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Starting from nonequilibrium quantum field theory on a closed time path, we derive kinetic equations for
the strong-field regime of quantum electrodynamics (QED) using a systematic expansion in the gauge
coupling e. The strong field regime is characterized by a large photon field of order O(1/e¢), which is
relevant for the description of, e.g., intense laser fields, the initial stages of off-central heavy ion collisions,
and condensed matter systems with net fermion number. The strong field enters the dynamical equations
via both quantum Vlasov and collision terms, which we derive to order O(e?). The kinetic equations feature
generalized scattering amplitudes that have their own equation of motion in terms of the fermion spectral
function. The description includes single photon emission, electron-positron pair photoproduction, vacuum
(Schwinger) pair production, their inverse processes, medium effects and contributions from the field,
which are not restricted to the so-called locally-constant crossed field approximation. This extends known
kinetic equations commonly used in strong-field QED of intense laser fields. In particular, we derive an
expression for the asymptotic fermion pair number that includes leading-order collisions and remains valid
for strongly inhomogeneous fields. For the purpose of analytically highlighting limiting cases, we also
consider plane-wave fields for which it is shown how to recover Furry-picture scattering amplitudes by
further assuming negligible occupations. Known on-shell descriptions are recovered in the case of simply
peaked ultrarelativistic fermion occupations. Collisional strong-field equations are necessary to describe

the dynamics to thermal equilibrium starting from strong-field initial conditions.

DOI: 10.1103/PhysRevD.104.036007

I. INTRODUCTION

Present and upcoming laser facilities [1-4] promise
unprecedented insights into the strong-field regime of
quantum electrodynamics (QED). Strong dynamical
electromagnetic fields are also generated during the early
stages in off-central collisions of heavy nuclei at the Large
Hadron Collider (LHC) at CERN or the Relativistic Heavy
Ion Collider (RHIC) at BNL. The presence of strong
electromagnetic fields and their dynamical decay can lead
to a wealth of intriguing quantum phenomena, such as
related to quantum anomalies which can also be probed
in condensed matter systems [5]. Strong fields are also
essential for the description of highly charged systems,
where the net fermion charge induces strong field
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configurations also in equilibrium [6]. While experiments
pioneered by the Stanford Linear Accelerator Center
(SLAC) [7-9] have since been developed further
[10,11], they are not yet able to enter the full strong-field
QED regime by means of lasers. Meanwhile, experiments
employing crystals have been found to be a competitor to
laser experiments [12—15].

For the weak QED coupling @ = ¢*/4x ~ 1/137 (we use
natural units with 7 = ¢ = kg = ¢y = 1), the strong-field
regime may be characterized by a photon field that is
parametrically as large as

A~ O(1]e). (1)

For a laser field [16] that is described by an electric field
amplitude £ and frequency ®, the counting rule (1)
corresponds to a large (Lorentz-invariant) nonlinearity
parameter [15-17],

lel€/(mw) 2 1. (2)
For a macroscopic photon field that varies on the time scale

of the Compton length 1/m, the counting rule (1) corre-
sponds to electric fields of the order of the critical field,
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Ezm?/|e|=E., (3)

which induces electron-positron pair creation from the
vacuum [18-22].

Despite the smallness of the QED coupling, the theo-
retical description of strong field phenomena provides
important challenges. Standard simulation techniques, such
as based on Monte Carlo importance sampling, cannot be
applied to general nonequilibrium problems. Rigorous
simulations are difficult even in equilibrium in the presence
of a net fermion charge leading to nonvanishing fields. As a
consequence, the development of suitable approximate
treatments is indispensable.

For instance, the decay times of strong electromagnetic
fields in the medium created by a heavy ion collision and
the role of the fields for the subsequent nonequilibrium
dynamics is still poorly understood. Even the idealized
problem of how an initially supercritical homogeneous
electromagnetic field approaches thermal equilibrium in
QED has not been answered yet. The strong field regime
at early times may be accurately described by classical
statistical field theory techniques [23,24], while the late
time behavior at high temperature in the absence of a
field is successfully described using standard kinetic
theory [25]. In particular, the dynamics of avalanches
in which large amounts of fermions are produced can be
captured by a kinetic approximation of QED [22,26-43].
However, to describe in a single approach the evolution
all the way from strong fields to equilibrium, or in the
presence of a net fermion density, involves the interplay
of strong fields and collisions beyond state-of-the-art
approximations [44].

As an important step in this direction, we derive in this
work, dynamical equations for strong fields in a kinetic
description including collisional processes to order O(e?).
Our ab initio derivation starts from nonequilibrium quan-
tum field theory on a closed time path [45,46]. We derive
coupled equations for the spatiotemporal evolution of the
field expectation value and correlation functions for com-
mutators and anticommutators of fields using two-particle
irreducible (2PI) generating functional techniques [47,48].
The expectation values of field commutators (anticommu-
tators) for bosons (fermions) describe the spectral functions
of excitations, whereas their anticommutators (commuta-
tors) characterize their transport behavior.

Applying a gradient expansion for two-point functions,
we derive a kinetic description where the strong-field
scattering kernel couples the transport equations for photons
and fermions to an equation for the fermion spectral
function. The latter includes strong-field off-shell corrections
in a self-consistent way. Our description incorporates the
processes of single photon emission, electron-positron pair
photoproduction, vacuum pair production, their inverse
processes, medium effects and contributions from the field
going beyond the so-called locally-constant crossed field

approximation (LCFA) [16]. In fact, we show that our
approximation order already captures the complete explicit
field dependence of the problem. To make further contact
with the literature, we also consider plane-wave fields.
Plane-wave degrees of freedom are identified and it is
shown how to recover Furry-picture scattering amplitudes.

Our description extends known kinetic equations com-
monly used in strong-field QED of intense laser fields and
can be applied, in particular, to strongly inhomogeneous
field configurations. Earlier approaches include collisionless
approximations, e.g., Refs. [20,49-51] such as employed to
strong-field pair production by a source term [52,53].
Collisional descriptions assuming subcritical or weak fields
can be found in Refs. [22,25,54-62]. Fermion spectral
dynamics in the presence of a macroscopic field in the
nonrelativistic (subcritical) regime have been used in
Refs. [58-60] (see also Refs. [63,64] for strong fields in
scalar theory). Collisional approaches either based on the
classical statistical approximation [65-67], or by the use of a
field-independent linear (‘relaxation-time’) collision term
[68] have been given. There are also particle-in-cell schemes
[69], which assume the validity of the Lorentz equation
between collisions and incorporate several quantum effects
by strong-field scattering amplitudes [17,70,71].

The structure of this paper is the following. We introduce
the nonequilibrium equations of motion for one- and two-
point correlation functions in Sec. II. The ingredients for a
kinetic limit of these equations are discussed in Sec. I1I. We
establish the systematics of counting couplings and gra-
dients in the presence of a strong field, and present general
strong-field transport equations in Sec. IV. In Sec. V we
point out which additional physical assumptions are nec-
essary to reduce the collision kernels of our transport
equations to various known expressions and kinetic equa-
tions in the literature and how to describe strong-field pair
production in our formalism. We conclude and give an
outlook in Sec. VL

II. NONEQUILIBRIUM QED

All possible information about the dynamics of quantum
fields is contained in their correlation functions. The latter
can be efficiently encoded in terms of a quantum effective
action, which is the generating functional for time ordered
field correlation functions. Here we employ the two-
particle irreducible effective action I'[A, D, A], which is
a functional of the macroscopic field expectation value

A (x) = Tr{p(19)A*(x)} == (4" (x)), (4)

with Heisenberg gauge field operator A#(x) for given
density operator p(7y) at initial time 7, as well as of the
time-ordered connected two-point correlation functions

D" (x,y) = (T A" (x)A"(y)) — (A*(x)) (A" (y)). (5)
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FIG. 1. The closed time path.
A(x,y) = (TP(x)P()). (6)

for gauge fields and Dirac fermions with fermion field
operators ¥ and ¥ := ¥7y", where we suppress spinor
indices. The expectation value of the fermion field ¥
vanishes identically for the dynamics considered and plays
no role in the following. The symbol 7, denotes contour
time ordering on the closed time path C [46], which starts at
initial time 7, and runs along the time axis and back as
indicated in Fig. 1.

Together with a nonthermal, p(ty) # e, and not time-
translation-invariant, [p(z), H] # 0, density matrix the
contour can be used to facilitate a compact formulation
of quantum field theory as an initial value problem that
describes nonequilibrium physics.

It is convenient to write the 2PI effective action
as [72-75]

['[A,D,A]=S[A]—iTreInA~" —iTre A [A]A

+%TrC1nD‘1+%TrCD51D+F2[D,A], (7)

where TreG = [, . G(x,x). This identifies the pure gauge
field part of the gauge-fixed classical QED action

sl = [ {37070 - @AW} 6)

with the gauge-invariant field strength tensor
Frv(x) = o AY(x) — 0" A* (x) 9)
and gauge-fixing parameter £ We use Lorenz gauge,
GlA = - A, (10)

and keep in mind the possibility for residual gauge fixing.

If computed within the 2PI loop expansion introduced
below without a further kinetic limit, correlation functions
such as (4) depend on the gauge-fixing parameter £ (see
also Sec. IV E). This gauge-fixing dependence occurs at a
higher perturbative order in the coupling than the actual
approximation order [76-78] and can be absent in the limit
of on-shell photons relevant for kinetic descriptions [79]
[see also Eq. (101)]. In the present paper, we discuss this in
the context of Ward identities in the presence of strong
fields in Sec. V E 2, where we show that the gauge-fixing
parameter drops out in limiting cases.

The semi-classical or ‘one-loop’ terms in (7) contain the
classical photon and fermion propagators

iDy(x, ) = [0, = (1 = §OKdKoe(x —y),  (11)
A [A](x,y) = [if, — eA(x) = m]de(x —y),  (12)

in the presence of the macroscopic gauge field
with A= y*A, etc. Our metric convention is 7" =
diag(+1,-1,-1,-1).

The benefit of the decomposition identity (7) for the full
quantum effective action I'[A, D, A] is that the remaining
functional T',[D, A] exhibits specific properties that are
very useful for the following. For QED, I', is the sum of all
2PI contributions built from the full two-point functions D
and A and there is no explicit dependence on the macro-
scopic field A, which is further discussed below. A diagram
is 2PI if it cannot be disconnected by cutting two propa-
gator lines (see Fig. 2).

The 2PI functional integral approach provides a pre-
scription on how to close equations in terms of one- and
two-point correlation functions only. Such a correlation
function based description may be used to initialize the
system for instance with vanishing photon and fermion
particle number, described by connected two-point func-
tions, but large electromagnetic field or vice versa.

Furthermore, the 2PI formulation is known to facilitate a
derivation of kinetic equations [80,81] and may be trans-
formed into other common formulations; Wigner trans-
formations of 2PI two-point functions allow one to make
contact with the Wigner operator formalism [50,51,82-85].
In particular, equal-time Wigner functions emerge from
integration over frequencies [51]. In this way one is also
able to make contact with the equal-time Dirac-Heisenberg-
Wigner (DHW) formalism [20,86] which has been applied
to the discussion of pair production from collisionless
equations. Such quantum Vlasov equations [20,53,68,
87-90] emerge under the so-called ‘mean-field’ (or
‘Hartree-Fock’) approximation, I'; 0. In an operator
formulation, this approximation allows one to close oper-
ator equations by treating photon operators classically, at
the cost of losing access to collisions. In the 2PI formu-
lation, one can easily go beyond this mean-field order e.g.,
by means of the 2PI loop expansion as is discussed below.
This way of arriving at a kinetic description starting from

2PI1 two-particle reducible

FIG. 2. Examples of 2PI and two-particle reducible diagrams.
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an effective action formulation has the additional advantage
that observables derived from that effective action also
become accessible under the kinetic approximation.

A. Equations of motion
The equations of motion for the full one- and two-point
functions A*(x), D*(x,y), A(x,y) appearing in the 2PI
effective action (7) are obtained from the stationarity
conditions'

or
5A 7

or
sD

or
SA 0. (13)
These are coupled partial integro-differential equations for
the one- and two-point functions on the closed time contour.
From them emerge a Maxwell equation, and photon and
electron-positron transport equations respectively.

In order to discuss the equations of motion, it is
convenient to make the time ordering explicit by writing

i
D (x,y) = P (x,y) =5 p"(x, y)sgne(x® —y0),  (14)

A(x.) = Fa(x.y) = Spulry)sgne =) (15)

After splitting the equations of motion into equations for
the ‘statistical functions’ (F) and ‘spectral functions’ (p),
the contour C no longer appears and a clear separation into
transport and spectral dynamics is achieved. These func-
tions have distinct hermiticity properties,

Fr(x,y) = F*(y, x), (16)
P(xy) = =p*(y, x), (17)
Fy(x.y) = y°Fy(y. x)7", (18)
pu(x,y) = =iy, )7’ (19)

These properties are related to the underlying (anti)
commutator representations in terms of Heisenberg field
operators:

Fr(x,y) = % {({A#(x), A" (y)}) = (A*(x))(A"(v)),  (20)
P (xy) = i{[A*(x), A (9)]), (21)

FgP (x.y) = {[94(x). PP ()]). (22)

N[ =

'These equations are valid in the absence of external source
terms. Sources encoding initial conditions are stated accordingly
together with the differential equations for the fields and
propagators.

A

e
FIG. 3. The macroscopic field vertex.
pof (e, y) = i({¥4(x), PP () }). (23)

In particular, the equal-time (anti) commutation rules are
encoded in the spectral functions according to

5e(x = y")p(x,y) = 0, (24)
8e(x0 = y0)00p" (x,y) = =bc(x = y)p*,  (25)
5e(x® =y0)iy%pgP (x,y) = =bc(x = y)&*%. (26)

These equal-time conditions imply that spectral functions
are normalized and that their initial conditions are fixed by
the underlying quantum theory.

An important simplification in Abelian theories such as
QED occurs because of the absence of 2PI one-point
function diagrams, such that I';[D, A] does not explicitly
depend on A: The electromagnetic field expectation value
enters the 2PI effective action for QED via the ‘classical
vertex’ term

—iey" A, (x)éc(x = y), (27)

which can be depicted graphically as in Fig. 3.

Such a contribution cannot be found in the 2PI diagrams
contributing to I'; since the two fermion lines emanating
from the vertex could always be cut, thus making any such
diagram two-particle reducible (see also Fig. 2).

For QED, the macroscopic field therefore enters the 2PI
effective action (7) only via the classical fermion propa-
gator Ay[A] and the classical action S[.A], while T, is field
independent. Since 2PI diagrams are at least two-loop,
this implies that the complete explicit macroscopic field
dependence enters at one-loop order of I,

0 51‘*( 1-loop)
— o> —
B 5A

v

or

A =0. (28)

Fy

Consequently, the field evolution equation always has a
Maxwell-type form, i.e.,

[nﬂamx - (1 - %)awaﬂ () = j#(x), (29)

with the fermion current (see Appendix B)

J(x) = —etr{y"Fy(x, x)}, (30)
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irrespective of the approximation order for I';. This would
not be the case, e.g., in QCD or self-interactring ®* scalar
field theory, where the two-particle irreducible part of the
effective action depends explicitly on the field expectation
value, such that the form of the field evolution equation
depends strongly on the order of approximation. Because
I, is field-independent in QED, there are no further terms
coming from higher order corrections. Approximations to
I, affect the field evolution only implicitly via Fy in the
fermion current (30). Furthermore, that each 2PI diagram in
I', is separately gauge-invariant in QED [91] remains true
in the presence of a macroscopic field due to the field-
independence of I'.

Notably, a vanishing field is not in general a self-
consistent solution; if the system is initialized with a finite
net charge density, it will develop a field from fermion
fluctuations in the Maxwell equation. This field is then
necessarily inhomogeneous as dictated by Gauss’s law, i.e.,
the O-component of the Maxwell equation. Therefore, if
the system equilibrates, it has to do so under this constraint
for inhomogeneity.

In the equations of motion for the two-point functions,
explicitly field-independent self-energies are given by

Zl.al(ey) = =225 e
(D, Al(x, y) = 21-%, (32)

and can be decomposed similarly to two-point functions,

i
() = 50 (x.y) = 3 5 (e y)sgne(x0 =), (33)

i
Zp(x.y) =2y (1) ~ 32 (x y)sgne(x? = ). (34)

With these definitions, assuming Gaussian initial condi-
tions, the stationarity conditions for the propagators in
Eq. (13) can be written as’ [93]

[’7”an - (1 - %)%%]FUU('X’ y)

XO
— / d*zz) (x, 2" F(z, y),
)

y()
_ / d*zE0 (x, 2)"p(z. y),". (35)
)

%For non-Gaussian initial conditions, additional terms involv-
ing nonlocal interactions at initial time would appear in the
equations of motion [92].

[’1”an - (1 - %)aﬁaﬁptw(x? y)

XO
— /0 d*zZ0) (x, 2)"p(z. )" (36)
y

(i), — eA(x) = m]Fy(x,y)

XO
= / d*z2y) (x,2)Fy(z.y)

[0

yU
_ / d4z2\(l,F) (x.2)pw(z.y), (37)
fp

i@ — eA(x) — mlpy(x,y)

.XO
= / dz2y) (x. 2)pw (2. ). (38)
y

0

with finite-time integrals [ d*z = [’ dz° [%_ d3z. While
the structure of these equations is determined by causality,
details of the underlying theory enter through the differ-
ential operators and self-energies, which couple all spectral
and statistical functions to each other.

The fact that initial conditions for spectral functions
are fixed by the equal-time (anti) commutation relations
(24)—(26), is reflected by the absence of the initial time 7, in
the memory integrals of their equations. In contrast, the
evolution equations for the statistical functions have to be
supplied by initial conditions. Non-Gaussian quantum
fluctuations are built up dynamically but vanish at initial
time, x = y° = #,, by vanishing of the memory integrals.

All equations are considered to be suitably regularized
and the renormalization of the 2PI effective action for
QED is discussed in detail in Ref. [94]. Since we will
finally arrive at a set of finite equations at the level of the
kinetic approximation, renormalization will not be further
discussed and we refer e.g., to Refs. [52,53] for details
concerning dynamics.

The self-energies, encoding collisions, have leading
contributions at X, Xy ~ O(e?). While self-energies have
no explicit dependence on the macroscopic field by their
definition in terms of the field-independent I';, fermion
two-point functions introduce an implicit field-dependence
when evaluated from their equations of motion. As we will
demonstrate, strong-field collision kernels are generated
both in photon and fermion kinetic equations in this way.
The macroscopic field enters via the terms eA(x), encoding
in particular the Vlasov terms of fermion transport equa-
tions, which can be any order depending on the strength of
A#(x). By the smallness of the coupling e, these terms
are suppressed in a naive power counting. However, in the
presence of a strong field, A*(x) ~ O(1/e), these terms are
effectively of order eA*(x) ~ O(e%) such that the field-
vertex (27) has to be resummed. As the macroscopic field
decays [31,53,95] from its strong-field initial conditions,
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the system passes through different power counting sce-
narios that are all captured by our strong-field counting.

