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We investigate the dependence of the ρ meson-nucleon coupling constant on the temperature of the
medium using the soft-wall model of AdS/QCD. The finite temperature profile functions for the vector and
fermion fields are applied to the model having a thermal dilaton field. The interaction Lagrangian in the
bulk between these fields is written as in the zero temperature case and includes minimal- and magnetic-
type interactions. The temperature dependence of the gρNNðTÞ coupling constant and its terms are plotted.
We observe that the coupling constant and its separate terms become zero at the medium temperature near
the Hawking temperature of the phase transition.
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I. INTRODUCTION

The study of hadron quantities such as mass, decay and
coupling constants, form factors, etc., at finite temperature is
of great importance for the investigation of properties of hot
hadronic matter obtained in the collisions of heavy ions or
protons. After a correspondence was found in theory
between five-dimensional gravity in anti–de Sitter space-
time and quantum field theory in four dimensions [1–4],
several models and approaches were constructed in order to
solve the problems in particle physics and to investigate the
processes, which take place in hot hadronic matter and
cannot be solved in perturbation theory. One such models
is the so-called soft-wall model of the AdS/QCD corre-
spondence [5–8]. This model has turned out to be an
effective tool for the calculation of phenomenological
hadron quantities [9–19], for the phase transition between
hot hadronic matter and quark-gluon plasma [20], and for
theoretical studies of hot hadronic matter [21–28]. The
properties of mesons and baryons in the thermal medium
have been investigated in the framework of different models
including the hard- and soft-wall models of the AdS/QCD
bottom-up approach (see, for example, [29] and references
therein). The influence of the hot hadronic medium on

interactions between hadrons is one of the topical questions
of elementary particle physics in the hot nuclear medium. In
particular, knowledge of the temperature dependence of the
coupling constants and form factors of the strong interactions
between mesons and baryons surrounded by hot matter will
help us to understand the interactions between particles in
this medium. AdS/QCD models are useful for study of this
question as well. It is known that quantum field theory at
finite temperature in a confined phase is holographically dual
to gravitational theory in the AdS-Schwarzschild metric. The
soft-wall AdS/QCD model at finite temperature is based on
this gravity background. In addition to this thermalization, in
the thermal soft-wall model in [23,25,26] the dilaton field,
which is thermal as well, was considered. This suggestion
provides two sources for conformal symmetry breaking and
an explicit form of such a dilaton was established using the
thermal loop approach in a field theory [25]. Solutions of the
equations of motion (profile functions) for the boson and
fermion fields interacting with the thermal dilaton field were
given in Refs. [25,26]. As an application of this model, the
hadron form factors and the electromagnetic properties of
nucleons and Roper resonances at finite temperature were
studied using this approach in Ref. [27]. We are interested
in the temperature dependence of the interactions between
the hadrons. More concretely, we want to know how much
the screening constants of the meson-baryon couplings in
hot hadronic matter will depend on temperature prior to
the confinement-deconfinement phase transition. Having
explicit profile functions for the hadrons and using the
holographic technique, one can easily solve this problem in
the framework of this thermal dilaton soft-wall model. Here
we consider the simplest of these coupling constants—
namely, the ρ meson-nucleon coupling constant in the
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framework of this approach—and investigate the depend-
ence of this constant when the temperature approaches the
phase transition temperature.
The remainder of this paper is organized as follows: In

Sec. II we introduce the soft-wall model at finite temper-
ature. In Secs. III and V we obtain the bulk-to-boundary
propagators for the free vector, scalar, and spinor fields in
the bulk at finite temperature. In Sec. IV we develop the
idea of the chiral condensate and the breaking of chiral
symmetry at finite temperature. In Sec. VI we write the
Lagrangian for the vector-spinor interaction in the bulk and,
using holographic correspondence, obtain the temperature-
dependent integral expression for the ρ meson-nucleon
coupling constant in boundary QCD theory. In Sec. VII we
fix parameters and plot graphics for the dependence of the
coupling constant on the temperature, and in Sec. VIII we
discuss our results.

