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Starting from nonequilibrium quantum field theory on a closed time path, we derive kinetic equations for
the strong-field regime of quantum electrodynamics (QED) using a systematic expansion in the gauge
coupling e. The strong field regime is characterized by a large photon field of order Oð1=eÞ, which is
relevant for the description of, e.g., intense laser fields, the initial stages of off-central heavy ion collisions,
and condensed matter systems with net fermion number. The strong field enters the dynamical equations
via both quantum Vlasov and collision terms, which we derive to orderOðe2Þ. The kinetic equations feature
generalized scattering amplitudes that have their own equation of motion in terms of the fermion spectral
function. The description includes single photon emission, electron-positron pair photoproduction, vacuum
(Schwinger) pair production, their inverse processes, medium effects and contributions from the field,
which are not restricted to the so-called locally-constant crossed field approximation. This extends known
kinetic equations commonly used in strong-field QED of intense laser fields. In particular, we derive an
expression for the asymptotic fermion pair number that includes leading-order collisions and remains valid
for strongly inhomogeneous fields. For the purpose of analytically highlighting limiting cases, we also
consider plane-wave fields for which it is shown how to recover Furry-picture scattering amplitudes by
further assuming negligible occupations. Known on-shell descriptions are recovered in the case of simply
peaked ultrarelativistic fermion occupations. Collisional strong-field equations are necessary to describe
the dynamics to thermal equilibrium starting from strong-field initial conditions.
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I. INTRODUCTION

Present and upcoming laser facilities [1–4] promise
unprecedented insights into the strong-field regime of
quantum electrodynamics (QED). Strong dynamical
electromagnetic fields are also generated during the early
stages in off-central collisions of heavy nuclei at the Large
Hadron Collider (LHC) at CERN or the Relativistic Heavy
Ion Collider (RHIC) at BNL. The presence of strong
electromagnetic fields and their dynamical decay can lead
to a wealth of intriguing quantum phenomena, such as
related to quantum anomalies which can also be probed
in condensed matter systems [5]. Strong fields are also
essential for the description of highly charged systems,
where the net fermion charge induces strong field

configurations also in equilibrium [6]. While experiments
pioneered by the Stanford Linear Accelerator Center
(SLAC) [7–9] have since been developed further
[10,11], they are not yet able to enter the full strong-field
QED regime by means of lasers. Meanwhile, experiments
employing crystals have been found to be a competitor to
laser experiments [12–15].
For the weak QED coupling α ¼ e2=4π ≈ 1=137 (we use

natural units with ℏ ¼ c ¼ kB ¼ ε0 ¼ 1), the strong-field
regime may be characterized by a photon field that is
parametrically as large as

Aμ ∼Oð1=eÞ: ð1Þ

For a laser field [16] that is described by an electric field
amplitude E and frequency ω, the counting rule (1)
corresponds to a large (Lorentz-invariant) nonlinearity
parameter [15–17],

jejE=ðmωÞ≳ 1: ð2Þ

For a macroscopic photon field that varies on the time scale
of the Compton length 1=m, the counting rule (1) corre-
sponds to electric fields of the order of the critical field,
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E ≳m2=jej≕ Ec; ð3Þ

which induces electron-positron pair creation from the
vacuum [18–22].
Despite the smallness of the QED coupling, the theo-

retical description of strong field phenomena provides
important challenges. Standard simulation techniques, such
as based on Monte Carlo importance sampling, cannot be
applied to general nonequilibrium problems. Rigorous
simulations are difficult even in equilibrium in the presence
of a net fermion charge leading to nonvanishing fields. As a
consequence, the development of suitable approximate
treatments is indispensable.
For instance, the decay times of strong electromagnetic

fields in the medium created by a heavy ion collision and
the role of the fields for the subsequent nonequilibrium
dynamics is still poorly understood. Even the idealized
problem of how an initially supercritical homogeneous
electromagnetic field approaches thermal equilibrium in
QED has not been answered yet. The strong field regime
at early times may be accurately described by classical
statistical field theory techniques [23,24], while the late
time behavior at high temperature in the absence of a
field is successfully described using standard kinetic
theory [25]. In particular, the dynamics of avalanches
in which large amounts of fermions are produced can be
captured by a kinetic approximation of QED [22,26–43].
However, to describe in a single approach the evolution
all the way from strong fields to equilibrium, or in the
presence of a net fermion density, involves the interplay
of strong fields and collisions beyond state-of-the-art
approximations [44].
As an important step in this direction, we derive in this

work, dynamical equations for strong fields in a kinetic
description including collisional processes to order Oðe2Þ.
Our ab initio derivation starts from nonequilibrium quan-
tum field theory on a closed time path [45,46]. We derive
coupled equations for the spatiotemporal evolution of the
field expectation value and correlation functions for com-
mutators and anticommutators of fields using two-particle
irreducible (2PI) generating functional techniques [47,48].
The expectation values of field commutators (anticommu-
tators) for bosons (fermions) describe the spectral functions
of excitations, whereas their anticommutators (commuta-
tors) characterize their transport behavior.
Applying a gradient expansion for two-point functions,

we derive a kinetic description where the strong-field
scattering kernel couples the transport equations for photons
and fermions to an equation for the fermion spectral
function. The latter includes strong-field off-shell corrections
in a self-consistent way. Our description incorporates the
processes of single photon emission, electron-positron pair
photoproduction, vacuum pair production, their inverse
processes, medium effects and contributions from the field
going beyond the so-called locally-constant crossed field

approximation (LCFA) [16]. In fact, we show that our
approximation order already captures the complete explicit
field dependence of the problem. To make further contact
with the literature, we also consider plane-wave fields.
Plane-wave degrees of freedom are identified and it is
shown how to recover Furry-picture scattering amplitudes.
Our description extends known kinetic equations com-

monly used in strong-field QED of intense laser fields and
can be applied, in particular, to strongly inhomogeneous
field configurations. Earlier approaches include collisionless
approximations, e.g., Refs. [20,49–51] such as employed to
strong-field pair production by a source term [52,53].
Collisional descriptions assuming subcritical or weak fields
can be found in Refs. [22,25,54–62]. Fermion spectral
dynamics in the presence of a macroscopic field in the
nonrelativistic (subcritical) regime have been used in
Refs. [58–60] (see also Refs. [63,64] for strong fields in
scalar theory). Collisional approaches either based on the
classical statistical approximation [65–67], or by the use of a
field-independent linear (‘relaxation-time’) collision term
[68] have been given. There are also particle-in-cell schemes
[69], which assume the validity of the Lorentz equation
between collisions and incorporate several quantum effects
by strong-field scattering amplitudes [17,70,71].
The structure of this paper is the following. We introduce

the nonequilibrium equations of motion for one- and two-
point correlation functions in Sec. II. The ingredients for a
kinetic limit of these equations are discussed in Sec. III. We
establish the systematics of counting couplings and gra-
dients in the presence of a strong field, and present general
strong-field transport equations in Sec. IV. In Sec. V we
point out which additional physical assumptions are nec-
essary to reduce the collision kernels of our transport
equations to various known expressions and kinetic equa-
tions in the literature and how to describe strong-field pair
production in our formalism. We conclude and give an
outlook in Sec. VI.

II. NONEQUILIBRIUM QED

All possible information about the dynamics of quantum
fields is contained in their correlation functions. The latter
can be efficiently encoded in terms of a quantum effective
action, which is the generating functional for time ordered
field correlation functions. Here we employ the two-
particle irreducible effective action Γ½A; D;Δ�, which is
a functional of the macroscopic field expectation value

AμðxÞ ¼ Trfρðt0ÞAμðxÞg≕ hAμðxÞi; ð4Þ

with Heisenberg gauge field operator AμðxÞ for given
density operator ρðt0Þ at initial time t0, as well as of the
time-ordered connected two-point correlation functions

Dμνðx; yÞ ¼ hT CAμðxÞAνðyÞi − hAμðxÞihAνðyÞi; ð5Þ
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Δðx; yÞ ¼ hT CΨðxÞΨ̄ðyÞi; ð6Þ

for gauge fields and Dirac fermions with fermion field
operators Ψ and Ψ̄ ≔ Ψ†γ0, where we suppress spinor
indices. The expectation value of the fermion field Ψ
vanishes identically for the dynamics considered and plays
no role in the following. The symbol T C denotes contour
time ordering on the closed time path C [46], which starts at
initial time t0 and runs along the time axis and back as
indicated in Fig. 1.
Together with a nonthermal, ρðt0Þ ≠ e−βH, and not time-

translation-invariant, ½ρðt0Þ; H� ≠ 0, density matrix the
contour can be used to facilitate a compact formulation
of quantum field theory as an initial value problem that
describes nonequilibrium physics.
It is convenient to write the 2PI effective action

as [72–75]

Γ½A;D;Δ� ¼ S½A�− iTrC lnΔ−1− iTrCΔ−1
0 ½A�Δ

þ i
2
TrC lnD−1þ i

2
TrCD−1

0 DþΓ2½D;Δ�; ð7Þ

where TrCG ≔
R
x;C Gðx; xÞ. This identifies the pure gauge

field part of the gauge-fixed classical QED action

S½A� ¼
Z
x;C

�
−
1

4
F μνðxÞF μνðxÞ −

1

2ξ
G2½A�ðxÞ

�
; ð8Þ

with the gauge-invariant field strength tensor

F μνðxÞ ¼ ∂μAνðxÞ − ∂νAμðxÞ ð9Þ

and gauge-fixing parameter ξ. We use Lorenz gauge,

G½A� ≔ ∂ ·A; ð10Þ

and keep in mind the possibility for residual gauge fixing.
If computed within the 2PI loop expansion introduced

below without a further kinetic limit, correlation functions
such as (4) depend on the gauge-fixing parameter ξ (see
also Sec. IV E). This gauge-fixing dependence occurs at a
higher perturbative order in the coupling than the actual
approximation order [76–78] and can be absent in the limit
of on-shell photons relevant for kinetic descriptions [79]
[see also Eq. (101)]. In the present paper, we discuss this in
the context of Ward identities in the presence of strong
fields in Sec. V E 2, where we show that the gauge-fixing
parameter drops out in limiting cases.

The semi-classical or ‘one-loop’ terms in (7) contain the
classical photon and fermion propagators

iD−1
0;ξðx; yÞμν ¼ ½ημν□x − ð1 − 1

ξÞ∂μ
x∂ν

x�δCðx − yÞ; ð11Þ

iΔ−1
0 ½A�ðx; yÞ ¼ ½i=∂x − eAðxÞ −m�δCðx − yÞ; ð12Þ

in the presence of the macroscopic gauge field
with A ≔ γμAμ etc. Our metric convention is ημν ¼
diagðþ1;−1;−1;−1Þ.
The benefit of the decomposition identity (7) for the full

quantum effective action Γ½A; D;Δ� is that the remaining
functional Γ2½D;Δ� exhibits specific properties that are
very useful for the following. For QED, Γ2 is the sum of all
2PI contributions built from the full two-point functions D
and Δ and there is no explicit dependence on the macro-
scopic fieldA, which is further discussed below. A diagram
is 2PI if it cannot be disconnected by cutting two propa-
gator lines (see Fig. 2).
The 2PI functional integral approach provides a pre-

scription on how to close equations in terms of one- and
two-point correlation functions only. Such a correlation
function based description may be used to initialize the
system for instance with vanishing photon and fermion
particle number, described by connected two-point func-
tions, but large electromagnetic field or vice versa.
Furthermore, the 2PI formulation is known to facilitate a

derivation of kinetic equations [80,81] and may be trans-
formed into other common formulations; Wigner trans-
formations of 2PI two-point functions allow one to make
contact with the Wigner operator formalism [50,51,82–85].
In particular, equal-time Wigner functions emerge from
integration over frequencies [51]. In this way one is also
able to make contact with the equal-time Dirac-Heisenberg-
Wigner (DHW) formalism [20,86] which has been applied
to the discussion of pair production from collisionless
equations. Such quantum Vlasov equations [20,53,68,
87–90] emerge under the so-called ‘mean-field’ (or
‘Hartree-Fock’) approximation, Γ2 ≈ 0. In an operator
formulation, this approximation allows one to close oper-
ator equations by treating photon operators classically, at
the cost of losing access to collisions. In the 2PI formu-
lation, one can easily go beyond this mean-field order e.g.,
by means of the 2PI loop expansion as is discussed below.
This way of arriving at a kinetic description starting from

FIG. 2. Examples of 2PI and two-particle reducible diagrams.

FIG. 1. The closed time path.
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an effective action formulation has the additional advantage
that observables derived from that effective action also
become accessible under the kinetic approximation.

A. Equations of motion

The equations of motion for the full one- and two-point
functions AμðxÞ, Dμνðx; yÞ, Δðx; yÞ appearing in the 2PI
effective action (7) are obtained from the stationarity
conditions1

δΓ
δA

¼ 0;
δΓ
δD

¼ 0;
δΓ
δΔ

¼ 0: ð13Þ

These are coupled partial integro-differential equations for
the one- and two-point functions on the closed time contour.
From them emerge a Maxwell equation, and photon and
electron-positron transport equations respectively.
In order to discuss the equations of motion, it is

convenient to make the time ordering explicit by writing

Dμνðx; yÞ ¼ Fμνðx; yÞ − i
2
ρμνðx; yÞsgnCðx0 − y0Þ; ð14Þ

Δðx; yÞ ¼ FΨðx; yÞ −
i
2
ρΨðx; yÞsgnCðx0 − y0Þ: ð15Þ

After splitting the equations of motion into equations for
the ‘statistical functions’ (F) and ‘spectral functions’ (ρ),
the contour C no longer appears and a clear separation into
transport and spectral dynamics is achieved. These func-
tions have distinct hermiticity properties,

Fμνðx; yÞ ¼ Fνμðy; xÞ; ð16Þ

ρμνðx; yÞ ¼ −ρνμðy; xÞ; ð17Þ

FΨðx; yÞ ¼ γ0F†
Ψðy; xÞγ0; ð18Þ

ρΨðx; yÞ ¼ −γ0ρ†Ψðy; xÞγ0: ð19Þ

These properties are related to the underlying (anti)
commutator representations in terms of Heisenberg field
operators:

Fμνðx; yÞ ≔ 1

2
hfAμðxÞ; AνðyÞgi − hAμðxÞihAνðyÞi; ð20Þ

ρμνðx; yÞ ≔ ih½AμðxÞ; AνðyÞ�i; ð21Þ

FAB
Ψ ðx; yÞ ≔ 1

2
h½ΨAðxÞ; Ψ̄BðyÞ�i; ð22Þ

ρABΨ ðx; yÞ ≔ ihfΨAðxÞ; Ψ̄BðyÞgi: ð23Þ

In particular, the equal-time (anti) commutation rules are
encoded in the spectral functions according to

δCðx0 − y0Þρμνðx; yÞ ¼ 0; ð24Þ

δCðx0 − y0Þ∂x0ρ
μνðx; yÞ ¼ −δCðx − yÞημν; ð25Þ

δCðx0 − y0Þiγ0ρABΨ ðx; yÞ ¼ −δCðx − yÞδAB: ð26Þ

These equal-time conditions imply that spectral functions
are normalized and that their initial conditions are fixed by
the underlying quantum theory.
An important simplification in Abelian theories such as

QED occurs because of the absence of 2PI one-point
function diagrams, such that Γ2½D;Δ� does not explicitly
depend on A: The electromagnetic field expectation value
enters the 2PI effective action for QED via the ‘classical
vertex’ term

−ieγμAμðxÞδCðx − yÞ; ð27Þ

which can be depicted graphically as in Fig. 3.
Such a contribution cannot be found in the 2PI diagrams

contributing to Γ2 since the two fermion lines emanating
from the vertex could always be cut, thus making any such
diagram two-particle reducible (see also Fig. 2).
For QED, the macroscopic field therefore enters the 2PI

effective action (7) only via the classical fermion propa-
gator Δ0½A� and the classical action S½A�, while Γ2 is field
independent. Since 2PI diagrams are at least two-loop,
this implies that the complete explicit macroscopic field
dependence enters at one-loop order of Γ,

δΓ
δA

����
FΨ

¼ 0 ⇔
δΓð1-loopÞ

δA

����
FΨ

¼ 0: ð28Þ

Consequently, the field evolution equation always has a
Maxwell-type form, i.e.,

�
ημσ□x −

�
1 −

1

ξ

�
∂μ
x∂x

σ

�
AσðxÞ ¼ jμðxÞ; ð29Þ

with the fermion current (see Appendix B)

jμðxÞ ¼ −etrfγμFΨðx; xÞg; ð30Þ

FIG. 3. The macroscopic field vertex.

1These equations are valid in the absence of external source
terms. Sources encoding initial conditions are stated accordingly
together with the differential equations for the fields and
propagators.
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irrespective of the approximation order for Γ2. This would
not be the case, e.g., in QCD or self-interactring Φ4 scalar
field theory, where the two-particle irreducible part of the
effective action depends explicitly on the field expectation
value, such that the form of the field evolution equation
depends strongly on the order of approximation. Because
Γ2 is field-independent in QED, there are no further terms
coming from higher order corrections. Approximations to
Γ2 affect the field evolution only implicitly via FΨ in the
fermion current (30). Furthermore, that each 2PI diagram in
Γ2 is separately gauge-invariant in QED [91] remains true
in the presence of a macroscopic field due to the field-
independence of Γ2.
Notably, a vanishing field is not in general a self-

consistent solution; if the system is initialized with a finite
net charge density, it will develop a field from fermion
fluctuations in the Maxwell equation. This field is then
necessarily inhomogeneous as dictated by Gauss’s law, i.e.,
the 0-component of the Maxwell equation. Therefore, if
the system equilibrates, it has to do so under this constraint
for inhomogeneity.
In the equations of motion for the two-point functions,

explicitly field-independent self-energies are given by

ΣΨ½D;Δ�ðx; yÞ ≔ −i
δΓ2½D;Δ�
δΔðy; xÞ ; ð31Þ

Σμν½D;Δ�ðx; yÞ ≔ 2i
δΓ2½D;Δ�
δDμνðx; yÞ

; ð32Þ

and can be decomposed similarly to two-point functions,

Σμνðx; yÞ ¼ ΣðFÞ
μν ðx; yÞ − i

2
ΣðρÞ
μν ðx; yÞsgnCðx0 − y0Þ; ð33Þ

ΣΨðx; yÞ ¼ ΣðFÞ
Ψ ðx; yÞ − i

2
ΣðρÞ
Ψ ðx; yÞsgnCðx0 − y0Þ: ð34Þ

With these definitions, assuming Gaussian initial condi-
tions, the stationarity conditions for the propagators in
Eq. (13) can be written as2 [93]

½ημσ□x − ð1 − 1
ξÞ∂μ

x∂x
σ�Fσνðx; yÞ

¼
Z

x0

t0

d4zΣðρÞðx; zÞμγFðz; yÞγν

−
Z

y0

t0

d4zΣðFÞðx; zÞμγρðz; yÞγν; ð35Þ

½ημσ□x − ð1 − 1
ξÞ∂μ

x∂x
σ�ρσνðx; yÞ

¼
Z

x0

y0
d4zΣðρÞðx; zÞμγρðz; yÞγν; ð36Þ

½i=∂x − eAðxÞ −m�FΨðx; yÞ

¼
Z

x0

t0

d4zΣðρÞ
Ψ ðx; zÞFΨðz; yÞ

−
Z

y0

t0

d4zΣðFÞ
Ψ ðx; zÞρΨðz; yÞ; ð37Þ

½i=∂x − eAðxÞ −m�ρΨðx; yÞ

¼
Z

x0

y0
d4zΣðρÞ

Ψ ðx; zÞρΨðz; yÞ; ð38Þ

with finite-time integrals
R
x0
t0
d4z ¼ R

x0
t0
dz0

R∞
−∞ d3z. While

the structure of these equations is determined by causality,
details of the underlying theory enter through the differ-
ential operators and self-energies, which couple all spectral
and statistical functions to each other.
The fact that initial conditions for spectral functions

are fixed by the equal-time (anti) commutation relations
(24)–(26), is reflected by the absence of the initial time t0 in
the memory integrals of their equations. In contrast, the
evolution equations for the statistical functions have to be
supplied by initial conditions. Non-Gaussian quantum
fluctuations are built up dynamically but vanish at initial
time, x0 ¼ y0 ¼ t0, by vanishing of the memory integrals.
All equations are considered to be suitably regularized

and the renormalization of the 2PI effective action for
QED is discussed in detail in Ref. [94]. Since we will
finally arrive at a set of finite equations at the level of the
kinetic approximation, renormalization will not be further
discussed and we refer e.g., to Refs. [52,53] for details
concerning dynamics.
The self-energies, encoding collisions, have leading

contributions at Σ;ΣΨ ∼Oðe2Þ. While self-energies have
no explicit dependence on the macroscopic field by their
definition in terms of the field-independent Γ2, fermion
two-point functions introduce an implicit field-dependence
when evaluated from their equations of motion. As we will
demonstrate, strong-field collision kernels are generated
both in photon and fermion kinetic equations in this way.
The macroscopic field enters via the terms eAðxÞ, encoding
in particular the Vlasov terms of fermion transport equa-
tions, which can be any order depending on the strength of
AμðxÞ. By the smallness of the coupling e, these terms
are suppressed in a naive power counting. However, in the
presence of a strong field,AμðxÞ ∼Oð1=eÞ, these terms are
effectively of order eAμðxÞ ∼Oðe0Þ such that the field-
vertex (27) has to be resummed. As the macroscopic field
decays [31,53,95] from its strong-field initial conditions,

2For non-Gaussian initial conditions, additional terms involv-
ing nonlocal interactions at initial time would appear in the
equations of motion [92].
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the system passes through different power counting sce-
narios that are all captured by our strong-field counting.