B. 2PI loop expansion

In order to close the equations (35)—(38) one requires
explicit expressions for the self-energies (31) and (32).
This is achieved by employing a 2PI coupling or ‘loop’
expansion, which expresses I, in terms of resummed
propagators D*¥ and A and of free vertices. This self-
consistent treatment of propagators selectively resums
perturbative contributions, which helps achieving a non-
secular time evolution with a valid expansion scheme at all
times [93,96]. In such an expansion, I, can be written as

IL[D. A] = = 2DAV2 + ie“DzA“Vé +0(e%),  (39)

2
where we have suppressed all indices and arguments that
are contracted or integrated over. This expansion is dia-
gramatically depicted in Fig. 4.

The explicit expressions obey Feynman rules including
symmetry factors. Only the free QED vertex

Voas (X, ¥, 2) = Vipbe(x — 2)6c(z = y) (40)

appears.

Correspondingly, the 2PI loop expansion of the self-
energies (31) and (32) is a series of 1PI diagrams with two
amputated external legs, diagramatically depicted in Fig. 5.
The 1PI property of the self-energies can also directly be
understood from the definition of I, as the sum of all
closed 2PI diagrams, from which X, Xy are obtained by
opening one propagator line, i.e., by Eq. (31), (32).

As long as photon occupations are not too large, i.e., if
the statistical photon two-point function obeys

v < O(1/e?), (41)

the power counting of e from vertices in a 2PI loop
expansion can be expected to be a valid approximation
scheme and we can truncate by virtue of the smallness of e.
Similar conditions for the spectral functions always hold
since they are normalized by the equal-time commutation
relations. Since fermion occupancies are limited by Fermi-
Dirac statistics there are no further corresponding con-
straints for the expansion scheme. The condition (41) is
dynamical such that even if the system is initialized with

FIG. 4. The first two 2PI loop orders, O(e?
effective action.

) and O(e*), of the

O (-
SRR E

FIG. 5. The first two 2PI loop orders, O(e?) and O(e*), of the
photon (first line) and fermion (second line) self-energy.

small occupations, a kinetic description breaks down if too
many photons with the same position and momentum are
produced. Physically, the assumption (41) may be under-
stood as the requirement for a sufficiently long mean free
path in kinetic descriptions; The loop expansion of self-
energies in the kinetic limit is an expansion in the number
of particles involved in a scattering [97-99]. The denser
the medium, the smaller the mean free path, and the more
likely a collision involving many particles. If the medium is
too dense, collisions between arbitrarily many particles
become equally likely, invalidating a truncation in an
expansion of the number of paI’[icles.3

We emphasize that these considerations do not directly
limit the size of the macroscopic field: Because of the field-
independence of I',, higher order contributions to self-
energies are negligible also in the presence of strong fields
and processes such as eeyy or eeee scattering do not
contribute to a leading-order (LO) description (see also
Ref. [101]). As long as (41) is fulfilled, the coupling
remains a valid expansion parameter, no matter how large
the field is at that time. Thus we may employ the leading
order of self-energies to obtain a closed description that is
complete at order O(e?).

The LO of T, ~ O(e?) is

2il[D, A
== [ el AG ) Duln5) + O
" @)
The corresponding self-energy expressions are
T (x,y) = Er{rAlx, ) Aly.x)} + Ole?),  (43)
Zy(x,y) = =1, A y)r, D (x,y) + O(e*),  (44)

where the relative sign originates from the fermion loop in
2#. The kinetic equations derived in this paper neglect all

’In O(N) scalar theories, a far-from-equilibrium kinetic de-
scription can nevertheless be formulated on the basis of emergent
degrees of freedom in this highly occupied regime [100].
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higher orders of the 2PI loop expansion.4 In agreement with
the coupling counting in perturbation theory, all possible
crossings of eey scattering terms emerge from these O(e?)
self-energies. The following sections are dedicated to
understanding how effective transport and kinetic descrip-
tions emerge from this approach.

III. THE KINETIC LIMIT OF
NONEQUILIBRIUM QED

To express the equations of motion in kinetic degrees
of freedom, we change to center and relative space-time
variables

X =1 (x+y).
2
The four-momentum p associated to —id, is the momen-
tum that appears in kinetic equations, while X is the kinetic
four-position variable.

The momentum p is introduced by a Wigner transform
with respect to the relative coordinate s. For an evolution
starting at time # at which the initial conditions are given,
the Wigner transform of a generic two-point function G
may be written as

2(X~to) . s s
G, (X,p):= ds® [ Ese” G X+, X - .
’ —2(X—1y) 2 2

(46)

§i= X —y. (45)

Here 1, appears in the time integral as a lower boundary for
all time variables. Since initially we have X% = ¢, there are
no relative times to integrate in this case, which preempts a
Wigner transformation starting at initial time. To never-
theless be able to talk about kinetic variables from the initial
time of our kinetic description, we employ a late-time limit
described in the following.

A. Late-time limit

For finite 7, and X° the integration range for s is always
limited. Only if #, — —oo the relative time variable s° can
be infinite, which is required for a proper introduction of
Fourier frequency modes p°. Of course, sending formally
to — —oo while still initializing the evolution at some finite
time implies that a general system is initially not accurately
described by these late-time equations. However, for
sufficiently large X° compared to the finite initialization
time, the description is expected to become accurate [102].
Therefore, instead of Eq. (46) we consider the late-time
Wigner transform

*We expand I'; to O(e?), i.e., to 2PI two-loop order, where the
leading nontrivial scattering occurs in the presence of a non-
vanishing field. At this order the 2PI approach coincides also with
corresponding two-loop approximations for any higher nPI
effective actions with n > 2 [73].

G(X. p) = / d4seiPSG<X+%,X—%>, (47)
which has contributions from all s° for arbitrary X°.
Equal-point objects such as the fermion current (30)
can be expressed in terms of such late-time Wigner
transforms,

mmzw/mwwxm} (48)

The notation [, = [ d*p/(2z)* for momentum integrals

is used throughout. The canonical equal-time anticommu-
tator (26) in late-time Wigner space is

. dp?
—Wo/pw(X, p) =1, (49)

(27)
such that the late-time vector-zero component

1tr{y’py(X,p)} may be interpreted as a density of
states [103].

In the microscopic description, finite-time Wigner trans-
forms (46) produce factors with finite-width energy-peaks
on correspondingly small timescales [104] that reduce to
delta peaks at late times via

2(X0—10) . ——00
/ o, BT ma(P)(50)

In this late-time regime, the interactions of QED may be
described by those of kinetic theory in terms of degrees of
freedom that carry a definite amount of energy.

Applying the late-time limit, 7y — —oo, one can write the
equations of motion (35)—(38) as

1,0~ (1-D)kas] o (x.y)

B / (2R (x,2)Fo* (z.y) + 20 (x,2)"° D (z.y),].  (51)

o0 = (1 =) 0505]p™ (x.y)

_/ (2R (x.2)ps" (2.9) +EV (x.2)"°Dp(z.),1].  (52)

Z

[id, — eA(x) — m|Fy(x,y)

=l/tzyRanP@<ay>+—z$kxx»AA@me (53)

z

(i), — eA(x) = mlpy(x, y)

:/mﬂmm@w+wwngmw,<w

z
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with fz = f d*z, where we have introduced the retarded and
advanced functions for photons and fermions (A5)-(A7)
defined in Appendix A.

Given the multitude of different nonequilibrium two-
point functions, it is important to remember that there are
only two independent two-point functions per field species;
the statistical and spectral functions. However, this can be
invalidated by approximations, in particular, by the pro-
cedure of sending 7, — —oco while initializing the equations
at a finite time. Wigner functions that include small
frequencies via (47) may appear independent of each other
because of spurious small frequency contributions that, in
an exact description employing finite-time Wigner trans-
forms (46), do not yet exist at early times [105,106].

B. Gradient expansion

As a next step in the derivation of kinetic equations, one
considers an expansion in the Lorentz-invariant and dimen-
sionless parameter (s -dy). An expansion in propagator-
gradients is achieved by the late-time identity [102]

. s s
irs(ExG) (X +2,x=2
[e (Z % )( +5 2>

e O A
— P2\ ap, ax° ~ apLoxe
x X(X, p)G(X', p')|y—x p—p> (55)

which applies to photon and fermion convolutions

@*@an=/wummwww, (56)

@wﬂw@w:/mmmw@w. (57)

z

Expansion of the exponential in Eq. (55) corresponds to an
expansion in (0, - Jy), i.e., a gradient expansion in Wigner
space. While the LO simply replaces the Wigner transform
of convolutions by products of Wigner transforms, an
expansion to next-to-leading order (NLO) in propagator-
gradients would involve Poisson brackets,

_ 0X(X, p) 0G(X, p)

[Z’ G}PB(X’ p) : apo_ o0X°
_ 9X(X,p) 9G(X. p)
0X, ap® (58)

The truncated gradient expansion leads to equations that are
irreversible and local in central time X°, as in the case of
kinetic equations. Still, gradient expanded 2PI equations
contain parts of the memory integrals of the fundamental
equations and are nonlocal in relative time s°. This allows
for access to unconstrained frequency variables, which are

not present in traditional kinetic descriptions as further
discussed in the following sections.

The smallness of the expansion parameter (s - Jy) can be
met in several circumstances.’ Quantum field dynamics
often becomes insensitive to its past, such that correlations
are dominated by small s [107-110]. From the perspective
of the spectral function, this damping of correlations in time
corresponds to the emergence of a particle picture in
momentum space [111,112]. Furthermore, assuming that
(s - Ox) is small depends on what the derivative acts on. In
the following, we neglect only gradients of two-point
functions G, by dropping Poisson brackets

[Z[G], Glpg ~ O(ezap - 0xG), (59)

while formally keeping gradients of the gauge-invariant
field strength tensor, (s - Ox)/eF*(X) ~ O(’(s - Ox)?), to
all orders. That is, we count field-gradients as (s - Oy ) F* ~
F*# and propagator-gradients as (s-Jyx)G < G. This
allows us to treat a large class of far-from-equilibrium
initial conditions of the macroscopic field. Approximations
to field-gradients are then discussed in Secs. VA and V F 2,
where we make contact with the locally-constant field
approximation.

However, field-gradients may be implicit in propagator
solutions (see also Sec. VF2 for the example of plane-
wave fields). Given an explicit field-dependent solution for
a two-point function, for example of the form

Gyl[Al ~ p—eA—m, (60)

different gradients may be related via

qul (S . ax)G\p —eA
Al(s-0x)A p—eA-—m’

(61)

In fact, the separation of field and propagator-gradients
that is possible at the level of the equations of motion does
not ensure that the ratio (61) is small. Nevertheless, we can
observe from Eq. (61) that large fermion momenta can
facilitate such a separation. When solving the kinetic
equations for inhomogeneous fields derived below, the
smallness of the ratio (61) should be checked.

C. Distribution functions

1. Reduction of tensor structures

An identication of the linearly independent components
of the fermion or photon correlation functions follows from

’In the absence of a temperature far from equilibrium, no
single scale may be associated to s. In this case, the near-
equilibrium counting of dimensionful gradients Oy ~ e>T of
Ref. [56] may not be used to argue for the smallness of (s - Jy).
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their Lorentz transformation properties. For instance, the
statistical fermion correlator can be decomposed as

" .5 5 1 pw
Fo=Fys+y,yy+irFep—r7,Fea+ EGWFT,T,
(62)

in terms of the scalar (Fyg), vector (F(‘I,‘V), pseudovector
(Fyp), axial-vector (Fy o) and tensor (F{;,”’T) components

1
F\{J’S = Ztr{]]F\P}, (63)
I 1 "
Fyy = Ztr{i/ Fy}. (64)
. Lo
iFyp:= th{y Fy}, (65)
Fl, o = ! SyHF 66
ba = 0P Fy, (66)
1
Fyp= Ztr{a"”F.y}, (67)
with respect to the Dirac basis {1, y#,7°, y’y*, 6"} where
p < vand with y° := —fe,,,,7"7"7’y" and o == L [y*, y*].
Below, we often drop the label ‘V’ for the vector
component.

In the presence of chiral symmetry (facilitated by
massless fermions or ultrarelativistic momenta), scalar,
pseudoscalar and tensor components vanish identically
[108]. If a description in terms of free particles is valid,
the axial component of the free fermion spectral function
would also vanish.

Similar comments apply to the photon distribution
function and a decomposition of the Lorentz tensor
structures of the photon equations of motion in the presence
of a macroscopic field can be achieved with the basis
discussed in Refs. [113,114].

With this in mind, one could write without loss of
generality for each component of Fy(X, p):

Pus(X.p) = i[5 = Fus(X.p) pus(X.p). (68)
Pl p) = =i[} = Fus () |y (o). (69)
Pus(X.p) = =i[3 = Fus(X. )| pus(X.p). (70
P, p) = =13 = o p)] o p). (71

Pir(X.p) = =i = Fuap) | i) (72

The change from a description in terms of Fy g (X, p) to
a formulation in terms of fyg (X, p) is convenient
because in characteristic limits fy g 1(X, p) can be inter-
preted as distribution functions.

In particular, in thermal equilibrium all distribution
functions are time independent and equal the Fermi-
Dirac distribution, i.e., fyg 1(p°) =1/(e/*" +1) (and
correspondingly a Bose-Einstein distribution for the photon
case). For a thermal theory this is valid no matter how
strong the interactions are and holds even in the absence
of a dispersion relation between frequency and spatial
momenta, p° = o(p).

Phenomena such as the chiral magnetic effect [115-118],
chiral kinetic theory [119-123] or spin transport [124]
should become accessible from first principles by using
(68)—~(72) in the equations of motion (51)-(54). How-
ever, for our current purposes of strong-field kinetic
equations and to make contact with existing limiting
cases in the literature, we consider a single distribution
function fy(X, p) for fermions and f(X, k) for photons by
writing [93,125]

PR (X, k) = —i B + (X, k)]p"”(X, K., (73)

FalX.p) = =i[3 = FulX.p) pu(X.p). - ()

For the fermion distribution function one has Pauli’s
principle [108],

fe(X.p) < 1. (75)

In order to distinguish fermion and antifermion distribution
functions, it is convenient to define [126]

Ju(X, p)=:0(p°) f4(X, p) + 0(=p°)[1 = f§(X,=p)].
(76)

In a charge conjugation invariant system, the fermion
distribution function obeys [73,74]

—[fe(X,=p) = 1] = fe(X,p) (if CP-invariant),  (77)

such that the system is charge neutral,

fe(X,p) = fyg(X.p) (if CP-invariant).  (78)
While the vacuum is CP-invariant, the general initial con-
ditions which we want to discuss in this paper break CP-
invariance by introducing a net total charge, such that
fl; # fp. The photon identity analogous to (77) reads [73,74]
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—f (X, =k) + 1] = f(X, k) (79)

and does not rely on CP-invariance.

2. On-shell particle picture

In general, the distribution functions introduced in
Egs. (73) and (74) depend on the off-shell frequency
variable p° that is not restricted to any dispersion relation,
p° # w(p). However, they only appear in combination with
the respective spectral function. As a consequence, if the
physics can be approximately described by free spectral
functions

A R) = i) (1 = (1= ) Rk sk,

(80)

pwo(X.p) = i(2m)(¥ +m)sgn(p°)s(p? —m?),  (81)

then the distribution functions can be restricted to their on-
shell values. Whether an on-shell description is possible
is determined self-consistently by solving the equations of
motion (52) and (54) for the spectral functions. At initial
time, the photon (fermion) spectral functions are deter-
mined by the equal-time (anti) commutation rules and each
subsequent time step is determined by the equations of
motion. If and when on-shell spectral functions emerge
depends on timescales and initial conditions for statistical
propagators and the macroscopic field. As we argue in
Sec. IV B, the free fermion spectral function (80) is in fact
not complete at order O(e?) in the presence of general
strong fields, A*(x) ~ 1/e, such that a standard on-shell
kinetic description breaks down. Instead, we propose in this
paper a less restrictive ‘transport’ description that includes
off-shell frequencies of fermions (but not of photons) in
terms of the off-shell distribution function fy(X, p).
The frequency dependence of this function is then deter-
mined dynamically by the equations of motion and inde-
pendently of its momentum dependence p. An electron and
positron particle picture is assumed only in Sec. VB to
compute particle production at asymptotic times when the
field has decayed.

With this application in mind, it is instructive to compute
the fermion current (48) for the free fermion spectral
function (80), i.e.,

(%) = =26 / %[f@(& B - 5P (82)

3 i
#00 = <2¢ [ B L1 - fy(X.-P) = F3(X. )

(83)

with on-shell electron and positron distribution functions,

fe(X.P)=fg(X.p) at p®=\/|p]*+m?  (84)
[e(X.=p) = fy(X.—p) at p° = —/|p*+m?  (85)

The zero component (82) can be interpreted in terms of the
conserved electric charge

0(x") = / X (X) (86)

which then reads on shell

0(X%) = 2¢ / fe(X.P) - foX.~P).  (87)

X.p

Similarly, on shell, j° gives rise to the fermion pair
number density

nel(X) = / Fs(X.5) + foX.~F).  (88)

P

which is related to the total pair number via

Ny(X0) = / BXng(X). (89)

This expression will serve us to define an asymptotic
particle number of strong-field systems in Sec. V B.

In contrast to the fermion case, the photon spectral
function may be set to its free form also in the presence of a
strong field (see Sec. IVA). We can then identify the on-
shell photon distribution functions of kinetic theory by
integrating over frequency &, i.e.,

FXE) = / " ARO2KO£(X, K)5(K2)
0
= (X B oy (90)

as we discuss below. The total number of photons is then

N(X0) := . (X, k). (91)

IV. STRONG-FIELD QED TRANSPORT
EQUATIONS

We now apply the procedure of Sec. III to the
equations of motion (51)-(54) for the statistical and
spectral functions and the equation of motion (29) for
the macroscopic field. To ease the notation, we refer to the
left-hand sides of the two-point function equations as
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(FLHS)"(x.y), (pLHS)*(r.y) and (FLHS)y(x.y),
(pLHS)y(x, y) respectively, and similarly to the right-hand
sides (‘RHS’) or to entire equations (‘EOM”).

To reveal the ’gain-minus-loss’ structure of collision
terms, we identify the ‘+—/— 4 or ‘Wightman func-
tions’ (defined in Appendix A) by making use of the
identity

S0 (X, K)o F (X, k) = £F) (X, )p, (X, K)
= —i(Z (X, k) D (X, k),
— ¥ (X KD (X, K),Y), (92)

and an analagous identity for fermions. Then Egs. (73)
and (74) can be expressed in terms of the Wightman
functions as

D (X, k) = —i[l + f(X, k)]p™ (X, k),  (93)
DH(X, k)" = —if (X, k)p™ (X, k), (94)
AT (X, p) = =i[l = fy(X, p)lpe(X,p),  (95)

A™H(X, p) = ife(X. p)py(X. p). (96)

From the ‘+—’ functions, one readily observes the appear-
ance of Bose-enhancement terms (1 + f(X, k)) for photons
and Pauli-blocking terms (1 — fy(X, p)) for fermions. In
collision terms, these emerge attached to outgoing particles,
while ingoing photons and fermions, associated with ‘—+’
functions, are not distinguished in terms of their statistics.