II. SOFT-WALL MODEL AT FINITE
TEMPERATURE

In general, in the soft-wall model of AdS/QCD at finite
temperature, the dilaton field φðzÞ can be considered the
temperature-dependent one, φðz; TÞ, and the action for this
model will be written in terms of such a dilaton:

S ¼
Z

d4xdz
ffiffiffi
g

p
e−φðz;TÞLðx; z; TÞ: ð1Þ

Here g denotes g ¼ jdet gMN j ðM;N ¼ 0; 1; 2; 3; 5Þ and the
extra dimension z varies in the range 0 < z < ∞. An
exponential factor was introduced to make the integral
over the z coordinate finite at the IR boundary ðr → ∞Þ,
and the k parameter is a scale parameter of a few hundred
MeV. According to the case with the AdS/CFT correspon-
dence at finite temperature, the boundary field theory
corresponds to the gravity theory given by the AdS-
Schwarzschild metric [2]:

ds2 ¼ e2AðzÞ
�
−fðzÞdt2 − ðdx⃗Þ2 − dz2

fðzÞ
�
;

fðzÞ ¼ 1 −
z4

z4H
; ð2Þ

where zH is the position of the event horizon and is related
to the Hawking temperature as T ¼ 1=ðπzHÞ, x ¼ ðt; x⃗Þ is
the set of Minkowski coordinates, AðzÞ ¼ logðRzÞ, and R is
the AdS radius.
For convenience, in [25,26] the Regge-Wheeler tortoise

coordinate r,

r ¼
Z

dz
fðzÞ ;

was applied as a fifth one instead of z, and the terms of
higher order than T8 in the expansion of z were neglected.

This gives the following relation between the r and z
coordinates:

r ≈ z

�
1þ z4

5z4H
þ z8

9z8H

�
: ð3Þ

The metric for the AdS-Schwarzschild space-time in these
coordinates will be written as

ds2 ¼ e2AðrÞf3
5ðrÞ

�
dt2 −

ðdx⃗Þ2
fðrÞ − dr2

�
; ð4Þ

with AðrÞ ¼ logðRrÞ. The thermal factor fðrÞ in terms of the
r coordinate has the same form as in Eq. (2):

fðrÞ ¼ 1 −
r4

r4H
: ð5Þ

In the approach for the finite temperature soft-wall
model in Refs. [25–27] the dilaton field φ ¼ k2z2 is consi-
dered a temperature-dependent one when the temperature-
dependent dilaton parameter k2 is introduced:

φðr; TÞ ¼ K2ðTÞr2: ð6Þ

This thermal form of the dilaton parameter has been
established by means of the relation between k2 and the
quark condensate Σ. It was proposed that the relation
between these constants holds in a finite temperature case,
and thus the temperature dependence of the condensate
ΣðTÞ, which is known from chiral perturbation theory,
determines the temperature dependence of the dilaton
parameter K2ðTÞ. In such a way K2ðTÞ was finally found
in the following form [25]:

K2ðTÞ ¼ k2½1þ ρðTÞ�: ð7Þ

So, K2ðTÞ is the parameter of spontaneous breaking of
chiral symmetry and the temperature-dependent term ρðTÞ
up to T4 order was established in the form [25]

ρðTÞ ¼ δT1

T2

12F2
þ δT2

�
T2

12F2

�
2

: ð8Þ

Here F is the pseudoscalar decay constant in the chiral limit
and the coefficients δT1

and δT2
are defined by the number

of quark flavors Nf as follows:

δT1
¼ −

N2
f − 1

Nf
ð9Þ

and

δT2
¼ −

N2
f − 1

2N2
f

: ð10Þ

SHAHIN MAMEDOV and NARMIN NASIBOVA PHYS. REV. D 104, 036010 (2021)

036010-2



III. THE MESON PROFILE FUNCTION
AT FINITE TEMPERATURE

Let us briefly present here the derivation of the profile
function for mesons in the model with the thermal dilaton,
which was described in [25] in detail. The vector field
MNðx; r; TÞ, which on the ultraviolet boundary of space-
time (r ¼ 0) gives the wave function of the vector meson,
is composed from the gauge fields AL and AR: MN ¼
1=2ðAL þ ARÞ. These gauge fields transform under the
flavor symmetry subgroups SUð2ÞL and SUð2ÞR, respec-
tively, which are part of the SUð2ÞL × SUð2ÞR flavor group
of the model. From these chiral gauge fields can be
composed an axial vector field as well, which we do not
consider here. The action for the scalar and vector fields in
the AdS-Schwarzschild space-time in the general reads as