B. 2PI loop expansion

In order to close the equations (35)–(38) one requires
explicit expressions for the self-energies (31) and (32).
This is achieved by employing a 2PI coupling or ‘loop’
expansion, which expresses Γ2 in terms of resummed
propagators Dμν and Δ and of free vertices. This self-
consistent treatment of propagators selectively resums
perturbative contributions, which helps achieving a non-
secular time evolution with a valid expansion scheme at all
times [93,96]. In such an expansion, Γ2 can be written as

Γ2½D;Δ� ¼ i
2
e2DΔ2V2

0 þ
i
4
e4D2Δ4V4

0 þOðe6Þ; ð39Þ

where we have suppressed all indices and arguments that
are contracted or integrated over. This expansion is dia-
gramatically depicted in Fig. 4.
The explicit expressions obey Feynman rules including

symmetry factors. Only the free QED vertex

Vμ
0;ABðx; y; zÞ ≔ γμABδCðx − zÞδCðz − yÞ ð40Þ

appears.
Correspondingly, the 2PI loop expansion of the self-

energies (31) and (32) is a series of 1PI diagrams with two
amputated external legs, diagramatically depicted in Fig. 5.
The 1PI property of the self-energies can also directly be
understood from the definition of Γ2 as the sum of all
closed 2PI diagrams, from which Σ;ΣΨ are obtained by
opening one propagator line, i.e., by Eq. (31), (32).
As long as photon occupations are not too large, i.e., if

the statistical photon two-point function obeys

Fμν ≪ Oð1=e2Þ; ð41Þ

the power counting of e from vertices in a 2PI loop
expansion can be expected to be a valid approximation
scheme and we can truncate by virtue of the smallness of e.
Similar conditions for the spectral functions always hold
since they are normalized by the equal-time commutation
relations. Since fermion occupancies are limited by Fermi-
Dirac statistics there are no further corresponding con-
straints for the expansion scheme. The condition (41) is
dynamical such that even if the system is initialized with

small occupations, a kinetic description breaks down if too
many photons with the same position and momentum are
produced. Physically, the assumption (41) may be under-
stood as the requirement for a sufficiently long mean free
path in kinetic descriptions; The loop expansion of self-
energies in the kinetic limit is an expansion in the number
of particles involved in a scattering [97–99]. The denser
the medium, the smaller the mean free path, and the more
likely a collision involving many particles. If the medium is
too dense, collisions between arbitrarily many particles
become equally likely, invalidating a truncation in an
expansion of the number of particles.3

We emphasize that these considerations do not directly
limit the size of the macroscopic field: Because of the field-
independence of Γ2, higher order contributions to self-
energies are negligible also in the presence of strong fields
and processes such as eeγγ or eeee scattering do not
contribute to a leading-order (LO) description (see also
Ref. [101]). As long as (41) is fulfilled, the coupling
remains a valid expansion parameter, no matter how large
the field is at that time. Thus we may employ the leading
order of self-energies to obtain a closed description that is
complete at order Oðe2Þ.
The LO of Γ2 ∼Oðe2Þ is

2iΓ2½D;Δ�

¼ −e2
Z
xy;C

trfγμΔðx; yÞγνΔðy; xÞgDμνðx; yÞ þOðe4Þ:

ð42Þ

The corresponding self-energy expressions are

Σμνðx; yÞ ¼ e2trfγμΔðx; yÞγνΔðy; xÞg þOðe4Þ; ð43Þ

ΣΨðx; yÞ ¼ −e2γμΔðx; yÞγνDμνðx; yÞ þOðe4Þ; ð44Þ

where the relative sign originates from the fermion loop in
Σμν. The kinetic equations derived in this paper neglect all

FIG. 4. The first two 2PI loop orders, Oðe2Þ and Oðe4Þ, of the
effective action.

FIG. 5. The first two 2PI loop orders, Oðe2Þ and Oðe4Þ, of the
photon (first line) and fermion (second line) self-energy.

3In O(N) scalar theories, a far-from-equilibrium kinetic de-
scription can nevertheless be formulated on the basis of emergent
degrees of freedom in this highly occupied regime [100].
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higher orders of the 2PI loop expansion.4 In agreement with
the coupling counting in perturbation theory, all possible
crossings of eeγ scattering terms emerge from these Oðe2Þ
self-energies. The following sections are dedicated to
understanding how effective transport and kinetic descrip-
tions emerge from this approach.

III. THE KINETIC LIMIT OF
NONEQUILIBRIUM QED

To express the equations of motion in kinetic degrees
of freedom, we change to center and relative space-time
variables

X ≔
1

2
ðxþ yÞ; s ≔ x − y: ð45Þ

The four-momentum p associated to −i∂s is the momen-
tum that appears in kinetic equations, while X is the kinetic
four-position variable.
The momentum p is introduced by a Wigner transform

with respect to the relative coordinate s. For an evolution
starting at time t0 at which the initial conditions are given,
the Wigner transform of a generic two-point function G
may be written as

Gt0ðX; pÞ ≔
Z

2ðX0−t0Þ

−2ðX0−t0Þ
ds0

Z
d3seipsG

�
X þ s

2
; X −

s
2

�
:

ð46Þ
Here t0 appears in the time integral as a lower boundary for
all time variables. Since initially we have X0 ¼ t0, there are
no relative times to integrate in this case, which preempts a
Wigner transformation starting at initial time. To never-
theless be able to talk about kinetic variables from the initial
time of our kinetic description, we employ a late-time limit
described in the following.

A. Late-time limit

For finite t0 and X0 the integration range for s0 is always
limited. Only if t0 → −∞ the relative time variable s0 can
be infinite, which is required for a proper introduction of
Fourier frequency modes p0. Of course, sending formally
t0 → −∞ while still initializing the evolution at some finite
time implies that a general system is initially not accurately
described by these late-time equations. However, for
sufficiently large X0 compared to the finite initialization
time, the description is expected to become accurate [102].
Therefore, instead of Eq. (46) we consider the late-time
Wigner transform

GðX; pÞ ≔
Z

d4seipsG

�
X þ s

2
; X −

s
2

�
; ð47Þ

which has contributions from all s0 for arbitrary X0.
Equal-point objects such as the fermion current (30)

can be expressed in terms of such late-time Wigner
transforms,

jμðXÞ ¼ −e
Z
p
trfγμFΨðX; pÞg: ð48Þ

The notation
R
p ¼ R

∞
−∞ d4p=ð2πÞ4 for momentum integrals

is used throughout. The canonical equal-time anticommu-
tator (26) in late-time Wigner space is

−iγ0
Z

dp0

ð2πÞ ρΨðX; pÞ ¼ 1; ð49Þ

such that the late-time vector-zero component
1
4
trfγ0ρΨðX;pÞg may be interpreted as a density of
states [103].
In the microscopic description, finite-time Wigner trans-

forms (46) produce factors with finite-width energy-peaks
on correspondingly small timescales [104] that reduce to
delta peaks at late times via

Z
2ðX0−t0Þ

−2ðX0−t0Þ
ds0eiP

0s0 !t0→−∞ ð2πÞδðP0Þ: ð50Þ

In this late-time regime, the interactions of QED may be
described by those of kinetic theory in terms of degrees of
freedom that carry a definite amount of energy.
Applying the late-time limit, t0 → −∞, one can write the

equations of motion (35)–(38) as

½ημσ□x−ð1− 1
ξÞ∂μ

x∂x
σ�Fσνðx;yÞ

¼
Z
z
½Σμσ

R ðx;zÞFσ
νðz;yÞþΣðFÞðx;zÞμσDAðz;yÞσν�; ð51Þ

½ημσ□x−ð1− 1
ξÞ∂μ

x∂x
σ�ρσνðx;yÞ

¼
Z
z
½Σμσ

R ðx;zÞρσνðz;yÞþΣðρÞðx;zÞμσDAðz;yÞσν�; ð52Þ

½i=∂x − eAðxÞ −m�FΨðx; yÞ

¼
Z
z
½ΣΨ;Rðx; zÞFΨðz; yÞ þ ΣðFÞ

Ψ ðx; zÞΔAðz; yÞ�; ð53Þ

½i=∂x − eAðxÞ −m�ρΨðx; yÞ

¼
Z
z
½ΣΨ;Rðx; zÞρΨðz; yÞ þ ΣðρÞ

Ψ ðx; zÞΔAðz; yÞ�; ð54Þ

4We expand Γ2 toOðe2Þ, i.e., to 2PI two-loop order, where the
leading nontrivial scattering occurs in the presence of a non-
vanishing field. At this order the 2PI approach coincides also with
corresponding two-loop approximations for any higher nPI
effective actions with n > 2 [73].
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with
R
z¼

R
d4z, where we have introduced the retarded and

advanced functions for photons and fermions (A5)–(A7)
defined in Appendix A.
Given the multitude of different nonequilibrium two-

point functions, it is important to remember that there are
only two independent two-point functions per field species;
the statistical and spectral functions. However, this can be
invalidated by approximations, in particular, by the pro-
cedure of sending t0 → −∞ while initializing the equations
at a finite time. Wigner functions that include small
frequencies via (47) may appear independent of each other
because of spurious small frequency contributions that, in
an exact description employing finite-time Wigner trans-
forms (46), do not yet exist at early times [105,106].

B. Gradient expansion

As a next step in the derivation of kinetic equations, one
considers an expansion in the Lorentz-invariant and dimen-
sionless parameter ðs · ∂XÞ. An expansion in propagator-
gradients is achieved by the late-time identity [102]

Z
s
eip·sðΣ �GÞ

�
X þ s

2
; X −

s
2

�

¼ exp

�
i
2

� ∂
∂pσ

∂
∂X0σ −

∂
∂p0

σ

∂
∂Xσ

��

× ΣðX; pÞGðX0; p0ÞjX0¼X;p0¼p; ð55Þ

which applies to photon and fermion convolutions

ðΣ �GÞμνðx; yÞ ≔
Z
z
Σμ

σðx; zÞGσνðz; yÞ; ð56Þ

ðΣΨ �GΨÞðx; yÞ ≔
Z
z
ΣΨðx; zÞGΨðz; yÞ: ð57Þ

Expansion of the exponential in Eq. (55) corresponds to an
expansion in ð∂p · ∂XÞ, i.e., a gradient expansion in Wigner
space. While the LO simply replaces the Wigner transform
of convolutions by products of Wigner transforms, an
expansion to next-to-leading order (NLO) in propagator-
gradients would involve Poisson brackets,

½Σ; G�PBðX;pÞ ≔
∂ΣðX; pÞ

∂pσ

∂GðX; pÞ
∂Xσ

−
∂ΣðX; pÞ

∂Xσ

∂GðX; pÞ
∂pσ : ð58Þ

The truncated gradient expansion leads to equations that are
irreversible and local in central time X0, as in the case of
kinetic equations. Still, gradient expanded 2PI equations
contain parts of the memory integrals of the fundamental
equations and are nonlocal in relative time s0. This allows
for access to unconstrained frequency variables, which are

not present in traditional kinetic descriptions as further
discussed in the following sections.
The smallness of the expansion parameter ðs · ∂XÞ can be

met in several circumstances.5 Quantum field dynamics
often becomes insensitive to its past, such that correlations
are dominated by small s [107–110]. From the perspective
of the spectral function, this damping of correlations in time
corresponds to the emergence of a particle picture in
momentum space [111,112]. Furthermore, assuming that
ðs · ∂XÞ is small depends on what the derivative acts on. In
the following, we neglect only gradients of two-point
functions G, by dropping Poisson brackets

½Σ½G�; G�PB ∼Oðe2∂p · ∂XGÞ; ð59Þ

while formally keeping gradients of the gauge-invariant
field strength tensor, ðs · ∂XÞjeF μνðXÞ ∼Oðe0ðs · ∂XÞjÞ, to
all orders. That is, we count field-gradients as ðs · ∂XÞF μν∼
F μν and propagator-gradients as ðs · ∂XÞG ≪ G. This
allows us to treat a large class of far-from-equilibrium
initial conditions of the macroscopic field. Approximations
to field-gradients are then discussed in Secs. VA and V F 2,
where we make contact with the locally-constant field
approximation.
However, field-gradients may be implicit in propagator

solutions (see also Sec. V F 2 for the example of plane-
wave fields). Given an explicit field-dependent solution for
a two-point function, for example of the form

G−1
Ψ ½A� ∼ =p − eA −m; ð60Þ

different gradients may be related via

G−1
Ψ ðs · ∂XÞGΨ

A−1ðs · ∂XÞA
∼

−eA
=p − eA −m

: ð61Þ

In fact, the separation of field and propagator-gradients
that is possible at the level of the equations of motion does
not ensure that the ratio (61) is small. Nevertheless, we can
observe from Eq. (61) that large fermion momenta can
facilitate such a separation. When solving the kinetic
equations for inhomogeneous fields derived below, the
smallness of the ratio (61) should be checked.

C. Distribution functions

1. Reduction of tensor structures

An identication of the linearly independent components
of the fermion or photon correlation functions follows from

5In the absence of a temperature far from equilibrium, no
single scale may be associated to s. In this case, the near-
equilibrium counting of dimensionful gradients ∂X ∼ e2T of
Ref. [56] may not be used to argue for the smallness of ðs · ∂XÞ.
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their Lorentz transformation properties. For instance, the
statistical fermion correlator can be decomposed as

FΨ ¼ FΨ;S þ γμF
μ
Ψ;V þ iγ5FΨ;P − γ5γμFΨ;A þ 1

2
σμνF

μν
Ψ;T;

ð62Þ

in terms of the scalar (FΨ;S), vector (F
μ
Ψ;V), pseudovector

(FΨ;P), axial-vector (FΨ;A) and tensor (Fμν
Ψ;T) components

FΨ;S ≔
1

4
trf1FΨg; ð63Þ

Fμ
Ψ;V ≔

1

4
trfγμFΨg; ð64Þ

iFΨ;P ≔
1

4
trfγ5FΨg; ð65Þ

Fμ
Ψ;A ≔

1

4
trfγ5γμFΨg; ð66Þ

Fμν
Ψ;T ≔

1

4
trfσμνFΨg; ð67Þ

with respect to the Dirac basis f1; γμ; γ5; γ5γμ; σμνg where
μ < ν and with γ5 ≔ − i

4!
εμνρσγ

μγνγργσ and σμν ≔ i
2
½γμ; γν�.

Below, we often drop the label ‘V’ for the vector
component.
In the presence of chiral symmetry (facilitated by

massless fermions or ultrarelativistic momenta), scalar,
pseudoscalar and tensor components vanish identically
[108]. If a description in terms of free particles is valid,
the axial component of the free fermion spectral function
would also vanish.
Similar comments apply to the photon distribution

function and a decomposition of the Lorentz tensor
structures of the photon equations of motion in the presence
of a macroscopic field can be achieved with the basis
discussed in Refs. [113,114].
With this in mind, one could write without loss of

generality for each component of FΨðX; pÞ:

FΨ;SðX;pÞ ¼ −i
�
1

2
− fΨ;SðX; pÞ

�
ρΨ;SðX; pÞ; ð68Þ

Fμ
Ψ;VðX; pÞ ¼ −i

�
1

2
− fΨ;VðX; pÞ

�
ρμΨ;VðX; pÞ; ð69Þ

FΨ;PðX;pÞ ¼ −i
�
1

2
− fΨ;PðX; pÞ

�
ρΨ;PðX; pÞ; ð70Þ

Fμ
Ψ;AðX; pÞ ¼ −i

�
1

2
− fΨ;AðX; pÞ

�
ρμΨ;AðX; pÞ; ð71Þ

Fμν
Ψ;TðX;pÞ ¼ −i

�
1

2
− fΨ;TðX; pÞ

�
ρμνΨ;TðX; pÞ: ð72Þ

The change from a description in terms of FΨ;S…TðX; pÞ to
a formulation in terms of fΨ;S…TðX; pÞ is convenient
because in characteristic limits fΨ;S…TðX; pÞ can be inter-
preted as distribution functions.
In particular, in thermal equilibrium all distribution

functions are time independent and equal the Fermi-
Dirac distribution, i.e., fΨ;S…Tðp0Þ ¼ 1=ðeβp0 þ 1Þ (and
correspondingly a Bose-Einstein distribution for the photon
case). For a thermal theory this is valid no matter how
strong the interactions are and holds even in the absence
of a dispersion relation between frequency and spatial
momenta, p0 ¼ ωðp⃗Þ.
Phenomena such as the chiral magnetic effect [115–118],

chiral kinetic theory [119–123] or spin transport [124]
should become accessible from first principles by using
(68)–(72) in the equations of motion (51)–(54). How-
ever, for our current purposes of strong-field kinetic
equations and to make contact with existing limiting
cases in the literature, we consider a single distribution
function fΨðX;pÞ for fermions and fðX; kÞ for photons by
writing [93,125]

FμνðX; kÞ ¼ −i
�
1

2
þ fðX; kÞ

�
ρμνðX; kÞ; ð73Þ

FΨðX; pÞ ¼ −i
�
1

2
− fΨðX; pÞ

�
ρΨðX; pÞ: ð74Þ

For the fermion distribution function one has Pauli’s
principle [108],

fΨðX; pÞ ≤ 1: ð75Þ

In order to distinguish fermion and antifermion distribution
functions, it is convenient to define [126]

fΨðX;pÞ≕ θðp0Þf−ΨðX;pÞ þ θð−p0Þ½1 − fþΨðX;−pÞ�:
ð76Þ

In a charge conjugation invariant system, the fermion
distribution function obeys [73,74]

−½fΨðX;−pÞ − 1� ¼ fΨðX; pÞ ðif CP-invariantÞ; ð77Þ

such that the system is charge neutral,

fþΨðX; pÞ ¼ f−ΨðX; pÞ ðif CP-invariantÞ: ð78Þ

While the vacuum is CP-invariant, the general initial con-
ditions which we want to discuss in this paper break CP-
invariance by introducing a net total charge, such that
fþΨ ≠ f−Ψ. The photon identity analogous to (77) reads [73,74]
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−½fðX;−kÞ þ 1� ¼ fðX; kÞ ð79Þ

and does not rely on CP-invariance.