A. Photon spectral function and gauge-fixing
independent photon drift term

The photon transport equation is related to the evolution
equation of the statistical photon propagator via

. 1
[ eyl

X [(FEOM)*(x,y) — (FEOM)*(y,x)],  (97)

ie., by a Wigner transformation of Lorentz-traced
differences. Combined with the change of variables to X
and p, the Boltzmann derivative operator is recovered
from the d’Alembertian in a Lorentz-invariant way by
the identity

O, -0, =20, - 9y) < —2i(k-dy).  (98)

By use of the convolution identity (55) at LO gradient
expansion as well as of symmetry properties of the Wigner
transforms given in Appendix A, one finds that Eq. (97)
reads

1 1 0 o\ .
_ll_l» {2(1(-8;()77”6— <1_E> (kMW‘FkGW)} F* (X,k),

N I .
:—11[2 (X, k) DT (X k),
- (X, k) D™ (X k), ] + O(e* 0y - 0xG). (99)

The tracing over Lorentz indices reduces the ten equations
for the components of F*¥ to a single scalar equation. In
combination with the introduction of the distribution func-
tions (73) and (74), which reduces the amount of independent
tensor structures, (99) is then sufficient to close the dynamics.
This transport equation (99) is valid to all orders in the
coupling of the 2PI loop expansion. To obtain a leading order
collision term, we neglect terms of order O(e*) to this
equation. There are two types of such higher order terms:
a) terms of order O(e*) in T, discussed in Sec. I B; b) terms
of order O(e?) in equations of motion for spectral functions
contributing to the transport equations only at order
O(e*). Terms of the latter type appear in the analogous
expression (97) for the photon spectral function, i.e.

a0~ (1-2) (b ko [t
—0+0(?). (100)

The O(e?) terms of this equation contribute only at order
O(e*) to the transport system, because the self-energies
in Eq. (99) are already of order O(e?) themselves, before
being multiplied with the photon two-point function con-
taining p#*. It is therefore sufficient at order O(e?) to employ
the free O(e) solution of Eq. (100) in transport equations.
In this way, transport equations self-consistently resum
statistical functions, but not spectral functions. The addi-
tional ‘collisional broadening’ of spectral peaks, that does
not enter the LO strong-field transport description explicitly,
can then be estimated from its solutions e.g., by evaluating
spectral self-energies in terms of distribution functions or
computing the decay rate. The gradient expansion further
supports this special treatment of spectral functions, as we
discuss in Appendix C.

Employing the free photon spectral function (80) by this
reasoning, the gauge-fixing dependence of the LHS of
the photon transport equation (99) drops out due to a
cancellation between (D)™ and pfy’;,

1 NG, 0 9N
APk (1-2) (i) e
=—i(27)sgn(k°)8(k*)2(k- 0x) f(X. k) +O(e*d, - 0xG).
(101)

To obtain Boltzmann-type equations, one finally inte-
grates over frequencies k°, leading to the appearance of the

on-shell distribution functions f(X, 12) defined in (90),
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o dk? , 1
— | d*(x=v)etb—y) 2
A (271_)/ ('x y)e 4’7}41/
— (FLHS)"(y.x)]

:—i[ax0+ ‘ ]f(X 0)+0(0,-04G), (102)

where we have made use of (101). This integration
explicitly reduces the information that is redundant because
an on-shell dispersion relation is valid for photons.

B. Fermion spectral function

Similarly to the photon case discussed around Eq. (100),
terms that are of order O(e?) in

(if) — e A(x) = m)py(x.y) =0+ O(e?),  (103)

contribute only at order O(e*) to the transport right-hand
side that is already of order O(e?) itself. Crucially, the
field-dependent term in Eq. (103) is of order O(e") for
strong fields and may thereby not be neglected in the O(e?)
transport description. In particular, this implies that a
simple fermion particle picture may not exist in general
strong-field systems. From a kinetic perspective, this is the
essential way in which strong-field systems differ from
weak-field systems that may still be described by free
fermion spectral functions.

The O(€°) solution py[A] of Eq. (103) has a functional
dependence only on the macroscopic field A*. This is in
contrast to the exact spectral solution which would be a
functional also of Fy, F** and p**. Nevertheless, because
of the field independence of self-energies, the approxi-
mate spectral equation (103) contains the complete
explicit field dependence. This includes in particular
infinite orders of field gradients. For instance, the traced
LHS reads

[ =)t Lul(pLHS g (x.)

+7°(pLHS ) (v, x)7")

aXﬂp{;’V +en2:: 2n+ y22n

x [(i0, - 0x)" " A (X)]ply v (X, p). (104)

In spacetime regions where the field vanishes, one
recovers from Eq. (103) the free particle description
(80), i.e., py[A = 0] = py . Equation (103) may therefore
be understood as the strong-field generalization of a
fermion particle picture. In particular, since the difference
between py o and py[A] is of order O(e.A), one would be
allowed to exchange the two in a leading order description

for weak fields in accordance with a near-equilibrium
quasiparticle picture [127,128].

Rephrasing the equation of motion for the fermion
spectral function into an equation for the retarded propa-
gator, Ag(x,y) == 0(x" — y°)py(x,y), one finds that

[P —m = Zx(X, p)|Ar(X, p)
~—1+e A AX, kK)AR(X. p + k) + O(e2D,, - 0xG).
(105)

with A¥(x,y) := L [A#(x) + A*(y)]. In the zero-field case,
this equation implies that the spectral function has a peaked
shape with a ‘width’ given by the square of the spectral
O(e?) self-energy [129]

—iz¥) (X, p) = & /k(zn)“é(k -p+q)
q

X [1 = fo(X.q) + f(X. k)]

X v (X, q)y.p" (X, k). (106)
which is indeed O(e*), as anticipated by our counting of
couplings in the equations of motion. In the strong-field
case, the off-diagonal momentum structure of the field
term in Eq. (105) highlights the absence of a simple peak
structure of general solutions of Eq. (103). Equation (105)
further shows that the physical reason for this more
complex structure is a four-momentum exchange between
the retarded fermion propagator and the macroscopic field.

We give an analytical solution of Eq. (103) under
the assumption of strong external plane wave fields in
Sec. V D, which allows us to showcase the appearance of
exponentials exp(O(e.A)), that resum the field vertex (27)
as desired. By employing the solution py[A] of Eq. (103) in
transport equations, one recovers O(e?) strong-field scat-
tering amplitudes in limiting cases (see Sec. VE2). A
particle picture emerges only in special cases and can
change with time (see Sec. V H).

C. Strong-field photon transport equation

1. Collision term

To obtain the O(e?) strong-field photon collision term
from the expression (99) we need the leading order self-
consistent photon self-energies, i.e.,

Si-(X.k) = & / (2x)*3(k - p + q)

x [1=fo(X,p)lfe(X.q)
x tr{ypw(X. p)r.pe(X.q)} + O(e*),
(107)
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S (X k) =2 / (21)5(k=p+q)

X fu(X,p)[1=fu(X.q)]

xte{y,py(X.p)r.pe(X.q)}+O(e*).  (108)

The structure of the strong-field photon transport equation
is that of Eq. (97) integrated over positive frequencies,
J& dk°/(2x). Spectral functions are evaluated from their
equations of motion with the reasoning discussed in the
previous paragraphs, i.e.,

py(X, p) = pylAl(X, p),

P K) = PR,

(109)
(110)

where py[.A] denotes the solution of Eq. (103). The O(e?)
photon transport equation then reads

- -

{8 £ O rx B = clax. )

X’ |k oX

+ O(e?dy - 0xG) + O(e*),
(111)

where the O(e?) strong-field photon collision term is

CIAI(X. k) = & A Z dko /p q(Zﬂ)65<k —p+q)

x {fe(X,p)[1 - fu(X,q)][1 + f(X. k)]
—[1 = fu(X, p)fe(X,q)f(X,k)}
x {PIA(X, p, q.k) = P:[Al(X, p,q.k)},

(112)
with the trace
P="Pr,, (113)
and the longitudinal projection
1
Pe=(1- c_f)ﬁkﬂkﬂ?’”’ (114)

of the eey-collision kernel
PLAI(X. p.g.k) = —(27)25(k?)sgn(k°)
1
XZtr{Y"if)w[A](X,P)}’”i/_?lv[A](X, q)}.
(115)

This general expression derived from quantum field theory
plays the role of a generalized scattering amplitude squared
that has its own equation of motion [Eq. (103) or equiv-
alently Eq. (138) below] and is adapted to the properties of

the macroscopic field at each instance of time. This goes
beyond previous approaches that have so far been restricted
by additional assumptions on the macroscopic field. In
particular, it provides a prescription of how to implement an
inhomogeneous macroscopic field in local transport equa-
tions. We achieved this by describing collisions in terms
of a dynamical strong-field fermion spectral function,
which includes all leading order effects. This approach
allows for many links to existing literature as we demon-
strate in Sec. V. In particular, the collision kernel (115) may
be reduced to scattering amplitudes computable from
Feynman rules in strong-field QED (see Sec. V E2).

The collision term (112) features the factorization of
interaction terms into a collision kernel and a gain-minus-
loss term familiar from traditional kinetic equations. While
the photon distribution functions can be reduced to on-shell
distributions (90) by virtue of the delta function 5(k?) in P,
this is not in general possible for the fermion distribution
function. The off-shell frequency dependence of the latter is
computed dynamically by solving the transport system
coupled to the fermion spectral equation (103). This allows
the collision kernel to adjust in time to a self-consistent
macroscopic field as the system evolves, while still being
local in the kinetic position variable X without relying on
locally constant fields.

2. Strong-field photon decay rate

By linearizing and integrating the photon transport
equation over position and external momentum, one may
find the field-dependent decay rate y of a photon with
momentum k' and position X' at time ¢ := X°,

oN@0 == [ FAXRIXD.  (116)
with the photon number (91). Such a linearization may
be achieved e.g., under the assumption that the system is
close to vacuum (i.e., for small distribution functions, see
Sec. V G) or in linear response theory around equilibrium
[104,109,130], f(X.k) = fp(k°) + 6f(X.k), fe(X.p) =
fr(p®) with fp(p°) =1/(e’”’ £1). In equilibrium,
gain-minus-loss terms vanish by energy conservation,
q° = p° -k,

Fe(PO)[1 = fr(p° = KO)][1 + f5(k°)]
— 1= fr(PO)]fe(p® — k°) f (k%) =0,

resulting in the photon equilibrium decay rate

(117)

reglA(X.T) = &2 / " dko / (e(p) = felp — K0}
x 20 {PLA(X. p. p — k.K)

— PAIX, p.p -k, K)}. (118)
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D. Strong-field fermion transport equation

Here, we derive the fermion equations that close the
transport system in terms of off-shell fermion and on-shell
photon distribution functions.

1. Gauge-invariant fermion correlation functions

The presence of a macroscopic field complicates the
gauge invariance of approximations such as the gradient
expansion. This was not an issue in the case of the photon
equations where the field is only implicit via py[.A] and
the photon self energies are gauge invariant. In the
following, before repeating the analagous steps for the
fermion transport equation, we express all fermion equa-
tions in terms of the gauge-invariant field strength tensor
FH = orAY — " A#, or equivalently in terms of electric
and magnetic fields,

~FOi =&, (119)

—.7:1']' =: 8ijkBk. (120)
This is necessary, in particular, in order to identify a gauge-
invariant fermion drift term that contains the gauge-
invariant Lorentz force.

One can achieve gauge invariance (as opposed to

covariance) by introducing Wilson lines®

Wiy, x) = exp(ie /r dz".Aﬂ(z)>, (121)

with I' indicating the path of integration from y to x. The
gauge transformation of a Wilson line exactly compensates
the gauge transformation of fermion two-point functions,
such that the quantities

F\P.F(x’y) = Wr(y, x)Fyg(x,y), (122)

Pwr(x,y) = Wr(y, x)pe(x,y), (123)
are gauge invariant (but path dependent). It is well known
that straight Wilson lines, W := Wr_(, ,, facilitate a deri-
vation of gauge-invariant transport equations [50,56,82,83].
Following this approach, we employ

W(y, x) = exp (ies” /_i dAA, (X + /1s)>, (124)

and express everything in terms of gauge-invariant late-time
Wigner functions

°In contrast to the operator Wilson lines e.g., of Refs. [82,83],
the Wilson line (121) is built only from the one-point function,
but is here employed alongside higher correlations that give
rise to collisions without a mean-field (‘Hartree-Fock’)
approximation.

Gu(X. p) = / PW( X)Gylx.y).  (125)

s

Invariant and covariant Wigner functions are related by

"X Gy (X, p) = Gu(X, p), (126)
with the real differential operator
3 o 0
w(X, p) = ie/ d/l[e‘”l(dp'aX)Aﬂ(X)}—. (127)
_1 op,
By virtue of
w(X, p) = ieA,(X)d, + O, - 0x)  (128)

this relation is simple for small field gradients (which we
discuss in Secs. VA and V F) in which case it becomes the
translation

Gy(X,p) = Gy(X, p + eA(X)) + O(ed,, - 9x).  (129)

One now has to decide whether to identify fermion
distribution functions in terms of Fy and py as in (74) or in

terms of Fy and py, i.c.,
. - .
Fy(X,p) =—i [E—fw(X,p)]p\p(X,p)- (130)

In principle, fy and fy are arbitrary definitions which can
be translated into each other. In particular for small field
gradients one would have
Fo(X.p) = fu(X,p + eAX)) + O(e°, - 9x).  (131)
In photon equations, the distinction between covariant
and invariant fermion functions is redundant. This is
because, by virtue of
W(x, y)W(y.x) =1, (132)
one may replace covariant and invariant Wigner functions

in the gauge-invariant photon self-energy that features a
fermion loop i.e.,

(x,y) = e*tr{y* Alx, y)y*A(y. x)}

= u{y Al y)rrAly, v}y (133)

In Wigner space this involves two fermion momentum
integrals and a delta function. In particular, the fact that
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/ 5k = p + g)pu(X. P)pu(X. )

- / & x = ) D py (x)pyrx). (134)

implies that one may replace fy with fy if py is replaced
with py in the photon collision kernel (115). Similarly,
because

A S
EmW(X +2.x-2) =1, 135
T&W< 3 2) (135)

such that

S S
H(X) = —elimtrd Py (X +2,x =2
JX) esll%r{y “’( 3 2)}
limtrd phg (X +2,x -2 (136)
= —¢€ A - A )
s—0 vy 2 2

this may also be done for the current (160) in the Maxwell
equation (29). In this way, one obtains a closed set of
equations in terms of fermion distributions of the fy-type
to any order of field gradients. We stress that these
replacements do not work in reverse (going from fy to
fy) for the fermion equations to be discussed below, such
that a practicable description in terms of fy-type distribu-
tions would have to rely on small field gradients by relying
on Eq. (131).

2. Gauge-invariant equations of motion:
2PI vs Wigner operator formalism

Having introduced gauge-invariant correlation functions,
we can express the gauge-covariant 2PI fermion equations
of motion in a gauge-invariant way. We start with the
equation for the fermion spectral function,

[ =Wl ) EOMg(x3). (137)
explicitly at our order of interest,
EW—{—H—m]f)\P(X,p) =0+ 0(e?). (138)

Here we have employed the commuting, real and gauge-
invariant differential operators introduced in Ref. [50],

0 3 o 0
V i=— — —ihA(0,-0x) X 1
yi= e /_ e Fal®lg-  (139)
— : ; —ihA(0,-0x) 9
I, = p, —ie dide p X f”D(X)] ap, (140)

Using antihermiticity [Eq. (19)] one may verify in particu-
lar that solutions of Eq. (138) satisfy

iV, (X, p) = 0, (141)

te{(F = m)py (X, p)} = 0. (142)

The second condition, which is satisfied by any strong-field
solution, is much weaker than the on-shell condition in the
absence of a field, (¥ — m)pyo(X, p) = 0.

Eq. (138) is proven as in the Wigner operator formalism
of Refs. [49-51]. While the Wigner operator formalism has
not been able to provide closed collision terms, the 2PI
formalism is able to achieve this. Instead of discussing
equations for the normal-ordered product, {:%¥(x)¥(y):),
resulting in real and imaginary parts with different differ-
ential operators [50,51], we distinguish real and imaginary
parts of the time-ordered product (7 ,¥(x)¥(y)) (6) i.e.,
statistical and spectral functions. Their 2PI equations of
motion (37)—(38) do not differ by their differential oper-
ators, but by the integral structure of their right-hand side,
which automatically ensures the correct hermiticity proper-
ties of their solutions, (17) and (19). Because of the absence
of these right-hand side integrals in the approximated
spectral equation (103), the antihermiticity (19) of the
approximate solution has to be prescribed. In fact at one-
loop i.e., in the absence of collisions, the equations for Fy
and py without (anti) hermiticity constraints are equivalent
and the equation for the fermion statistical function alone is
sufficient to discuss transport phenomena as has been done
e.g., in Ref. [20]. Going to order O(e?), the self-energy
terms of the two-loop equations for the spectral functions
still do not contribute to the kinetic equations as discussed
in Sec. IV B, but the self-energy terms of the statistical
equations provide collision terms.

3. Quantum Vlasov term

In order to obtain a gauge-invariant fermion transport
equation, we consider

[ dx=neremiy
x [(FLHS)y (x. y) = y°(FLHS)§ (v, x)7°]

N %vﬂ{yﬂ’ Fo(X, p)} + L[, Fy(X. p)],  (143)

where (anti) commutators are taken in Dirac space. By
building differences, the fermion mass drops out of this
expression, but enters again via the spectral equation (138).
By taking the trace of (143) we obtain the all order in field-
gradients quantum Vlasov term
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VMF@(X, p) = Cy(X,p) + O(?0, - 9xG) + O(e*),
(144)

to which the commutator term with IT# does not contribute.
In (144) we have indicated the fermion collision term,
which we compute to leading order below.

Employing Eq. (141), the fermion transport equa-
tion (144) in terms of fy then reads

V. [fe(X. p)iply(X. p)]

= Cy(X. p) + O(€*d, - 0xG) + O(e*). (145)
The off-shell all-gradient drift term of this equation goes
beyond a Lorentz force description, which it contains as its
on-shell contribution (see Secs. V C and V H). The emer-
gence of this fermion drift term is distinctly different
from the photon case, because fermion derivatives involve
the macroscopic field and are first order already in the
fundamental equations of motion. In particular, the momen-
tum factor of (p-0Jy), that emerges automatically for
photons via the identity (98), has to be provided by the
vector component of the free fermion spectral function.
Without an on-shell approximation, momentum derivatives
of the spectral function in Eq. (145) are physically
regulated by the macroscopic field.

4. Collision term & charge conservation

Having discussed the LHS, we now derive the gauge-
invariant collision term already indicated in Eq. (145).

