velocity tail of
the distribution w ≈ wesc, even formχ ≳ 100 MeV. Keeping
the peaks of jfsi j2 at the edge of the kinematically
accessible region can induce a large modulation amplitude
for a wide range of mχ , but at the price of significantly
lowering the overall scattering rate. Because the Nyx
fraction is ≲10% [93] of the local DM density, however,
such modulation is unlikely to be a dramatic effect in any
experiment, especially for the FDM ∝ 1=q2 form factor.

VII. CONCLUSIONS

Among the many target materials proposed for DM-
electron scattering, few have demonstrated the necessary
anisotropic response to probe the daily modulation of DM,
and none (to our knowledge) optimized for DM from the
MeV to GeV scale. In this paper we have shown that
organic crystals are a promising family of targets with
excellent prospects for daily modulation, already at the
same level as the expected annual modulation signal for the
particular case of t-stilbene, and possibly larger if a
compound with a suitable v� ¼ ΔE=q� can be identified.
In previous work [30] we have already demonstrated the
efficacy of (liquid) organic scintillators in an experimental
context, and we expect that many of the same design
considerations will hold for solid-state scintillators.
The excellent overall sensitivity of t-stilbene—within a

factor of a few of a comparable mass of silicon—combined
with the additional handle of daily modulation, would make
such a detector strongly complementary to the existing
experimental program for Oscura [84] which uses silicon
targets. In the event a positive signal is detected, daily
modulation will be crucial for confirming a DM origin,
andwehave also derived a useful test statistic for determining
the daily modulation significance in the presence of

FIG. 9. Same as Fig. 8 (bottom), but with a counterfactual transition energy of ΔE ¼ 8 eV. This larger transition energy leads to a
larger daily modulation for the g → s1 transition in the large mχ limit. To facilitate a comparison with Fig. 7, we also provide the
modulation signal of the s1 transition with ΔE ¼ 4.2 eV as the dotted gray line with the smaller amplitude.
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nonmodulating backgrounds. We will explore design con-
siderations for a concrete experimental implementation of a
crystal organic scintillator detector in future work.
Beyond the particular case of t-stilbene, we have argued

that aromatic organic crystals are a near-optimal compro-
mise between overall rate, daily modulation, and scalability
to large target masses, for DM of mass mχ ≳ 1 MeV. The
building blocks of organic scintillators, the sp2-hybridized
carbon orbital and its 2pz double bonding counterpart, are
naturally anisotropic and support delocalized electronic
states extended in the molecular plane, while the spatial
extent of the 2p orbitals determines a preferred momentum
scale. The weak intermolecular forces in organic crystals
allow the electronic wave functions (and hence the form
factors) to retain their molecular character rather than being
entirely delocalized as in semiconductors. Furthermore, the
discrete transitions at well-defined energies ΔE, combined
with the sharply peaked form factors, give v� which is close
to optimal for t-stilbene, and may give larger modulation in
compounds with slightly larger HOMO/LUMO gaps and
therefore with a slightly larger v�. The combination of
exciting features demonstrated by these results point to the
ability to probe extremely well-motivated parameter space
with plausible near-future technology, even in the presence
of realistic but significant background rates. This indicates
great potential for anisotropic organic scintillator detectors.
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APPENDIX A: MOLECULAR ORBITAL
CALCULATION DETAILS

1. LCAO Hückel molecular orbitals

The HMOs of t-stilbene are found using the same
technique as in Ref. [30]. Here, the on-site energy is taken
to be Ec ¼ −6.7 eV and nearest-neighbor resonance inte-
gral given by the following [94,95],

FIG. 10. Form factors jfs3 j2 and jfs4 j2, shown in the qz ¼ 0 plane as a function of ðqx; qyÞ. The s4 form factor has a roughly hexagonal
structure, like the s1 transition, but stretched in the �qy directions. The s3 form factor has approximately rectangular symmetry,

stretched along the long axis (x̂ ¼ L̂) of the molecule. These two transitions provide the largest corrections to the scattering rate, but
remain subdominant to the g → s1 transition even in the large mχ limit.
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Hij ¼ −0.63
ℏ2

mex2ij
δi;i�1 ¼ −2.45 eV; ðA1Þ

where xij is the distance between atoms. It should be noted,
however, that these parameters become irrelevant after
obtaining the HMOs when taking into account configura-
tional interactions since new semiempirical parameters are
used for the single and many-body integrals as described by
Pariser, Pople, and Parr [64–66].