2. On-shell particle picture

In general, the distribution functions introduced in
Eqs. (73) and (74) depend on the off-shell frequency
variable p0 that is not restricted to any dispersion relation,
p0 ≠ ωðp⃗Þ. However, they only appear in combination with
the respective spectral function. As a consequence, if the
physics can be approximately described by free spectral
functions

ρμν0;ξðX; kÞ ¼ ið2πÞ
�
ημν − ð1 − ξÞ 1

k2
kμkν

�
sgnðk0Þδðk2Þ;

ð80Þ

ρΨ;0ðX; pÞ ¼ ið2πÞð=pþmÞsgnðp0Þδðp2 −m2Þ; ð81Þ

then the distribution functions can be restricted to their on-
shell values. Whether an on-shell description is possible
is determined self-consistently by solving the equations of
motion (52) and (54) for the spectral functions. At initial
time, the photon (fermion) spectral functions are deter-
mined by the equal-time (anti) commutation rules and each
subsequent time step is determined by the equations of
motion. If and when on-shell spectral functions emerge
depends on timescales and initial conditions for statistical
propagators and the macroscopic field. As we argue in
Sec. IV B, the free fermion spectral function (80) is in fact
not complete at order Oðe2Þ in the presence of general
strong fields, AμðxÞ ∼ 1=e, such that a standard on-shell
kinetic description breaks down. Instead, we propose in this
paper a less restrictive ‘transport’ description that includes
off-shell frequencies of fermions (but not of photons) in
terms of the off-shell distribution function fΨðX; pÞ.
The frequency dependence of this function is then deter-
mined dynamically by the equations of motion and inde-
pendently of its momentum dependence p⃗. An electron and
positron particle picture is assumed only in Sec. V B to
compute particle production at asymptotic times when the
field has decayed.
With this application in mind, it is instructive to compute

the fermion current (48) for the free fermion spectral
function (80), i.e.,

j0ðXÞ ¼ −2e
Z

d3p
ð2πÞ3 ½f

þ
ΨðX;−p⃗Þ − f−ΨðX; p⃗Þ�; ð82Þ

jiðXÞ ¼ −2e
Z

d3p
ð2πÞ3

pi

εðp⃗Þ ½1 − fþΨðX;−p⃗Þ − f−ΨðX; p⃗Þ�;

ð83Þ

with on-shell electron and positron distribution functions,

f−ΨðX; p⃗Þ ≔ f−ΨðX; pÞ at p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2

q
; ð84Þ

fþΨðX;−p⃗Þ ≔ fþΨðX;−pÞ at p0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2

q
: ð85Þ

The zero component (82) can be interpreted in terms of the
conserved electric charge

QðX0Þ ≔
Z

d3Xj0ðXÞ ð86Þ

which then reads on shell

QðX0Þ ¼ 2e
Z
X⃗;p⃗

½f−ΨðX; p⃗Þ − fþΨðX;−p⃗Þ�: ð87Þ

Similarly, on shell, ji gives rise to the fermion pair
number density

nΨðXÞ ≔
Z
p⃗
½f−ΨðX; p⃗Þ þ fþΨðX;−p⃗Þ�: ð88Þ

which is related to the total pair number via

NΨðX0Þ ≔
Z

d3XnΨðXÞ: ð89Þ

This expression will serve us to define an asymptotic
particle number of strong-field systems in Sec. V B.
In contrast to the fermion case, the photon spectral

function may be set to its free form also in the presence of a
strong field (see Sec. IVA). We can then identify the on-
shell photon distribution functions of kinetic theory by
integrating over frequency k0, i.e.,

fðX; k⃗Þ ≔
Z

∞

0

dk02k0fðX; kÞδðk2Þ

¼ fðX; kÞjk0¼jk⃗j; ð90Þ

as we discuss below. The total number of photons is then

NðX0Þ ≔
Z
X⃗;k⃗

fðX; k⃗Þ: ð91Þ

IV. STRONG-FIELD QED TRANSPORT
EQUATIONS

We now apply the procedure of Sec. III to the
equations of motion (51)–(54) for the statistical and
spectral functions and the equation of motion (29) for
the macroscopic field. To ease the notation, we refer to the
left-hand sides of the two-point function equations as
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ðFLHSÞμνðx; yÞ, ðρLHSÞμνðx; yÞ and ðFLHSÞΨðx; yÞ,
ðρLHSÞΨðx; yÞ respectively, and similarly to the right-hand
sides (‘RHS’) or to entire equations (‘EOM’).
To reveal the ’gain-minus-loss’ structure of collision

terms, we identify the ‘þ − = −þ’ or ‘Wightman func-
tions’ (defined in Appendix A) by making use of the
identity

ΣðρÞðX; kÞμσFσ
νðX; kÞ − ΣðFÞðX; kÞμσρσνðX; kÞ

¼ −iðΣ−þðX; kÞμσDþ−ðX; kÞσν
− Σþ−ðX; kÞμσD−þðX; kÞσνÞ; ð92Þ

and an analagous identity for fermions. Then Eqs. (73)
and (74) can be expressed in terms of the Wightman
functions as

Dþ−ðX; kÞμν ¼ −i½1þ fðX; kÞ�ρμνðX; kÞ; ð93Þ

D−þðX; kÞμν ¼ −ifðX; kÞρμνðX; kÞ; ð94Þ

Δþ−ðX; pÞ ¼ −i½1 − fΨðX; pÞ�ρΨðX; pÞ; ð95Þ

Δ−þðX; pÞ ¼ ifΨðX; pÞρΨðX; pÞ: ð96Þ

From the ‘þ−’ functions, one readily observes the appear-
ance of Bose-enhancement terms ð1þ fðX; kÞÞ for photons
and Pauli-blocking terms ð1 − fΨðX; pÞÞ for fermions. In
collision terms, these emerge attached to outgoing particles,
while ingoing photons and fermions, associated with ‘−þ’
functions, are not distinguished in terms of their statistics.

A. Photon spectral function and gauge-fixing
independent photon drift term

The photon transport equation is related to the evolution
equation of the statistical photon propagator via

Z
d4ðx − yÞeikðx−yÞ 1

4
ημν

× ½ðFEOMÞμνðx; yÞ − ðFEOMÞνμðy; xÞ�; ð97Þ

i.e., by a Wigner transformation of Lorentz-traced
differences. Combined with the change of variables to X
and p, the Boltzmann derivative operator is recovered
from the d’Alembertian in a Lorentz-invariant way by
the identity

□x −□y ¼ 2ð∂s · ∂XÞ ↔ −2iðk · ∂XÞ: ð98Þ

By use of the convolution identity (55) at LO gradient
expansion as well as of symmetry properties of the Wigner
transforms given in Appendix A, one finds that Eq. (97)
reads

−i
1

4

�
2ðk ·∂XÞημσ−

�
1−

1

ξ

��
kμ

∂
∂Xσþkσ

∂
∂Xμ

��
FμσðX;kÞ;

¼−i
1

4
½Σ−þðX;kÞμσDþ−ðX;kÞσμ

−Σþ−ðX;kÞμσD−þðX;kÞσμ�þOðe2∂k ·∂XGÞ: ð99Þ

The tracing over Lorentz indices reduces the ten equations
for the components of Fμν to a single scalar equation. In
combination with the introduction of the distribution func-
tions (73) and (74), which reduces the amount of independent
tensor structures, (99) is then sufficient to close the dynamics.
This transport equation (99) is valid to all orders in the

coupling of the 2PI loop expansion. To obtain a leading order
collision term, we neglect terms of order Oðe4Þ to this
equation. There are two types of such higher order terms:
a) terms of orderOðe4Þ in Γ2 discussed in Sec. II B; b) terms
of order Oðe2Þ in equations of motion for spectral functions
contributing to the transport equations only at order
Oðe4Þ. Terms of the latter type appear in the analogous
expression (97) for the photon spectral function, i.e.

− i
1

4

�
2ðk ·∂XÞημν−

�
1−

1

ξ

��
kμ

∂
∂Xνþkν

∂
∂Xμ

��
ρμνðX;kÞ

¼ 0þOðe2Þ: ð100Þ
The Oðe2Þ terms of this equation contribute only at order
Oðe4Þ to the transport system, because the self-energies
in Eq. (99) are already of order Oðe2Þ themselves, before
being multiplied with the photon two-point function con-
taining ρμν. It is therefore sufficient at orderOðe2Þ to employ
the free Oðe0Þ solution of Eq. (100) in transport equations.
In this way, transport equations self-consistently resum
statistical functions, but not spectral functions. The addi-
tional ‘collisional broadening’ of spectral peaks, that does
not enter the LO strong-field transport description explicitly,
can then be estimated from its solutions e.g., by evaluating
spectral self-energies in terms of distribution functions or
computing the decay rate. The gradient expansion further
supports this special treatment of spectral functions, as we
discuss in Appendix C.
Employing the free photon spectral function (80) by this

reasoning, the gauge-fixing dependence of the LHS of
the photon transport equation (99) drops out due to a
cancellation between ðDμν

0;ξÞ−1 and ρμν0;ξ,

− i
1

4

�
2ðk ·∂XÞημσ−

�
1−

1

ξ

��
kμ

∂
∂Xσþkσ

∂
∂Xμ

��
FμσðX;kÞ

¼−ið2πÞsgnðk0Þδðk2Þ2ðk ·∂XÞfðX;kÞþOðe2∂p ·∂XGÞ:
ð101Þ

To obtain Boltzmann-type equations, one finally inte-
grates over frequencies k0, leading to the appearance of the
on-shell distribution functions fðX; k⃗Þ defined in (90),
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Z
∞

0

dk0

ð2πÞ
Z

d4ðx−yÞeikðx−yÞ1
4
ημν

× ½ðFLHSÞμνðx;yÞ−ðFLHSÞνμðy;xÞ�

¼−i
� ∂
∂X0

þ k⃗

jk⃗j
·
∂
∂X⃗

�
fðX;k⃗ÞþOðe2∂k ·∂XGÞ; ð102Þ

where we have made use of (101). This integration
explicitly reduces the information that is redundant because
an on-shell dispersion relation is valid for photons.

B. Fermion spectral function

Similarly to the photon case discussed around Eq. (100),
terms that are of order Oðe2Þ in

ði=∂x − eAðxÞ −mÞρΨðx; yÞ ¼ 0þOðe2Þ; ð103Þ

contribute only at order Oðe4Þ to the transport right-hand
side that is already of order Oðe2Þ itself. Crucially, the
field-dependent term in Eq. (103) is of order Oðe0Þ for
strong fields and may thereby not be neglected in theOðe2Þ
transport description. In particular, this implies that a
simple fermion particle picture may not exist in general
strong-field systems. From a kinetic perspective, this is the
essential way in which strong-field systems differ from
weak-field systems that may still be described by free
fermion spectral functions.
The Oðe0Þ solution ρ̄Ψ½A� of Eq. (103) has a functional

dependence only on the macroscopic field Aμ. This is in
contrast to the exact spectral solution which would be a
functional also of FΨ, Fμν and ρμν. Nevertheless, because
of the field independence of self-energies, the approxi-
mate spectral equation (103) contains the complete
explicit field dependence. This includes in particular
infinite orders of field gradients. For instance, the traced
LHS reads

Z
d4ðx − yÞeipðx−yÞ 1

4
tr½ðρLHSÞΨðx; yÞ

þ γ0ðρLHSÞ†Ψðy; xÞγ0�

¼ i
∂

∂Xμ ρ
μ
Ψ;VðX; pÞ þ e

X∞
n¼0

1

ð2nþ 1Þ!
1

22n

× ½ði∂p · ∂XÞ2nþ1AμðXÞ�ρμΨ;VðX; pÞ: ð104Þ

In spacetime regions where the field vanishes, one
recovers from Eq. (103) the free particle description
(80), i.e., ρ̄Ψ½A ¼ 0� ¼ ρΨ;0. Equation (103) may therefore
be understood as the strong-field generalization of a
fermion particle picture. In particular, since the difference
between ρΨ;0 and ρ̄Ψ½A� is of order OðeAÞ, one would be
allowed to exchange the two in a leading order description

for weak fields in accordance with a near-equilibrium
quasiparticle picture [127,128].
Rephrasing the equation of motion for the fermion

spectral function into an equation for the retarded propa-
gator, ΔRðx; yÞ ≔ θðx0 − y0ÞρΨðx; yÞ, one finds that

½=p −m − ΣRðX;pÞ�ΔRðX; pÞ

≃ −1þ e
Z
k
ĀðX; kÞΔRðX; pþ kÞ þOðe2∂p · ∂XGÞ;

ð105Þ

with Āμðx; yÞ ≔ 1
2
½AμðxÞ þAμðyÞ�. In the zero-field case,

this equation implies that the spectral function has a peaked
shape with a ‘width’ given by the square of the spectral
Oðe2Þ self-energy [129]

−iΣðρÞ
Ψ ðX;pÞ ¼ e2

Z
q;k
ð2πÞ4δðk − pþ qÞ

× ½1 − fΨðX; qÞ þ fðX; kÞ�
× γμρΨðX; qÞγνρμνðX; kÞ; ð106Þ

which is indeed Oðe4Þ, as anticipated by our counting of
couplings in the equations of motion. In the strong-field
case, the off-diagonal momentum structure of the field
term in Eq. (105) highlights the absence of a simple peak
structure of general solutions of Eq. (103). Equation (105)
further shows that the physical reason for this more
complex structure is a four-momentum exchange between
the retarded fermion propagator and the macroscopic field.
We give an analytical solution of Eq. (103) under

the assumption of strong external plane wave fields in
Sec. V D, which allows us to showcase the appearance of
exponentials expðOðeAÞÞ, that resum the field vertex (27)
as desired. By employing the solution ρ̄Ψ½A� of Eq. (103) in
transport equations, one recovers Oðe2Þ strong-field scat-
tering amplitudes in limiting cases (see Sec. V E 2). A
particle picture emerges only in special cases and can
change with time (see Sec. V H).

C. Strong-field photon transport equation

1. Collision term

To obtain the Oðe2Þ strong-field photon collision term
from the expression (99) we need the leading order self-
consistent photon self-energies, i.e.,

Σþ−
μν ðX; kÞ ¼ e2

Z
p;q

ð2πÞ4δðk − pþ qÞ

× ½1 − fΨðX;pÞ�fΨðX; qÞ
× trfγμρΨðX; pÞγνρΨðX; qÞg þOðe4Þ;

ð107Þ
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Σ−þ
μν ðX;kÞ¼e2

Z
p;q

ð2πÞ4δðk−pþqÞ

×fΨðX;pÞ½1−fΨðX;qÞ�
×trfγμρΨðX;pÞγνρΨðX;qÞgþOðe4Þ: ð108Þ

The structure of the strong-field photon transport equation
is that of Eq. (97) integrated over positive frequencies,R
∞
0 dk0=ð2πÞ. Spectral functions are evaluated from their
equations of motion with the reasoning discussed in the
previous paragraphs, i.e.,

ρΨðX;pÞ → ρ̄Ψ½A�ðX; pÞ; ð109Þ

ρμνðX; kÞ → ρμν0;ξðX; kÞ; ð110Þ

where ρ̄Ψ½A� denotes the solution of Eq. (103). The Oðe2Þ
photon transport equation then reads

� ∂
∂X0

þ k⃗

jk⃗j
·
∂
∂X⃗

�
fðX; k⃗Þ ¼ C½A�ðX; k⃗Þ

þOðe2∂k · ∂XGÞ þOðe4Þ;
ð111Þ

where the Oðe2Þ strong-field photon collision term is

C½A�ðX; k⃗Þ ¼ e2
Z

∞

0

dk0
Z
p;q

ð2πÞ6δðk − pþ qÞ

× ffΨðX; pÞ½1 − fΨðX; qÞ�½1þ fðX; kÞ�
− ½1 − fΨðX; pÞ�fΨðX; qÞfðX; kÞg
× fP½A�ðX; p; q; kÞ − Pξ½A�ðX; p; q; kÞg;

ð112Þ
with the trace

P ≔ Pμ
μ; ð113Þ

and the longitudinal projection

Pξ ≔ ð1 − ξÞ 1
k2

kμkνPμν ð114Þ

of the eeγ-collision kernel

Pμν½A�ðX;p;q; kÞ ¼ −ð2πÞ−2δðk2Þsgnðk0Þ

×
1

4
trfγμiρ̄Ψ½A�ðX;pÞγνiρ̄Ψ½A�ðX;qÞg:

ð115Þ
This general expression derived from quantum field theory
plays the role of a generalized scattering amplitude squared
that has its own equation of motion [Eq. (103) or equiv-
alently Eq. (138) below] and is adapted to the properties of

the macroscopic field at each instance of time. This goes
beyond previous approaches that have so far been restricted
by additional assumptions on the macroscopic field. In
particular, it provides a prescription of how to implement an
inhomogeneous macroscopic field in local transport equa-
tions. We achieved this by describing collisions in terms
of a dynamical strong-field fermion spectral function,
which includes all leading order effects. This approach
allows for many links to existing literature as we demon-
strate in Sec. V. In particular, the collision kernel (115) may
be reduced to scattering amplitudes computable from
Feynman rules in strong-field QED (see Sec. V E 2).
The collision term (112) features the factorization of

interaction terms into a collision kernel and a gain-minus-
loss term familiar from traditional kinetic equations. While
the photon distribution functions can be reduced to on-shell
distributions (90) by virtue of the delta function δðk2Þ inPμν,
this is not in general possible for the fermion distribution
function. The off-shell frequency dependence of the latter is
computed dynamically by solving the transport system
coupled to the fermion spectral equation (103). This allows
the collision kernel to adjust in time to a self-consistent
macroscopic field as the system evolves, while still being
local in the kinetic position variable X without relying on
locally constant fields.

2. Strong-field photon decay rate

By linearizing and integrating the photon transport
equation over position and external momentum, one may
find the field-dependent decay rate γ of a photon with
momentum ki and position Xi at time t ≔ X0,

∂tNðtÞ ≃ −
Z
X⃗;k⃗

γ½A�ðX; k⃗ÞfðX; k⃗Þ; ð116Þ

with the photon number (91). Such a linearization may
be achieved e.g., under the assumption that the system is
close to vacuum (i.e., for small distribution functions, see
Sec. VG) or in linear response theory around equilibrium
[104,109,130], fðX; kÞ ¼ fBðk0Þ þ δfðX; kÞ, fΨðX; pÞ ¼
fFðp0Þ with fF=Bðp0Þ ¼ 1=ðeβp0 � 1Þ. In equilibrium,
gain-minus-loss terms vanish by energy conservation,
q0 ¼ p0 − k0,

fFðp0Þ½1 − fFðp0 − k0Þ�½1þ fBðk0Þ�
− ½1 − fFðp0Þ�fFðp0 − k0ÞfBðk0Þ≡ 0; ð117Þ

resulting in the photon equilibrium decay rate

γeq½A�ðX; k⃗Þ ¼ e2
Z

∞

0

dk0
Z
p
ffFðp0Þ − fFðp0 − k0Þg

× ð2πÞ2fP½A�ðX; p; p − k; kÞ
− Pξ½A�ðX; p; p − k; kÞg: ð118Þ
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D. Strong-field fermion transport equation

Here, we derive the fermion equations that close the
transport system in terms of off-shell fermion and on-shell
photon distribution functions.