In general, gauge-invariance of the convolutions on the
fermion spectral and statistical RHS is achieved by writing

W(y.x) / S (2. 2)Gu (2. )

= /L(x,y,z)iw(x, 2)Gy(z.y), (146)

Z

where we have identified the (triangle) Wilson loop
L(x,y,2) =Wy, x)W(x, 2)W(z,y).  (147)

By virtue of Eqgs. (55) and (126), the LO of the gradient
expansion of this gauge-invariant convolution is [56]

/ & (x = y)ei?) / L(xy.2) (0 2)G(2.)
Z

=3y(X.p)Gw(X.p)
9%y (X, p) 0Gy (X, p)
ap* op*

—%e]—""”(X) +0(e20, - 0xG).
(148)

For weak fields near equilibrium the additional term

9Zy(X, p) 9Gy(X, p)

P =

(149)

as compared to the covariant convolution, [ e7*(Zy * Gy) =
Zy(X,p)Gy(X,p)+0O(e?,-0xG), is effectively of order
O(e*) and compatible with a kinetic description [56]. To
focus on the part of the fermion RHS that contains the
collision term indicated in Eq. (144),

l oo A
Col(X. p) = = U[E5" (X, AT (X. p)

-3y (X. p)A~ (X, p)]. (150)

we drop terms of the type (149) also in the presence of strong
fields. We stress that the validity of dropping these terms in a
far-from-equilibrium system requires further investigation.’

At leading order, the gauge-invariant self-energies in
Eq. (150) may be written as

$5-(X.p) = & / (aalk=p+a)

x [1= fu(X, q@)][1 + f(X. k)]
X (X, q)7"pu(X. k) + O(e*),  (151)

S5 (X, p) = —2 / (@a)*5(k = p+ )Ty (X.q)F(X.K)

< 7' pu(X. )y pu (X k) + O(et).  (152)

The strong-field O(e?) fermion collision term then reads

CylAl(X. p) = & / @n)5(k  p + q)

q.k

< {Fw(X, ) f(X,K)[1 = fe(X, p)]
—[1 = Fo(X. 1 + F(X, 0| fe(X, p)}
x {PLAI(X, p. 4. k) = Pl Al(X, p, . k)},
(153)
where P is obtained from the collision kernel (115) by

exchange of py — py with the solution py of Eq. (138), or
at LO in field gradients via

"As discussed in Ref. [56] terms of the form (149) have the
effect of accounting for further off-shell corrections and replace
the spatial derivative Jy — Ox — eF*,0}, in Poisson brackets.
Alternatively, one may think of dropping these terms as setting
the Wilson loop to one, L =~ 1. Because of the group properties
(132), (135), and W(x, 2)W(z,y) = W(x,y) if z € [x,y] thisis a
good approximation if the dominant contributions in z are
sufficiently close to the straight line [x, y] because L(x,y,z)=1
if z € [x,y].
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PX,p,q.k) =P(X,p+eAX),q+ eA(X), k)

+ O(d, - Oy). (154)

As anticipated in Sec. IV D 1, while the photon collision
term is also gauge invariant without this replacement, the
fermion collision term is not. This is because gauge
invariance requires integration over both fermion momenta
according to (134). Indeed, if we integrate the fermion
transport equation over its external momentum, the subtle-
ties of gaugeinvariance are absent and, with

/ & Fy(X. p) =0, (155)
P

and using (136), we can recover the Maxwell current
(48) in the fermion transport equation via

—4e/vﬂﬁ'{i,(x,17) = 9,j*(X). (156)
P

As a consequence of the U(1) symmetry of QED, this
current is conserved by the fundamental equations, as well
as by our approximate transport equations, such that the
total electric charge (86) is constant,

9,0(1) = —4e/d3X/Cq;(X,p) =0, (157)

with ¢ := X°. To see this, one may verify that the relabeling
q <> p and k — —k leaves both the delta function and the
gain-minus-loss term invariant [by virtue of (79)],
but changes the sign of the collision kernel (also without
tilde), i.e.,

7~3"”(X, p.q. k)= —73””(X, q,p,—k). (158)

E. Transport Maxwell equation
and gauge-fixing dependence

The free photon propagator D’éf’f (11) and spectral
function p’o‘f/é (80) introduce a gauge-fixing dependence.

This £-dependence is distributed over several equations of
motion by virtue of P, (114) and the solution

A = =i [ D) (9)
¥
of the Maxwell equation (29) with the late-time current

ﬂWZ%/WJMXM%@M-U@

There are two ways in which é-dependence is controlled.
Firstly, starting from the 2PI effective action, a perturbative

coupling expansion shows that the total £-dependence of
P:[Ag] is always of higher perturbative order in e [76-78].
For a free fermion spectral function py , leading order
collisions are trivially gauge-fixing independent,

Py=Pwo

6(k—p+q)P:(X,p.g. k) — 0. (161)

Secondly, the {-dependence can drop out for on-shell
photons [79] [see also Eq. (101)]. We demonstrate this also
in the strong-field case by virtue of Ward identities for
scattering amplitudes that emerge in the kinetic approxi-
mation and play the role of redressed 1PI vertices. We make
contact with such strong-field Ward identities [131-133]
in the case of plane-wave fields in Sec. V E 2, where the
&-dependence then drops out in a corresponding limit. A
general proof for cancellations between (Df’;)~" in A% and
P in P in the self-consistent strong-field case P:[A]
seems highly nontrivial.

A summary of the interconnections among the extended
transport system which we have now arrived at is graphi-
cally presented in Fig. 6. The transport equations for
photons [Eq. (111) for f(X, I;)] and fermions [Eq. (145)
for f\p(X , p)] couple to each other via the collision terms
(112) and (153). They are supplemented by the Maxwell
equation for the macroscopic field [Eq. (29) or equivalently
Eq. (159) for A#(X)] and the equation for the fermion
spectral function [Eq. (138) for py(X, p) or equivalently
Eq. (103) for py], which couples to the Maxwell equation
via the current (160). The macroscopic field enters the
fermion spectral and transport equation explicitly via
the strong-field derivatives (139) and (140), and the
photon and fermion transport equations implicitly via
the strong-field fermion spectral function in the scattering
kernel (115).

V. STRONG-FIELD QED KINETIC EQUATIONS

In this section, we investigate ways to further approxi-
mate the transport system of Sec. IV and how to reduce it to
Boltzmann-type equations with scattering amplitudes by
considering limiting cases of the collision kernel. To this
end, we discuss various common additional approxima-
tions in strong-field QED, namely small field gradients

Fermion
spectral fct.
Eq. (138)

Fermion
transport
Eq. (145)

Photon
transport
Eq.(111)

Macroscopic
field
Eq. (29)

FIG. 6. Structure of the strong-field transport system.
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(locally constant fields), classical fermion propagation
(Lorentz force), external plane-wave fields (Volkov states),
near-vacuum physics (small occupations), as well as
fermion distributions that are peaked at large momenta
(ultrarelativistic limit). In particular, the ultrarelativistic
limit finally allows us to make contact with fermion on-
shell descriptions [e.g., Ref. [22]], which are valid if a
long-lived separation of scales exists (see Sec. V H).

A. The case of small field gradients

So far, our transport equations have been infinite order in
gradients of the macroscopic field. In a physical situation
with small field gradients, one can simplify the collision
kernels and the fermion drift term. We demonstrate how to
do this at the level of the equations for the fermion spectral
and statistical functions in the following.8 For this purpose
we assume in this section that

|(s - Ox)FH| < | FH|. (162)

This means we only keep LO terms O(e°(d,, - 9x)°) and
truncate the NLO O(e°d,, - x) of gauge-invariant field
gradients (see Appendix D for a comparison of approx-
imations to invariant and covariant field gradients).

We can simplify the fermion spectral equation of motion
(138) and in turn the collision kernel (115) by using (162).
The exponential derivatives of the differential operators
(139) and (140) allow for an expansion in terms of gradients

of the field-strength tensor. Thereby one can explicitly
compute the first orders of the 4 integrals, i.e., [50,51]

0
V,(X,p) = axi

1
+ oy (0, - Ox)*eF,,(X)0",

eF,,(X)0,

+ O((e°0,, - 9x)*). (163)
1
Hﬂ(X7 P) = Dyu _E(ap : 8X)e~7:;w(X)al]/7

+ O((e°0,, - 9x)?). (164)

Note in particular, that the leading order of V¥,
VH(X.p) = D'(X.p) + O((°0, - 9x)*).  (165)

is the classical Vlasov derivative

DH(X, p) = =2 — egmo(x) 0 (166)

- 0X, op°®’

¥A collisionless discussion of field gradients can be found in
Ref. [20], where it is shown that field gradients can enhance pair
production rates in particular for low momenta.

which contains the Lorentz force as its on-shell contribution
(see Sec. VO).

Neglecting gradients of the field-strength tensor, the
gauge-invariant spectral equation (138) becomes

37+ = m|palxp) =0+ 0(E) + O, - 0y).
(167)

Solutions of equation (167) neglect field gradients, but are
exact in the field strength. This implies in particular that,
even for a constant strong field strength tensor, the fermion
spectral function is not a delta peak and does not allow for a
simple particle picture.’

The fermion transport equation (145) for small field
gradients then reduces to

iy (X, p)D,fw(X, p) = Cy(X, p) + O(e%0, - dx)
+ 020, - 05G) + O(eY),
(171)

where we have used the fact that in contrast to V¥, which
contains higher order derivatives, D¥ satisfies the Leibniz
product rule and that a solution of (167) satisfies

iD, (X, p) = 0. (172)
Plugging the solution of the approximated equation for the
spectral function (167) into the collision kernel (115) one
obtains photon and fermion collision terms for fields
with small gradients. In Sec. V F 2, we demonstrate how
the locally-constant field approximation arises from such
spectral functions in the special case of plane-wave fields.
There, instead of solving the approximated equation (167),

This is an essential difference to Yukawa theory [134] or
scalar A¢> theory (which are diagramatically very similar to
QED); the LO equation of motion, e.g., for the scalar spectral
function with a strong constant scalar macroscopic field

bo ~ O(1/2),

O, + M?p(x,y) =04+ O(A) with M? =m? + Ap,, (168)
does have a delta-peaked particle solution
p(X. p) = i(2z)sgn(p®)5(p* — M?). (169)

Moreover, the equation for the scalar statistical propagator [102]

2(p- 0P (X.p) + (400 ) (s FX.0))

"
=0+ 0(1) + O(°(9x - 9,)*) (170)
has a force term, OyM?(X) with M?(X) = m? + A¢(X), which is
NLO of the gradient expansion and vanishes for constant fields.
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we will first solve the infinite order gradient equation (103)
[or equivalently (138)] and approximate gradients in the
solution in the end.

B. Asymptotic (Schwinger) pair production
from unequal-time correlations

In this section, as an application of the above small field-
gradient approximation, we discuss how pair production is
implemented in the present formalism. We start in the
regime of the collisionless Schwinger pair production yield
per volume V and time-interval 7" [18],

7€,
&

i.e. the regime of constant fields at one-loop, and end this

section with a general collisional expression for inhomo-

geneous fields.
Under the asymptotic assumption

e2&?
P

lim py(X, p) = pyo(X. p), (174)

X'>+o0
even in the presence of strong fields, one can extract for
asymptotically late times from the fermion transport
equation the fermion pair number (89).
At one-loop order O(e°) and for small field gradients,
Eq. (144) simply reads
D, (X, p) = 0+ O(?). (175)
In order to extract the fermion pair number (89), we
integrate Eq. (175) over negative and positive energies
separately and subtract the resulting integrals [instead of

summing them, which would instead give the trivial total
charge (157)] i.e.,

</O (dzl:r) Aw%> X’ﬁlpﬂf“f{,(x,p):(). (176)

For the momentum derivatives 8; of D" we exploit (155),
and for its frequency derivative 82 we note that

(L=

—2 / Ap°8(p") Fy (X, p).

dPO> O Fy(X. p)
(177)

This term eventually acts as a source term to the asymptotic
number of fermion pairs. For the position-space derivative
we use

/ X0 Fi (X, p) = 0. (178)

Finally, the time derivative in D* allows us to identify the
pair number (89) in the asymptotic past and future,

(L4 Lo

(Ny(00) = Ny(-0)). (179)

NI*—‘

where we have employed the asymptotic assumption (174)
and identified the on-shell electron and positron distribu-
tion functions (76), (84), and (85) in the asymptotic past
and future. Applying the above identities to the one-loop
transport equation (176) gives the result

Ny(o0)
- / [1 = 274 (X, p)]2e€1(X)(22)3(p")iply (X. p)

+ O(9, - Oy) + O(e?).

— Ny(~o0)

(180)

Importantly, this expression relates pair production to
self-consistent spectral and field dynamics. The asymptotic
assumption (174) only fixes a boundary condition at
X% - oo and interacting spectral dynamics [Eq. (138)]
contribute to (180) at all finite times X°. In particular, the
above expression shows that pair production from the
vacuum occurs off shell at the time of the creation event;
the fermion yield (180) vanishes for a free (on-shell)
fermion spectral function, because massive fermions can
not have zero energy i.e.,

5(p°)s(p* — m?) =0. (181)
It is only the subsequent evolution, that brings these
off-shell contributions from vacuum pairs to the on-shell
regime in the asymptotic future, where a particle number
Ny(o0) is well defined. Furthermore, the expression (180)
vanishes for £ = 0, even if B # 0, in accordance with the
general statement that magnetic fields can not produce
fermion pairs. In our derivation, this is a consequence of
the vanishing of momentum derivatives at infinity, i.e.,
Eq. (155). The structure of the expression (180) is remi-
niscent of the time-integrated source term of the quantum
Vlasov equation from which particle production at zero
energy is well known [53]. Such a source term is not
manifest in Egs. (175), (171), or (145),10 but we have
demonstrated here that vacuum pair production is never-
theless contained in these transport equations by coupling
to the dynamics of the fermion spectral function.

OThis is similar to Ref. [64] which shows (in scalar theory)
that a source term is manifest in equations for disconnected
two-point functions but not for connected two-point functions
such as ours.
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To recover Eq. (173) from Eq. (180) one should solve the
fermion spectral equation (103) or equivalently (138) for
&€ = const, B =0 [20,53,135]. This can be done analyti-
cally [136], but we will not explore it further in this paper.

Since practicable procedures at one-loop already exist in
literature, we want to stress that the significance of
Eq. (180) does not stem from its one-loop practicability
but from the fact that it may be systematically generalized
and thereby put in the context of thermalization, while
other procedures have struggled to do so. At one-loop,
where the equations for spectral and statistical functions are
decoupled, one may compute the asymptotic fermion
particle number by ignoring spectral dynamics and solving
the complete tensorial system for the statistical function.
In literature, this is often done in terms of the equal-time
‘DHW’ function Fy(t,7,%,5)% or [dp’Fy(X,p)y° in
Wigner space. In fact, existing transport derivations of the
Schwinger result typically employ such equal-time for-
mulations [20,51,86,137], in which spectral information
such as a distinction between on and off shell contribu-
tions is not explicitly accessible due to spectral functions
being constant at equal times [see Eq. (26)]. Equal-time
equations can be closed, e.g., by neglecting collisions, but
how to close an equal-time description for general strong
fields in a controlled approximation is an open problem.
From an unequal-time perspective, the equation for the
fermion statistical function is not self-sufficient at O(e?),
but couples to the fermion spectral function (103), which
is not on shell for strong fields. The unequal-time
approach closes by including this equation for the spectral
function and is thereby systematically generalizable to
higher loop orders that are essential for the approach to
equilibrium.

Simply by keeping field-gradients and the collision
term i.e., starting from Eq. (144) instead of Eq. (175),
one obtains

Ny (00) = Ny(—c0)
0 0 40
(L5 [%)
x /X ﬁ{e / %dﬂ {e—u(ap-mgi} & [(1 —250\?)1';3{1,] +cq,}

(182)

2

+0(e*d,-0xG) +O(e*).

Due to the presence of higher-order frequency derivatives,
the identity (177) is not sufficient to treat inhomogeneous
fields, which are able to transfer momentum and produce
occupations with finite energy, p® # 0. A complete self-
consistent solution of the set of equations in Fig. 6 is
necessary to obtain a numerical result for the asymptotic
pair number in this way. In particular, the collisional part
of (182) contains contributions from 0 — 3 (two-loop
vacuum pair production) and 1 — 2 processes (‘seeded

cascades’), the latter of which dominate over vacuum pair
production in subcritical fields [22,27,31]. In contrast to
Eq. (182), the one-loop result (173) describes the effect of a
constant external electric field with no feedback from the
dynamics of the photon sector.

C. Lorentz force and classical propagation
in isolated systems

The Lorentz force,

LM (X, p)/m = %f"”(x)py, (183)

emerges from the quantum Vlasov term of Eq. (145) in the
case of a free fermion spectral function and small field
gradients via

vﬂ%(x’ P)f\y(X’ P)] - P’\L,opﬂf\y
= i(27)8(p* — m*)sgn(p°)[(p - Ox) + (L - 8,)|fw.
(184)

where the factor of p* is provided by the vector component

Plyo(X. p) = ip"(2m)8(p? — m*)sgn(p°).  (185)
Therefore, on-shell particles may be described by the
Lorentz force. However, the validity of employing a free
spectral function in Eq. (184) i.e., whether on-shell par-
ticles indeed dominate the dynamics, depends on the details
of the strong-field system.

Typical experiments where on-shell particles dominate
the dynamics are, for example, those where an electron
beam or material target is initially in a zero-field region
and then collides with a strong field such as a laser beam
[10,11]. In such a setting fermion distribution functions
are initialized with occupations only in the on-shell region
and the subsequent deviations from on-shell occupations
induced by the strong field often remain small even when
fermion pairs are produced. This is because these systems
feature a separation of time scales due to the typically
very large values of the parameter & = |e|E/(mw) [16],
implying that particles (target or produced) are transported
in momentum space to relativistic energies in much less
than a laser period. Thereby, the fermion distribution
function is typically peaked at an ultrarelaticistic scale
and far away from its equilibrium (Fermi-Dirac) shape.
At such high energies, off-shell effects can be suppressed
[15], and can remain suppressed, if the ultrarelativistic
peak in the fermion distribution function is long lived
(see Sec. VH).

In the presence of such long-lived peaked distribution
functions, one may then distinguish two kinds of quantum
effects [15]. One class is related to the recoil that a fermion
experiences during collisions (i.e., emissions of photons).
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This is controlled by the (spacetime and momentum
dependent) parameter [16]

1=/ ~(eF " p, .

which may be small even for large & or vice versa. Systems
that have small y may be described completely (both
drifting and collisional interactions) in terms of the classical
radiation reaction force [16,138—140] that includes colli-
sional corrections to the Lorentz force [22]. The other class
of quantum effects is related to how accurate a classical
description is between collisions. This is commonly dis-
cussed in terms of the de Broglie wavelength 7/ p*, which
is then required to be small enough such that the quasi-
classical approximation applies [141], and smaller than the
mean-free path such that a separation between propagation
and interaction is possible [142]. In our context, p* is the
characteristic momentum of the fermion distribution func-
tion. At higher and higher energies, the de Broglie wave-
length decreases whereas the parameter y increases, such
that quantum effects remain important during collisions for
ultrarelativistic fermions and no radiation reaction force
description exists [15]. These parameters are not manifest
at the level of the equations of motion, but become
accessible by analysis of its solution (see e.g., Secs. VF2
and V H). In the absence of peaked distribution functions,
the medium may not be completely described by a single de
Broglie wavelength and no such separation of scales may
be identified.