SM ¼−
1

2

Z
d4xdr

ffiffiffi
g

p
e−φðr;TÞ½∂NMNðx;r;TÞ∂NMNðx;r;TÞ

− ðμ2ðr;TÞþVðr;TÞÞMNðx;r;TÞMNðx;r;TÞ�:
ð11Þ

Here Vðr; TÞ is the thermal dilaton potential, and it is
expressed as

Vðr; TÞ ¼ e−2AðrÞ

f
3
5ðrÞ ½φ00ðr; TÞ þ φ0ðr; TÞA0ðrÞ�; ð12Þ

where the prime denotes the r derivative. The temperature-
dependent bulk “mass” μðr; TÞ of the boson field MN is
related to that at zero temperature as follows:

μ2ðr; TÞ ¼ μ2

f
3
5ðrÞ : ð13Þ

The five-dimensional mass μ2 is expressed by means of
the conformal dimension Δ ¼ N þ L of the interpolating
operator dual to the meson. N is the number of partons and
L ¼ max jLzj is the quark orbital angular momentum. N ¼
2 for our ρ meson and L ¼ 0 for the meson ground state.
For this meson the spin J is J ¼ 1 and the expression for
μ2R2 obtains the simple form [25]

μ2R2 ¼ ðΔ − 1ÞðΔ − 3Þ: ð14Þ

The axial gaugeMzðx; r; TÞ ¼ 0 is chosen for the vector
field MN , and the Kaluza-Klein (KK) expansion is per-
formed as follows:

Mμðx; r; TÞ ¼
X
n

MμnðxÞΦnðr; TÞ: ð15Þ

Here MμnðxÞ are KK modes wave functions corresponding
to meson states, Φnðr; TÞ are their temperature-dependent
profile functions, and n is the radial quantum number.

Equation of motion for the vector field will be reduced
to the Schrödinger-type equation with the following

replacement: ϕnðr; TÞ ¼ e−
BT ðrÞ

2 Φnðr; TÞ, with BTðrÞ ¼
φðr; TÞ − AðrÞ. In the rest frame of the vector field the
equation of motion (e.o.m.) will give us the following
equation for the ϕnðr; TÞ profiles:�

−
d2

dr2
þ Uðr; TÞ

�
ϕnðr; TÞ ¼ M2

nðTÞϕnðr; TÞ: ð16Þ

Here Uðr; TÞ is the effective potential and is the sum of the
temperature-dependent and nondependent parts:

Uðr; TÞ ¼ UðrÞ þ ΔUðr; TÞ: ð17Þ

Explicit forms of the UðrÞ and ΔUðr; TÞ terms were
given as

UðrÞ ¼ k4r2 þ ð4m2 − 1Þ
4r2

; ð18Þ

ΔUðr; TÞ ¼ 2ρðTÞk4r2: ð19Þ

Here m ¼ N þ L − 2 and, for the ρ meson with two
partons, it equals m ¼ L. In the low temperature case
the meson mass spectrum M2

n is written as the following
sum of zero and finite temperature parts:

M2
nðTÞ ¼ M2

nð0Þ þ ΔM2
nðTÞ; ð20Þ

ΔM2
nðTÞ ¼ ρðTÞM2

nð0Þ þ
Rπ4T4

k2
; ð21Þ

M2
nð0Þ ¼ 4k2

�
nþmþ 1

2

�
; R ¼ ð6n − 1Þðmþ 1Þ:

ð22Þ

Finally, the solution of Eq. (16) for the bulk profile ϕnðr; TÞ
was given in the following form [25]:

ϕnðr; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γðnþ 1Þ

Γðnþmþ 1Þ

s
Kmþ1rmþ1

2e−
K2r2
2 Lm

n ðK2r2Þ:

ð23Þ

This solution coincides with the one in the zero temperature
case [8] with the replacements z → r and KðTÞ → k in it.