1. Gauge-invariant fermion correlation functions

The presence of a macroscopic field complicates the
gauge invariance of approximations such as the gradient
expansion. This was not an issue in the case of the photon
equations where the field is only implicit via ρ̄Ψ½A� and
the photon self energies are gauge invariant. In the
following, before repeating the analagous steps for the
fermion transport equation, we express all fermion equa-
tions in terms of the gauge-invariant field strength tensor
F μν ¼ ∂μAν − ∂νAμ, or equivalently in terms of electric
and magnetic fields,

−F 0i≕ Ei; ð119Þ

−F ij≕ εijkBk: ð120Þ

This is necessary, in particular, in order to identify a gauge-
invariant fermion drift term that contains the gauge-
invariant Lorentz force.
One can achieve gauge invariance (as opposed to

covariance) by introducing Wilson lines6

WΓðy; xÞ ≔ exp

�
ie
Z
Γ
dzμAμðzÞ

�
; ð121Þ

with Γ indicating the path of integration from y to x. The
gauge transformation of a Wilson line exactly compensates
the gauge transformation of fermion two-point functions,
such that the quantities

F̂Ψ;Γðx; yÞ ≔ WΓðy; xÞFΨðx; yÞ; ð122Þ

ρ̂Ψ;Γðx; yÞ ≔ WΓðy; xÞρΨðx; yÞ; ð123Þ

are gauge invariant (but path dependent). It is well known
that straight Wilson lines, W ≔ WΓ¼½x;y�, facilitate a deri-
vation of gauge-invariant transport equations [50,56,82,83].
Following this approach, we employ

Wðy; xÞ ¼ exp

�
iesμ

Z
1
2

−1
2

dλAμðX þ λsÞ
�
; ð124Þ

and express everything in terms of gauge-invariant late-time
Wigner functions

ĜΨðX; pÞ ≔
Z
s
eipsWðy; xÞGΨðx; yÞ: ð125Þ

Invariant and covariant Wigner functions are related by

eiwðX;pÞĜΨðX; pÞ ¼ GΨðX; pÞ; ð126Þ

with the real differential operator

wðX; pÞ ≔ ie
Z 1

2

−1
2

dλ½e−iλð∂p·∂XÞAμðXÞ�
∂

∂pμ
: ð127Þ

By virtue of

wðX; pÞ ¼ ieAμðXÞ∂μ
p þOðe0∂p · ∂XÞ ð128Þ

this relation is simple for small field gradients (which we
discuss in Secs. VA and V F) in which case it becomes the
translation

ĜΨðX; pÞ ¼ GΨðX; pþ eAðXÞÞ þOðe0∂p · ∂XÞ: ð129Þ

One now has to decide whether to identify fermion
distribution functions in terms of FΨ and ρΨ as in (74) or in
terms of F̂Ψ and ρ̂Ψ, i.e.,

F̂ΨðX; pÞ ¼ −i
�
1

2
− f̃ΨðX; pÞ

�
ρ̂ΨðX; pÞ: ð130Þ

In principle, fΨ and f̃Ψ are arbitrary definitions which can
be translated into each other. In particular for small field
gradients one would have

f̃ΨðX;pÞ ¼ fΨðX; pþ eAðXÞÞ þOðe0∂p · ∂XÞ: ð131Þ

In photon equations, the distinction between covariant
and invariant fermion functions is redundant. This is
because, by virtue of

Wðx; yÞWðy; xÞ≡ 1; ð132Þ

one may replace covariant and invariant Wigner functions
in the gauge-invariant photon self-energy that features a
fermion loop i.e.,

Σμνðx; yÞ ¼ e2trfγμΔðx; yÞγνΔðy; xÞg
¼ e2trfγμΔ̂ðx; yÞγνΔ̂ðy; xÞg: ð133Þ

In Wigner space this involves two fermion momentum
integrals and a delta function. In particular, the fact that

6In contrast to the operator Wilson lines e.g., of Refs. [82,83],
the Wilson line (121) is built only from the one-point function,
but is here employed alongside higher correlations that give
rise to collisions without a mean-field (‘Hartree-Fock’)
approximation.
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Z
p;q

δðk − pþ qÞρΨðX; pÞρΨðX; qÞ

¼
Z

d4ðx − yÞeikðx−yÞρ̂Ψðx; yÞρ̂Ψðy; xÞ; ð134Þ

implies that one may replace fΨ with f̃Ψ if ρΨ is replaced
with ρ̂Ψ in the photon collision kernel (115). Similarly,
because

lim
s→0

W
�
X þ s

2
; X −

s
2

�
≡ 1; ð135Þ

such that

jμðXÞ ¼ −e lim
s→0

tr

�
γμFΨ

�
X þ s

2
; X −

s
2

��

¼ −e lim
s→0

tr

�
γμF̂Ψ

�
X þ s

2
; X −

s
2

��
; ð136Þ

this may also be done for the current (160) in the Maxwell
equation (29). In this way, one obtains a closed set of
equations in terms of fermion distributions of the f̃Ψ-type
to any order of field gradients. We stress that these
replacements do not work in reverse (going from f̃Ψ to
fΨ) for the fermion equations to be discussed below, such
that a practicable description in terms of fΨ-type distribu-
tions would have to rely on small field gradients by relying
on Eq. (131).

2. Gauge-invariant equations of motion:
2PI vs Wigner operator formalism

Having introduced gauge-invariant correlation functions,
we can express the gauge-covariant 2PI fermion equations
of motion in a gauge-invariant way. We start with the
equation for the fermion spectral function,

Z
d4ðx − yÞeipðx−yÞWðy; xÞðρEOMÞΨðx; yÞ; ð137Þ

explicitly at our order of interest,

�
i
2
=∇þ Π −m

�
ρ̂ΨðX; pÞ ¼ 0þOðe2Þ: ð138Þ

Here we have employed the commuting, real and gauge-
invariant differential operators introduced in Ref. [50],

∇μ ≔
∂

∂Xμ − e
Z

1
2

−1
2

dλ½e−iℏλð∂p·∂XÞF μνðXÞ�
∂

∂pν
ð139Þ

Πμ ≔ pμ − ie
Z 1

2

−1
2

dλλ½e−iℏλð∂p·∂XÞF μνðXÞ�
∂
∂pν

: ð140Þ

Using antihermiticity [Eq. (19)] one may verify in particu-
lar that solutions of Eq. (138) satisfy

i∇μρ̂
μ
ΨðX;pÞ ¼ 0; ð141Þ

trfðΠ −mÞρ̂ΨðX; pÞg ¼ 0: ð142Þ

The second condition, which is satisfied by any strong-field
solution, is much weaker than the on-shell condition in the
absence of a field, ð=p −mÞρΨ;0ðX; pÞ ¼ 0.
Eq. (138) is proven as in the Wigner operator formalism

of Refs. [49–51]. While the Wigner operator formalism has
not been able to provide closed collision terms, the 2PI
formalism is able to achieve this. Instead of discussing
equations for the normal-ordered product, h∶ΨðxÞΨ̄ðyÞ∶i,
resulting in real and imaginary parts with different differ-
ential operators [50,51], we distinguish real and imaginary
parts of the time-ordered product hT CΨðxÞΨ̄ðyÞi (6) i.e.,
statistical and spectral functions. Their 2PI equations of
motion (37)–(38) do not differ by their differential oper-
ators, but by the integral structure of their right-hand side,
which automatically ensures the correct hermiticity proper-
ties of their solutions, (17) and (19). Because of the absence
of these right-hand side integrals in the approximated
spectral equation (103), the antihermiticity (19) of the
approximate solution has to be prescribed. In fact at one-
loop i.e., in the absence of collisions, the equations for FΨ
and ρΨ without (anti) hermiticity constraints are equivalent
and the equation for the fermion statistical function alone is
sufficient to discuss transport phenomena as has been done
e.g., in Ref. [20]. Going to order Oðe2Þ, the self-energy
terms of the two-loop equations for the spectral functions
still do not contribute to the kinetic equations as discussed
in Sec. IV B, but the self-energy terms of the statistical
equations provide collision terms.

3. Quantum Vlasov term

In order to obtain a gauge-invariant fermion transport
equation, we consider

Z
d4ðx − yÞeipðx−yÞWðy; xÞ

× ½ðFLHSÞΨðx; yÞ − γ0ðFLHSÞ†Ψðy; xÞγ0�

¼ i
2
∇μfγμ; F̂ΨðX; pÞg þ Πμ½γμ; F̂ΨðX; pÞ�; ð143Þ

where (anti) commutators are taken in Dirac space. By
building differences, the fermion mass drops out of this
expression, but enters again via the spectral equation (138).
By taking the trace of (143) we obtain the all order in field-
gradients quantum Vlasov term

COLLISIONAL STRONG-FIELD QED KINETIC EQUATIONS … PHYS. REV. D 104, 036007 (2021)

036007-15



∇μF̂
μ
ΨðX; pÞ ¼ CΨðX; pÞ þOðe2∂p · ∂XGÞ þOðe4Þ;

ð144Þ

to which the commutator term with Πμ does not contribute.
In (144) we have indicated the fermion collision term,
which we compute to leading order below.
Employing Eq. (141), the fermion transport equa-

tion (144) in terms of f̃Ψ then reads

∇μ½f̃ΨðX; pÞiρ̂μΨðX; pÞ�
¼ CΨðX; pÞ þOðe2∂p · ∂XGÞ þOðe4Þ: ð145Þ

The off-shell all-gradient drift term of this equation goes
beyond a Lorentz force description, which it contains as its
on-shell contribution (see Secs. V C and VH). The emer-
gence of this fermion drift term is distinctly different
from the photon case, because fermion derivatives involve
the macroscopic field and are first order already in the
fundamental equations of motion. In particular, the momen-
tum factor of ðp · ∂XÞ, that emerges automatically for
photons via the identity (98), has to be provided by the
vector component of the free fermion spectral function.
Without an on-shell approximation, momentum derivatives
of the spectral function in Eq. (145) are physically
regulated by the macroscopic field.

4. Collision term & charge conservation

Having discussed the LHS, we now derive the gauge-
invariant collision term already indicated in Eq. (145).
In general, gauge-invariance of the convolutions on the

fermion spectral and statistical RHS is achieved by writing

Wðy; xÞ
Z
z
ΣΨðx; zÞGΨðz; yÞ

¼
Z
z
Lðx; y; zÞΣ̂Ψðx; zÞĜΨðz; yÞ; ð146Þ

where we have identified the (triangle) Wilson loop

Lðx; y; zÞ ≔ Wðy; xÞWðx; zÞWðz; yÞ: ð147Þ

By virtue of Eqs. (55) and (126), the LO of the gradient
expansion of this gauge-invariant convolution is [56]

Z
d4ðx− yÞeipðx−yÞ

Z
z
Lðx; y; zÞΣ̂Ψðx; zÞĜΨðz; yÞ

¼ Σ̂ΨðX;pÞĜΨðX;pÞ

−
i
2
eF μνðXÞ∂Σ̂ΨðX;pÞ

∂pμ

∂ĜΨðX;pÞ
∂pν þOðe2∂p · ∂XGÞ:

ð148Þ

For weak fields near equilibrium the additional term

eF μνðXÞ ∂Σ̂ΨðX; pÞ
∂pμ

∂ĜΨðX; pÞ
∂pν ð149Þ

as compared to the covariant convolution,
R
s e

ipsðΣΨ �GΨÞ¼
ΣΨðX;pÞGΨðX;pÞþOðe2∂p ·∂XGÞ, is effectively of order
Oðe4Þ and compatible with a kinetic description [56]. To
focus on the part of the fermion RHS that contains the
collision term indicated in Eq. (144),

CΨðX; pÞ ≔ −
1

4
tr½Σ̂−þ

Ψ ðX; pÞΔ̂þ−ðX; pÞ
− Σ̂þ−

Ψ ðX; pÞΔ̂−þðX; pÞ�; ð150Þ

we drop terms of the type (149) also in the presence of strong
fields. We stress that the validity of dropping these terms in a
far-from-equilibrium system requires further investigation.7

At leading order, the gauge-invariant self-energies in
Eq. (150) may be written as

Σ̂þ−
Ψ ðX; pÞ ¼ e2

Z
q;k
ð2πÞ4δðk − pþ qÞ

× ½1 − f̃ΨðX; qÞ�½1þ fðX; kÞ�
× γμρ̂ΨðX; qÞγνρμνðX; kÞ þOðe4Þ; ð151Þ

Σ̂−þ
Ψ ðX; pÞ ¼ −e2

Z
q;k
ð2πÞ4δðk − pþ qÞf̃ΨðX; qÞfðX; kÞ

× γμρ̂ΨðX; qÞγνρμνðX; kÞ þOðe4Þ; ð152Þ

The strong-field Oðe2Þ fermion collision term then reads

CΨ½A�ðX; pÞ ¼ e2
Z
q;k
ð2πÞ7δðk − pþ qÞ

× ff̃ΨðX; qÞfðX; kÞ½1 − f̃ΨðX; pÞ�
− ½1 − f̃ΨðX; qÞ�½1þ fðX; kÞ�f̃ΨðX; pÞg
× fP̃½A�ðX; p; q; kÞ − P̃ξ½A�ðX;p; q; kÞg;

ð153Þ

where P̃ is obtained from the collision kernel (115) by
exchange of ρΨ → ρ̂Ψ with the solution ρ̂Ψ of Eq. (138), or
at LO in field gradients via

7As discussed in Ref. [56] terms of the form (149) have the
effect of accounting for further off-shell corrections and replace
the spatial derivative ∂X → ∂X − eF μ

ν∂ν
p in Poisson brackets.

Alternatively, one may think of dropping these terms as setting
the Wilson loop to one, L ≈ 1. Because of the group properties
(132), (135), andWðx; zÞWðz; yÞ ¼ Wðx; yÞ if z ∈ ½x; y� this is a
good approximation if the dominant contributions in z are
sufficiently close to the straight line ½x; y� because Lðx;y;zÞ≡1
if z ∈ ½x; y�.
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P̃ðX; p; q; kÞ ¼ PðX; pþ eAðXÞ; qþ eAðXÞ; kÞ
þOðe0∂p · ∂XÞ: ð154Þ

As anticipated in Sec. IV D 1, while the photon collision
term is also gauge invariant without this replacement, the
fermion collision term is not. This is because gauge
invariance requires integration over both fermion momenta
according to (134). Indeed, if we integrate the fermion
transport equation over its external momentum, the subtle-
ties of gaugeinvariance are absent and, with

Z
p
∂ν
pF̂ΨðX; pÞ ¼ 0; ð155Þ

and using (136), we can recover the Maxwell current
(48) in the fermion transport equation via

−4e
Z
p
∇μF̂

μ
ΨðX;pÞ ¼ ∂μjμðXÞ: ð156Þ

As a consequence of the U(1) symmetry of QED, this
current is conserved by the fundamental equations, as well
as by our approximate transport equations, such that the
total electric charge (86) is constant,

∂tQðtÞ ¼ −4e
Z

d3X
Z
p
CΨðX; pÞ ¼ 0; ð157Þ

with t ≔ X0. To see this, one may verify that the relabeling
q ↔ p and k → −k leaves both the delta function and the
gain-minus-loss term invariant [by virtue of (79)],
but changes the sign of the collision kernel (also without
tilde), i.e.,

P̃μνðX; p; q; kÞ ¼ −P̃νμðX; q; p;−kÞ: ð158Þ

E. Transport Maxwell equation
and gauge-fixing dependence

The free photon propagator Dμν
0;ξ (11) and spectral

function ρμν0;ξ (80) introduce a gauge-fixing dependence.
This ξ-dependence is distributed over several equations of
motion by virtue of Pξ (114) and the solution

Aμ
ξðxÞ ¼ −i

Z
y
Dμν

0;ξðx; yÞjνðyÞ ð159Þ

of the Maxwell equation (29) with the late-time current

jμðXÞ ¼ 2e
Z
p
½1 − 2f̃ΨðX;pÞ�iρ̂μΨðX; pÞ: ð160Þ

There are two ways in which ξ-dependence is controlled.
Firstly, starting from the 2PI effective action, a perturbative

coupling expansion shows that the total ξ-dependence of
Pξ½Aξ� is always of higher perturbative order in e [76–78].
For a free fermion spectral function ρΨ;0, leading order
collisions are trivially gauge-fixing independent,

δðk − pþ qÞPξðX; p; q; kÞ !ρ̄Ψ→ρΨ;0
0: ð161Þ

Secondly, the ξ-dependence can drop out for on-shell
photons [79] [see also Eq. (101)]. We demonstrate this also
in the strong-field case by virtue of Ward identities for
scattering amplitudes that emerge in the kinetic approxi-
mation and play the role of redressed 1PI vertices. We make
contact with such strong-field Ward identities [131–133]
in the case of plane-wave fields in Sec. V E 2, where the
ξ-dependence then drops out in a corresponding limit. A
general proof for cancellations between ðDμν

0;ξÞ−1 in Aμ
ξ and

ρμν0;ξ in Pξ in the self-consistent strong-field case Pξ½Aξ�
seems highly nontrivial.
A summary of the interconnections among the extended

transport system which we have now arrived at is graphi-
cally presented in Fig. 6. The transport equations for
photons [Eq. (111) for fðX; k⃗Þ] and fermions [Eq. (145)
for f̃ΨðX; pÞ] couple to each other via the collision terms
(112) and (153). They are supplemented by the Maxwell
equation for the macroscopic field [Eq. (29) or equivalently
Eq. (159) for AμðXÞ] and the equation for the fermion
spectral function [Eq. (138) for ρ̂ΨðX; pÞ or equivalently
Eq. (103) for ρΨ], which couples to the Maxwell equation
via the current (160). The macroscopic field enters the
fermion spectral and transport equation explicitly via
the strong-field derivatives (139) and (140), and the
photon and fermion transport equations implicitly via
the strong-field fermion spectral function in the scattering
kernel (115).

V. STRONG-FIELD QED KINETIC EQUATIONS

In this section, we investigate ways to further approxi-
mate the transport system of Sec. IVand how to reduce it to
Boltzmann-type equations with scattering amplitudes by
considering limiting cases of the collision kernel. To this
end, we discuss various common additional approxima-
tions in strong-field QED, namely small field gradients

FIG. 6. Structure of the strong-field transport system.
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(locally constant fields), classical fermion propagation
(Lorentz force), external plane-wave fields (Volkov states),
near-vacuum physics (small occupations), as well as
fermion distributions that are peaked at large momenta
(ultrarelativistic limit). In particular, the ultrarelativistic
limit finally allows us to make contact with fermion on-
shell descriptions [e.g., Ref. [22] ], which are valid if a
long-lived separation of scales exists (see Sec. V H).

A. The case of small field gradients

So far, our transport equations have been infinite order in
gradients of the macroscopic field. In a physical situation
with small field gradients, one can simplify the collision
kernels and the fermion drift term. We demonstrate how to
do this at the level of the equations for the fermion spectral
and statistical functions in the following.8 For this purpose
we assume in this section that

jðs · ∂XÞF μνj ≪ jF μνj: ð162Þ

This means we only keep LO terms Oðe0ð∂p · ∂XÞ0Þ and
truncate the NLO Oðe0∂p · ∂XÞ of gauge-invariant field
gradients (see Appendix D for a comparison of approx-
imations to invariant and covariant field gradients).
We can simplify the fermion spectral equation of motion

(138) and in turn the collision kernel (115) by using (162).
The exponential derivatives of the differential operators
(139) and (140) allow for an expansion in terms of gradients
of the field-strength tensor. Thereby one can explicitly
compute the first orders of the λ integrals, i.e., [50,51]

∇μðX; pÞ ¼
∂

∂Xμ − eF μνðXÞ∂ν
p

þ 1

24
ð∂p · ∂XÞ2eF μνðXÞ∂ν

p

þOððe0∂p · ∂XÞ4Þ; ð163Þ

ΠμðX; pÞ ¼ pμ −
1

12
ð∂p · ∂XÞeF μνðXÞ∂ν

p

þOððe0∂p · ∂XÞ3Þ: ð164Þ

Note in particular, that the leading order of ∇μ,

∇μðX; pÞ ¼ DμðX; pÞ þOððe0∂p · ∂XÞ2Þ; ð165Þ

is the classical Vlasov derivative

DμðX; pÞ ≔ ∂
∂Xμ

− eF μσðXÞ ∂
∂pσ ; ð166Þ

which contains the Lorentz force as its on-shell contribution
(see Sec. V C).
Neglecting gradients of the field-strength tensor, the

gauge-invariant spectral equation (138) becomes

�
i
2
Dþ =p −m

�
ρ̂ΨðX; pÞ ¼ 0þOðe2Þ þOðe0∂p · ∂XÞ:

ð167Þ

Solutions of equation (167) neglect field gradients, but are
exact in the field strength. This implies in particular that,
even for a constant strong field strength tensor, the fermion
spectral function is not a delta peak and does not allow for a
simple particle picture.9

The fermion transport equation (145) for small field
gradients then reduces to

iρ̂μΨðX;pÞDμf̃ΨðX; pÞ ¼ CΨðX; pÞ þOðe0∂p · ∂XÞ
þOðe2∂p · ∂XGÞ þOðe4Þ;

ð171Þ

where we have used the fact that in contrast to ∇μ, which
contains higher order derivatives, Dμ satisfies the Leibniz
product rule and that a solution of (167) satisfies

iDμρ̂
μ
ΨðX; pÞ ¼ 0: ð172Þ

Plugging the solution of the approximated equation for the
spectral function (167) into the collision kernel (115) one
obtains photon and fermion collision terms for fields
with small gradients. In Sec. V F 2, we demonstrate how
the locally-constant field approximation arises from such
spectral functions in the special case of plane-wave fields.
There, instead of solving the approximated equation (167),

8A collisionless discussion of field gradients can be found in
Ref. [20], where it is shown that field gradients can enhance pair
production rates in particular for low momenta.