In fact, a peaked fermion distribution describes a far-from-
equilibrium situation that does not survive indefinitely in an
isolated system. Thereby, systems for which an on-shell
Lorentz force description is typically insufficient are those
which are initialized with a supercritical field, £ = &£, and
which are then isolated and left on their own. In such
systems, fermions are produced from the vacuum—oft shell
and at low energies according to Eq. (180)—and then
transported in momentum space by the gain-minus-loss
structure of the collision terms towards a distribution that
is not sharply peaked at any single scale. To describe the
evolution towards such a distribution one requires a descrip-
tion that is valid over a wide range of energies. Thus, the
separation of scales from the case of an external field may
not be exploited to argue for a Lorentz force description of
the equilibration of isolated strong-field systems.

Near equilibrium, a weak field again favors on-shell
descriptions, because the field term eA in the equation of
motion of the fermion spectral function (103) then con-
tributes to the transport description only at higher orders
and collisions may be added to the on-shell Vlasov
equation [see Eq. (191) below] perturbatively in the field
vertex (27). However our analysis suggests that for inter-
mediate times, at which off-shell contributions from vac-
uum pair production equilibrate in the presence of a
depleting field, one requires a description of off shell

(186)

drifting beyond the Lorentz force. The description derived
in Sec. IV can capture this evolution of off-shell contri-
butions in fy (X, p) as they move in phase space towards

p° = /|p|* + m*> to become on-shell particles in the
asymptotic future.

It is then instructive to follow how the Lorentz force
emerges from the off-shell drift term of Eq. (171), which
contains the frequency derivative term

Po(X, p)eF,0(X) 0 fw(X. p). (187)
As we have shown in Sec. V B, in the asymptotic future the
effect of this off-shell frequency derivative is fermion pair
production. In the on-shell regime, where pair production
is forbidden via Eq. (181), this off-shell frequency deriva-

tive is controlled by the dispersion relation, p® = &(p).
The term

1

pLX.p) =0eL0="FL " (188)
p
then contains the group velocity
0e(3 =
ew)_ P (189)
op  &(p)
such that, by the chain rule, one may replace
L0 L o L 9
A R 190
pPop® p® Op e(p) Ip (190)
and recover the classical Vlasov equation
sgn(p°)5(p* —m?)(p - D)fu(X,p) =0+ O(e?).  (191)
Making use of the fact that
0
_ FHo(X
epu T (X) 5 7
o - 0
=10 —+L —
op° + ap
=ep E(x)i+ e[p°E(X) + p x B(X)] 9 (192)
=ep a0 p p 5

and applying definitions for on-shell electron and positron
distribution functions fg and f$ analogously to Eqs. (76),
(84), and (85), one may then split Eq. (191) into equations
for electrons and positrons by integrating Eq. (191) over
positive or negative frequencies respectively. The positron
equation obtains the opposite sign of charge e — —e from
the sign p — —p of the momentum derivative,
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o B 0 [= 5o ] a>
—t———=Fe|lEX)+ ——=xB(X)| ==
(aXO a3 ox - EX T BY)| 5

x fo(X.p) =0+ 0(e?). (193)
If we interpret X and p as functions X (1) and p(4), then the

curves along which fy is constant i.e., the characteristic
curves

d -
d—ﬂf\ﬂx(ﬂ),P(l)) =0, (194)
solve the Lorentz equation [50]

dp*

— =LAMX 195
dx#

= 196
r=- (196)

with the Lorentz force (183). Adding collisions that are
nonlinear in fy makes this method of characteristics
inapplicable and the concept of trajectories breaks down.

We reiterate that, for general strong fields and fermion
distribution functions, the limit of classical propagation
(184) is not controlled by an expansion in a small parameter
and a combination of the Lorentz force term with the O(e?)
collision term (153) is not in general complete to leading
order O(e?). To be complete in a general situation, the
Lorentz force term should be replaced by the quantum
Vlasov term of Eq. (145) [or that of Eq. (171) for small
field-gradients].

D. The case of strong external plane-wave fields

We assume in the following that the macroscopic field is
of the one-dimensional ‘plane-wave’ form
Al (x) = Ai(n-x), with n?>=0, (197)
as originally employed by Volkov [143].'" We drop
the label ‘v’ where the context is clear. Assuming (197)
means we suppress the parts of the dynamics of the
macroscopic field that deviate from a plane-wave field
form. The plane-wave approximation is widely used in
studying the interaction of laser fields with matter and is
valid if the laser beam is not tightly focused in space such
that the wave front is approximately flat. Even under such a
relatively controlled setup, but especially in isolated sys-
tems, one has to take into account that the validity of the

"Other integrable cases include external fields such as the
Coulomb potential (leading to hydrogen levels), homogeneous
magnetic fields (leading to Landau levels), constant crossed fields
(leading to Airy functions) and constant noncrossed electric fields
(leading to Weber parabolic cylinder functions).

plane-wave approximation can be limited in time. The
validity time-scale then depends on the back reaction
[53,68] of the matter on the field via Maxwell’s equa-
tion (29). A simple parametric estimate suggests a large
range of validity up to times of #, ~ O(1/e*). However
it is well known [15] that strong macroscopic fields can
further decrease this timescale. Below, we assume that the
plane-wave approximation is valid for the times under
consideration.

Although this assumption significantly simplifies the
equations, we stress that it does not restrict the discussion
of a multitude of common experimental field configura-
tions, such as (linearly or elliptically) polarized fields, (long
or short) pulses, monochromatic or polychromatic fields,
and (constant or strongly varying) crossed fields.

The field strength tensor of plane-wave fields can be
written as

Fn-x)=n'An-x)—n*An-x), (198)
where a dot stands for a derivative with respect to the
argument. From this it follows that plane-wave fields
necessarily satisfy

1 .
__W;tpﬂuaf/jyfeg = ‘5|2 - ‘B|2 =0,

5 (199)

_gguv/)afl\fbfpa =£&-B=0. (200)

Therefore, the magnetic field B is always perpendicular

to and of equal absolute value of the electric field E such
that it is sufficient to only talk about electric fields in the
context of plane waves. In particular, the topological term
(200) associated with CP violation [144,145] vanishes
identically. This has the implication that the pseudoscalar
component of the spectral function (which we introduce in
Sec. VD 1, see also Appendix F 3) vanishes.

Plane-wave systems are most conveniently described
using light-cone coordinates that use the special direction
n# of the field,

x=x"-x =n-x, (201)
1

xt = 3 (x" 4+ x3), (202)

¥, = (2, x2,0). (203)

Light-cone coordinates have metric tensor ™~ =5+ =
Nee=n_y=1, "t =0~ =n,, =n__=0 such that
xt=x_,x =x,and p-s=prs +pst—p, -5,.

We work in Lorenz gauge [0 - A(x) = 0] and use the
residual gauge freedom to also fix temporal axial gauge
[A°(x) = 0]. In light-cone coordinates that use the physical
direction n* of the field, this is equivalent (for vanishing
asymptotic boundary conditions) to so-called light-front
gauge [146] i.e.,
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Az (x7) =0, (204)

Af(x7) =0, (205)
which is conveniently formulated in a frame in which
n* =(1,0,0,1). (206)

In this frame and gauge, the electric field is simply

Bx) = —A, (x). (207)

In particular, this allows for a simple form of the
(symmetric) energy momentum tensor

TV = F,F = n'n*|E (208)

from which the energy density of the plane-wave field

1 = - -
Ty =5 (€] + |B]?) = € (209)

can be read off. A peculiarity of the plane-wave field is
that the classical quantity (208) coincides with the exact
vacuum expectation value of the energy momentum tensor
up to fermionic contributions [18].

For any function (X, s7) of n-s=:s", one has

/ei(p—q>sic(x,s—) =(27)6(p~—q7)8(PL—q.1)
o / ds=eP" =1 (X, 57).  (210)

This is can be written compactly as

/ (P-DSIC(X, 57) = / A ais(p - g - INK(X. D).

(27)
(211)
with the one-dimensional Wigner transform
K(X,1) = / ds~e™ K(X,s7). (212)

1. Spectral function and plane-wave degrees of freedom

A solution of the equation for the fermion spectral
function (103) for plane-wave fields is'?

This plane-wave spectral function py , is the antisymmetric
part of the time ordered ‘Volkov propagator’ [17,147,148] (see
Appendix E). By plugging py , into our transport equations we
resum the symmetric part of the fermion propagator to self-
consistent two-loop order.

1/e 1/e

e e

FIG. 7. Resummation of the macroscopic field vertex.

punl.y) = i(2n) / 5(q? — m?)sgn(q?)
%)

X Ry (x) (4 + m)R, (). (213)
The field dependence enters via the Ritus matrices R, I_i’q

[17,149,150] which are defined as'

50 ===y [ ARAD P AL
(215)
R, (x) = y"Ry(x)y". (216)

The essential property of the Ritus matrices is that they
translate the strong field Dirac operator in position space
into the free Dirac operator in momentum space i.e.,

(i — eAy(n-x) —=m)R,(x) = R, (x)(§f —m). (217)
The plane-wave spectral function contains the strong-field
dressed mass [148,153] (see Sec. VF 1) and recovers the
Airy-type scattering amplitudes for small field gradients
(see Sec. VF2). For the proof that (213) solves (103),
and satisfies the symmetry constraint (19), as well as for
the computation of its Dirac components, we refer to the
Appendixes E and F.

The nonperturbative nature of the plane-wave spectral
function can be observed from the exponential e’S». The
field-dependent part of the exponent is small for not too
strong fields and an expansion in powers of e could
be truncated in that case [corresponding to perturbation
theory with the vertex (27)]. However for strong fields,
A~ O(1/e) the exponent is O(e?) and all orders in e have
to be taken into account as depicted in Fig. 7.

For the application to our transport equations we need
the late-time Wigner transform

) »[X(2)] is the classical action for the trajectory X#(1) of a
test particle in a plane-wave field [151]. This fact gives rise to an
interpretation of plane-wave scattering probabilities in terms of a
stationary phase principle [132,152].
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pun(X. p) = i(2n) / 5(q? - m?)sgn(q")

x / ¢iPR, <X + ;) (4 +m)R, (X - ;) .

(218)

From this expression we can observe that the plane-wave
spectral function captures off-shell effects; the external
momentum p is not restricted to on-shell values but
becomes on shell in the limit A, — 0, which recovers
the free spectral function via

A,—0

R‘;B (x) = s4Be~irx, (219)

_ A,— )
RAB(x) 25 4B irx, (220)

With the identity (211) we can discuss the emergence of
plane-wave fermion degrees of freedom in strong fields by
writing

pey(X,p) = i/dllC(X, I;p—In)
x 8(p* —m? =2l(n- p))sgn(p° — In°),
(221)

with the field-dependent Dirac matrix

K(X1iq) = [ et e
X {u _eﬂ"{v(x_%)}

2 (n-g) (222)

and the field-dependent phase factor

Nyn-X.n-s)

— /%di<e“4(n .nX';L/I) q 32,422((,;..;;; ,1)).

_ns
2

(223)

While the phase in terms of S, fully depends on x* and y*,
the phase N, only depends on n-X and n - s via

Sy(x)=S,(y) ==gq-s=Nyn-X,n-s). (224)

From (221) we observe that by the integration over /, the
on-shell condition for free fermions (/ = 0) is modified to
the condition (with / unconstrained)

_ D> +m?

0—1+¢(p)e pt
P g(p)ep o

+1, (225)

where we have defined the plane-wave relation

e(p) = (¢(p) + I = 2Ip,)'?

= (PP +m* + (p.—D?)'2 (226
This expression depends explicitly on the z-component
p. = p? in which the plane-wave field varies, is positive
and satisfies

&(p) = e~1(=p). (227)
From the context of plane-wave collision terms one further
observes in Sec. V E that the parameter / corresponds to the
energy exchanged between fermions and the macroscopic
field during quantum processes. Since [ is integrated over,
the relation &;(p) does not on its own restrict the external
momentum of the fermion spectral function. Its interpre-
tation as a dispersion relation is thereby not straightfor-
ward. Depending on the details of the macroscopic field,
the integration over / may have different effects such as
broadening the peak structure or adding more peaks.
The plane-wave spectral function thereby describes inter-
actions with different / modes of the macroscopic field,
where the lowest mode, [ = 0, describes freely propagating
particles via

-0 N

&(p)—¢(p). (228)

In particular, if the macroscopic field is periodic in s~
with frequency w, K(X, [; ¢) has support only for / = jw
with j € Z and a countable peak structure emerges via

(229)

(see also Ref. [70] for a similar discussion at the level of
amplitudes). If [/ is continuous, the infinitely many delta
peaks may merge to form a function with finite-width
peaks, such as the function computed in Ref. [49].

As we will see in Sec. V E, the / modes can be kept track
of as individual degrees of freedom by defining appropriate
distribution functions that are summed or integrated over
in the collision terms. A traditional on-shell description in
terms of only the / = 0 mode is then favored as long as a
separation of scales in terms of ultrarelativistic fermions
exists, as we discuss in Sec. V H.

2. Collision kernel

Plugging the plane-wave spectral function (218) into
(115) we obtain the strong-field plane-wave collision
kernel
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,P/(IW(X, p.q. k) — 5(k2)sgn(k0) / eipsleiqsz / e_,'p’s] e—iq/525(p/2 _ mz)sgn(p’o)é(q’z _ mZ)Sgn(q/O)
1,52 2

N

X T,I«Il)l//q/ ()(7 sl , S2>e—i[./\/p/ (X.Sl)+./\/-q/ (X,Sz)] , (230)

where we have defined the pre-exponential

_ v - =\ . €ﬂA\, (X + %1) " _ eﬂAv (X - %1)
4Tp/q/(X,Sl,S2)~— tr{}’” |:1+W (ﬂ +m) 1 W
€ﬂ/(v(X + %2) eﬂAv (X -3
I+ ————==| (4 - 274 231
g e ] e 23
such that, together with the phase (223), the trace over the Ritus matrices becomes
1 S - S v S - )
Ztr{y”Rp« <X + 3> (7 +m)R, <X - 3>y R, (X + E) (' +m)Ry <X )
— T/;l/’q, (X’ St sz)e—iplsle—iq/sz e_i[NI7,(X'Sl)+NfI/ (X,Sz)]' (232)

We discuss the familiar case of s; + s, = 0 that emerges in the absence of a medium in Sec. V E 2. For zero field, the phase
N » vanishes and the pre-exponential becomes the on-shell amplitude squared

; / . ! AV—>0
/ !PT (X, 51.85) = = (22)*6(p — p')21)*8(q = ¢')[-2(p - q) + 4m?)], (233)
S1,82
such that p’ - p and ¢’ — g as A, — 0. In the presence of a field, the plus components of p’ and p, and ¢’ and ¢ do not
coincide and p™ and g™ are not on shell.

3. Off-shell vs on-shell kinematics

Classically, particle motion in a plane-wave field [described by the classical Vlasov equation (191)] is characterized by
the conservation of the two transverse and the minus component of the canonical momentum. The plus component, that is
conserved for free particles, is no longer conserved in the presence of a plane-wave field that exchanges energy with
particles in this longitudinal direction.

We can derive this interpretation of the field as an energy reservoir from our plane-wave collision kernel also in the off-
shell quantum case. By applying identity (211), we may write

D i, [ di
PV (X, p.q. k) = 5(k*)sgn(k°) (2—;) / ﬁ / . 8(p" = m?)sgn(p")é(q” — m?)sgn(q")(27)*
Pa
x8(p—p' = 1in)d(qg—q' = Ln) Q" (X. 1. L p'.q) (234)
with the remaining kernel
O (X, 1y, 1y p' q') = / dsyethst / dsy e 1T (X, 57, 57)e o o Vg (s, (235)
|
The collision terms therefore contain delta functions p,2 —m2=0 (239)
enforcing the kinematic conditions '
12 2
k=p+q=0, (236) q°—m" =0, (240)
k=0, 241
p—-p -1Ln=0, (237) (241)
) where [; is the Fourier conjugate to (n-s;) and I, to
q9=4q —hn=0, (238) (n-s,). An equivalent set of equations is
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k=p' +4q == h)n, (242) g*—m* =0, (250)
p—p =hn, (243) =0 (251)
—q =
q=q =bhn (244) which are “forbidden’ because

p2 -—m? = 211(” : P)a (245) ! !
(k+q)*=p*> < (k-q)=0 (onshell), (252)

q> —m?> =2hL(n-q), (246) | |
(p—k)?=¢>< (k-p)=0 (onshell), (253)

(' —4q')* ==2(, = L) (n - k). (247)

for massive fermions can only be fulfilled for the trivial
Equations (245) and (246) make explicit that the physical

momenta p, g (carried by the fermion distribution functions)
contribute with arbitrary off-shell values, where the ‘off-
shellness’ 27, (n - p') and 21,(n - ¢') is integrated over in the
collision terms. In this way, the macroscopic field provides
the momenta /,n* and [,n*, preventing the collision terms
from vanishing kinematically. Furthermore, the auxiliary
momenta p’, ¢’ are not conserved and k — p’ + ¢’ is not
always zero, but corresponds to the energy exchanged with
the field, ({; — I,)n.

In comparison, the zero-field kinematic conditions are

case of k = 0, while otherwise
k-p=|kle(p)—k-p>0 (onshell). (254)
Thereby, for vanishing macroscopic field, the delta func-

tions have vanishing overlap and zero-field collision terms
vanish at leading order O(e?).

E. Plane-wave photon Kkinetic equation

1. Collision term

k=p+q=0, (248) Employing the plane-wave collision kernel (234), the
photon transport equation (111) obtains the following
2 2
p°—m= =0, (249)  collision term:

- 0 dl dl
c0eh) = [T aosw) [ o / o | @arsik=p+ @@ b byp = inq = )
. P.q
x 8(p* —m? =21 (n- p))sgn(p° = 1;n°)8(q> = m* = 21,(n - q))sgn(q” — L,n°)

x {fu(X, p)[1 = fu(X, @[l + F(X,K)] = [1 = fu(X, p)Ife(X,q)f(X,k)}. (255)

We can identify the crossings of eey scattering depicted in Fig. 8 by taking the frequency integrals over
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1
2¢/(p)

§(p* —m*=2l(n- p)) =

[6(p° — 1 —e5(1) + 8(p° — I+ &5(1))].

(256)

Identifying plane-wave degrees of freedom in terms of the plane-wave fermion and antifermion distribution functions

fe(X.1,p) =

fo(X.=1.=p) =1- fu(X.p)

fe(X,p)

and making use of Eq. (227), the plane-wave photon collision term may equivalently be written as

G = 2|k|/ o / (2n) 26, w1 enl 27:32813( 7'

x [6(k + B = @)5(|k| + &, (P)

x {[1 = fo(X. L P)fe(X. b, @)1 + F(X. k)] =

+6(k = p + @)5(k| - &1, () +e,(3) = h + L) Q™ 7(X, Iy, 1, . G)

x {fo(X. 1. P)[1 = fo(X. b 1 + f(X. k)] -
D3k — e, () — e, (@) — 1 — 1) Q™" (X. 1. . P. §)
x {fg(X 1, B)fo (X, L. @)1 + f(X.K)]

+8(k—p—

+6(k+ B+ §)5(k| + e, (P) + e,(@) + Iy + 1) Q" (X, 1y, 1y, B, §)

) {1 = fo (X, L, P = fo(X b, @)1+ £(X,5)]

with the collision kernels for the different crossings of eey scattering14

Q' = (X, =1, ~l,,~p,—q) = (X b.p

Qe’—)e“y(xx llv 12’ ﬁv Z])) =

QT (X~ p—g) = O, (XD D p

_QO—»e*e’y(X’ _llv l27 _57 5) =

As anticipated in our discussion of the plane-wave
spectral function (221), we can observe from the energy
conserving delta functions in the collision term (259) that
the Wigner variables [; correspond to the energy that is
exchanged with the macroscopic field by degrees of free-
dom with energy &, (p;). By means of the changes of
variables p, —» p,—1[; and g, — g, —1,, this energy
exchange can be written in the Lorentz covariant form

k=p+q—(L—L)n=0, (264)
which clearly relates four-momentum conservation to the

structure of the plane-wave field.