2. Form factor details

Of the excited states beyond s1, the s3 and s4 transitions
provide the largest corrections to the scattering rate for a
wide range of DM masses. In Fig. 10 we show their form
factors squared in the qz ¼ 0 plane. The s3 form factor has
a larger amplitude, and an approximately rectangular
symmetry. Compared to the s1 form factor, jfs3 j2 extends

to larger values of qx, parallel to the long axis of the
molecule. The s4 transition exhibits a rougher version of the
approximate hexagonal symmetry of jfs1 j2, but with each
peak stretched along the qy direction, and with enhance-
ments to the peaks at ϕ ∼ 120° and ϕ ∼ −60°. This is
because the s4 transition corresponds to one-electron
excitations confined to the phenyl rings, so one should
expect more spread-out support in q-space. The localized
character of the 1A → 1Hþ transition, in Platt notation, is
discussed in detail by Beveridge and Jaffé (see, e.g., Fig. 4
in [62]).
The relative importance of each excited state to the

scattering rate is shown in the fractional modulation plot
of Fig. 11. At 2 MeV, around 65%–70% of the FDM ¼ 1
scattering rate occurs via the g → s1 transition. Around 15%
of the FDM ¼ 1 rate is due to the s3 transition, with s2 and s4
each contributing at the 7%–8% level. ForFDM ¼ ðαme=qÞ2

FIG. 11. In the left and right panels we show the daily modulation signal from 2 MeV (top) and 100 MeV (bottom) DM in the β ¼ 90°
orientation, with FDM ¼ 1 and FDM ¼ ðαme=qÞ2 in the left and right columns, respectively. The black lines show the total rate,
normalized with respect to the 24 hour average, while each colored line represents the fraction of the signal that comes from an si
transition, also normalized by the total average rate. We use a logarithmic scale for the 100 MeV example, and include the s5 and s8
transitions.
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the s3 and s2 transitions have somewhat greater importance,
comprising 23% and 11% of the rate, respectively, compared
to the 60% fraction of the rate generated by s1. We note that
the conspicuously small contribution of s2 serves as an
independent confirmation of our molecular orbital model
since the 11Ag → 21Bu transition of t-stilbene in known to
present an anomalously weak oscillator strength [96].
As indicated in Fig. 7 and Fig. 8, the dominance of the s1

transition is lessened at largermχ ≫ 10 MeV, due in part to
the greater kinematic accessibility of the s5 and s8
transitions, but the s1 still comprises nearly 50% of the
total scattering rate, with s3 and s4 providing the leading
corrections. Furthermore, is it expected that at these larger
mχ , s5 and s8 contribute a larger portion of the overall rate
since they are the lowest lying classically allowed 1Bu
transitions with strong oscillator strengths. Meanwhile the
hierarchy of the s3 and s4 transitions comes primarily from
their q-dependent morphology since they are both 1Ag

transitions with roughly the same ΔE.

APPENDIX B: STATISTICS OF DAILY
MODULATION

Here we discuss two methods for obtaining analytic
limits of Eq. (17) and Eq. (19) in the simple two-bin
analysis that we utilize in this paper.

1. Skellam distribution

For a two-bin example, the likelihood and test statistic
can be derived directly from the Skellam distribution [97].
Given two bins (1) and (2), with mean expected numbers of
events μ1 and μ2, the probability of measuring a difference
ΔN ¼ N1 − N2 between the numbers of events N1;2 in the
two bins is given by

PðΔNjμ1; μ2Þ ¼ e−ðμ1þμ2Þ
�
μ1
μ2

�
ΔN=2

IΔNð2
ffiffiffiffiffiffiffiffiffi
μ1μ2

p Þ; ðB1Þ

where IkðzÞ is the kth modified Bessel function of the first
kind, and where we have assumed Poisson statistics for the
distribution of events in each bin. Defining

μtot ≡ μ1 þ μ2; μΔ ≡ μ1 − μ2 ðB2Þ

for convenience, the mean μ0, variance σ2, skew and excess
kurtosis of the Skellam distribution are [98]

μ0 ¼ μΔ; σ2 ¼ μtot; ðB3Þ

γ1 ¼
μΔ

μ3=2tot

; γ2 ¼
1

μtot
; ðB4Þ

so that in the large μtot limit the distribution is approx-
imately Gaussian.