9This is an essential difference to Yukawa theory [134] or
scalar λϕ3 theory (which are diagramatically very similar to
QED); the LO equation of motion, e.g., for the scalar spectral
function with a strong constant scalar macroscopic field
ϕ0 ∼Oð1=λÞ,

½□x þM2�ρðx; yÞ ¼ 0þOðλÞ with M2 ¼ m2 þ λϕ0; ð168Þ

does have a delta-peaked particle solution

ρðX; pÞ ¼ ið2πÞsgnðp0Þδðp2 −M2Þ: ð169Þ

Moreover, the equation for the scalar statistical propagator [102]

2ðp · ∂XÞFðX; pÞ þ
� ∂
∂Xμ M

2ðXÞ
�� ∂

∂pμ
FðX; pÞ

�

¼ 0þOðλÞ þOðλ0ð∂X · ∂pÞ2Þ ð170Þ

has a force term, ∂XM2ðXÞ withM2ðXÞ ¼ m2 þ λϕðXÞ, which is
NLO of the gradient expansion and vanishes for constant fields.
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we will first solve the infinite order gradient equation (103)
[or equivalently (138)] and approximate gradients in the
solution in the end.

B. Asymptotic (Schwinger) pair production
from unequal-time correlations

In this section, as an application of the above small field-
gradient approximation, we discuss how pair production is
implemented in the present formalism. We start in the
regime of the collisionless Schwinger pair production yield
per volume V and time-interval T [18],

NΨð∞Þ ≃ VT
e2E2

4π3
exp

�
−
πEc

E

�
ð173Þ

i.e. the regime of constant fields at one-loop, and end this
section with a general collisional expression for inhomo-
geneous fields.
Under the asymptotic assumption

lim
X0→�∞

ρ̂ΨðX; pÞ ¼ ρΨ;0ðX;pÞ; ð174Þ

even in the presence of strong fields, one can extract for
asymptotically late times from the fermion transport
equation the fermion pair number (89).
At one-loop order Oðe0Þ and for small field gradients,

Eq. (144) simply reads

DμF̂
μ
ΨðX; pÞ ¼ 0þOðe2Þ: ð175Þ

In order to extract the fermion pair number (89), we
integrate Eq. (175) over negative and positive energies
separately and subtract the resulting integrals [instead of
summing them, which would instead give the trivial total
charge (157)] i.e.,

�Z
0

−∞

dp0

ð2πÞ −
Z

∞

0

dp0

ð2πÞ
�Z

X;p⃗
DμF̂

μ
ΨðX; pÞ ¼ 0: ð176Þ

For the momentum derivatives ∂i
p of Dμ we exploit (155),

and for its frequency derivative ∂0
p we note that

�Z
0

−∞
dp0 −

Z
∞

0

dp0

�
∂0
pF̂ΨðX; pÞ

¼ 2

Z
dp0δðp0ÞF̂ΨðX; pÞ: ð177Þ

This term eventually acts as a source term to the asymptotic
number of fermion pairs. For the position-space derivative
we use

Z
d3X∂i

XF̂
i
ΨðX; pÞ ¼ 0: ð178Þ

Finally, the time derivative in Dμ allows us to identify the
pair number (89) in the asymptotic past and future,

�Z
0

−∞

dp0

ð2πÞ −
Z

∞

0

dp0

ð2πÞ
�Z

X;p⃗
∂μF̂

μ
ΨðX; pÞ

¼ 1

2
ðNΨð∞Þ − NΨð−∞ÞÞ; ð179Þ

where we have employed the asymptotic assumption (174)
and identified the on-shell electron and positron distribu-
tion functions (76), (84), and (85) in the asymptotic past
and future. Applying the above identities to the one-loop
transport equation (176) gives the result

NΨð∞Þ − NΨð−∞Þ

¼
Z
X;p

½1 − 2f̃ΨðX; pÞ�2eEiðXÞð2πÞδðp0Þiρ̂iΨðX; pÞ

þOðe0∂p · ∂XÞ þOðe2Þ: ð180Þ

Importantly, this expression relates pair production to
self-consistent spectral and field dynamics. The asymptotic
assumption (174) only fixes a boundary condition at
X0 → ∞ and interacting spectral dynamics [Eq. (138)]
contribute to (180) at all finite times X0. In particular, the
above expression shows that pair production from the
vacuum occurs off shell at the time of the creation event;
the fermion yield (180) vanishes for a free (on-shell)
fermion spectral function, because massive fermions can
not have zero energy i.e.,

δðp0Þδðp2 −m2Þ≡ 0: ð181Þ

It is only the subsequent evolution, that brings these
off-shell contributions from vacuum pairs to the on-shell
regime in the asymptotic future, where a particle number
NΨð∞Þ is well defined. Furthermore, the expression (180)
vanishes for E ¼ 0, even if B ≠ 0, in accordance with the
general statement that magnetic fields can not produce
fermion pairs. In our derivation, this is a consequence of
the vanishing of momentum derivatives at infinity, i.e.,
Eq. (155). The structure of the expression (180) is remi-
niscent of the time-integrated source term of the quantum
Vlasov equation from which particle production at zero
energy is well known [53]. Such a source term is not
manifest in Eqs. (175), (171), or (145),10 but we have
demonstrated here that vacuum pair production is never-
theless contained in these transport equations by coupling
to the dynamics of the fermion spectral function.

10This is similar to Ref. [64] which shows (in scalar theory)
that a source term is manifest in equations for disconnected
two-point functions but not for connected two-point functions
such as ours.
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To recover Eq. (173) from Eq. (180) one should solve the
fermion spectral equation (103) or equivalently (138) for
E ¼ const, B ¼ 0 [20,53,135]. This can be done analyti-
cally [136], but we will not explore it further in this paper.
Since practicable procedures at one-loop already exist in

literature, we want to stress that the significance of
Eq. (180) does not stem from its one-loop practicability
but from the fact that it may be systematically generalized
and thereby put in the context of thermalization, while
other procedures have struggled to do so. At one-loop,
where the equations for spectral and statistical functions are
decoupled, one may compute the asymptotic fermion
particle number by ignoring spectral dynamics and solving
the complete tensorial system for the statistical function.
In literature, this is often done in terms of the equal-time
‘DHW’ function F̂Ψðt; t; x⃗; y⃗Þγ0, or

R
dp0F̂ΨðX; pÞγ0 in

Wigner space. In fact, existing transport derivations of the
Schwinger result typically employ such equal-time for-
mulations [20,51,86,137], in which spectral information
such as a distinction between on and off shell contribu-
tions is not explicitly accessible due to spectral functions
being constant at equal times [see Eq. (26)]. Equal-time
equations can be closed, e.g., by neglecting collisions, but
how to close an equal-time description for general strong
fields in a controlled approximation is an open problem.
From an unequal-time perspective, the equation for the
fermion statistical function is not self-sufficient at Oðe2Þ,
but couples to the fermion spectral function (103), which
is not on shell for strong fields. The unequal-time
approach closes by including this equation for the spectral
function and is thereby systematically generalizable to
higher loop orders that are essential for the approach to
equilibrium.
Simply by keeping field-gradients and the collision

term i.e., starting from Eq. (144) instead of Eq. (175),
one obtains

NΨð∞Þ−NΨð−∞Þ

¼
�Z

0

−∞

dp0

ð2πÞ−
Z

∞

0

dp0

ð2πÞ
�

×
Z
X;p⃗

�
e
Z 1

2

−1
2

dλ
h
e−iλð∂p·∂XÞEi

i
∂0
p

h
ð1−2f̃ΨÞiρ̂iΨ

i
þCΨ

�

þOðe2∂p ·∂XGÞþOðe4Þ: ð182Þ

Due to the presence of higher-order frequency derivatives,
the identity (177) is not sufficient to treat inhomogeneous
fields, which are able to transfer momentum and produce
occupations with finite energy, p0 ≠ 0. A complete self-
consistent solution of the set of equations in Fig. 6 is
necessary to obtain a numerical result for the asymptotic
pair number in this way. In particular, the collisional part
of (182) contains contributions from 0 → 3 (two-loop
vacuum pair production) and 1 → 2 processes (‘seeded

cascades’), the latter of which dominate over vacuum pair
production in subcritical fields [22,27,31]. In contrast to
Eq. (182), the one-loop result (173) describes the effect of a
constant external electric field with no feedback from the
dynamics of the photon sector.

C. Lorentz force and classical propagation
in isolated systems

The Lorentz force,

LμðX; pÞ=m ≔
e
m
F μνðXÞpν; ð183Þ

emerges from the quantum Vlasov term of Eq. (145) in the
case of a free fermion spectral function and small field
gradients via

∇μ½ρ̂μΨðX; pÞf̃ΨðX; pÞ� → ρμΨ;0Dμf̃Ψ

¼ ið2πÞδðp2 −m2Þsgnðp0Þ½ðp · ∂XÞ þ ðL · ∂pÞ�f̃Ψ;
ð184Þ

where the factor of pμ is provided by the vector component

ρμΨ;0ðX; pÞ ¼ ipμð2πÞδðp2 −m2Þsgnðp0Þ: ð185Þ

Therefore, on-shell particles may be described by the
Lorentz force. However, the validity of employing a free
spectral function in Eq. (184) i.e., whether on-shell par-
ticles indeed dominate the dynamics, depends on the details
of the strong-field system.
Typical experiments where on-shell particles dominate

the dynamics are, for example, those where an electron
beam or material target is initially in a zero-field region
and then collides with a strong field such as a laser beam
[10,11]. In such a setting fermion distribution functions
are initialized with occupations only in the on-shell region
and the subsequent deviations from on-shell occupations
induced by the strong field often remain small even when
fermion pairs are produced. This is because these systems
feature a separation of time scales due to the typically
very large values of the parameter ξ ¼ jejE=ðmωÞ [16],
implying that particles (target or produced) are transported
in momentum space to relativistic energies in much less
than a laser period. Thereby, the fermion distribution
function is typically peaked at an ultrarelaticistic scale
and far away from its equilibrium (Fermi-Dirac) shape.
At such high energies, off-shell effects can be suppressed
[15], and can remain suppressed, if the ultrarelativistic
peak in the fermion distribution function is long lived
(see Sec. V H).
In the presence of such long-lived peaked distribution

functions, one may then distinguish two kinds of quantum
effects [15]. One class is related to the recoil that a fermion
experiences during collisions (i.e., emissions of photons).
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This is controlled by the (spacetime and momentum
dependent) parameter [16]

χ ≔ ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðeF μνpνÞ2

q
=m3; ð186Þ

which may be small even for large ξ or vice versa. Systems
that have small χ may be described completely (both
drifting and collisional interactions) in terms of the classical
radiation reaction force [16,138–140] that includes colli-
sional corrections to the Lorentz force [22]. The other class
of quantum effects is related to how accurate a classical
description is between collisions. This is commonly dis-
cussed in terms of the de Broglie wavelength ℏ=p�, which
is then required to be small enough such that the quasi-
classical approximation applies [141], and smaller than the
mean-free path such that a separation between propagation
and interaction is possible [142]. In our context, p� is the
characteristic momentum of the fermion distribution func-
tion. At higher and higher energies, the de Broglie wave-
length decreases whereas the parameter χ increases, such
that quantum effects remain important during collisions for
ultrarelativistic fermions and no radiation reaction force
description exists [15]. These parameters are not manifest
at the level of the equations of motion, but become
accessible by analysis of its solution (see e.g., Secs. V F 2
and VH). In the absence of peaked distribution functions,
the mediummay not be completely described by a single de
Broglie wavelength and no such separation of scales may
be identified.
In fact, a peaked fermion distribution describes a far-from-

equilibrium situation that does not survive indefinitely in an
isolated system. Thereby, systems for which an on-shell
Lorentz force description is typically insufficient are those
which are initialized with a supercritical field, E ≳ Ec, and
which are then isolated and left on their own. In such
systems, fermions are produced from the vacuum—off shell
and at low energies according to Eq. (180)—and then
transported in momentum space by the gain-minus-loss
structure of the collision terms towards a distribution that
is not sharply peaked at any single scale. To describe the
evolution towards such a distribution one requires a descrip-
tion that is valid over a wide range of energies. Thus, the
separation of scales from the case of an external field may
not be exploited to argue for a Lorentz force description of
the equilibration of isolated strong-field systems.
Near equilibrium, a weak field again favors on-shell

descriptions, because the field term eA in the equation of
motion of the fermion spectral function (103) then con-
tributes to the transport description only at higher orders
and collisions may be added to the on-shell Vlasov
equation [see Eq. (191) below] perturbatively in the field
vertex (27). However our analysis suggests that for inter-
mediate times, at which off-shell contributions from vac-
uum pair production equilibrate in the presence of a
depleting field, one requires a description of off shell

drifting beyond the Lorentz force. The description derived
in Sec. IV can capture this evolution of off-shell contri-
butions in f̃ΨðX; pÞ as they move in phase space towards
p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2

p
to become on-shell particles in the

asymptotic future.
It is then instructive to follow how the Lorentz force

emerges from the off-shell drift term of Eq. (171), which
contains the frequency derivative term

ρ̂μΨðX; pÞeF μ0ðXÞ∂0
pf̃ΨðX;pÞ: ð187Þ

As we have shown in Sec. V B, in the asymptotic future the
effect of this off-shell frequency derivative is fermion pair
production. In the on-shell regime, where pair production
is forbidden via Eq. (181), this off-shell frequency deriva-
tive is controlled by the dispersion relation, p0 ¼ εðp⃗Þ.
The term

p · LðX; pÞ ¼ 0 ⇔ L0 ¼ L⃗ · p⃗
p0

; ð188Þ

then contains the group velocity

∂εðp⃗Þ
∂p⃗ ¼ p⃗

εðp⃗Þ ; ð189Þ

such that, by the chain rule, one may replace

L0

p0

∂
∂p0

þ L⃗
p0

·
∂
∂p⃗ →

L⃗
εðp⃗Þ ·

∂
∂p⃗ ð190Þ

and recover the classical Vlasov equation

sgnðp0Þδðp2 −m2Þðp ·DÞf̃ΨðX; pÞ ¼ 0þOðe2Þ: ð191Þ

Making use of the fact that

− epμF μσðXÞ ∂
∂pσ

¼ L0
∂

∂p0
þ L⃗ ·

∂
∂p⃗

¼ ep⃗ · E⃗ðXÞ ∂
∂p0

þ e½p0E⃗ðXÞ þ p⃗× B⃗ðXÞ� · ∂∂p⃗ : ð192Þ

and applying definitions for on-shell electron and positron
distribution functions f̃−Ψ and f̃þΨ analogously to Eqs. (76),
(84), and (85), one may then split Eq. (191) into equations
for electrons and positrons by integrating Eq. (191) over
positive or negative frequencies respectively. The positron
equation obtains the opposite sign of charge e → −e from
the sign p⃗ → −p⃗ of the momentum derivative,
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� ∂
∂X0

þ p⃗
εðp⃗Þ ·

∂
∂X⃗ � e

�
E⃗ðXÞ þ p⃗

εðp⃗Þ × B⃗ðXÞ
�
·
∂
∂p⃗

�

× f̃∓ΨðX; p⃗Þ ¼ 0þOðe2Þ: ð193Þ

If we interpret X and p as functions XðλÞ and pðλÞ, then the
curves along which f̃Ψ is constant i.e., the characteristic
curves

d
dλ

f̃ΨðXðλÞ; pðλÞÞ ¼ 0; ð194Þ

solve the Lorentz equation [50]

dpμ

dλ
¼ LμðX; pÞ; ð195Þ

pμ ¼ dXμ

dλ
; ð196Þ

with the Lorentz force (183). Adding collisions that are
nonlinear in f̃Ψ makes this method of characteristics
inapplicable and the concept of trajectories breaks down.
We reiterate that, for general strong fields and fermion

distribution functions, the limit of classical propagation
(184) is not controlled by an expansion in a small parameter
and a combination of the Lorentz force term with theOðe2Þ
collision term (153) is not in general complete to leading
order Oðe2Þ. To be complete in a general situation, the
Lorentz force term should be replaced by the quantum
Vlasov term of Eq. (145) [or that of Eq. (171) for small
field-gradients].

D. The case of strong external plane-wave fields

We assume in the following that the macroscopic field is
of the one-dimensional ‘plane-wave’ form

AμðxÞ ≃Aμ
vðn · xÞ; with n2 ¼ 0; ð197Þ

as originally employed by Volkov [143].11 We drop
the label ‘v’ where the context is clear. Assuming (197)
means we suppress the parts of the dynamics of the
macroscopic field that deviate from a plane-wave field
form. The plane-wave approximation is widely used in
studying the interaction of laser fields with matter and is
valid if the laser beam is not tightly focused in space such
that the wave front is approximately flat. Even under such a
relatively controlled setup, but especially in isolated sys-
tems, one has to take into account that the validity of the

plane-wave approximation can be limited in time. The
validity time-scale then depends on the back reaction
[53,68] of the matter on the field via Maxwell’s equa-
tion (29). A simple parametric estimate suggests a large
range of validity up to times of tv ∼Oð1=e2Þ. However
it is well known [15] that strong macroscopic fields can
further decrease this timescale. Below, we assume that the
plane-wave approximation is valid for the times under
consideration.
Although this assumption significantly simplifies the

equations, we stress that it does not restrict the discussion
of a multitude of common experimental field configura-
tions, such as (linearly or elliptically) polarized fields, (long
or short) pulses, monochromatic or polychromatic fields,
and (constant or strongly varying) crossed fields.
The field strength tensor of plane-wave fields can be

written as

F μν
v ðn · xÞ ¼ nμ _Aν

vðn · xÞ − nν _Aμ
vðn · xÞ; ð198Þ

where a dot stands for a derivative with respect to the
argument. From this it follows that plane-wave fields
necessarily satisfy

−
1

2
ημρηνσF

μν
v F ρσ

v ¼ jE⃗j2 − jB⃗j2 ¼ 0; ð199Þ

−
1

8
εμνρσF

μν
v F ρσ

v ¼ E⃗ · B⃗ ¼ 0: ð200Þ

Therefore, the magnetic field B⃗ is always perpendicular

to and of equal absolute value of the electric field E⃗, such
that it is sufficient to only talk about electric fields in the
context of plane waves. In particular, the topological term
(200) associated with CP violation [144,145] vanishes
identically. This has the implication that the pseudoscalar
component of the spectral function (which we introduce in
Sec. V D 1, see also Appendix F 3) vanishes.
Plane-wave systems are most conveniently described

using light-cone coordinates that use the special direction
nμ of the field,

x− ≔ x0 − x3 ¼ n · x; ð201Þ

xþ ≔
1

2
ðx0 þ x3Þ; ð202Þ

x⃗⊥ ≔ ðx1; x2; 0Þ: ð203Þ
Light-cone coordinates have metric tensor ηþ− ¼ η−þ ¼
ηþ− ¼ η−þ ¼ 1, ηþþ ¼ η−− ¼ ηþþ ¼ η−− ¼ 0 such that
xþ ¼ x−, x− ¼ xþ and p · s ¼ pþs− þ p−sþ − p⃗⊥ · s⃗⊥.
We work in Lorenz gauge [∂ ·AðxÞ ¼ 0] and use the

residual gauge freedom to also fix temporal axial gauge
[A0ðxÞ ¼ 0]. In light-cone coordinates that use the physical
direction nμ of the field, this is equivalent (for vanishing
asymptotic boundary conditions) to so-called light-front
gauge [146] i.e.,

11Other integrable cases include external fields such as the
Coulomb potential (leading to hydrogen levels), homogeneous
magnetic fields (leading to Landau levels), constant crossed fields
(leading to Airy functions) and constant noncrossed electric fields
(leading to Weber parabolic cylinder functions).
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A−
v ðx−Þ ¼ 0; ð204Þ

Aþ
v ðx−Þ ¼ 0; ð205Þ

which is conveniently formulated in a frame in which

nμ ¼ ð1; 0; 0; 1Þ: ð206Þ

In this frame and gauge, the electric field is simply

E⃗ðx−Þ ¼ − _
A⃗⊥ðx−Þ: ð207Þ

In particular, this allows for a simple form of the
(symmetric) energy momentum tensor

Tμν
v ≔ F μ

vσF σν
v ¼ nμnνjE⃗j2 ð208Þ

from which the energy density of the plane-wave field

T00
v ¼ 1

2
ðjE⃗j2 þ jB⃗j2Þ ¼ jE⃗j2 ð209Þ

can be read off. A peculiarity of the plane-wave field is
that the classical quantity (208) coincides with the exact
vacuum expectation value of the energy momentum tensor
up to fermionic contributions [18].
For any function KðX; s−Þ of n · s≕ s−, one has

Z
s
eiðp−qÞsKðX;s−Þ¼ð2πÞ3δðp−−q−Þδðp⃗⊥− q⃗⊥Þ

×
Z

ds−eiðpþ−qþÞs−KðX;s−Þ: ð210Þ

This is can be written compactly as

Z
s
eiðp−qÞsKðX; s−Þ ¼

Z
dl
ð2πÞ ð2πÞ

4δðp − q − lnÞKðX; lÞ;

ð211Þ

with the one-dimensional Wigner transform

KðX; lÞ ≔
Z

ds−eils
−
KðX; s−Þ: ð212Þ

1. Spectral function and plane-wave degrees of freedom

A solution of the equation for the fermion spectral
function (103) for plane-wave fields is12

ρΨ;vðx; yÞ ¼ ið2πÞ
Z
q
δðq2 −m2Þsgnðq0Þ

× RqðxÞð=qþmÞR̄qðyÞ: ð213Þ

The field dependence enters via the Ritus matrices Rq, R̄q

[17,149,150] which are defined as13

RAB
p ðxÞ ≔

�
1þ e

2

=nAvðn · xÞ
ðn · pÞ

�
AB
eiSpðxÞ; ð214Þ

SpðxÞ≔−p · x−
1

2ðn ·pÞ
Z ðn·xÞ

−∞
dλ½2AvðλÞ ·p− e2A2

vðλÞ�;

ð215Þ

R̄pðxÞ ≔ γ0R†
pðxÞγ0: ð216Þ

The essential property of the Ritus matrices is that they
translate the strong field Dirac operator in position space
into the free Dirac operator in momentum space i.e.,

ði=∂x − eAvðn · xÞ −mÞRpðxÞ ¼ RpðxÞð=p −mÞ: ð217Þ

The plane-wave spectral function contains the strong-field
dressed mass [148,153] (see Sec. V F 1) and recovers the
Airy-type scattering amplitudes for small field gradients
(see Sec. V F 2). For the proof that (213) solves (103),
and satisfies the symmetry constraint (19), as well as for
the computation of its Dirac components, we refer to the
Appendixes E and F.
The nonperturbative nature of the plane-wave spectral

function can be observed from the exponential eiSp . The
field-dependent part of the exponent is small for not too
strong fields and an expansion in powers of e could
be truncated in that case [corresponding to perturbation
theory with the vertex (27)]. However for strong fields,
A ∼Oð1=eÞ the exponent is Oðe0Þ and all orders in e have
to be taken into account as depicted in Fig. 7.
For the application to our transport equations we need

the late-time Wigner transform

FIG. 7. Resummation of the macroscopic field vertex.