“The sign in the kernels involving one positron recovers the
positron term (# — m) from the electron term (7 +m) = —(—p—m)
after the change of sign p — —p (see also Ref. [154]).

—lLin,q—hLn)
(X, 1y, b, p—lin,q = Ln)
- lll’l, q— lz]’l)

Q’lﬂ(X’ ll9 l2’p - lln7q -

at p° = I+ &,(p), (257)
at p° = I — &,(p) (258)
—€,(q) + 1, —L)Q (X, 1,,1,. p.§)
FoX L)L = Fo(X b @IF(X.K)}
(1= fo(X. 1. P) fo(X. L. §) f(X. k)}
—[1 = fo(X. 1. B)[L = f(X. b, )IF(X. )}
— FE XL P e (X b, DR, (259)
at p° =1, — &, (P). ¢"=15L- e,(q). (260)
at p° =1, +¢,(p). ¢"=1hL+e,(q), (261)
at p =1, + e,(P). @ =1- e,(q), (262)
Ln) atp®=1-¢(p). ¢ =1b+e,(q). (263)

From the delta functions of the 0 -3 and 3 — 0
processes in Eq. (259), we observe that they are forbidden
for plane-wave fields, since the combination of energy and
momentum conditions,

K| + &, () + (@) + 1 + 1, =0, (265)

k+p+g=0, (266)
can not be fulfilled. In the absence of a macroscopic field,
such processes are already forbidden by energy conserva-
tion alone. For an arbitrary macroscopic field sucha 0 — 3
term would act as a source term for vacuum pair production
since it does not come with any distribution function and
therefore would not vanish for fy, = fg = 0. The fact that
this contribution vanishes for plane-wave fields is in
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agreement with the general statement that plane waves are
not able to produce pairs from the vacuum [18,155]. In
general, such 0 — 3 terms contribute to vacuum pair
production at two-loop order via Eq. (182).

2. Emergence of a gauge-invariant vertex and
gauge-fixing independent amplitude
in plane-wave vacuum

Electromagnetic interactions are often described in terms
of probabilities for scattering events built from S-matrix
amplitudes, which are computed in terms of Feynman rules
with free on-shell asymptotic states in vacuum, i.e.,
vanishing or single mode distribution functions. Such an
S-matrix based formulation is not able to resolve real-time
dynamics between in-medium states, for which the inter-
action is not adiabatically switched off. In this section, we
follow the emergence of such amplitudes and thereby
highlight limitations to their ability to capture collective
dynamics of strong-field systems.

General considerations about the trace 7, Eq. (231), can
be found e.g., in the reviews [16,17,156,157] (see also
Ref. [71]) for the special case of s; + s, = 0 and with X
integrated over, which is needed for the computation of
probabilities. In this section we identify a scattering

|

WWRM%fW%MW/

p.q

amplitude that is local in X and demonstrate that the
reduction in terms of relative variables s; and s, is related to
vanishing or single mode plane-wave fermion distribution
functions,
fe(X,1,p) =0, (267)

which we refer to as the ‘plane-wave vacuum’. Importantly,
such vacuum approximations to distribution functions may
only be applied once the relevant degrees of freedom are
separated from quantum vacuum fluctuations, because
general off-shell distribution functions contain the ‘quan-
tum half” which can never physically vanish [see e.g., the
constant terms in Eqgs. (77) and (79)].

We start in-medium, i.e., without the assumption (267),
where the collision kernel (234) may be factorized in terms
of Volkov spinors,

Upo(@) 1= Ry ()t (268)

Upo'(x) = Ul—myo = ﬁ]me(x)v (269)

and written as a ‘spin sum’

8(p” — m*)sgn(p")8(q"* — m*)sgn(q”)

1 L _ s s _ s s
« ZZ /Y s 2iPS1 o452 [Uq,oJ (X - §2> U g (X + ;)] [Up,g <X - é) 17Uy (X + ;)} . (270)

o0

by introducing spin labels ¢ and ¢’ via

3(p? = m?)Y “upgitpe = 8(p* = m?)(p + m).

o

(271)
By amputating the free Dirac spinors i, ), of

U (x=2Vru, (x+3) =&, v, (x
q0’ ) 7"Upe +3 = Ugo' an( 752"91)”175’

(272)

in Eq. (270), we may identify the vertex

= S Sy
Vhe(X,s1.50) =R, (x - 2> 7R, (x +2>. (273)

This expression differs from the well-known local and
gauge-invariant plane-wave vertex [17,158],

Tpg(x) = R, (x)7"Ry(x) = Vipg(X. =s.5).  (274)

by its spacetime structure. This difference arises because
the local vertex I',, is constructed from the time-ordered
Volkov propagator (see Appendix E), which is a vacuum
object, i.e., assumes the absence of a medium by vanishing
distribution functions, while our vertex V%, is constructed
in the presence of distribution functions from the antisym-
metric part of the Volkov propagator alone. The additional
s-dependence of V%,, which is integrated over in the
collision kernel thus implements the fact that the effective
interaction in a strong-field medium is nonlocal.

While I, is gauge-invariant, V%, is not."” We stress that
our collision term is nevertheless gauge invariant, such that
this is not a flaw of our description, but simply exhibits the
physical limitations of the concept of scattering probabil-
ities. Electromagnetic interactions in the presence of a
medium, i.e., arbitrary distribution functions, can not in
general be described by assigning probabilities to individ-
ual events. While the photon collision term (259) is gauge

The Volkov spinors transform as U po(X) = WU (x) and

U,o(x) = U,p(x)e= ) with a U(1) group element e,
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invariant by virtue of additional momentum integrals, the
collision kernel and the vertex (273) are not gauge invariant
on their own. Without further assumptions, we cannot
identify scattering probabilities from them. As we now
demonstrate, gauge-invariant amplitudes can be defined in
plane-wave vacuum.

First, we investigate how V%, reduces to I',,. For this we
need to put the vertex back into the context of the collision
term: In general, the photon collision term is of the form

/ o(k—p+q)gX,p,q.k)P*(X,p.q. k), (275)
P.q

with the gain-minus-loss term g. If we now assume the
absence of a medium, i.e., Eq. (267), there are no other
objects carrying fermion momentum dependence other than
the kernel itself. We may then write

/ S(k—p+q)P¥(X.p.q.k)
p.q

- / o(0* = m)sgn(p)a(g? = )

x sgn(q°)5(k?)sgn(k°)
x8(k—p+q—1In)Qac(X, 1, p,q), (276)
with the gauge-invariant vacuum kernel

:/l:(}(xv l’ p9 C])
= / dS_eilS_Tzl;(X, s, _s)e—i[/\f,,(X.s)Jqu(X,—s)]. (277)

/ 5k = p + qYPy(X. p.q. k) = —5(k)sgn(k?)

q
1 . Ky _ N
X Zﬂuuz / et [”mrﬁq <X + 5) “qﬂ’] [ng/r’;p <X - 5) ul’”:| :
o' VS

From this we may read off the local amplitude

_ . s
M/;a’ (X.p.q.k) = / elk“”pﬂl—‘llgq (X + 5) Ugo'»

M (X, p.q. k)] = / T (X - %) Ups.  (279)

S

It is tempting to go one step further and identify the square
of the well-known global amplitude [17],

Mey(p..0) = [ i (g (250)

by integrating over all X and returning to microscopic
position variables via

Here, the underlying structure that is simplified by the
vacuum assumption is the product of Wigner space fermion
spectral functions py(X, p)pw(X,q), that can in general
not be factorized in real space via py(x,y)pw(y,x) =
Py (x,y)pw(y,x) in the presence of fermion distribution
functions, e.g., as in expression (275). However, in the
vacuum case Eq. (276) contains such a factorization, where
the 6(k — p + ¢) has been expressed in real space to invert
the Wigner transforms of the spectral functions as in
Eq. (134). Eq. (276) then allows us to identify the auxiliary
momentum labels p’, ¢’ of the collision kernel with the
physical fermion momenta p, g in the vacuum case. The
emerging vacuum collision kernel is gauge invariant on its
own, and has contributions only from values of s; and s,
satisfying the condition s; + s, = 0. The momentum labels
p and g of the scattering kernel are now on shell, but there
are no fermion distribution functions left. Correspondingly,
k — p + g # 0 because momentum is exchanged with the
macroscopic field as the amplitude would otherwise vanish
kinematically as in the zero-field case. In case of fermion
distribution functions that vanish almost everywhere,
except e.g., a few ultrarelativistic modes, the dominant
contributions from the collision kernel still come from the
region of s 4+ s, = 0. By taking the collision kernel out of
the context of the transport equation in this way, medium
effects from more complex fermion distribution functions
such as the nonlocal interaction via Eq. (273), and the
difference between the on-shell labels p’, ¢’ and the off-
shell labels p, g are missed.

We can now make contact with the language of ampli-
tudes by writing the vacuum collision kernel (277) in terms
of the local vertex (274),

/p 8(p* = m*)sgn(p°)8(q> — m*)sgn(q°)

(278)

/d4x/eikx — /d4X€ikx/d4y€_iky. (281)

However, it is important to note that such an integration
over all times X° generally includes late times outside of the
range of validity of both the plane-wave field and the
plane-wave vacuum approximation. Even if one makes
assumptions such as (197) and (267) at initial time, the
macroscopic field does not remain a plane wave and
distribution functions do not in general remain negligible,
but backreact on the field, such that a self-consistent
description of both becomes essential to describe equili-
bration. The type of interactions that take place in a strong-
field system depends also on the details of distribution
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functions and is a time (and space) dependent questions.
To determine this time dependence, one has to solve the
transport system including the dynamics of distribution
functions away from the plane-wave vacuum. Instead, a
common approach in literature is to rely on the S matrix in
the Furry picture [147], which takes amplitudes out of the
context of in-medium evolution equations. To then extract
local probabilities from this S matrix, the LCFA is a
necessary approximation, as otherwise what is supposed
to be the local probability density may turn out to be
negative (see e.g., Ref. [71]). This problem occurs because
the probability that a scattering will take place in an
external field and in the absence of a medium at any time
is not a self-consistent concept in general. The gauge-
invariant amplitudes such as (280) are not observable and
probabilities for individual scattering processes need not
exist to compute statistical observables such as electrical
conductivity [79] or pressure [78]. No further approxima-
tions such as the plane-wave vacuum or locally constant
fields are necessary to compute also e.g., the photon decay
rate (116) from the equations discussed in Sec. IV.

While the physical interpretation of the strong-field
amplitude (280) is problematic, that object is very useful
to understand the &-dependence of our equations. The
amplitude (280) is known to obey the modified Ward
identity [131-133]

k- Myy = oty / (27)*5(k — p + g — In)
1

Jano® g

with the phase

O(n-x)=In-x+ z( 4 2“:1;)
frafee 2o

relating gauge fixing to boundary terms at n-x = £oo.
Vanishing boundary terms then lead to gauge-fixing inde-
pendence, P: =0

F. Plane-wave fermion kinetic equation

Because the fermion collision term (153) relies on the
gauge-invariant fermion spectral function py (as opposed to
the covariant function py), we start this section by inves-
tigating this function for plane-wave fields. The well-
known plane-wave momentum and dressed mass emerge
automatically in this function. These gauge-invariant
expressions then serve us to approximate field gradients
in a gauge-invariant manner, equivalently to Sec. VA, but
at the level of the solution rather than the equation of
motion.

1. Gauge-invariant spectral function: plane-wave
momentum and dressed mass

The covariant plane-wave spectral function (221) trans-
forms as any other fermion two-point function. The
ambiguity [50,56,82] for the choice of the path of integra-
tion in the Wilson line is not present in the plane-wave case
because there is only one path in one dimension from 7 - x
to n-y. Thereby, the Wilson line automatically emerges
with a straight path of integration,

Wy (v, x) = exp (les—ﬂ/ dAA, (X~ +/1)>, (284)

despite the 3 4+ 1 dimensional nature of the underlying
theory. Defining the phase average

1 ns
—)/2 dia(n-X +2),

@057 =

(285)

[not to be confused with the ensemble average (4)] for
any plane-wave function a(n - x), we can make the gauge
invariance of py, manifest. By employing Eq. (285) the
plane-wave Wilson line (284) can be written as

W, (3, x) = eles"(AdXs), (286)
The Lorentz equation for plane-wave fields is solved

by the gauge-invariant momentum of an electron in a
plane wave [151]

AX) - ¢q
(n-q)

Hhln-X) = g — eAH(X) + (e _ ezAz(X)),

2(n-q)
(287)

which is related to the Lorentz action (214) via

(i0h — e Al(n - x))eSe™) = zli(n - x)eSa), (288)

The plane-wave momentum obeys

m=q¢* and n-m,=n-q (289)
and is related to the free mass m and the gauge-invariant

dressed mass [148,153]
2

62 s 2

m?(X,s7) =m? —
(290)

via [148]
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for any ¢ with g> = m? [which in our context is ensured by
the delta function under the integral e.g., in Eq. (293)].
We can identify this plane-wave momentum in the
exponent of the gauge-invariant spectral function via
q-s—es"(A)+N, = (mg)s,. (292)
such that an exact solution of Eq. (138) in the plane-wave
case may be written as

Pun(X. p) = i(27) / 5(q? — m?)sgn(q)

q

x [ etrmg, (), (299)
with the gauge-invariant Dirac matrix
g A, (X A, (X
S e Ll
(294)

While the covariant spectral function (221) makes manifest
the energy exchange with the field and facilitates a
formulation in the plane-wave degrees of freedom (257)
and (258), the invariant function (293) makes manifest the
solution of the Lorentz equation (287).

The scalar and pseudoscalar components of K q are

%tr{qu(X, O} =m, (295)

%tr{ySqu (X,s)} =0. (296)

The vanishing of the pseudoscalar component is a direct
consequence of the crossed nature of plane-wave fields,
i.e., Eq. (200). The vector component, which plays a crucial
role in the quantum Vlasov term, contains the plane-wave
momentum also in the pre-exponential and is given in
Sec. V F 3. The axial and tensor components can be found
in Appendix F. The tensor and scalar components vanish
for massless fermions in agreement with chiral symmetry.
Similarly to the identity (211) one has

/ei(p () XsTDSR0(X, 57)

N /ds_(2”)35(p‘ —q7)3(pL = (TLg)(X,57))

(297)

Computation of the scalar component (see Appendix F 1)
results in

Pwys(X.p)

- 2 ~ X —
zm—/ds exp{ ( +_ 1Pl +m_( i )>s‘}.
2p

(298)

The corresponding symmetric component has been com-
puted in Ref. [49] (see also Ref. [21]) for various choices of
plane-wave fields in the context of scalar QED.

2. Plane-wave fields with small gradients

In this section, we investigate the gauge-invariant
approximation of field gradients using the example of
the scalar spectral component (298).

For plane-wave fields, the gradient expansion becomes
an expansion in longitudinal gradients via

(s 0V Au(n - X) = (n- sV AT (n-X). (299)
where A,(,j ) is the Jjth derivative with respect to n - X.

In the scalar component (298), field gradients are carried

only by the gauge-invariant mass

n?(X,s™)=m?>— ezé(n's)z.;élz()() - ez%(n -s)*
x BA®(X)- A(X) +A2(X)] + O((%s - 0x)3).
(300)

whose expansion is gauge-invariant order by order [148].

Similar to the fact that the equation of motion (167)
has contributions from constant gauge-invariant fields, the
second term of the dressed mass is also nontrivial for
constant electric fields and generally not small compared to
unity. In fact, introducing the dimensionless and Lorentz-
invariant quantities

m.7:0

§o = — z. (301)
n-pFo

Xo(p) = “m & (302)

p=w(n-s), (303)

with the Schwinger critical field £, = m
istic field amplitude F, and frequency w, we can write the
constant-field contribution from this exponent as

158Kx )¢3
8y F3 U

J 12X

—e? 122(n- p) n-s (304)

with the notation £(X) := |£(X)|. Equation (304) reveals the
significance of 5(3) /xo forlocally constant fields, which is well
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known in laser physics [159-161]. All higher order gradient
contributions to the exponent of the gauge-invariant spectral
function from the dressed mass, e.g., the next order terms

, 11

¢ 7] BEX) - E(X) + EX(X)](n - s)’,

(305)

are suppressed by gauge-invariant gradients. Similarly, one
may explicitly verify that under this locally-constant field
approximation, the Wilson line can be approximated in such a
way that the relation between covariant and invariant fermion
two-point functions, Eq. (129), and the relation between
fy- and fy-type fermion distribution functions, Eq. (131),
indeed holds.

Keeping the LO of the dressed mass, we find the gauge-
invariant LO scalar component

ﬁW,v.S(X, p)
.1 [de (o PP EmN e
=immo— [ —eXp U\ P — |
2p ® 2p ®
1 88(X) , 0
124)(0 72 @ ¢+ 00, - 0x). (306)

The ¢ integral leads to the Airy function'®

Pwvs(X,p)

2 2
B im S pT-m 0
- m* (X, p) Al( m2)(2/3(X,p)> O£, - x).
(307)

where the local parameter y defined in (186) amounts to y,
with F replaced by £(X) for plane-wave fields [for the
computation of Eq. (307) see Appendix F 1].

The LCFA strong-field scattering probabilities [149,150]
that are used as input in the kinetic equations e.g., Ref. [22]
also feature such Airy functions. As anticipated in Sec. V C,
these functions may be further reduced to on-shell delta-
peaks by virtue of the identity lim,_, )l{Ai(x/ x) = 6(x),
consistent with a classical radiation reaction regime.

3. Quantum Vlasov term
To discuss the quantum Vlasov term for small field-
gradients of Eq. (171) for plane-wave fields it is useful to
switch to light-cone coordinates,
PuDufw = (pyD™ +pyD" =Py D1 )fw.  (308)

For plane-wave fields, the light-cone components of the
Vlasov derivative simplify to

"*The Airy function Ai(x) := 5 [ duexp(i(xu + u*/3)) solves
the differential equation Ai”(x) — xAi(x) = 0.

0
Dy =0 = (309)
0 . 0
D+ —_ = ! X e 1
f= g X G10)
l. 0 o D
IDL’V—aX—M—EEl(X>8’ﬁ, (311)

with 9/0X~ = (0/0X°-0/0X3)/2 and 9/0X+ =0/0X"+
0/0X3, and analagous definitions for momentum deriva-
tives. A p~ derivative is absent as it comes with F,, n”
which vanishes for plane-wave fields.