An exact version of the test statistic can be derived from
the double-sided distribution,

LðhÞ ¼ −2 ln λðhÞ; λðhÞ ¼
X

jjj≥jΔNj
PðjjμðhÞ1 ; μðhÞ2 Þ; ðB5Þ

where the index (h) refers to the null or modulating
hypotheses, (0) or (m). The difference between the test
statistics,

ΔL≡ LðmÞ − Lð0Þ ¼ −2 ln
λðmÞ

λð0Þ
; ðB6Þ

quantifies the significance of a signal and obeys a χ2

distribution with two degrees of freedom.
If μ1;2 ≫ 3, the Skellam distribution is well described by

the Gaussian

PðΔNjμ1; μ2Þ ≃
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
ðΔN − μΔÞ2

2σ2

�
; ðB7Þ

with σ2 ¼ μtot, where the higher moments γ1;2 become
negligible. In this limit λ can also be approximated by an
integral over a continuous variable,

1 − λ ¼
Z

μΔþjΔNj

μΔ−jΔNj
dnPðnjμ1; μ2Þ

≃ erf

�jΔN − μΔjffiffiffiffiffiffiffiffiffi
2μtot

p
�
: ðB8Þ

The significance of a measured ΔN can be easily expressed
in terms of a number of standard deviations Nσ by inverting
the error function:

Nσ ¼
ffiffiffi
2

p
erf−1ð1 − λÞ ≃ jΔN − μΔjffiffiffiffiffiffiffi

μtot
p : ðB9Þ

As an example, we apply this result to a modulating
signal, μðmÞ

1 ≠ μðmÞ
2 , and the null hypothesis of a constant

background rate, μð0Þ1 ¼ μð0Þ2 , where μ1 and μ2 are the
predicted numbers of events in two bins of equal integration
time. They can be expressed in terms of the expected signal
and background rates (μs and μb, respectively) for each
hypothesis:

μðmÞ
1 ¼ μsð1þ f2Þ þ μb; μðmÞ

2 ¼ μsð1 − f2Þ þ μb;

μð0Þ1 ¼ μð0Þ2 ¼ μ0b; ðB10Þ

where f2 is the integrated modulation fraction defined in
Eq. (18), and the significance of a measurement of the
number of events in each bin N1 and N2 can be assessed
using Eq. (B9). In terms of RðtÞ from Eq. (15), μs is

BLANCO, KAHN, LILLARD, and MCDERMOTT PHYS. REV. D 104, 036011 (2021)

036011-18



μs ¼
1

2
TexphRi; ðB11Þ

where hRi is RðtÞ averaged over one sidereal day, and Texp

is the total exposure time.
If the background rate were well understood, the total

number of events (Ntot ¼ N1 þ N2) could be compared to

the prediction from the null hypothesis, Nð0Þ
tot ¼ 2μ0b ¼ μtot

as a way to discover or exclude particular DM models.
Even without knowledge of the background, a small value
for Ntot can still be used to rule out those models which
predict significantly more events than the measured Ntot,
but a larger Ntot cannot be construed as a detection of DM
without a better understanding of the background.
However, the existence of a modulating signal provides
an additional statistical handle on both discovery and
exclusion.
Assuming that the background rate is unmodeled, a

measurement of Ntot supplies the best-fit values for μ
ð0Þ
b and

μðmÞ
b in the null and modulating hypotheses, through

μð0Þb ¼ 1

2
Ntot: μs þ μðmÞ

b ¼ 1

2
Ntot: ðB12Þ

All of the information about the signal, μs, is extracted from
the measured value of ΔN ¼ Nþ − N−, which has
expected value

hΔNi ¼ 2f2ðmχ ; σ̄eÞμsðmχ ; σ̄eÞ; ðB13Þ

and we have explicitly specified that both the modulation
fraction f and the signal strength parameter μs depend on
the DM mass mχ and cross section σ̄e.
In assessing the capabilities of a directional detection

experiment in the presence of daily modulation, we ask two
questions: which DM models predict modulation signals
that are large enough to be detected by the experiment?
And, if the experiment measures a null result, which DM
models are ruled out? The first question, which determines
the discovery significance, can be posed in the context of
ruling out the null hypothesis, where μð0ÞΔ ¼ 0:

Ndisc
σ ðΔNÞ ≃ jΔNjffiffiffiffiffiffiffi

μð0Þtot

q ¼ jΔNjffiffiffiffiffiffiffiffi
Ntot

p ; ðB14Þ

in the Gaussian limit Ntot ≫ 3. Models that satisfy
Ndisc

σ ðhΔNiÞ > 3 or Ndisc
σ ðhΔNiÞ > 5 for this central value,

for example, are likely to generate a modulation signal
strong enough to claim a detection at the 3σ or 5σ level,
respectively. The “discovery” regions in Fig. 4 and Fig. 5
show Ndisc

σ ð2f2μsÞ ≥ 3 using this central value.
To set exclusion limits, we ask which models are ruled

out by a null result, ΔN ≈ 0. In this case, we use μðmÞ
Δ ¼

2f2μs in Eq. (B9):

Nexcl
σ ðΔNÞ ≃ jΔN − μðmÞ

Δ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðμs þ μðmÞ

b Þ
q ¼ jΔN − 2f2μsjffiffiffiffiffiffiffiffi

Ntot
p : ðB15Þ

The exclusion curves of Fig. 4 and Fig. 5 show the models
that would be excluded at the 90% confidence level from a
null result ΔN ¼ 0, using Nexcl

σ ð0Þ > 1.65.
In both examples above, we have takenΔN to be equal to

its expectation value under either the modulating hypothesis
(ΔN ¼ 2μsf2) or the null hypothesis (ΔN ¼ 0), which has
allowed us to quantify the significance of a measurement
without reference to the log-likelihood ratio: both discovery
and exclusion limits are given by

Nσ ¼
2f2μsffiffiffiffiffiffiffiffi
Ntot

p : ðB16Þ

This is simply because the “p value”, λ, is equal to 1 at the
central value of the double sided distributionEq. (B5), and so
the likelihood ratio is trivial. Because μs is the expected
counts per half of a day, we see that 2μs is the exposure times
the rate expected in Eq. (15). Thus, Eq. (B16) exactly
recovers Eq. (19).
To assess a measurement away from the central value

with more generality, it is better to use the log-likelihood L
defined exactly in Eq. (B5) for each hypothesis. For small
λ, the NσðλÞ defined in Eq. (B9) is approximated by

NσðLÞ ≈
�
Lþ ln

2

πL
þ ln π

2

L
þOð1=L2Þ

�
1=2

: ðB17Þ

For Nσ ≫ 1, Eq. (B17) can be inverted to give an
expression for L in terms of Nσ and expanded as a series
in N−2

σ ,

L ≃ N2
σ þ ln

�
N2

σπ

2

�
− ln

�
1 −

1

N2
σ
þ…

�
: ðB18Þ

This expression is particularly useful in the Gaussian limit,
where Nσ is given by Eq. (B9). To leading order in large
Nσ ,

ΔLðΔNÞ ≈ ðΔN − 2f2μsÞ2
Ntot

−
ðΔNÞ2
Ntot

; ðB19Þ

where the test statistic ΔL compares a specific modulation
model with f2ðmχ ; σeÞμsðmχ ; σeÞ to the null hypothesis,

μð0Þb ¼ 1
2
Ntot. At the central values of the two distributions,

ΔN ¼ 2f2μs and ΔN ¼ 0, the test statistic takes values of
ΔL ¼∓ 4f22μ

2
s=Ntot, respectively, and we recover exactly

Eq. (B16).
For other values of ΔN, still in the Gaussian limit

(μs ≫ 3), the significance is found from the cumulative
distribution function (CDF) of the χ22 distribution,
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CDFðΔLÞ ≈ 1 − γ

�
1;
1

2
ΔL

�
; ðB20Þ

where γ is the lower incomplete Euler gamma function, and
where k ¼ 1 for the simple two-bin analysis. Generalizing
to k statistically independent pairs of bins, the combined
test statistic

ΔL ¼
Xk
i¼1

ΔLi ðB21Þ

satisfies a χ2 distribution with 2k degrees of freedom, and
its CDF is given by

p ≈ 1 −
γðk; 1

2
ΔLÞ

ΓðkÞ : ðB22Þ

In the limit of very few events, μs ≲ 3, the CDF should be
evaluated using the Skellam distribution instead, as it
ceases to be approximately Gaussian for μ1;2 < 1.
However, as it is not possible to resolve an Oð10%Þ
modulation fraction with so few events, in this limit a
more powerful constraint will come from using Poisson
statistics on the total number of events.