12This plane-wave spectral function ρΨ;v is the antisymmetric
part of the time ordered ‘Volkov propagator’ [17,147,148] (see
Appendix E). By plugging ρΨ;v into our transport equations we
resum the symmetric part of the fermion propagator to self-
consistent two-loop order.

13Sp½XðλÞ� is the classical action for the trajectory XμðλÞ of a
test particle in a plane-wave field [151]. This fact gives rise to an
interpretation of plane-wave scattering probabilities in terms of a
stationary phase principle [132,152].
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ρΨ;vðX; pÞ ¼ ið2πÞ
Z
q
δðq2 −m2Þsgnðq0Þ

×
Z
s
eipsRq

�
X þ s

2

�
ð=qþmÞR̄q

�
X −

s
2

�
:

ð218Þ

From this expression we can observe that the plane-wave
spectral function captures off-shell effects; the external
momentum p is not restricted to on-shell values but
becomes on shell in the limit Av → 0, which recovers
the free spectral function via

RAB
p ðxÞ ⟶Av→0

δABe−ipx; ð219Þ

R̄AB
p ðxÞ ⟶Av→0

δABeipx: ð220Þ

With the identity (211) we can discuss the emergence of
plane-wave fermion degrees of freedom in strong fields by
writing

ρΨ;vðX; pÞ ¼ i
Z

dlKðX; l;p − lnÞ

× δðp2 −m2 − 2lðn · pÞÞsgnðp0 − ln0Þ;
ð221Þ

with the field-dependent Dirac matrix

KðX; l; qÞ ≔
Z

ds−eils
−
e−iN qðX−;s−Þ

×
�
1þ e

2

=nAvðX þ s
2
Þ

ðn · qÞ
�
ð=qþmÞ

×

�
1 −

e
2

=nAvðX − s
2
Þ

ðn · qÞ
�
; ð222Þ

and the field-dependent phase factor

N qðn · X; n · sÞ

≔
Z n·s

2

−n·s
2

dλ

�
eAðn · X þ λÞ · q

n · q
−
e2A2ðn · X þ λÞ

2ðn · qÞ
�
:

ð223Þ

While the phase in terms of Sq fully depends on xμ and yμ,
the phase N q only depends on n · X and n · s via

SqðxÞ − SqðyÞ ¼ −q · s −N qðn · X; n · sÞ: ð224Þ

From (221) we observe that by the integration over l, the
on-shell condition for free fermions (l ¼ 0) is modified to
the condition (with l unconstrained)

p0 ¼ l� εlðp⃗Þ ⇔ pþ ¼ jp⃗⊥j2 þm2

2p− þ l; ð225Þ

where we have defined the plane-wave relation

εlðp⃗Þ ≔ ðε2ðp⃗Þ þ l2 − 2lpzÞ1=2
¼ ðjp⃗⊥j2 þm2 þ ðpz − lÞ2Þ1=2: ð226Þ

This expression depends explicitly on the z-component
pz ≔ p3 in which the plane-wave field varies, is positive
and satisfies

εlðp⃗Þ ¼ ε−lð−p⃗Þ: ð227Þ
From the context of plane-wave collision terms one further
observes in Sec. V E that the parameter l corresponds to the
energy exchanged between fermions and the macroscopic
field during quantum processes. Since l is integrated over,
the relation εlðp⃗Þ does not on its own restrict the external
momentum of the fermion spectral function. Its interpre-
tation as a dispersion relation is thereby not straightfor-
ward. Depending on the details of the macroscopic field,
the integration over l may have different effects such as
broadening the peak structure or adding more peaks.
The plane-wave spectral function thereby describes inter-
actions with different l modes of the macroscopic field,
where the lowest mode, l ¼ 0, describes freely propagating
particles via

εlðp⃗Þ⟶l→0
εðp⃗Þ: ð228Þ

In particular, if the macroscopic field is periodic in s−

with frequency ω, KðX; l; qÞ has support only for l ¼ jω
with j ∈ Z and a countable peak structure emerges via

Z
dl
ð2πÞ → ω

X∞
j¼−∞

; ð229Þ

(see also Ref. [70] for a similar discussion at the level of
amplitudes). If l is continuous, the infinitely many delta
peaks may merge to form a function with finite-width
peaks, such as the function computed in Ref. [49].
As we will see in Sec. V E, the lmodes can be kept track

of as individual degrees of freedom by defining appropriate
distribution functions that are summed or integrated over
in the collision terms. A traditional on-shell description in
terms of only the l ¼ 0 mode is then favored as long as a
separation of scales in terms of ultrarelativistic fermions
exists, as we discuss in Sec. V H.

2. Collision kernel

Plugging the plane-wave spectral function (218) into
(115) we obtain the strong-field plane-wave collision
kernel
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Pμν
v ðX; p; q; kÞ ¼ δðk2Þsgnðk0Þ

Z
s1;s2

eips1eiqs2
Z
p0;q0

e−ip
0s1e−iq

0s2δðp02 −m2Þsgnðp00Þδðq02 −m2Þsgnðq00Þ

× T μν
p0q0 ðX; s1; s2Þe−i½N p0 ðX;s1ÞþN q0 ðX;s2Þ�; ð230Þ

where we have defined the pre-exponential

−4T μν
p0q0 ðX; s−1 ; s−2 Þ ≔ tr

�
γμ
�
1þ e=nAvðX þ s1

2
Þ

2ðn · p0Þ
�
ð=p0 þmÞ

�
1 −

e=nAvðX − s1
2
Þ

2ðn · p0Þ
�

× γν
�
1þ e=nAvðX þ s2

2
Þ

2ðn · q0Þ
�
ð=q0 þmÞ

�
1 −

e=nAvðX − s2
2
Þ

2ðn · q0Þ
��

; ð231Þ

such that, together with the phase (223), the trace over the Ritus matrices becomes

1

4
tr

�
γμRp0

�
X þ s1

2

�
ð=p0 þmÞR̄p0

�
X −

s1
2

�
γνRq0

�
X þ s2

2

�
ð=q0 þmÞR̄q0

�
X −

s2
2

��

¼ T μν
p0q0 ðX; s1; s2Þe−ip

0s1e−iq
0s2e−i½N p0 ðX;s1ÞþN q0 ðX;s2Þ�: ð232Þ

We discuss the familiar case of s1 þ s2 ¼ 0 that emerges in the absence of a medium in Sec. V E 2. For zero field, the phase
N p vanishes and the pre-exponential becomes the on-shell amplitude squared

Z
s1;s2

eiðp−p0Þs1eiðq−q0Þs2ημνT
μν
p0q0 ðX; s1; s2Þ ⟶

Av→0
− ð2πÞ4δðp − p0Þð2πÞ4δðq − q0Þ½−2ðp · qÞ þ 4m2�; ð233Þ

such that p0 → p and q0 → q as Av → 0. In the presence of a field, the plus components of p0 and p, and q0 and q do not
coincide and pþ and qþ are not on shell.

3. Off-shell vs on-shell kinematics

Classically, particle motion in a plane-wave field [described by the classical Vlasov equation (191)] is characterized by
the conservation of the two transverse and the minus component of the canonical momentum. The plus component, that is
conserved for free particles, is no longer conserved in the presence of a plane-wave field that exchanges energy with
particles in this longitudinal direction.
We can derive this interpretation of the field as an energy reservoir from our plane-wave collision kernel also in the off-

shell quantum case. By applying identity (211), we may write

Pμν
v ðX; p; q; kÞ ¼ δðk2Þsgnðk0Þ

Z
dl1
ð2πÞ

Z
dl2
ð2πÞ

Z
p0;q0

δðp02 −m2Þsgnðp00Þδðq02 −m2Þsgnðq00Þð2πÞ8

× δðp − p0 − l1nÞδðq − q0 − l2nÞQμνðX; l1; l2;p0; q0Þ ð234Þ

with the remaining kernel

QμνðX; l1; l2;p0; q0Þ ≔
Z

ds−1 e
il1s−1

Z
ds−2 e

il2s−2 T μν
p0q0 ðX; s−1 ; s−2 Þe−i½N p0 ðX;s−1 ÞþN q0 ðX;s−2 Þ�: ð235Þ

The collision terms therefore contain delta functions
enforcing the kinematic conditions

k − pþ q ¼ 0; ð236Þ

p − p0 − l1n ¼ 0; ð237Þ

q − q0 − l2n ¼ 0; ð238Þ

p02 −m2 ¼ 0; ð239Þ

q02 −m2 ¼ 0; ð240Þ

k2 ¼ 0; ð241Þ

where l1 is the Fourier conjugate to ðn · s1Þ and l2 to
ðn · s2Þ. An equivalent set of equations is
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k − p0 þ q0 ¼ ðl1 − l2Þn; ð242Þ

p − p0 ¼ l1n; ð243Þ

q − q0 ¼ l2n; ð244Þ

p2 −m2 ¼ 2l1ðn · pÞ; ð245Þ

q2 −m2 ¼ 2l2ðn · qÞ; ð246Þ

ðp0 − q0Þ2 ¼ −2ðl1 − l2Þðn · kÞ: ð247Þ

Equations (245) and (246) make explicit that the physical
momenta p, q (carried by the fermion distribution functions)
contribute with arbitrary off-shell values, where the ‘off-
shellness’ 2l1ðn · p0Þ and 2l2ðn · q0Þ is integrated over in the
collision terms. In this way, the macroscopic field provides
the momenta l1nμ and l2nμ, preventing the collision terms
from vanishing kinematically. Furthermore, the auxiliary
momenta p0, q0 are not conserved and k − p0 þ q0 is not
always zero, but corresponds to the energy exchanged with
the field, ðl1 − l2Þn.
In comparison, the zero-field kinematic conditions are

k − pþ q ¼ 0; ð248Þ

p2 −m2 ¼ 0; ð249Þ

q2 −m2 ¼ 0; ð250Þ

k2 ¼ 0; ð251Þ

which are ‘forbidden’ because

ðkþ qÞ2¼! p2 ⇔ ðk · qÞ¼! 0 ðon shellÞ; ð252Þ

ðp − kÞ2¼! q2 ⇔ ðk · pÞ¼! 0 ðon shellÞ; ð253Þ

for massive fermions can only be fulfilled for the trivial
case of k⃗ ¼ 0, while otherwise

k · p ¼ jk⃗jεðp⃗Þ − k⃗ · p⃗ > 0 ðon shellÞ: ð254Þ

Thereby, for vanishing macroscopic field, the delta func-
tions have vanishing overlap and zero-field collision terms
vanish at leading order Oðe2Þ.

E. Plane-wave photon kinetic equation

1. Collision term

Employing the plane-wave collision kernel (234), the
photon transport equation (111) obtains the following
collision term:

CvðX; k⃗Þ ¼ e2
Z

∞

0

dk0δðk2Þ
Z

dl1
ð2πÞ

Z
dl2
ð2πÞ

Z
p;q

ð2πÞ6δðk − pþ qÞQðX; l1; l2; p − l1n; q − l2nÞ

× δðp2 −m2 − 2l1ðn · pÞÞsgnðp0 − l1n0Þδðq2 −m2 − 2l2ðn · qÞÞsgnðq0 − l2n0Þ
× ffΨðX; pÞ½1 − fΨðX; qÞ�½1þ fðX; kÞ� − ½1 − fΨðX; pÞ�fΨðX; qÞfðX; kÞg: ð255Þ

We can identify the crossings of eeγ scattering depicted in Fig. 8 by taking the frequency integrals over

FIG. 8. Diagrammatic photon, electron and positron collision terms; labeled are the respective external momenta.
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δðp2 −m2 − 2lðn · pÞÞ ¼ 1

2εlðp⃗Þ
½δðp0 − l − εp⃗ðlÞÞ þ δðp0 − lþ εp⃗ðlÞÞ�: ð256Þ

Identifying plane-wave degrees of freedom in terms of the plane-wave fermion and antifermion distribution functions

f−ΨðX; l; p⃗Þ ≔ fΨðX; pÞ at p0 ¼ lþ εlðp⃗Þ; ð257Þ

fþΨðX;−l;−p⃗Þ ≔ 1 − fΨðX; pÞ at p0 ¼ l − εlðp⃗Þ ð258Þ

and making use of Eq. (227), the plane-wave photon collision term may equivalently be written as

CvðX; k⃗Þ ¼ e2
1

2jk⃗j

Z
dl1
ð2πÞ

Z
d3p
ð2πÞ3

1

2εl1ðp⃗Þ
Z

dl2
ð2πÞ

Z
d3q
ð2πÞ3

1

2εl2ðq⃗Þ
ð2πÞ4

× ½δðk⃗þ p⃗ − q⃗Þδðjk⃗j þ εl1ðp⃗Þ − εl2ðq⃗Þ þ l1 − l2ÞQeþ→eþγðX; l1; l2; p⃗; q⃗Þ
× f½1 − fþΨðX; l1; p⃗Þ�fþΨðX; l2; q⃗Þ½1þ fðX; k⃗Þ� − fþΨðX; l1; p⃗Þ½1 − fþΨðX; l2; q⃗Þ�fðX; k⃗Þg
þ δðk⃗ − p⃗þ q⃗Þδðjk⃗j − εl1ðp⃗Þ þ εl2ðq⃗Þ − l1 þ l2ÞQe−→e−γðX; l1; l2; p⃗; q⃗Þ
× ff−ΨðX; l1; p⃗Þ½1 − f−ΨðX; l2; q⃗Þ�½1þ fðX; k⃗Þ� − ½1 − f−ΨðX; l1; p⃗Þ�f−ΨðX; l2; q⃗ÞfðX; k⃗Þg
þ δðk⃗ − p⃗ − q⃗Þδðjk⃗j − εl1ðp⃗Þ − εl2ðq⃗Þ − l1 − l2ÞQγ→eþe−ðX; l1; l2; p⃗; q⃗Þ
× ff−ΨðX; l1; p⃗ÞfþΨðX; l2; q⃗Þ½1þ fðX; k⃗Þ� − ½1 − f−ΨðX; l1; p⃗Þ�½1 − fþΨðX; l2; q⃗Þ�fðX; k⃗Þg
þ δðk⃗þ p⃗þ q⃗Þδðjk⃗j þ εl1ðp⃗Þ þ εl2ðq⃗Þ þ l1 þ l2ÞQ0→eþe−γðX; l1; l2; p⃗; q⃗Þ
× f½1 − fþΨðX; l1; p⃗Þ�½1 − f−ΨðX; l2; q⃗Þ�½1þ fðX; k⃗Þ� − fþΨðX; l1; p⃗Þf−ΨðX; l2; q⃗ÞfðX; k⃗Þg�; ð259Þ

with the collision kernels for the different crossings of eeγ scattering14

Qeþ→eþγðX;−l1;−l2;−p⃗;−q⃗Þ ≔ Qμ
μðX; l1; l2; p − l1n; q − l2nÞ at p0 ¼ l1 − εl1ðp⃗Þ; q0 ¼ l2 − εl2ðq⃗Þ; ð260Þ

Qe−→e−γðX; l1; l2; p⃗; q⃗Þ ≔ Qμ
μðX; l1; l2; p − l1n; q − l2nÞ at p0 ¼ l1 þ εl1ðp⃗Þ; q0 ¼ l2 þ εl2ðq⃗Þ; ð261Þ

−Qγ→eþe−ðX; l1;−l2; p⃗;−q⃗Þ ≔ Qμ
μðX; l1; l2; p − l1n; q − l2nÞ at p0 ¼ l1 þ εl1ðp⃗Þ; q0 ¼ l2 − εl2ðq⃗Þ; ð262Þ

−Q0→eþe−γðX;−l1; l2;−p⃗; q⃗Þ ≔ Qμ
μðX; l1; l2; p − l1n; q − l2nÞ at p0 ¼ l1 − εl1ðp⃗Þ; q0 ¼ l2 þ εl2ðq⃗Þ: ð263Þ

As anticipated in our discussion of the plane-wave
spectral function (221), we can observe from the energy
conserving delta functions in the collision term (259) that
the Wigner variables li correspond to the energy that is
exchanged with the macroscopic field by degrees of free-
dom with energy εliðp⃗iÞ. By means of the changes of
variables pz → pz − l1 and qz → qz − l2, this energy
exchange can be written in the Lorentz covariant form

k − pþ q − ðl1 − l2Þn ¼ 0; ð264Þ
which clearly relates four-momentum conservation to the
structure of the plane-wave field.

From the delta functions of the 0 → 3 and 3 → 0
processes in Eq. (259), we observe that they are forbidden
for plane-wave fields, since the combination of energy and
momentum conditions,

jk⃗j þ εl1ðp⃗Þ þ εl2ðq⃗Þ þ l1 þ l2 ¼ 0; ð265Þ

k⃗þ p⃗þ q⃗ ¼ 0; ð266Þ

can not be fulfilled. In the absence of a macroscopic field,
such processes are already forbidden by energy conserva-
tion alone. For an arbitrary macroscopic field such a 0 → 3
term would act as a source term for vacuum pair production
since it does not come with any distribution function and
therefore would not vanish for fþΨ ¼ f−Ψ ¼ 0. The fact that
this contribution vanishes for plane-wave fields is in

14The sign in the kernels involving one positron recovers the
positron term ð=p−mÞ from the electron term ð=pþmÞ¼−ð−=p−mÞ
after the change of sign p → −p (see also Ref. [154]).
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agreement with the general statement that plane waves are
not able to produce pairs from the vacuum [18,155]. In
general, such 0 → 3 terms contribute to vacuum pair
production at two-loop order via Eq. (182).