The all-order in field-gradients plane-wave spectral
vector component is

Py (X, p) = i(2) / 5(q? - m?)sgn(q") / (=) (X8
q K

PRI |

(312)

where 7, is the plane-wave momentum in the field
T[A#(x) + A#(y)] explicitly stated by Eq. (F17) in the
Appendix. The computation of the pre-exponential makes
use of the fact that

Aﬂ(x+%) —A"(X—%) = (n- (A (X.s),  (313)

and can also be found in the Appendix F 2, alongside the
leading order in field gradients. These are all the ingre-
dients one needs for the quantum Vlasov term for locally
constant plane-wave fields. In principle, with Eq. (312)
available, the drift term of the all-order field-gradient
equation (145) is also accessible.

The light-cone components of the vector spectral func-
tion (312) obey

A — n : A

pl[l(X7p) = mppll’,S<Xﬂp)’ (314)
N o pl A 0
Py (X, p) = WP‘I’.SOL p)+0(0,-0x). (315)

These identities are particularly useful in the classical
radiation reaction regime (y — 0), to recover the on-shell
Lorentz force drift term of the classical Vlasov equa-
tion (191) by expressing the vector component in
terms of the scalar component and then using
lim, )l(Ai(x/ 7) = 5(x). In systems with a long-lived
separation of scales in terms of ultrarelativistic fermions,
it is possible to reduce Eq. (308) to a Lorentz force term
also without sending y — 0 (see Secs. VC and V H).
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4. Electron and positron collision terms

Inserting the plane-wave collision kernel (234) into the fermion collision term (153) and making use of identities (131)
and (154) we may write the fermion collision term for small field gradients as

i, [ dl
Cy,(X,p) 262/—'/—2/ 2r)8(k—p+q)QX,lj, L, p+eA-Lin, q+eA—1In)
q.k

(27) ) (27)

x 8(k?)sgn(k)3((p + eA)* —m? =21, (n - p))sgn(p’ — 1,n°)5((q + e A)? —m?> =21, (n - q))sgn(q° — [,n°)

< {fu(X. @) f(X.0)[1 = fu(X. p)] = [1 = fu(X.q)][1 + F(X. Ol fw(X. p)}.

Here, we have relied on small field gradients to write the
invariant spectral function of the fermion collision term
(153) in terms of the plane-wave delta function of the
covariant specrtal function (221),

ﬁ‘{’,v(xap) :p‘{’.v(X»p"—eA)+O(eoap‘aX)' (317)
Defining electron and positron collision terms,
JCax.p)= [ Wy Xp) (1)
2 Y,v ’ p = o (2”) Y.v ) p )
Cox.F) = [ Wy xop) (319)
2 Yoy p) = - (271’) yvlA,P),

the frequency delta functions in Eq. (316) then allow for
explicit computation of the frequency integrals and to
recover the structure in terms of the strong-field scattering
processes depicted in Fig. 8.

The sign in the definition (319) accounts for a sign that
arises when substituting p — —p. The factors of % account
for the absence of a factor of 2 in the identity for the first-
order derivatives of fermions i(#, 4 @,) = ifdy as com-
pared to the identity for the second-order d’Alembertians
for photons (98).

The appearance of p +eA in Q is resolved in the
vacuum limit, where scattering kernels become gauge
invariant on their own as discussed in Sec. V E2. Since
the fermion self-energy is not gauge invariant, the emer-
gence of gauge-invariant scattering amplitudes with no
Wilson lines is far from obvious. However, in the vacuum
case, a gauge-invariant fermion loop emerges from the
product of the fermion self-energy and the fermion propa-
gator under an additional momentum integral. The ultra-
relativistic limit discussed below in Sec. V H then resolves
any remaining obstructions to a description in terms of on-
shell distribution functions.

(316)

G. The case of small occupations

The complexity of collisional kinetic equations is largely
due to the nonlinearity in distribution functions of collision
terms. However, many physical situations allow for an
assumption of small distribution functions i.e.,

fe(X, L)< 1 and f(X,k)<1,  (320)

implicit for example in the kinetic equations of
Refs. [22,43]. For such settings close to vacuum, one
may drop 2 — 1 and 3 — 0 processes entirely, since they
contain no linear terms and are therefore suppressed17 by
fefsfs fefe, fof <[fy.f (321)

Thereby, strong-field systems with small occupations
single out a direction in time—the direction of energy
transport from the macroscopic field to the particle sector
by 1 — 2 and 0 — 3 processes—even if the corresponding
scattering matrix elements and the fundamental equations
of motion are symmetric under time reversal. Similarly,
one may simplify all Bose-enhancement or Pauli-blocking

terms in 1 — 2 and 0 — 3 processes via 1 + f(X, 1?) ~1
and 1 - f5(X,1,p)~1. In this way, small distribution
functions lead to a linearization of collision terms. In
contrast to a linearization around equilibrium [104] which
keeps thermal distributions as in Eq. (118), collision terms
linearized by small occupations violate detailed balance
and are thereby no longer able to describe the approach to
thermal distribution functions. Charge conservation
[Eq. (157)] is still exact.

The linearized near-vacuum plane-wave photon
collision term (259) then reads [after a substitution to
recover covariant energy conservation as described around
Eq. (264)],

See also ‘phase space suppression’ arguments in terms of
integral measures and kinematic restrictions from the field, e.g.,
in Ref. [69].
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Co(X,

x[6(k=p+q-(I -
+ok—p+q-(,
—dk=p—-q-

The electron collision term (318) under the same
approximation reduces to the three 1 — 2 scattering proc-
esses, e~ — e~y with ingoing momentum p, e~ — e7y
with outgoing momentum p, and y — e~e™. Analogously,
the linearized positron collision term (319) contains the
processes e — ety and y — eTe”. In all near-vacuum
collision terms, each process is welghted linearly by the
distribution function of the ingoing particle as in the
equations of Ref. [22].

We emphasize that for general macroscopic fields, these
near-vacuum collision terms would all additionally contain
0 — eTe™y source terms with no distribution function,
contributing to vacuum pair production at two-loop O(e?)
precision.

H. The case of ultrarelativistic fermions
and on-shell strong-field descriptions

Many of the approximations discussed in previous sec-
tions are tied together in an ultrarelativistic setting: strong
macroscopic fields accelerate fermions to ultrarelativistic
energies within small regions of space. Once accelerated,
any macroscopic field appears like a plane-wave field in the
Lorentz rest frame of an ultrarelativistic fermion [162].
Therefore, plane-wave fields represent generic qualities of
strong fields in an ultrarelativistic setting. Furthermore,
ultrarelativistic fermions facilitate chiral symmetry, which
in turn leads to a reduction of tensor structures, which is
assumed by our definition of the fermion distribution
function as discussed in Sec. IIIC. Additionally, large
fermion momenta can facilitate that field gradients are
numerically separated from propagator gradients as we have
seen in Eq. (61). Moreover, ultrarelativistic fermions have a
small de Broglie wavelength facilitating classical propaga-
tion in-between quantum processes like the emission of
photons. From an analysis of the classical propagation of
fermions one then finds that ultrarelativistic fermions emit
radiation along their instantaneous velocity, within a cone of
angular aperture ~m/e(p) [15,138]. If the particle is ultra-
relativistic and its energy is the largest scale in the system, its
motion has a pronounced directionality. In a strong-field
vacuum i.e., for vanishing occupations, and if the transverse
momenta are much larger than m, one can then show
that only small patches of their trajectory contribute to
scattering amplitudes [15,152] (which is the assumption of
the LCFA).

2|k|/ > / 213252,3) / (dlz) / (;j:)]g 25121) (27)*
)

L)n Qe "X, b, 1y, g+ L, p+ L) fg(X. 1, p+ 1)
L)n) Q=T (X, Iy, . B + Lii.§ + i) fy(X. 1. P + 1,7i)
(I + L)) Qe =1 (X. 1. b, B + L1 § + Lit) f(X. K)].

(322)

There are several notions of ultrarelativistic limits for
fermions in the literature. They range from assumptions on
kinematic restrictions [22] to expansions in terms of
p./(n-p)[162] or 1/y =m/e(p) [15]. In the language
of the present paper, an ultrarelativistic system is defined by
a fermion distribution function that is peaked at an ultra-
relativistic scale p*. Such a distribution function then gives
meaning to single particle concepts such as the de Broglie
wavelength 7/ p* also in many-body systems. In particular,
the structure of the fermion spectral function of such
a system only matters for characteristic momenta as it
always appears in a product with the fermion distribution
function which approximately vanishes away from the
characteristic scale.

We now assume that the characteristic scale p* of
fermion distribution functions is well separated from
the characteristic scale [* of the strong-field spectral
kernel (222), i.e.,

P2 > |1 (323)
In such a situation, the strong-field spectral function only
contributes with on-shell values, because

e (P*) = /[P + m?

becomes the on-shell dispersion, independent of [*. As
anticipated by our discussion in Sec. V C, this implies that
ultrarelativistic fermions may indeed be described by on-
shell particles whose energy ¢(p*) then satisfies

(324)

|I*|/e(p*) < 1. (325)
The ultrarelativistic limit (324) leaves the strong-field
properties of the spectral function intact, simplifies kin-
ematic restrictions, and favors a description in terms of free
distribution functions.

However, in general, there is no mechanism that
dynamically controls this approximation, i.e., it may
become invalid during the evolution of the system even
if it is valid at initial time. An important effect that
explicitly breaks the validity of an ultrarelativistic approxi-
mation is vacuum pair production, which generates off-
shell contributions to fy(X, p) at zero frequency according
to Eq. (180).
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Indeed, a kinetic description in terms of only on-shell
distribution functions is suggested in Ref. [22] for ultra-
relativistic fermions in strong (but subcritical £ « &)
fields with small gradients. Our off-shell transport descrip-
tion of Sec. IV reduces to that description under the
following approximations: a) an approximation of field-
gradients (see Sec. VA); b) an approximation of collision
terms for small occupations to neglect medium effects (see
Secs. VE2 and V G); ¢) an assumption of ultrarelativistic
simply peaked fermion distribution functions and subcriti-
cal fields to replace the quantum Vlasov term with the
Lorentz force term of the classical Vlasov equation (193)
(see also Sec. VC) and to justify the on-shell limit of
collision terms,

/ dl, / dbyg(1,15)Q(11, 1) = g(0.0) / dl, / 4, 0(1.1),
(326)

where ¢ indicates the gain-minus-loss terms and Q includes
the delta functions such that energy conservation is treated
exactly. Together with the Lorentz force term, this closes
the strong-field description in terms of the traditional on-
shell particle distribution functions (84) and (85) which
emerge from plane-wave distribution functions via

Fo(X.1P) = f5(X. P). (327)
With all these approximations combined, subtleties regard-
ing gauge-invariance both of the scattering kernels and the
distribution functions are also resolved: The scattering
kernels become gauge-invariant objects in the vacuum
limit (274) and a distinction between the fy- and fy-type
fermion distribution functions is not important after the
ultrarelativistic limit (327) for distribution functions that
are always only occupied in terms of a few on-shell particle
modes for which gauge invariance is assured.

Dropping all these assumptions is possible by employing
the gauge-invariant off-shell equations discussed in Sec. IV.
Starting from this off-shell description, it would be inter-
esting to investigate whether collisional or inhomogeneous
contributions to the particle yield (182) can invalidate an
on-shell description also for subcritical fields on some
significant time scale on the way to equilibrium.

VI. CONCLUSIONS AND OUTLOOK

Our work demonstrates how to systematically derive
transport and kinetic equations including collisions for
general supercritical fields. The equations to order O(e?)
include local scattering kernels for strong fields that can
also be inhomogeneous. This is achieved by oftf-shell
transport equations that include nonlocal relative times
and all field gradients in the fermion spectral function,
while retaining the gain-minus-loss structure of traditional

kinetic equations. To investigate our equations analytically
and to make contact to limiting cases in the literature, we
have also considered plane-wave fields.

We have shown that the inclusion of fermion spectral
dynamics is essential to describe collisions and fermion
drifting in the presence of general strong fields. Existing
derivations of strong-field Wigner descriptions in the
literature have neglected spectral dynamics by limiting
themselves to the collisionless regime, in which equations
for spectral functions decouple from transport equations.
In general, however, the macroscopic field enters the
collision kernel (115) via the fermion spectral function
(103). This resums infinitely high perturbative orders of the
coupling that all become relevant for sufficiently large
macroscopic fields. The macroscopic field itself is gov-
erned by a Maxwell equation in the presence of a fermion
current involving the quantum corrections. The general
form of this Maxwell equation turns out to be valid to
arbitrary loop and gradient order in our framework. Our
approach paves the way for investigations of the thermal-
ization process starting from strong field initial conditions,
which requires to go beyond collisionless approximations.

We have pointed out a connection between asymptotic
pair production and spectral dynamics. While one-loop
results such as the Schwinger pair production rate (173)
assume the macroscopic field to be external and constant in
time, our one-loop result (180) is fully dynamical and
generalizable to the expression (182), which in principle
includes collisions to two-loop order and all orders in field-
gradients. Our description in terms of distribution functions
does not rely on asymptotic expressions, such as total
particle numbers or total probabilities in order to compute
time-dependent observables such as the strong-field photon
decay rate (118).

We solved the LO equation for the fermion spectral
function for the special case of an external plane-wave
macroscopic field, A#(x) =~ A%(n-x) with a null vector
n*> = 0. This reduces the transport description to only two
equations for the off-shell fermion and the on-shell photon
distribution function. The plane-wave spectral function is
the antisymmetric part of the well-known time-ordered
Volkov fermion propagator. By employing only its anti-
symmetric part in the O(e?) transport equations, we self-
consistently resum quantum fluctuations to two-loop order.
Thereby, a solution of our equation goes beyond the
statistical component of the one-loop Volkov propagator
that implicitly assumes vanishing distribution functions.

Employing the all-order field-gradient plane-wave spec-
tral function in the collision kernel reproduces expressions
which are similar to the Furry picture, but have the
advantage of being automatically local in the kinetic
position variable X while containing contributions from
inhomogeneous fields not limited to the vicinity of X. In
particular, we have demonstrated that plane-wave scatter-
ing kernels emerge with a space-time structure that is more
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general than the one of local scattering amplitudes that are
known from laser applications. The more general scattering
kernels reduce to known expressions only if relative times
are restricted to certain values. We have recognized this
condition as the implicit assumption that the system is in
plane-wave vacuum, i.e., that fermion plane-wave distri-
bution functions are negligible or have only single occupied
modes. This means that medium effects are missed if a
strong-field scattering kernel is obtained from Feynman
rules for the Furry picture § matrix. For negligible
distribution functions, known gauge-invariant global scat-
tering amplitudes emerge by integrating over all X. To
employ external-field vacuum amplitudes in an isolated
dynamical setting is typically inconsistent because it
includes times outside the range of validity of external
field and vacuum approximations as non-negligible dis-
tribution functions develop dynamically and backreact on
the field. Nevertheless, these emergent amplitudes allowed
us to highlight connections to Ward identities, which
remove the gauge-fixing dependence of the 2PI formulation
of QED in the corresponding limit.

Furthermore, the plane-wave fermion spectral function
allowed us to use the energy exchange with the macroscopic
field as a parameter / to label strong-field degrees of freedom
with energy &;(p), which enable a continuous connection to
the free particle degrees of freedom of an on-shell descrip-
tion. When this spectral function is multiplied by a fermion
distribution function that is peaked on an ultrarelativistic
scale p* that is well separated from the characteristic value
of [, its dispersion relation becomes independent of / and

reduces to that of free fermions, &;(p*) ~+/|p*|> + m>.
This facilitates an on-shell description despite the presence

of strong fields. Thereby, strong-field systems in which such
a clearly separated scale p* exists for long times may be
accurately captured by on-shell descriptions that combine
collisions with classical Lorentz force drifting. Since any
field appears as a plane wave in the rest frame of a single
ultrarelativistic fermion, we expect that most statements that
we arrived at under the assumption of an external plane-
wave field also hold for more general fields, as long as
fermion distribution functions are dominated by a few
ultrarelativistic particle modes.

In contrast, in isolated systems with supercritical fields,
initial characteristic scales are dynamically affected by pair
production (which occurs off-shell and is largest at zero
frequency) and by the transport of fermion occupations
towards an equilibrium distribution (which has its maxi-
mum at low energies and is not sharply peaked). For such
isolated systems, we argued that an initial ultrarelativistic
separation of scales is not long lived, such that an on-shell
Lorentz force description introduces an error larger than our
desired accuracy of O(e?). In the absence of a long-lived
separation of scales, one needs instead a description that
remains valid over a wide range of energies to describe the
evolution of off-shell contributions induced by vacuum pair

production towards the on-shell regime of the asymptotic
future. The gauge-invariant fermion transport equation
Eq. (145) with its all-gradient off-shell drift and collision
term constitutes such a description by coupling to the
fermion spectral equation, the photon transport equation
and the Maxwell equation summarized in Fig. 6.

The leading order equations may give insight into the
largely unexplored late-time behavior of isolated QED
systems with finite net charge. If such a system equilibrates,
its late-time state can not be the traditional homogeneous
thermal equilibrium, because the Gauss constraint for finite
net charge prevents the initial field both from decaying
completely and from becoming fully homogeneous. The
possible approach to such a charged time-translation invariant
state may be completely described by our equations, if the
equilibrium field induced by the net charge turns out to be
sufficiently large.

Such a numerical computation, in particular of the self-
consistent strong-field fermion spectral function, will also
allow for a more detailed study of the collision kernel and
the spectral peak structure. This would, e.g., enable an
analysis of spectral widths and to establish under what
circumstances they are small. To obtain insight into specific
controlled experimental settings, one may employ other
external fields in such a computation, as we have done for
the plane-wave spectral function with laser fields in mind.
Possible other choices of external fields include noncrossed
constant electric fields, homogeneous magnetic fields, and
Coulomb fields.