2. Alternate derivation with Poisson statistics

The negative log-likelihood for a Poisson process is

L≡−2 lnλ¼ 2
XNbins

k¼1

½νkðθÞ−nkþnk lnðnk=νkðθÞÞ�; ðB23Þ

where νk is the expected number of events in a bin k, nk is
the observed number in that bin, and θ are Nθ parameters
that determine νk. The statistic L follows a χ2 distribution
of Nbins − Nθ degrees of freedom [99].
If we want to compare the hypothesis of a modulating

signal versus the null hypothesis of a nonmodulating
signal, we simply take the difference of their log-like-
lihoods. Since the total number of events in a day is fixed in
the two scenarios, and only their distribution throughout the
day is varying, we have

ΔL ¼ −2
XNbins

k¼1

nk ln

�
νmk ðθmÞ
ν0kðθ0Þ

�
; ðB24Þ

where νmk is the number of expected events assuming a
modulating signal and ν0k is the number of events assuming
a constant rate over the course of a day, and we have chosen
the sign such that ΔL < 0 means that modulation is
preferred. The distribution of values of jΔLj follows a
χ2 distribution with the number of degrees of freedom set
by the difference between the number of parameters θm and
the number of parameters θ0. Equation (B24) is an exact

expression for the improvement in fit when allowing a
modulating signal instead of a constant signal, appropriate
for whichever event binning is most convenient. Because
the total number of events is fixed, this is also the difference
of the Kullback-Leibler divergences between these two
hypotheses with the data.
Equation (B23) and Eq. (B24) are appropriate for any

choice of data binning, and can even be used for an
unbinned analysis. For simplicity, and to provide an
alternative derivation of the results in Sec. B 1, we calculate
Eq. (B24) for the specific choice of two 12-hour bins per
day, here labeled by þ and −. The rates per bin are νm� ¼
ν̄sð1� f2Þ þ νb and ν0� ¼ ν̄s þ νb, where νb is the
expected background rate and ν̄s is the average expected
signal rate per bin.
Let us assume first that the true signal is not modulating:

the number of observed counts in each bin in a given day is
expected to be equal, such that hnkþi ¼ hnk−i ¼ ν̄s þ νb.
In this case, we have

ΔL ¼ −2
XNdays

d¼1

X
�
ðν̄s þ νbÞ ln

�
1� f2ν̄s

ν̄s þ νb

�

¼ −2
XNdays

d¼1

ðν̄s þ νbÞ ln
�
1 −

�
f2ν̄s

ν̄s þ νb

�
2
�

≃ 2
XNdays

d¼1

f22ðν̄sÞ2
ν̄s þ νb

; ðB25Þ

where in the second step we take the limit
f2ν̄s=ðν̄s þ νbÞ ≪ 1. We now defineNtot¼

P
d2ðν̄sþνbÞ¼

2Ndaysðν̄sþνbÞ to be the total number of events observed
and, to make contact with the preceding section, we define
μs ¼

P
d ν̄

s ¼ Ndaysν̄
s to be half of the total number of

signal events expected to be observed over the entire
experimental exposure. This gives

ΔL ≃
ð2f2μsÞ2
Ntot

ðB26Þ

The observed significance of a signal is therefore
χ2 ¼ ð2f2μsÞ2=Ntot. Conversely, a limit at Nσ significance
on a modulating signal is possible when Nexcl

tot ≃
ð2f2μs=NσÞ2. As in the preceding section of this
Appendix, because μs is the expected counts per half of a
day, the factor 2μs is the exposure times the rate expected in
Eq. (15). Thus, Eq. (B26) exactly recovers Eq. (19).
Assuming on the other hand that the signal is modulat-

ing, the number of observed counts is no longer expected to
be the same in the two bins in a given day. Instead, the
counts will be related by hnk�i ¼ ν̄sð1� f2Þ þ νb. In this
case, we have
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ΔL¼−2
XNdays

d¼1

X
�
½ν̄sð1�f2Þþνb� ln

�
1� f2ν̄s

ν̄sþνb

�

≃−2
XNdays

d¼1

X
�
½ν̄sþνb�f2ν̄s�

�
� f2ν̄s

ν̄sþνb
−
1

2

�
f2ν̄s

ν̄sþνb

�
2
�

≃−2
XNdays

d¼1

f22ðν̄sÞ2
ν̄sþνb

; ðB27Þ

where the relative sign between Eq. (B25) and Eq. (B27) is
reflective of the choice we made that ΔL < 0 means that a
modulating signal is preferred. The magnitude of the
significance is exactly the same as in the prior case,
differing only in that the interpretation in this scenario is
as discovery of a signal.
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