2. Emergence of a gauge-invariant vertex and
gauge-fixing independent amplitude

in plane-wave vacuum

Electromagnetic interactions are often described in terms
of probabilities for scattering events built from S-matrix
amplitudes, which are computed in terms of Feynman rules
with free on-shell asymptotic states in vacuum, i.e.,
vanishing or single mode distribution functions. Such an
S-matrix based formulation is not able to resolve real-time
dynamics between in-medium states, for which the inter-
action is not adiabatically switched off. In this section, we
follow the emergence of such amplitudes and thereby
highlight limitations to their ability to capture collective
dynamics of strong-field systems.
General considerations about the trace T , Eq. (231), can

be found e.g., in the reviews [16,17,156,157] (see also
Ref. [71]) for the special case of s1 þ s2 ¼ 0 and with X
integrated over, which is needed for the computation of
probabilities. In this section we identify a scattering

amplitude that is local in X and demonstrate that the
reduction in terms of relative variables s1 and s2 is related to
vanishing or single mode plane-wave fermion distribution
functions,

f�ΨðX; l; p⃗Þ → 0; ð267Þ

which we refer to as the ‘plane-wave vacuum’. Importantly,
such vacuum approximations to distribution functions may
only be applied once the relevant degrees of freedom are
separated from quantum vacuum fluctuations, because
general off-shell distribution functions contain the ‘quan-
tum half’ which can never physically vanish [see e.g., the
constant terms in Eqs. (77) and (79)].
We start in-medium, i.e., without the assumption (267),

where the collision kernel (234) may be factorized in terms
of Volkov spinors,

UpσðxÞ ≔ RpðxÞupσ; ð268Þ

ŪpσðxÞ ≔ U†
pσγ0 ¼ ūpσR̄pðxÞ; ð269Þ

and written as a ‘spin sum’

Pμν
v ðX;p; q; kÞ ¼ −δðk2Þsgnðk0Þ

Z
p0;q0

δðp02 −m2Þsgnðp00Þδðq02 −m2Þsgnðq00Þ

×
1

4

X
σσ0

Z
s1;s2

eips1eiqs2
�
Ūq0σ0

�
X −

s2
2

�
γμUp0σ

�
X þ s1

2

���
Ūp0σ

�
X −

s1
2

�
γνUq0σ0

�
X þ s2

2

��
; ð270Þ

by introducing spin labels σ and σ0 via

δðp2 −m2Þ
X
σ

upσūpσ ¼ δðp2 −m2Þð=pþmÞ: ð271Þ

By amputating the free Dirac spinors ūpσ , upσ of

Ūqσ0

�
X −

s2
2

�
γμUp0σ

�
X þ s1

2

�
¼∶ ūqσ0Vμ

qpðX; s2; s1Þupσ;

ð272Þ

in Eq. (270), we may identify the vertex

Vμ
pqðX; s1; s2Þ ¼ R̄p

�
X −

s1
2

�
γμRq

�
X þ s2

2

�
: ð273Þ

This expression differs from the well-known local and
gauge-invariant plane-wave vertex [17,158],

Γμ
pqðxÞ ≔ R̄pðxÞγμRqðxÞ ¼ Vμ

pqðX;−s; sÞ; ð274Þ

by its spacetime structure. This difference arises because
the local vertex Γμ

pq is constructed from the time-ordered
Volkov propagator (see Appendix E), which is a vacuum
object, i.e., assumes the absence of a medium by vanishing
distribution functions, while our vertex Vμ

pq is constructed
in the presence of distribution functions from the antisym-
metric part of the Volkov propagator alone. The additional
s-dependence of Vμ

pq, which is integrated over in the
collision kernel thus implements the fact that the effective
interaction in a strong-field medium is nonlocal.
While Γμ

pq is gauge-invariant, V
μ
pq is not.

15 We stress that
our collision term is nevertheless gauge invariant, such that
this is not a flaw of our description, but simply exhibits the
physical limitations of the concept of scattering probabil-
ities. Electromagnetic interactions in the presence of a
medium, i.e., arbitrary distribution functions, can not in
general be described by assigning probabilities to individ-
ual events. While the photon collision term (259) is gauge

15The Volkov spinors transform as UpσðxÞ → eiαðxÞUpσðxÞ and
ŪpσðxÞ → ŪpσðxÞe−iαðxÞ with a U(1) group element eiαðxÞ.
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invariant by virtue of additional momentum integrals, the
collision kernel and the vertex (273) are not gauge invariant
on their own. Without further assumptions, we cannot
identify scattering probabilities from them. As we now
demonstrate, gauge-invariant amplitudes can be defined in
plane-wave vacuum.
First, we investigate how Vμ

pq reduces to Γμ
pq. For this we

need to put the vertex back into the context of the collision
term: In general, the photon collision term is of the form

Z
p;q

δðk − pþ qÞgðX; p; q; kÞPμνðX;p; q; kÞ; ð275Þ

with the gain-minus-loss term g. If we now assume the
absence of a medium, i.e., Eq. (267), there are no other
objects carrying fermion momentum dependence other than
the kernel itself. We may then write

Z
p;q

δðk − pþ qÞPμν
v ðX; p; q; kÞ

¼
Z
p;q;l

δðp2 −m2Þsgnðp0Þδðq2 −m2Þ

× sgnðq0Þδðk2Þsgnðk0Þ
× δðk − pþ q − lnÞQμν

vacðX; l; p; qÞ; ð276Þ

with the gauge-invariant vacuum kernel

Qμν
vacðX; l; p; qÞ

≔
Z

ds−eils
−
T μν

pqðX; s;−sÞe−i½N pðX;sÞþN qðX;−sÞ�: ð277Þ

Here, the underlying structure that is simplified by the
vacuum assumption is the product of Wigner space fermion
spectral functions ρΨðX;pÞρΨðX; qÞ, that can in general
not be factorized in real space via ρΨðx; yÞρΨðy; xÞ ¼
ρ̂Ψðx; yÞρ̂Ψðy; xÞ in the presence of fermion distribution
functions, e.g., as in expression (275). However, in the
vacuum case Eq. (276) contains such a factorization, where
the δðk − pþ qÞ has been expressed in real space to invert
the Wigner transforms of the spectral functions as in
Eq. (134). Eq. (276) then allows us to identify the auxiliary
momentum labels p0, q0 of the collision kernel with the
physical fermion momenta p, q in the vacuum case. The
emerging vacuum collision kernel is gauge invariant on its
own, and has contributions only from values of s1 and s2
satisfying the condition s1 þ s2 ¼ 0. The momentum labels
p and q of the scattering kernel are now on shell, but there
are no fermion distribution functions left. Correspondingly,
k − pþ q ≠ 0 because momentum is exchanged with the
macroscopic field as the amplitude would otherwise vanish
kinematically as in the zero-field case. In case of fermion
distribution functions that vanish almost everywhere,
except e.g., a few ultrarelativistic modes, the dominant
contributions from the collision kernel still come from the
region of s1 þ s2 ¼ 0. By taking the collision kernel out of
the context of the transport equation in this way, medium
effects from more complex fermion distribution functions
such as the nonlocal interaction via Eq. (273), and the
difference between the on-shell labels p0, q0 and the off-
shell labels p, q are missed.
We can now make contact with the language of ampli-

tudes by writing the vacuum collision kernel (277) in terms
of the local vertex (274),

Z
p;q

δðk − pþ qÞPvðX; p; q; kÞ ¼ −δðk2Þsgnðk0Þ
Z
p;q

δðp2 −m2Þsgnðp0Þδðq2 −m2Þsgnðq0Þ

×
1

4
ημν

X
σσ0

Z
s
eiks

�
ūpσΓ

μ
pq

�
X þ s

2

�
uqσ0

��
ūqσ0Γν

qp

�
X −

s
2

�
upσ

�
: ð278Þ

From this we may read off the local amplitude

M̃μ
σσ0 ðX; p; q; kÞ ¼

Z
s
eiksūpσΓ

μ
pq

�
X þ s

2

�
uqσ0 ;

½M̃μ
σσ0 ðX;p; q; kÞ�� ¼

Z
s
eiksūqσ0Γ

μ
qp

�
X −

s
2

�
upσ: ð279Þ

It is tempting to go one step further and identify the square
of the well-known global amplitude [17],

Mμ
σσ0 ðp; q; kÞ ¼

Z
x
eikxūpσΓ

μ
pqðxÞuqσ0 ; ð280Þ

by integrating over all X and returning to microscopic
position variables via

Z
d4X

Z
s
eiks ¼

Z
d4xeikx

Z
d4ye−iky: ð281Þ

However, it is important to note that such an integration
over all times X0 generally includes late times outside of the
range of validity of both the plane-wave field and the
plane-wave vacuum approximation. Even if one makes
assumptions such as (197) and (267) at initial time, the
macroscopic field does not remain a plane wave and
distribution functions do not in general remain negligible,
but backreact on the field, such that a self-consistent
description of both becomes essential to describe equili-
bration. The type of interactions that take place in a strong-
field system depends also on the details of distribution
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functions and is a time (and space) dependent questions.
To determine this time dependence, one has to solve the
transport system including the dynamics of distribution
functions away from the plane-wave vacuum. Instead, a
common approach in literature is to rely on the S matrix in
the Furry picture [147], which takes amplitudes out of the
context of in-medium evolution equations. To then extract
local probabilities from this S matrix, the LCFA is a
necessary approximation, as otherwise what is supposed
to be the local probability density may turn out to be
negative (see e.g., Ref. [71]). This problem occurs because
the probability that a scattering will take place in an
external field and in the absence of a medium at any time
is not a self-consistent concept in general. The gauge-
invariant amplitudes such as (280) are not observable and
probabilities for individual scattering processes need not
exist to compute statistical observables such as electrical
conductivity [79] or pressure [78]. No further approxima-
tions such as the plane-wave vacuum or locally constant
fields are necessary to compute also e.g., the photon decay
rate (116) from the equations discussed in Sec. IV.
While the physical interpretation of the strong-field

amplitude (280) is problematic, that object is very useful
to understand the ξ-dependence of our equations. The
amplitude (280) is known to obey the modified Ward
identity [131–133]

k ·Mσσ0 ¼ ūpσ=nuqσ0
Z
l
ð2πÞ4δðk − pþ q − lnÞ

×
Z

dðn · xÞ ∂ðe
iΦðn·xÞÞ

∂ðn · xÞ ; ð282Þ

with the phase

Φðn · xÞ ≔ ln · xþ
Z

n·x

−∞
dλ

�
eAðλÞ · q
n · q

−
e2A2ðλÞ
2ðn · qÞ

�

−
Z

n·x

−∞
dλ

�
eAðλÞ · p
n · p

−
e2A2ðλÞ
2ðn · pÞ

�
; ð283Þ

relating gauge fixing to boundary terms at n · x ¼ �∞.
Vanishing boundary terms then lead to gauge-fixing inde-
pendence, Pξ ≡ 0.

F. Plane-wave fermion kinetic equation

Because the fermion collision term (153) relies on the
gauge-invariant fermion spectral function ρ̂Ψ (as opposed to
the covariant function ρΨ), we start this section by inves-
tigating this function for plane-wave fields. The well-
known plane-wave momentum and dressed mass emerge
automatically in this function. These gauge-invariant
expressions then serve us to approximate field gradients
in a gauge-invariant manner, equivalently to Sec. VA, but
at the level of the solution rather than the equation of
motion.

1. Gauge-invariant spectral function: plane-wave
momentum and dressed mass

The covariant plane-wave spectral function (221) trans-
forms as any other fermion two-point function. The
ambiguity [50,56,82] for the choice of the path of integra-
tion in the Wilson line is not present in the plane-wave case
because there is only one path in one dimension from n · x
to n · y. Thereby, the Wilson line automatically emerges
with a straight path of integration,

Wvðy; xÞ ¼ exp

�
ie

sμ

s−

Z s−
2

−s−
2

dλAμðX− þ λÞ
�
; ð284Þ

despite the 3þ 1 dimensional nature of the underlying
theory. Defining the phase average

haiðX−; s−Þ ≔ 1

ðn · sÞ
Z n·s

2

−n·s
2

dλaðn · X þ λÞ; ð285Þ

[not to be confused with the ensemble average (4)] for
any plane-wave function aðn · xÞ, we can make the gauge
invariance of ρ̂Ψ;v manifest. By employing Eq. (285) the
plane-wave Wilson line (284) can be written as

Wvðy; xÞ ¼ eies
μhAμiðX;sÞ: ð286Þ

The Lorentz equation for plane-wave fields is solved
by the gauge-invariant momentum of an electron in a
plane wave [151]

πμqðn · XÞ ≔ qμ − eAμðXÞ þ nμ
�
eAðXÞ · q
ðn · qÞ −

e2A2ðXÞ
2ðn · qÞ

�
;

ð287Þ

which is related to the Lorentz action (214) via

ði∂μ
x − eAμ

vðn · xÞÞeiSqðxÞ ¼ πμqðn · xÞeiSqðxÞ: ð288Þ

The plane-wave momentum obeys

π2q ¼ q2 and n · πq ¼ n · q ð289Þ

and is related to the free mass m and the gauge-invariant
dressed mass [148,153]

m̃2ðX; s−Þ ≔ m2 −
e2

ðn · sÞ
Z n·s

2

−n·s
2

dλA2ðn · X þ λÞ

þ e2

ðn · sÞ2
�Z n·s

2

−n·s
2

dλAðn · X þ λÞ
�
2

ð290Þ

via [148]

hπ2qi ¼ m2 and hπqi2 ¼ m̃2; ð291Þ
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for any q with q2 ¼ m2 [which in our context is ensured by
the delta function under the integral e.g., in Eq. (293)].
We can identify this plane-wave momentum in the

exponent of the gauge-invariant spectral function via

q · s − esμhAμi þN q ¼ hπμqisμ; ð292Þ

such that an exact solution of Eq. (138) in the plane-wave
case may be written as

ρ̂Ψ;vðX; pÞ ¼ ið2πÞ
Z
q
δðq2 −m2Þsgnðq0Þ

×
Z
s
eiðp−hπqiðX;sÞÞsK̃qðX; sÞ; ð293Þ

with the gauge-invariant Dirac matrix

K̃qðX;sÞ≔
�
1þ e

2

=nAvðXþ s
2
Þ

ðn ·qÞ
�
ð=qþmÞ

�
1−

e
2

=nAvðX− s
2
Þ

ðn ·qÞ
�
:

ð294Þ

While the covariant spectral function (221) makes manifest
the energy exchange with the field and facilitates a
formulation in the plane-wave degrees of freedom (257)
and (258), the invariant function (293) makes manifest the
solution of the Lorentz equation (287).
The scalar and pseudoscalar components of K̃q are

1

4
trfK̃qðX; sÞg ¼ m; ð295Þ

1

4
trfγ5K̃qðX; sÞg ¼ 0: ð296Þ

The vanishing of the pseudoscalar component is a direct
consequence of the crossed nature of plane-wave fields,
i.e., Eq. (200). The vector component, which plays a crucial
role in the quantum Vlasov term, contains the plane-wave
momentum also in the pre-exponential and is given in
Sec. V F 3. The axial and tensor components can be found
in Appendix F. The tensor and scalar components vanish
for massless fermions in agreement with chiral symmetry.
Similarly to the identity (211) one has

Z
s
eiðp−hπqiðX;s−ÞÞsK̃ðX; s−Þ

¼
Z

ds−ð2πÞ3δðp− − q−Þδðp⃗⊥ − hπ⃗⊥;qiðX; s−ÞÞ

× ei½pþ−hπþq iðX;s−Þ�s−K̃ðX; s−Þ: ð297Þ

Computation of the scalar component (see Appendix F 1)
results in

ρ̂Ψ;v;SðX;pÞ

¼ im
1

2p−

Z
ds− exp

�
i

�
pþ −

jp⃗⊥j2 þ m̃2ðX;s−Þ
2p−

�
s−
�
:

ð298Þ

The corresponding symmetric component has been com-
puted in Ref. [49] (see also Ref. [21]) for various choices of
plane-wave fields in the context of scalar QED.

2. Plane-wave fields with small gradients

In this section, we investigate the gauge-invariant
approximation of field gradients using the example of
the scalar spectral component (298).
For plane-wave fields, the gradient expansion becomes

an expansion in longitudinal gradients via

ðs · ∂XÞjAμðn · XÞ ¼ ðn · sÞjAðjÞ
μ ðn · XÞ; ð299Þ

where AðjÞ
μ is the jth derivative with respect to n · X.

In the scalar component (298), field gradients are carried
only by the gauge-invariant mass

m̃2ðX;s−Þ¼m2−e2
1

12
ðn ·sÞ2 _A2ðXÞ−e2

1

720
ðn ·sÞ4

× ½3Að3ÞðXÞ · _AðXÞþÄ2ðXÞ�þOððe0s ·∂XÞ5Þ;
ð300Þ

whose expansion is gauge-invariant order by order [148].
Similar to the fact that the equation of motion (167)

has contributions from constant gauge-invariant fields, the
second term of the dressed mass is also nontrivial for
constant electric fields and generally not small compared to
unity. In fact, introducing the dimensionless and Lorentz-
invariant quantities

ξ0 ≔
m
ω

F 0

Ec
; ð301Þ

χ0ðpÞ ≔
n · p
m

F 0

Ec
; ð302Þ

φ ≔ ωðn · sÞ; ð303Þ

with the Schwinger critical field Ec ¼ m2=jej and a character-
istic field amplitude F 0 and frequency ω, we can write the
constant-field contribution from this exponent as

−e2
1

12

_A2ðXÞ
2ðn · pÞ ðn · sÞ3 ¼ 1

24

ξ30
χ0

E2ðXÞ
F 2

0

φ3; ð304Þ

with the notation EðXÞ ≔ jE⃗ðXÞj. Equation (304) reveals the
significance of ξ30=χ0 for locally constant fields, which is well
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known in laser physics [159–161]. All higher order gradient
contributions to the exponent of the gauge-invariant spectral
function from the dressed mass, e.g., the next order terms

e2
1

720

1

2ðn · pÞ ½3
̈
E⃗ðXÞ · E⃗ðXÞ þ _E2ðXÞ�ðn · sÞ5; ð305Þ

are suppressed by gauge-invariant gradients. Similarly, one
may explicitly verify that under this locally-constant field
approximation, theWilson line can be approximated in such a
way that the relation between covariant and invariant fermion
two-point functions, Eq. (129), and the relation between
fΨ- and f̃Ψ-type fermion distribution functions, Eq. (131),
indeed holds.
Keeping the LO of the dressed mass, we find the gauge-

invariant LO scalar component

ρ̂Ψ;v;SðX; pÞ

¼ im
1

2p−

Z
dφ
ω

exp

�
i

�
pþ −

jp⃗⊥j2 þm2

2p−

�
φ

ω

− i
1

24

ξ30
χ0

E2ðXÞ
F 2

0

φ3

�
þOðe0∂p · ∂XÞ: ð306Þ

The φ integral leads to the Airy function16

ρ̂Ψ;v;SðX; pÞ

¼ im

m2χ2=3ðX; pÞAi
�
−

p2 −m2

m2χ2=3ðX; pÞ
�
þOðe0∂p · ∂XÞ;

ð307Þ

where the local parameter χ defined in (186) amounts to χ0
with F 0 replaced by EðXÞ for plane-wave fields [for the
computation of Eq. (307) see Appendix F 1].
The LCFA strong-field scattering probabilities [149,150]

that are used as input in the kinetic equations e.g., Ref. [22]
also feature such Airy functions. As anticipated in Sec. V C,
these functions may be further reduced to on-shell delta-
peaks by virtue of the identity limχ→0

1
χAiðx=χÞ ¼ δðxÞ,

consistent with a classical radiation reaction regime.