In the future, dropping our assumption of reduced tensor
structures (74) with the help of Ref. [50] could clarify the
significance of chiral dynamics [115-118] and spin trans-
port [124], and extend chiral kinetic theory [119-123] to
the collisional regime. To access the transport dynamics of
the axial current j%(X) = —etr{y’y"Fy(X,X)}, an inter-
acting spectral function that has a nonvanishing axial
component such as the strong-field spectral function
employed in this paper is required (see the expression
for plane-wave fields in Appendix F4). A leading-order
collisional description including all tensor structures in the
presence of a macroscopic field is now in reach and would
open up diverse applications on chiral dynamics reaching
from astrophysics [163,164] to semiconductors [165,166].
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APPENDIX A: IDENTITIES FOR QED
TWO-POINT FUNCTIONS

The following hermiticity properties of photon and
fermion two-point functions are used in the main text:
The photon two-point functions have the properties
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[P (x, )" = p*(x,y), (A1)
P (x,y) = —p(y, x), (A2)
[F* (x, )] = F*(x,y), (A3)
F(x,y) = F*(y, x), (A4)

i.e., p"(x,y) is real and antisymmetric and F**(x, y) is real
and symmetric. The definitions for the advanced and
retarded propagators used in Sec. III are

Dy (x,y) = 0(x" = y°)p" (x.y), (AS)
DY (x,y) = =00 = x%)p" (x. y), (A6)

Ag(x,y) = 0(x" = y)py(x.y), (A7)
Ap(x,y) = =00 = x%)pw(x, ). (A8)

and the same for the self-energies. These functions obey

DY (x,y) = Dg' (v, %), (A9)
Ap(x.y) = r"Ag (. 2)r". (A10)
They are related to the spectral functions via
PP (xy) = DR (x,y) =D (x.y),  (All)
pu(x.y) = Ag(x,y) = Ap(x, y). (A12)

The definitions for the Wightman functions employed in
Sec. IVA are

Dy = F(x,y) =3 (xy). (A13)

D (x P = P y) () (ALY
A (xy) = Fy(ny) = 3ou(xy). (ALS)
A (xy) = Foley) +3pu(50). (AI6

2

and the same for the self-energies. These Wightman
functions are sometimes denoted as G~" =G~ and
G~ = G~ in literature. The superscripts indicate on which
part of the Keldysh contour their arguments lie and can be
obtained from the general functions (14), (15) and (33),
(34) by explicit use of the sign functions sgn.. Similarly to
the retarded and advanced functions they obey

Pu(%,y) = i(Dy7 (x,y) = DS (x,y)),  (Al7)

py(x.y) = (AT (x,y) =A™ (x,y)).  (AI8)

In Wigner space, one may alternatively exploit the Wigner
transform of the Heaviside function,

o

do .
O(x* —y%) =1 s ., (A19
(=57 P (27r)e o+ ie (A19)
to obtain a Killén-Lehmann representation
) do ip"™ (X a)l_é)
DR (X, k) =1 : , A20
R (X.K) 51—13(}/(2ﬂ)k0—a)+i€ (420)
- do ipy(X, o, p)
Ar(X,p) =1 A21
r(X. p) 0 (27) p° —w + ie (a21)
and similarly for the advanced functions with
0(y° — x°) = lim 40 i 1 (A22)
Y ~e=0 ) (27) w—ig’

The self-energies obey completely analogous identities. We
stress that any singularity associated to the e-prescription
does not arise in an exact (early-time) description that
employs Wigner transforms (46) instead of the late-time
Wigner transforms (47) (see also Refs. [105,106]).

The photon Wigner functions have the properties

Fr (X, k) = F(X, —k), (A23)
(X k) = —p™ (X, —k). (A24)
D" (X, k) = D¥(X.—k). (A25)
Similarly, fermion Wigner functions obey
Fy(X.p) =" Fy(X. p)r°. (A26)
pw(X. p) = =r°pl(X. p)°. (A27)
AA(X, p) = P AR (X, p)r". (A28)

Given all this, it should be remembered that there are only
two independent two-point functions per field species (see
also our comment at the end of Sec. IIT A).

The LO O(e?) 2PI loop expansion of the Wightman self-
energies is

o (x,y) = eu{y, A (x, y)r, A7 (v.x)},  (A29)
o (x,y) = er{y, A7 (x, y)r, AT (v.x) ), (A30)
Ty (6, y) = =P AT (x,y)y Dy (), (A31)
Ty (ny) = =P AT (2, y)y DS (x, ). (A32)
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APPENDIX B: 2PI FIELD EQUATION
OF MOTION

As discussed around Eq. (27), the only objects in
I'[A, D, A] that depend on A are the classical action
S[A] and its second derivative iAg'[A] such that

L OTAD.A] S o

—iTrA7' [A]A = —i/

Cyz

These two terms are the variation of the classical
action (where boundary terms are dropped as initial
conditions)

tr{ (i@, — eA(y) —m)de(y,2)A(z, )}

5Af(x) SIA] = [0 = (1 = 0,0, A°(x),  (B2)
(B1)
| and the one-loop term
=- /c {(iy = e Aly) = m)de(y, 2) (e(z. ¥)A ™ (2.3) + Oe(. 2) A" (. v)}
(B3)

= —/m d4ytr{(ié9y - EA(y) - m>F‘I’(y’ y)}’

)

where we used that (x —y) + 8(y —x) = 1 and that on the backward branch of the contour, x,y € C7, §¢(x,y) =
—168(x — y), which results in the fact that only the statistical function Fy(x,y) =3 (A" (x,y) + A~"(x,y)) contributes to
this term (see also Ref. [65]). The variation of this term then gives the Maxwell current

1)
SA*(x)

(—iTrAG' [A]A) = etr{y, Fy(x,x)}.

(B4)

APPENDIX C: ON THE GRADIENT EXPANSION OF SPECTRAL EQUATIONS OF MOTION

To NLO in propagator-gradients, the RHS of the tensorial equation for the fermion spectral function consists of

commutators in Dirac space and Poisson-brackets,

/ &(x = y) =) [(pRHS )y (x. ¥) + 7 ()RHS)} (7. 1)7"]

1
2 2

Here we introduced the Hermitian i.e., in the sense of
P°QL(X, p)r® = Qy(X, p), parts of retarded components

(X, p) = Zyr(X. p) + Zya(X.p)  (C2)

Qy(X, p) = Ar(X, p) + Ap(X, p). (C3)
An analagous expression is true for the RHS of the photon
spectral equation of motion, where commutators in Dirac
space are replaced by [A, BJ* := A*’B,* — B*°A,* and
likewise for Poisson brackets.

Kinetic equations describe physics for which occupa-
tions evolve decoupled from the spectrum of the theory.
Eq. (C1) shows that this happens to all orders of the
coupling for small propagator-gradients and sufficiently
simple tensor structures, i.e., vanishing commutators. The
Poisson brackets are NLO in propagator gradients,

1 i
[Z\(I?),pny}(X,P) 4= [ZE{,’),Q\F](X,p) +§[2$2),P~y]pB(X,P) +

i

5 (27 Qulps (X, p) + O(e2(9), - 94)°G).

(C1)

O(e?0; - 0xG), and the Dirac commutators can vanish
for simple tensor structures such as those that reduce
dynamics to a single distribution function as discussed
in Sec. [II C 1. The interaction terms in the trace of Eq. (C2)
are always suppressed by propagator gradients, such that
the traced equation coincides with the free equation of
motion. In fact, the RHS of the traced Eq. (100) is strictly
O(e*(8, - 9x)G) [and not just O(e?)]. The same thing does
not happen in the traced equations of motion for statistical
functions e.g., Eq. (99), whose leading order in propagator
gradients does not vanish, but provides the collision terms.

APPENDIX D: COVARIANT VS INVARIANT
EXPANSION IN FIELD-GRADIENTS

Simply expanding the gauge-non-invariant one-point
function in its gradients via

036007-38



COLLISIONAL STRONG-FIELD QED KINETIC EQUATIONS ... PHYS. REV. D 104, 036007 (2021)

A <x+%) Y <x—%) - igm%(s-ax)%ww(x), (D1)
A (X * %) e <X B %> - 2 (2}1)!2231—1 (s - O A (X) (D2)

to NLO gives the following left hand side of the covariant fermion transport equation,
. 1 ;
/ A (x = y)eP =) 2 u[(FLAS)y (x. y) = y(FLAS )y (y. 2)7"]

. {ﬁ te (aixg A,,(X)) 8%] FL(X. p) + O((eD, - By )?). (D3)

We now change to the gauge-invariant statistical propagator by introducing Wilson lines. For small fields with small
gradients, we may expand the straight Wilson exponent via

x > 1 1
dz#' A =54y —————(s5-0x)"A,(X). D4
[ A =D s 904,00 (D4)
The leading order of straight Wilson lines, W(x, y) = =A%) 1 O((e’s - Ox)?) (first order vanishes), is O(e®) for strong

fields and produces the missing term

K s\ O K s\ . a 0 N
W(X—E,X+§)a—xﬂl/\/<X+§,X—§> ——les(,a—X”A (X) + O((e”s - 0x)7), (D5)

that is necessary to identify the gauge-invariant field strength tensor. Changing the prescription (D3) how to derive fermion
kinetic equations to include a Wilson line, we recover the Vlasov term via

T

[ =D W) Sl (FLES)y(x.3) = P (FLHS) (0.3)7

|0 d .
~ |~ FlX) ] FalX.p) 4 O((0, - 017 (06)
APPENDIX E: SYMMETRIC AND ANTISYMMETRIC PARTS OF THE VOLKOV PROPAGATOR

By virtue of Eq. (217), (i, — eA,(x) — m)E,(x)(4 + m)E,(y) = €,(x)(g> — m*)E,(y), such that indeed the plane-
wave spectral function solves

(i, — e Ay (x) = m)py,y(x.y) = i(27) / 8(q% = m*)sgn(q°) (i) — e A, (x) = m)E,(x)(d +m)E,(y) = 0. (El)
q
The Volkov spectral function is antisymmetric because
7Py (x, )7y’ = —i(2n) / 8(q> — m*)sgn(q®)7° € () (d + m) EG(x)7* = —pu (v, x). (E2)
q

‘We may put this spectral function into the context of canonical quantization in the Furry picture [147], which is achieved for
plane-wave fields by means of the Volkov states [148]

w0 =Y [ )0+ B, ) (E3)
v - (2”)3\/W S P DS ’
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- d*p 1 _ _
%) =3 [ B )V o) + L)y (), (E4)
zs: (27)* /2¢(p) ! !
via the canonical commutation relations

{ev(P). c}(@)} = {d.(P). d}(§)} = 5,5(27)*5(p — §) (ES)

for the ladder operators with ¢,(p)|0,) = 0: The plane-wave spectral function can be written as the expectation value of the
anticommutator of Volkov states with respect to the strong field vacuum |0,), such that

d*q
(27)*

The symmetric part of the Volkov propagator (that has been discussed e.g., in Ref. [49]) is the commutator

puy(x.y) = i({¥(x). ¥, (v)}) = i(2n) / 8(q> = m*)[0(q°) = 0(=q")]R, (x) (4 + m)R, (). (E6)

1 -
(80, B ) = 7 /

d*q

Fy,(x,y) = ——76(¢* = m?)[0(¢°) + 0(=q°) IR, (x)(d + m)R,(y). (E7)

The Volkov propagator [148] is then built via the standard asymptotic state identity

i -
Av(x’ y) = p‘P.v(x’ )’) - EF‘P,V(X’ y)sgn(xo - yO) = <OV|T‘PV(X)‘PV(y)|OV>’ (ES)
where 7 denotes ordinary time ordering.

APPENDIX F: COMPUTATION OF PLANE-WAVE SPECTRAL COMPONENTS
IN LIGHT-CONE GAUGE

1. Computation of the scalar component and the dressed mass phase factor

We compute the scalar component by first computing the traces

Juld+m)=m (F1)

B AR S M P S

where we have used that n - A = 0. The scalar component of the plane-wave spectral function is therefore

ps(X. p) = mi(2) / 5(q? — m¥)sgn(q?) / =003 IN ) (F3)

q N

with N, defined by Eq. (223). Next we compute the integrals. The exponent in light-cone gauge, A" = A~ =0, is

s s
Sq<X—|—§> —Sq<X—§> =—q-s-N,X.s)

Lo 1w . 3 )
:—q+s'—q_s++ql-sl—g 2dxl[—2eAl(n-X+/1)'qJ_+e2|Al(n-X+/l)|2].

_ns
2

Since this expression is under the integral with

e (s "

we can set g* = (| |* + m?)/2q", such that under the integral
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mzs_

2 ns
R sJ_+2—{qJ_|2 2e—/ QAL (X + 4]+ & /2d/1[|Al(n X+/1)|]}
%

_ns
2

Next we complete the square via

2

= 2 2 = 2
|;u|z_2ezf./ QA (n-X +2) = [ql—: T AL (n- XH)} —(:_)2 {/:_d/lAl(n-X+/1)] .

Since ¢, is also under the integral, we can simply substitute
- - e E
ql*ql“rm/”. d/LAJ_(I’l-X—i-ﬂ) (FS)
-

without changing the d*q measure or boundaries, such that

- 12 2
/dq+[61-erJ\/q(X,s)}é(q+ __\culz L )

2
=g st — <ql+—/ dAA, (n- X+/1)> qzi!]

+;7(m2+j—_/_jdz[|k<n-x+z>n2—ﬁ U_fdmm-xmr)

|6J_|2 + ﬁ12(X’ S) 5

— ’

X+4
:q‘s+—c7l-§’l+e/szdz”A,,(n-z)—l- 2
-

where we have identified the dressed mass (290) and the exponent of the Wilson line (284). The substitution (F5), together
with taking the ¢ integral over the delta function, changes the argument of the sign function to
. B N e 5 - 1
sen(¢”) — sen(@"(X.#)) = sen(q). with °(X.s) = (m s LA xR+ m2)/zq- +30
Since here the field appears only under the absolute value, this is simply the sign function sgn(¢~) familiar from light-cone

quantization and compensates the absolute value in the identity (F4). The exact scalar plane-wave spectral function in
position-space thereby is

Pwes <X+§,x—§) = im(2a) [ 6(q? —m)sgn(p)e-ov N
q

dg~ 1 [d’q, (q.[* +m*(X,s) I
= X+-,X— —i\ s st =g :
W( 5 ) @2 ) Cap U 2 T T T

(F6)

With this we can immediately identify the gauge-invariant part via py(x,y) = W(x,y)pw(x,y). Without gradient

expansion, the Wilson line is exactly canceled and no additional substitution of p — p + eA is necessary. The
Wigner transform can easily be computed up to the s~ integral via

pras(xep) = im [ S [ S0 [ oo oxpfi(EL IS N i - ) 2ol - 20)
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where we have used that /% only depends on s~ not on s, 5, . The result (298) mentioned in the main text, follows after
taking the trivial integrals over the delta functions. Next we prove that the leading order in gauge-invariant field-gradients of

the function (306) is equivalent to the Airy expressions (307). For this purpose we make use of
/dqoei“”""‘/’3 = (3b)~'3Ai(-a(3b)"'/3).

We may apply this identity to Eq. (306) with

1( . |13L|2+m2) 1 p? —m? ) 1 &8 &(X)
= — p — p— R e
60 2p w?2(n-p) 24x0(p) Fo

such that the prefactor and argument of the result (307) are obtained via

im (3b)~1/3

w 2(n- p)

=im((n-p)e€(X))?7, —a(3b)7'? = ~(p* —=m*)((n- p)e€(X))7/>.
The free scalar component is obtained for £ = 0 via
1 [de . pil*+m* @

;P«Xp{l <P+ _pufrm o = (@m)(p* —m*)sen(p?).

2p~ 2p~

2. Computation of the vector component

We compute the vector component by first computing the traces
1
U+ m)} =g,
1
4tr{y"ﬂA<X+;> (4 + m)} = n”A(XJr;) g — A (X+ >(n -q).
ltr (g + m)A X-2 o =n"'A x-2).g-a(x=-2% (n-q)

%tr{ﬂf/%(x +%) (¢ + m)A(X —%)yi} = —2n’1A<X—|—%> -A(X —%) (n-q).

The vector component of the plane-wave spectral function therefore is

N |«

Hon.p) = i620) [ ot = mysn(a) [ etrmanebioon s L L (x4 3) e (x-3)]

+n"2(n1. q>e[A<X+%) +A(X—%)] 'q_”ﬂz(nl. p e2A<X+%> -A(X—%)}.

The last term involves a product of two fields which we can write as

Alxs) ale=g) =g lales) wale=g) [ gla(ees) -ale-3) )

such that we can identify the plane-wave momentum (287) at the field § [A*(X +3) + A*(X —3)],
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7y(X.s) = q" - e% [Aﬂ (X +%> + A <X—%>] + (6%[A(X + %)n:;t(x —3)-q_3AX ;&) -+q)A(X -3 ]2>

(F17)

in the pre-exponential and make use of Eq. (313) to write

(F18)

1 o | 1(n-s)2e2(E)2(X,
ZU{V”IC(X, l’p _ ll’l)} — /ds—ellA e—lNI,(X,A )l:ﬂ./;)(x’ S) —Int — nﬂg(n S) (n <p>) ( S):| .

from which the gauge-invariant vector spectral component (312) used in the main text follows. To leading order in field
gradients, we may drop the gauge-invariant higher orders of

4 (x03) e (x=5) | =40 + -2 ) + OG- 001, (F19)

A (X + %) — A <X - %) = (n-5)A(X) + ﬁ (n-5)3 A0 (X) + O(e (s - 0x)*), (F20)

such that 7, (X, s) = 7,(X) + O(e"s - dx) and

L L(n-s)2eE(X)

1 ~
Ztr{}/"/Cq(XJ)} 7(X) = n 8 (n-q)

+ O(e%s - Ox). (F21)

3. Computation of the pseudoscalar component

We compute the pseudoscalar component by first computing the traces

retr ) = el i (x3) 4 m b= el ma(x-2)af <o (F22)

%tr{ 5M<X+ >(¢i+m> (X—%>ﬂ}— i€y A”<X+ >A"<X—§)n”0- (F23)

The pseudoscalar component therefore vanishes identically, py , p(X, p) = 0 because &,,,,n"n” = 0.

4. Computation of the axial component

We compute the axial component by first computing the traces

Ll £ m)y =0 (F24)
%tr{y yﬂﬂA(X—l— )(ﬂ—ﬁ—m)} = —in” A° <X—|—%>q Eupou (FZS)
ltr{}/S}/”(q + m)A(X - f) yi} = —in”A”( 22 q’e (F26)
4 2 2 urop:

itr{y YA <X + > (4 +m)A (X - ;) # } = 2inn* A (X + ;) q’A” <X - ;) Eivpo- (F27)

The axial component of the plane-wave spectral function is therefore
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. . 1
oaX.0) = 22) [ 37 = m)senta?) [ et {oton g (x45) - (x5
q s q
e

2] s
_ A AV P NC I
T nq? ——2n*n* A <X—|—2>q A (X 2)8,11,/,5}. (F28)

5. Computation of the tensor component

We compute the tensor component by first computing the traces

%tr{ ﬂ”¢A<X+ )(4+m)A< )ﬂ} zitr{a”"(¢+m)}:0, (F29)

%tr{ ””M(X + ) (4 + m)} = im {n”A” (X + %) —nt A (X + %)] , (F30)
e R R A

The tensor component of the plane-wave spectral function is therefore

l\)l‘ﬂ

P{;Jy,v.T(X’ p) = m(2x) / 5(q2 _ mz)sgn(qo) / i (P=a)s p=iN,(X.s)

il oo lale o)) o

To leading order in field gradients, the gauge-invariant tensor component is

X

o 1 d po>+m? 18X
HoaXop) = mer () Ly [ expi(pe DL 2N 0 LSRR L 4 0, 00, ()

APPENDIX G: MAXWELL CURRENT FOR PLANE-WAVE FIELDS

For the case of an external plane-wave field, the Maxwell current (160) can be written solely in terms of the plane-wave
degrees of freedom (257) and (160)

, dl [ Fp 1 [l
Ju(X) = —4e /(2;;)328;,(1) {—[’Cﬂ (X,1,p) + i (X, 1, p)] + Ky (X, L, p) fe(X. L, p) + K (X, L, p) fy(X, l,p)},

(27) 2
(G1)
with the fermion and antifermion drift kernels
o1 -
K (X1 p) = uedn KX, L p = In)} at p° = 1+ &/(p), (G2)
o1 -

Ki(X,=1,-p) = Ztr{yﬂlC(X, I,p—In)} at p® =1-¢(p). (G3)

The zero-field current (82) of Sec. III C may be obtained as the special case of

- 'Av_’O -

Ki(X.1.p) — +(2n)8(l)p, at p° = e(p). (G4)
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