IV. BREAKING OF CHIRAL SYMMETRY AT
FINITE TEMPERATURE

The pseudoscalar field X, which transforms under the
bifundamental representation of SUð2ÞL × SUð2ÞR, is
introduced into the AdS/QCD models in order to perform
breaking of this chiral symmetry group of the model using
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the Higgs mechanism in [30–33]. The action for this field
has the form

SX ¼
Z

d4xdr
ffiffiffi
g

p
e−φðr;TÞTr½jDXj2 þ 3jXj2�: ð24Þ

Here DM is the covariant derivative, which includes the
minimal couplings with the AM

L;R gauge fields,

DMX ¼ ∂MX − iAM
L X þ XAM

R

¼ ∂MX − i½MM;X� − ifAM; Xg: ð25Þ

Since here we deal only with the vector field, we ignore the
last term in Eq. (25). The solution of the equation of motion
for the X field at zero temperature was widely described in
earlier works and we shall not repeat it here. We shall just
recall the following vacuum expectation value for this field,
which was found in the Ref. [30]:

hXi ¼ 1

2
amqzþ

1

2a
Σz3 ¼ vðzÞ:

Here mq is the mass of the u and d quarks, Σ ¼ h0jq̄qj0i is
the value of the chiral condensate at zero temperature, and
the constant a ¼ ffiffiffiffiffiffi

Nc
p

=ð2πÞ. When the thermal case of this
solution was considered in Ref. [25], the temperature was
taken into account by replacing the cold condensate with
the thermal one and the z coordinate with r:

hXðr; TÞi ¼ 1

2
amqrþ

1

2a
ΣðTÞr3 ¼ vðr; TÞ: ð26Þ

In [25–27] it was supposed that the temperature depend-
ence of the ΣðTÞ ¼ h0jq̄qj0iT quark condensate is identical
to the temperature dependence of the dilaton parameter
K2ðTÞ:

K2ðTÞ ¼ k2
ΣðTÞ
Σ

: ð27Þ

In addition, it was conjectured that the relation at zero
temperature between the quark condensate Σ and the
number of flavors Nf, the condensate parameter B, and
the pseudoscalar meson decay constant F in the chiral limit

Σ ¼ −NfBF2

holds for the finite temperature case as well:

ΣðTÞ ¼ −NfBðTÞF2ðTÞ: ð28Þ

Then according to Eqs. (7) and (27) we can write [25]

ΣðTÞ ¼ Σ½1þ ρðTÞ�: ð29Þ

Let us note that the relation (29) is valid until T6 degrees of
temperature. The FðTÞ and BðTÞ dependencies were
studied in [25].

V. NUCLEON PROFILE FUNCTION
AT FINITE TEMPERATURE

In the AdS/QCD models we have to introduce two bulk
fermion fields ðN1; N2Þ in order to describe two indepen-
dent chiral components of nucleons [31,32] on the boun-
dary. Let us present the solution of the equation of motion
for the fermion fields describing boundary nucleons in this
thermal soft-wall model. The action for the thermal fermion
field Nðx; r; TÞ is written as [26]

S ¼
Z

d4xdre−φðr;TÞ
ffiffiffi
g

p
N̄ðx; r; TÞD�ðrÞNðx; r; TÞ; ð30Þ

where D�ðrÞ denotes the covariant derivative and has the
explicit form

D�ðrÞ ¼
i
2
ΓM

�
∂M −

1

4
ωab
M ½ΓaΓb�

�
∓ ½μFðr; TÞ þ UFðr; TÞ�: ð31Þ

Here μFðr; TÞ is the five-dimensional mass of the thermal
fermion field Nðx; r; TÞ, and it is expressed in terms of
fðr; TÞ as follows:

μFðr; TÞ ¼ μFf
3
10ðr; TÞ: ð32Þ

Zero temperature mass μF is determined by the following
equation between the number of partons ðNB ¼ 3Þ in the
composite fermion and the orbital angular momentum L
(L ¼ 0 for the nucleons considered here):

μF ¼ NB þ L −
3

2
: ð33Þ

The temperature-dependent potential UFðr; TÞ in Eq. (31)
for the fermions is related to the zero temperature one as
follows:

UFðr; TÞ ¼ φðr; TÞ=f 3
10ðr; TÞ; ð34Þ

and the nonzero components of the spin connection ωab
M are

given by

ωab
M ¼ ðδaMδbr − δbMδ

a
rÞrf1

5ðr; TÞ: ð35Þ

The Dirac matrices ΓA in the ½ΓM;ΓN � commutator in
Eq. (31) are related to those in the reference frame by the
ΓM ¼ eMa Γa relation, where eMa ¼ r × diagf 1

fðrÞ ; 1; 1; 1;
−fðrÞg are the inverse vielbeins. The reference frame Γa

matrices are chosen as Γa ¼ ðγμ;−iγ5Þ. Using the axial
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gauge N5ðx; r; TÞ ¼ 0 we decompose the AdS fermion
field into the following left- and right-chirality components:

Nðx; r; TÞ ¼ NRðx; r; TÞ þ NLðx; r; TÞ; ð36Þ

which are defined as the usual ones NRðx; r; TÞ ¼ 1−γ5
2

N,

NLðx; r; TÞ ¼ 1þγ5

2
N with the properties γ5NL ¼ −NL,

γ5NR ¼ NR. The Kaluza-Klein expansion for the NL;R

chiral components will be written in terms of the temper-
ature-dependent profile functions ΦL;R

n ðr; TÞ as follows:

NL;Rðx; r; TÞ ¼
X
n

NL;R
n ðxÞΦL;R

n ðr; TÞ: ð37Þ

For the nucleons the spin is J ¼ 1
2
. For this case the

ΦL;R
n ðr; TÞ profiles will be written with the prefactors

ΦL;R
n ðr; TÞ ¼ e−

3
2
AðrÞFL;R

n ðr; TÞ: ð38Þ

After the substitution of these profile functions into the
equations of motion in the rest frame of nucleon ðp⃗ ¼ 0Þ,
we obtain the following form of the e.o.m. [26] for the
FL;R
n ðr; TÞ profile functions:

½∂2
r þ UL;Rðr; TÞ�FL;R

n ðr; TÞ ¼ M2
nðTÞFL;R

n ðr; TÞ: ð39Þ

The temperature-dependent spectrum M2
nðTÞ has a quan-

tization similar to that in the zero temperature case,

M2
nðTÞ ¼ 4K2ðTÞ

�
nþmþ 1

2

�

¼ 4k2ð1þ ρðTÞÞ
�
nþmþ 1

2

�
: ð40Þ

Uðr; TÞ in Eq. (39) is the effective potential at finite tem-
perature for the fermion field, and it can be decom-
posed into zero and finite temperature–dependent terms
as follows:

UL;Rðr; TÞ ¼ UL;RðrÞ þ ΔUL;Rðr; TÞ;

ΔUL;Rðr; TÞ ¼ 2ρðTÞk2
�
k2r2 þm ∓ 1

2

�
: ð41Þ

Here

m ¼ N þ L −
3

2
: ð42Þ

Solutions to Eq. (39) are the following finite temperature
profile functions for the nucleons [26]:

FL
n ðr;TÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γðnþ 1Þ

ΓðnþmLþ 1Þ

s
KmLþ1rmLþ1

2e−
K2r2
2 LmL

n ðK2r2Þ;

FR
n ðr;TÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γðnþ 1Þ

ΓðnþmRþ 1Þ

s
KmRþ1rmRþ1

2e−
K2r2
2 LmR

n ðK2r2Þ;

ð43Þ

where mL;R ¼ m� 1
2
. The profile functions Φnðr; TÞ and

Fnðr; TÞ obey the normalization conditions

Z
∞

0

dre−
3
2
AðrÞΦL;R

m ðr; TÞΦL;R
n ðr; TÞÞ

¼
Z

∞

0

drFL;R
m ðr; TÞFL;R

n ðr; TÞ ¼ δmn ð44Þ

and coincide with those for the zero temperature case with
the replacements r → z and Kðr; TÞ → k.

VI. BULK INTERACTION AND FINITE
TEMPERATURE COUPLING CONSTANT

To derive the ρ meson-nucleon thermal coupling con-
stant in the AdS=CFT framework, we shall follow the
calculation procedure used in the zero temperature case in
Refs. [8,15,31,32]. To this end we should construct a
Lagrangian for the interaction in the bulk between the
thermal vector and fermion bulk fields. Then, identifying
the bulk partition function in the AdS-Schwarzschild
background with the one in thermal QCD, we shall obtain
the expression for the thermal nucleon current interacting
with the thermal vector meson. For the finite temperature
soft-wall model considered here the interaction action will
be an integral of Lint multiplied by the exponent of the
thermal dilaton field. The five-dimensional interaction
action in the bulk of AdS-Schwarzschild space-time will
be written as follows:

Sint ¼
Z

d4xdr
ffiffiffi
g

p
e−φðr;TÞLint: ð45Þ

According to the holographic principle, the generating
functional ZAdS of the bulk theory is identical to the
generating functional ZQCD of the QCD theory on the
UV boundary of this space-time:

ZAdS ¼ eiSint ¼ ZQCD: ð46Þ

So, to find the nucleon current (more precisely, a vacuum
expectation value of the current), which interacts with the ρ
meson in boundary QCD theory, we can take the variation
of the bulk functional ZAdS from the boundary value of the
bulk vector field Ma

μðqÞ as follows:
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hJaμi ¼ −i
δZAdS

δMa
μðqÞ

����
Ma

μ¼0

: ð47Þ

There are several kinds of interactions between the spinor
and vector bulk fields, and Lint consists of terms describing
these interactions. Sincewe have the gauge fields in the bulk,
the first term is aminimal gauge interaction termof thevector
field with the current of fermions in the bulk,

Lð0Þ
MNNðTÞ ¼ N̄1eMA ΓAMMN1 þ N̄2eMA ΓAMMN2: ð48Þ

Next, terms are connected with the bulk spinor
field’s five-dimensional “magnetic moments,” which are
described by ΓMN. Four-dimensional components of this
tensor correspond to the magnetic moments of fermions in
the reference frame. By means of these “moments” the
terms of the Lagrangian can be constructed in the bulk
of space-time, which have “Lorentz,” gauge, and parity
invariant interactions with the vector field. The first such
term is the following five-dimensional generalization of the
usual four-dimensional magnetic interaction:

Lð1Þ
MNNðTÞ ¼ ik1eMA e

N
B ½N̄1ΓABðFLÞMNN1 − N̄2ΓABðFRÞMNN1 þ H:c:�

¼ ik1eMA e
N
B ½N̄1ΓABFMNN1 − N̄2ΓABFMNN1 þ H:c:� þ axial vector term; ð49Þ

where FMN ¼ ∂MMN − ∂NMM is the field strength tensor of the MN vector field.
The second such magnetic moment term was constructed in [32] and has the form

Lð2Þ
MNNðTÞ ¼

i
2
k2eMA e

N
B ½N̄1XΓABðFRÞMNN2 þ N̄2XþΓABðFLÞMNN1 − H:c:�

¼ i
2
k2eMA e

N
B ½N̄1XΓABFMNN2 þ N̄2XþΓABFMNN1 þ axial vector term�: ð50Þ

In addition to the magnetic moment interaction this term
includes an interaction with theX field, and as a result of this
interaction it changes the chirality of the fermion fields. As
mentioned, the bulk scalar field X was introduced as one,
which changes the chirality of the boundary nucleons and is
expressed with the quark condensate Σ in the boundary
theory. Interpretation of this term is the interaction between
the bulk fermions and the gauge fields by means of the
magnetic moments of the fermions and an interaction with
the X field (the background field of the condensate). As a
result of such a tripartite interaction, the chirality of the
fermions is changed. In boundary QCD theory this term
describes the nucleon-ρ meson-quark condensate coupling
with the change in chirality of the nucleons. The k1 and k2
constants were determined in the hard-wall model in the zero
temperature case [32]. Thus, the total “magnetic”-type
Lagrangian is the following sum of these two terms:

L0
MNNðTÞ ¼ Lð1Þ

MNNðTÞ þ Lð2Þ
MNNðTÞ: ð51Þ

Higher order bulk fields can be included in the
Lagrangian terms; however, we neglect them in the
approximation here.
Having explicit expressions of thermal profile functions

of the bulk fields we can calculate the terms of thermal
action in the momentum space and then take the variational
derivative (47) from these terms. This variation gives us
the following contribution of each Lagrangian term to the
nucleon current:

hJμðp0; p;TÞi ¼ gρNNðTÞūðp0ÞγμuðpÞ; ð52Þ

where gρNNðTÞ is the integral over the holographic coor-
dinate r and it corresponds to the thermal minimal coupling
constant according to holographic identification of the bulk
and boundary currents. Now we can write the contribution
of each Lagrangian term to the gρNNðTÞ constant.
The contribution coming from the Lð0Þ

MNN Lagrangian is

denoted by gð0ÞnmρNN ðTÞ and its integral expression is equal to
the following one:

gð0ÞnmρNN ðTÞ ¼
Z

∞

0

dr
r4

e−K
2r2M0ðr; TÞ½F�ðnÞ

1L ðr; TÞFðmÞ
1L ðr; TÞ

þF�ðnÞ
2L ðr; TÞFðmÞ

2L ðr; TÞ�: ð53Þ

Here we have used the relations between the profile

functions of the bulk fermion fields FðsÞ
1L ¼ FðsÞ

2R ,

FðsÞ
1R ¼ −FðsÞ

2L , which are correct for parity even states
of the nucleons. M0ðr; TÞ is the profile function of a
vector meson in the ground state.
In the Lagrangian expressions (49) and (50) the

ΓMNFMN matrix is the sum of two kinds of terms—namely,
Γ5νF5ν and ΓμνFμν. Since these terms have different
physical meanings, it is useful to present the contributions
of these terms separately. In the total Lagrangian L0

MNNðTÞ
the Γ5νF5ν terms contribute to the gρNN constant, and the
contribution of this term is expressed as follows:
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gð1ÞnmρNN ðTÞ ¼ −2
Z

∞

0

dr
r3

e−K
2r2M0

0ðr; TÞ½k1ðF�ðnÞ
1L ðr; TÞFðmÞ

1L ðr; TÞ

− F�ðnÞ
2L ðr; TÞFðmÞ

2L ðr; TÞÞ þ k2vðr; TÞðF�ðnÞ
1L ðr; TÞFðmÞ

2L ðr; TÞ − F�ðnÞ
2L ðr; TÞFðmÞ

1L ðr; TÞÞ�: ð54Þ

Here the prime on Mn denotes the derivative over r. The ΓμνFμν term makes the following contribution to the expression:

fnmρNNðTÞ ¼ −4mN

Z
∞

0

dr
r3

e−K
2r2M0ðr; TÞ½k1ðF�ðnÞ

1L ðr; TÞFðmÞ
1R ðr; TÞ − F�ðnÞ

2L ðr; TÞFðmÞ
2R ðr; TÞÞ

þ k2vðr; TÞðF�ðnÞ
1L ðr; TÞFðmÞ

2R ðr; TÞ − F�ðnÞ
2L ðr; TÞFðmÞ

1R ðr; TÞÞ�; ð55Þ

where mN is the mass of the nucleon. fnmρNNðTÞ is inter-
preted as the contribution of the nucleon-ρ meson inter-
action by means of the magnetic moment of the nucleon.
The total coupling constant gs:w:ρNNðTÞ is the following sum
of the previous coupling constants:

gs:w:ρNNðTÞ ¼ gð0ÞnmρNN ðTÞ þ gð1ÞnmρNN ðTÞ: ð56Þ

The gð0ÞnmρNN ðTÞ coupling constant is interpreted as the
“strong charge” of this interaction.

VII. NUMERICAL ANALYSIS

The numerical analysis of the gð0ÞnmρNN ðTÞ coupling con-
stant consists of a numerical calculation of the integrals

for the constants gð0ÞnmρNN ðTÞ, gð1ÞnmρNN ðTÞ, and fnmρNNðTÞ and
of numerically drawing their temperature dependencies
by means of the Mathematica package. We present our
numerical results for the choice of parameters for the two
flavor Nf ¼ 2 case with the pseudoscalar decay constant in
the chiral limit F ¼ 0.87GeV; for the three flavor Nf ¼ 3

case with F ¼ 0.100 GeV; for the four flavor Nf ¼ 4 case
with F ¼ 0.130 GeV; and for the five flavor Nf ¼ 5 case
F ¼ 0.140 GeV. These sets of parameters were taken
from [25]. We use the free parameters k, k1, k2, mq, and

Σ. The k parameter was fixed at the value k ¼ 0.383 GeV
in [25]. The parameters k1 and k2 were fixed at the
values k1 ¼ −0.78 GeV3, k2 ¼ 0.5 GeV3 in [32]. Here
we do not consider these constants to be temperature-
dependent ones, and we use these values in our numeri-
cal analysis. The Σ ¼ ð0.368Þ3 GeV3 and mq ¼
0.00145 GeV values of these parameters were found
using the fitting of the π meson mass [34]. To have
an idea of relative contributions of different terms of
the Lagrangian, we present results for the temperature

dependencies of the gð0ÞnmρNN , gð1ÞnmρNN ðTÞ, and fnmρ ðTÞ cou-
pling constants separately. In the figures below, the blue

graph curve represents the gð0ÞnmρNN coupling constant, the

orange curve shows the gð1ÞnmρNN ðTÞ, the green curve shows

the gðs:w:ÞρNN ðTÞ, and the red one shows the fnmρ ðTÞ at finite
temperature. Finally, we have considered these depend-
encies for the first excited state Nð1440Þ of the nucleons
as well. We repeat plotting graphs for the different
numbers of flavors Nf and F. We observe that all graphs
in the Figs. 1–8 converge at one temperature value,
which varies slightly in the different cases. Changing the
parameter values does not change the picture in the figure
and leads to only a slight deformation of the shape in the
graphs.

FIG. 1. Comparison of gð0ÞnmρNN , gð1ÞnmρNN ðTÞ, and fnmρ ðTÞ coupling
constants at finite temperature for Nf ¼ 2 and F ¼ 0.87 GeV.

FIG. 2. Comparison of gð0ÞnmρNN , gð1ÞnmρNN ðTÞ, gðs:w:ÞρNN ðTÞ, and
fnmρ ðTÞ coupling constants at the parameter values Nf ¼ 3,
F ¼ 0.100 GeV.
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FIG. 5. The gð0ÞnmρNN , gð1ÞnmρNN ðTÞ, gðs:w:ÞρNN ðTÞ, and fnmρ ðTÞ coupling
constants for the first excited nucleons Nð1440Þ at the parameter
values Nf ¼ 2, F ¼ 0.87 GeV.

FIG. 6. The gð0ÞnmρNN , gð1ÞnmρNN ðTÞ, gðs:w:ÞρNN ðTÞ, and fnmρ ðTÞ coupling
constants for the first excited nucleons Nð1440Þ at the parameter
values Nf ¼ 3, F ¼ 0.100 GeV.

FIG. 7. The gð0ÞnmρNN , gð1ÞnmρNN ðTÞ, gðs:w:ÞρNN ðTÞ, and fnmρ ðTÞ coupling
constants for the first excited nucleons Nð1440Þ at the parameter
values Nf ¼ 4, F ¼ 0.130 GeV.

FIG. 8. The gð0ÞnmρNN , gð1ÞnmρNN ðTÞ, gðs:w:ÞρNN ðTÞ, and fnmρ ðTÞ coupling
constants for the first excited nucleons Nð1440Þ at the parameter
values Nf ¼ 5, F ¼ 0.140 GeV.

FIG. 3. Temperature dependence of gð0ÞnmρNN , gð1ÞnmρNN ðTÞ, gðs:w:ÞρNN ðTÞ,
and fnmρ ðTÞ coupling constants at the parameter values Nf ¼ 4,
F ¼ 0.130 GeV.

FIG. 4. The gð0ÞnmρNN , gð1ÞnmρNN ðTÞ, gðs:w:ÞρNN ðTÞ, and fnmρ ðTÞ coupling
constants at the parameter values Nf ¼ 5, F ¼ 0.140 GeV.
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VIII. DISCUSSION

In this paper we have studied the temperature depend-
ence of the strong coupling constant of the ρ meson with
the nucleons within the soft-wall model of AdS/QCD.
We have plotted this dependence for each term in the
coupling constant and have observed that all terms
become zero at the same point near the Hawking
temperature. (This point shifts slightly from case to
case, which we think is related to the calculation
accuracy.) The result here is reasonable from a physical
interpretation point of view. Since the confinement-
deconfinement phase transition occurs at the Hawking
temperature and there are no hadrons after this temper-
ature, we have obtained a zero value for the coupling
constant between the hadrons below this temperature. If

we move from the inverse direction of the temperature
axis, from higher temperatures to the Hawking temper-
ature, we observe that the gρNN coupling constant at the
point near the Hawking temperature becomes nonzero not
sharply but smoothly. This may be interpreted as follows:
strong interactions between the ρ mesons and nucleons
emerge not simultaneously with the hadronization, but
instead just after the start of cooling of the formed hadron
medium. This interpretation may be of use for the
understanding processes at the early stages of the for-
mation of the Universe. To have a complete physical
picture of the finite temperature interactions between the
hadrons, similar investigations are in process for the pion
and axial vector–meson interactions with the nucleons in
the framework of this formalism.
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