3. Quantum Vlasov term

To discuss the quantum Vlasov term for small field-
gradients of Eq. (171) for plane-wave fields it is useful to
switch to light-cone coordinates,

ρ̂μΨDμf̃Ψ ¼ ðρ̂þΨD− þ ρ̂−ΨD
þ − ρ̂iΨ;⊥Di⊥Þf̃Ψ: ð308Þ

For plane-wave fields, the light-cone components of the
Vlasov derivative simplify to

D−
v ¼ ∂− ¼ ∂

∂Xþ ; ð309Þ

Dþ
v ¼ ∂

∂X− þ eEi⊥ðXÞ
∂

∂pi⊥
; ð310Þ

Di⊥;v ¼
∂

∂X⊥;i
− eEi⊥ðXÞ

∂
∂pþ ; ð311Þ

with ∂=∂X−¼ð∂=∂X0−∂=∂X3Þ=2 and ∂=∂Xþ¼∂=∂X0þ
∂=∂X3, and analagous definitions for momentum deriva-
tives. A p− derivative is absent as it comes with F μνnν

which vanishes for plane-wave fields.
The all-order in field-gradients plane-wave spectral

vector component is

ρ̂μΨ;vðX; pÞ ¼ ið2πÞ
Z
q
δðq2 −m2Þsgnðq0Þ

Z
s
eiðp−hπqiðX;sÞÞs

×

�
π̄μqðX; sÞ − nμ

1

8

ðn · sÞ2e2hEi2ðX; sÞ
ðn · qÞ

�
;

ð312Þ

where π̄q is the plane-wave momentum in the field
1
2
½AμðxÞ þAμðyÞ� explicitly stated by Eq. (F17) in the

Appendix. The computation of the pre-exponential makes
use of the fact that

Aμ

�
X þ s

2

�
−Aμ

�
X −

s
2

�
¼ ðn · sÞh _AμiðX; sÞ; ð313Þ

and can also be found in the Appendix F 2, alongside the
leading order in field gradients. These are all the ingre-
dients one needs for the quantum Vlasov term for locally
constant plane-wave fields. In principle, with Eq. (312)
available, the drift term of the all-order field-gradient
equation (145) is also accessible.
The light-cone components of the vector spectral func-

tion (312) obey

ρ̂−ΨðX; pÞ ¼
n · p
m

ρ̂Ψ;SðX; pÞ; ð314Þ

ρ̂iΨ;⊥ðX; pÞ ¼
pi⊥
m

ρ̂Ψ;SðX; pÞ þOðe0∂p · ∂XÞ: ð315Þ

These identities are particularly useful in the classical
radiation reaction regime (χ → 0), to recover the on-shell
Lorentz force drift term of the classical Vlasov equa-
tion (191) by expressing the vector component in
terms of the scalar component and then using
limχ→0

1
χAiðx=χÞ ¼ δðxÞ. In systems with a long-lived

separation of scales in terms of ultrarelativistic fermions,
it is possible to reduce Eq. (308) to a Lorentz force term
also without sending χ → 0 (see Secs. V C and VH).

16The Airy function AiðxÞ ≔ 1
2π

R
du expðiðxuþ u3=3ÞÞ solves

the differential equation Ai00ðxÞ − xAiðxÞ ¼ 0.
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4. Electron and positron collision terms

Inserting the plane-wave collision kernel (234) into the fermion collision term (153) and making use of identities (131)
and (154) we may write the fermion collision term for small field gradients as

CΨ;vðX;pÞ ¼ e2
Z

dl1
ð2πÞ

Z
dl2
ð2πÞ

Z
q;k
ð2πÞ7δðk− pþ qÞQðX; l1; l2; pþ eA− l1n; qþ eA− l2nÞ

× δðk2Þsgnðk0Þδððpþ eAÞ2 −m2 − 2l1ðn · pÞÞsgnðp0 − l1n0Þδððqþ eAÞ2 −m2 − 2l2ðn · qÞÞsgnðq0 − l2n0Þ
× ff̃ΨðX; qÞfðX; kÞ½1− f̃ΨðX;pÞ�− ½1− f̃ΨðX;qÞ�½1þ fðX; kÞ�f̃ΨðX;pÞg: ð316Þ

Here, we have relied on small field gradients to write the
invariant spectral function of the fermion collision term
(153) in terms of the plane-wave delta function of the
covariant specrtal function (221),

ρ̂Ψ;vðX; pÞ ¼ ρΨ;vðX; pþ eAÞ þOðe0∂p · ∂XÞ: ð317Þ

Defining electron and positron collision terms,

1

2
C−
Ψ;vðX; p⃗Þ ≔

Z
∞

0

dp0

ð2πÞCΨ;vðX; pÞ; ð318Þ

−
1

2
Cþ
Ψ;vðX;−p⃗Þ ≔

Z
0

−∞

dp0

ð2πÞCΨ;vðX;pÞ; ð319Þ

the frequency delta functions in Eq. (316) then allow for
explicit computation of the frequency integrals and to
recover the structure in terms of the strong-field scattering
processes depicted in Fig. 8.
The sign in the definition (319) accounts for a sign that

arises when substituting p⃗ → −p⃗. The factors of 1
2
account

for the absence of a factor of 2 in the identity for the first-
order derivatives of fermions ið=∂x þ =∂yÞ ¼ i=∂X as com-
pared to the identity for the second-order d’Alembertians
for photons (98).
The appearance of pþ eA in Q is resolved in the

vacuum limit, where scattering kernels become gauge
invariant on their own as discussed in Sec. V E 2. Since
the fermion self-energy is not gauge invariant, the emer-
gence of gauge-invariant scattering amplitudes with no
Wilson lines is far from obvious. However, in the vacuum
case, a gauge-invariant fermion loop emerges from the
product of the fermion self-energy and the fermion propa-
gator under an additional momentum integral. The ultra-
relativistic limit discussed below in Sec. V H then resolves
any remaining obstructions to a description in terms of on-
shell distribution functions.

G. The case of small occupations

The complexity of collisional kinetic equations is largely
due to the nonlinearity in distribution functions of collision
terms. However, many physical situations allow for an
assumption of small distribution functions i.e.,

f�ΨðX; l; p⃗Þ ≪ 1 and fðX; k⃗Þ ≪ 1; ð320Þ

implicit for example in the kinetic equations of
Refs. [22,43]. For such settings close to vacuum, one
may drop 2 → 1 and 3 → 0 processes entirely, since they
contain no linear terms and are therefore suppressed17 by

f�Ψf
�
Ψf; f�Ψf

�
Ψ; f�Ψf ≪ f�Ψ; f: ð321Þ

Thereby, strong-field systems with small occupations
single out a direction in time—the direction of energy
transport from the macroscopic field to the particle sector
by 1 → 2 and 0 → 3 processes—even if the corresponding
scattering matrix elements and the fundamental equations
of motion are symmetric under time reversal. Similarly,
one may simplify all Bose-enhancement or Pauli-blocking
terms in 1 → 2 and 0 → 3 processes via 1þ fðX; k⃗Þ ≈ 1

and 1 − f�ΨðX; l; p⃗Þ ≈ 1. In this way, small distribution
functions lead to a linearization of collision terms. In
contrast to a linearization around equilibrium [104] which
keeps thermal distributions as in Eq. (118), collision terms
linearized by small occupations violate detailed balance
and are thereby no longer able to describe the approach to
thermal distribution functions. Charge conservation
[Eq. (157)] is still exact.
The linearized near-vacuum plane-wave photon

collision term (259) then reads [after a substitution to
recover covariant energy conservation as described around
Eq. (264)],

17See also ‘phase space suppression’ arguments in terms of
integral measures and kinematic restrictions from the field, e.g.,
in Ref. [69].
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CvðX; k⃗Þ ¼ e2
1

2jk⃗j

Z
dl1
ð2πÞ

Z
d3p
ð2πÞ3

1

2εðp⃗Þ
Z

dl2
ð2πÞ

Z
d3q
ð2πÞ3

1

2εðq⃗Þ ð2πÞ
4

× ½δðk − pþ q − ðl1 − l2ÞnÞQeþ→eþγðX; l2; l1; q⃗þ l2n⃗; p⃗þ l1n⃗ÞfþΨðX; l1; p⃗þ l1n⃗Þ
þ δðk − pþ q − ðl1 − l2ÞnÞQe−→e−γðX; l1; l2; p⃗þ l1n⃗; q⃗þ l2n⃗Þf−ΨðX; l1; p⃗þ l1n⃗Þ
− δðk − p − q − ðl1 þ l2ÞnÞQeþe−→γðX; l1; l2; p⃗þ l1n⃗; q⃗þ l2n⃗ÞfðX; k⃗Þ�: ð322Þ

The electron collision term (318) under the same
approximation reduces to the three 1 → 2 scattering proc-
esses, e− → e−γ with ingoing momentum p⃗, e− → e−γ
with outgoing momentum p⃗, and γ → e−eþ. Analogously,
the linearized positron collision term (319) contains the
processes eþ → eþγ and γ → eþe−. In all near-vacuum
collision terms, each process is weighted linearly by the
distribution function of the ingoing particle as in the
equations of Ref. [22].
We emphasize that for general macroscopic fields, these

near-vacuum collision terms would all additionally contain
0 → eþe−γ source terms with no distribution function,
contributing to vacuum pair production at two-loop Oðe2Þ
precision.

H. The case of ultrarelativistic fermions
and on-shell strong-field descriptions

Many of the approximations discussed in previous sec-
tions are tied together in an ultrarelativistic setting: strong
macroscopic fields accelerate fermions to ultrarelativistic
energies within small regions of space. Once accelerated,
any macroscopic field appears like a plane-wave field in the
Lorentz rest frame of an ultrarelativistic fermion [162].
Therefore, plane-wave fields represent generic qualities of
strong fields in an ultrarelativistic setting. Furthermore,
ultrarelativistic fermions facilitate chiral symmetry, which
in turn leads to a reduction of tensor structures, which is
assumed by our definition of the fermion distribution
function as discussed in Sec. III C. Additionally, large
fermion momenta can facilitate that field gradients are
numerically separated from propagator gradients as we have
seen in Eq. (61). Moreover, ultrarelativistic fermions have a
small de Broglie wavelength facilitating classical propaga-
tion in-between quantum processes like the emission of
photons. From an analysis of the classical propagation of
fermions one then finds that ultrarelativistic fermions emit
radiation along their instantaneous velocity, within a cone of
angular aperture ∼m=εðp⃗Þ [15,138]. If the particle is ultra-
relativistic and its energy is the largest scale in the system, its
motion has a pronounced directionality. In a strong-field
vacuum i.e., for vanishing occupations, and if the transverse
momenta are much larger than m, one can then show
that only small patches of their trajectory contribute to
scattering amplitudes [15,152] (which is the assumption of
the LCFA).

There are several notions of ultrarelativistic limits for
fermions in the literature. They range from assumptions on
kinematic restrictions [22] to expansions in terms of
p⃗⊥=ðn · pÞ [162] or 1=γ ¼ m=εðp⃗Þ [15]. In the language
of the present paper, an ultrarelativistic system is defined by
a fermion distribution function that is peaked at an ultra-
relativistic scale p�. Such a distribution function then gives
meaning to single particle concepts such as the de Broglie
wavelength ℏ=p� also in many-body systems. In particular,
the structure of the fermion spectral function of such
a system only matters for characteristic momenta as it
always appears in a product with the fermion distribution
function which approximately vanishes away from the
characteristic scale.
We now assume that the characteristic scale p� of

fermion distribution functions is well separated from
the characteristic scale l� of the strong-field spectral
kernel (222), i.e.,

jp�
z j ≫ jl�j: ð323Þ

In such a situation, the strong-field spectral function only
contributes with on-shell values, because

εl� ðp⃗�Þ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗�j2 þm2

q
ð324Þ

becomes the on-shell dispersion, independent of l�. As
anticipated by our discussion in Sec. V C, this implies that
ultrarelativistic fermions may indeed be described by on-
shell particles whose energy εðp⃗�Þ then satisfies

jl�j=εðp⃗�Þ ≪ 1: ð325Þ

The ultrarelativistic limit (324) leaves the strong-field
properties of the spectral function intact, simplifies kin-
ematic restrictions, and favors a description in terms of free
distribution functions.
However, in general, there is no mechanism that

dynamically controls this approximation, i.e., it may
become invalid during the evolution of the system even
if it is valid at initial time. An important effect that
explicitly breaks the validity of an ultrarelativistic approxi-
mation is vacuum pair production, which generates off-
shell contributions to f̃ΨðX; pÞ at zero frequency according
to Eq. (180).
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Indeed, a kinetic description in terms of only on-shell
distribution functions is suggested in Ref. [22] for ultra-
relativistic fermions in strong (but subcritical E ≪ Ec)
fields with small gradients. Our off-shell transport descrip-
tion of Sec. IV reduces to that description under the
following approximations: a) an approximation of field-
gradients (see Sec. VA); b) an approximation of collision
terms for small occupations to neglect medium effects (see
Secs. V E 2 and VG); c) an assumption of ultrarelativistic
simply peaked fermion distribution functions and subcriti-
cal fields to replace the quantum Vlasov term with the
Lorentz force term of the classical Vlasov equation (193)
(see also Sec. V C) and to justify the on-shell limit of
collision terms,

Z
dl1

Z
dl2gðl1;l2ÞQðl1;l2Þ≃gð0;0Þ

Z
dl1

Z
dl2Qðl1;l2Þ;

ð326Þ

where g indicates the gain-minus-loss terms andQ includes
the delta functions such that energy conservation is treated
exactly. Together with the Lorentz force term, this closes
the strong-field description in terms of the traditional on-
shell particle distribution functions (84) and (85) which
emerge from plane-wave distribution functions via

f�ΨðX; l; p⃗Þ⟶
l→0

f�ΨðX; p⃗Þ: ð327Þ

With all these approximations combined, subtleties regard-
ing gauge-invariance both of the scattering kernels and the
distribution functions are also resolved: The scattering
kernels become gauge-invariant objects in the vacuum
limit (274) and a distinction between the f̃Ψ- and fΨ-type
fermion distribution functions is not important after the
ultrarelativistic limit (327) for distribution functions that
are always only occupied in terms of a few on-shell particle
modes for which gauge invariance is assured.
Dropping all these assumptions is possible by employing

the gauge-invariant off-shell equations discussed in Sec. IV.
Starting from this off-shell description, it would be inter-
esting to investigate whether collisional or inhomogeneous
contributions to the particle yield (182) can invalidate an
on-shell description also for subcritical fields on some
significant time scale on the way to equilibrium.

VI. CONCLUSIONS AND OUTLOOK

Our work demonstrates how to systematically derive
transport and kinetic equations including collisions for
general supercritical fields. The equations to order Oðe2Þ
include local scattering kernels for strong fields that can
also be inhomogeneous. This is achieved by off-shell
transport equations that include nonlocal relative times
and all field gradients in the fermion spectral function,
while retaining the gain-minus-loss structure of traditional

kinetic equations. To investigate our equations analytically
and to make contact to limiting cases in the literature, we
have also considered plane-wave fields.
We have shown that the inclusion of fermion spectral

dynamics is essential to describe collisions and fermion
drifting in the presence of general strong fields. Existing
derivations of strong-field Wigner descriptions in the
literature have neglected spectral dynamics by limiting
themselves to the collisionless regime, in which equations
for spectral functions decouple from transport equations.
In general, however, the macroscopic field enters the
collision kernel (115) via the fermion spectral function
(103). This resums infinitely high perturbative orders of the
coupling that all become relevant for sufficiently large
macroscopic fields. The macroscopic field itself is gov-
erned by a Maxwell equation in the presence of a fermion
current involving the quantum corrections. The general
form of this Maxwell equation turns out to be valid to
arbitrary loop and gradient order in our framework. Our
approach paves the way for investigations of the thermal-
ization process starting from strong field initial conditions,
which requires to go beyond collisionless approximations.
We have pointed out a connection between asymptotic

pair production and spectral dynamics. While one-loop
results such as the Schwinger pair production rate (173)
assume the macroscopic field to be external and constant in
time, our one-loop result (180) is fully dynamical and
generalizable to the expression (182), which in principle
includes collisions to two-loop order and all orders in field-
gradients. Our description in terms of distribution functions
does not rely on asymptotic expressions, such as total
particle numbers or total probabilities in order to compute
time-dependent observables such as the strong-field photon
decay rate (118).
We solved the LO equation for the fermion spectral

function for the special case of an external plane-wave
macroscopic field, AμðxÞ ≃Aμ

vðn · xÞ with a null vector
n2 ¼ 0. This reduces the transport description to only two
equations for the off-shell fermion and the on-shell photon
distribution function. The plane-wave spectral function is
the antisymmetric part of the well-known time-ordered
Volkov fermion propagator. By employing only its anti-
symmetric part in the Oðe2Þ transport equations, we self-
consistently resum quantum fluctuations to two-loop order.
Thereby, a solution of our equation goes beyond the
statistical component of the one-loop Volkov propagator
that implicitly assumes vanishing distribution functions.
Employing the all-order field-gradient plane-wave spec-

tral function in the collision kernel reproduces expressions
which are similar to the Furry picture, but have the
advantage of being automatically local in the kinetic
position variable X while containing contributions from
inhomogeneous fields not limited to the vicinity of X. In
particular, we have demonstrated that plane-wave scatter-
ing kernels emerge with a space-time structure that is more
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general than the one of local scattering amplitudes that are
known from laser applications. The more general scattering
kernels reduce to known expressions only if relative times
are restricted to certain values. We have recognized this
condition as the implicit assumption that the system is in
plane-wave vacuum, i.e., that fermion plane-wave distri-
bution functions are negligible or have only single occupied
modes. This means that medium effects are missed if a
strong-field scattering kernel is obtained from Feynman
rules for the Furry picture S matrix. For negligible
distribution functions, known gauge-invariant global scat-
tering amplitudes emerge by integrating over all X. To
employ external-field vacuum amplitudes in an isolated
dynamical setting is typically inconsistent because it
includes times outside the range of validity of external
field and vacuum approximations as non-negligible dis-
tribution functions develop dynamically and backreact on
the field. Nevertheless, these emergent amplitudes allowed
us to highlight connections to Ward identities, which
remove the gauge-fixing dependence of the 2PI formulation
of QED in the corresponding limit.
Furthermore, the plane-wave fermion spectral function

allowed us to use the energy exchange with the macroscopic
field as a parameter l to label strong-field degrees of freedom
with energy εlðp⃗Þ, which enable a continuous connection to
the free particle degrees of freedom of an on-shell descrip-
tion. When this spectral function is multiplied by a fermion
distribution function that is peaked on an ultrarelativistic
scale p� that is well separated from the characteristic value
of l, its dispersion relation becomes independent of l and
reduces to that of free fermions, εlðp⃗�Þ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗�j2 þm2

p
.

This facilitates an on-shell description despite the presence
of strong fields. Thereby, strong-field systems in which such
a clearly separated scale p� exists for long times may be
accurately captured by on-shell descriptions that combine
collisions with classical Lorentz force drifting. Since any
field appears as a plane wave in the rest frame of a single
ultrarelativistic fermion, we expect that most statements that
we arrived at under the assumption of an external plane-
wave field also hold for more general fields, as long as
fermion distribution functions are dominated by a few
ultrarelativistic particle modes.
In contrast, in isolated systems with supercritical fields,

initial characteristic scales are dynamically affected by pair
production (which occurs off-shell and is largest at zero
frequency) and by the transport of fermion occupations
towards an equilibrium distribution (which has its maxi-
mum at low energies and is not sharply peaked). For such
isolated systems, we argued that an initial ultrarelativistic
separation of scales is not long lived, such that an on-shell
Lorentz force description introduces an error larger than our
desired accuracy of Oðe2Þ. In the absence of a long-lived
separation of scales, one needs instead a description that
remains valid over a wide range of energies to describe the
evolution of off-shell contributions induced by vacuum pair

production towards the on-shell regime of the asymptotic
future. The gauge-invariant fermion transport equation
Eq. (145) with its all-gradient off-shell drift and collision
term constitutes such a description by coupling to the
fermion spectral equation, the photon transport equation
and the Maxwell equation summarized in Fig. 6.
The leading order equations may give insight into the

largely unexplored late-time behavior of isolated QED
systems with finite net charge. If such a system equilibrates,
its late-time state can not be the traditional homogeneous
thermal equilibrium, because the Gauss constraint for finite
net charge prevents the initial field both from decaying
completely and from becoming fully homogeneous. The
possible approach to such a charged time-translation invariant
state may be completely described by our equations, if the
equilibrium field induced by the net charge turns out to be
sufficiently large.
Such a numerical computation, in particular of the self-

consistent strong-field fermion spectral function, will also
allow for a more detailed study of the collision kernel and
the spectral peak structure. This would, e.g., enable an
analysis of spectral widths and to establish under what
circumstances they are small. To obtain insight into specific
controlled experimental settings, one may employ other
external fields in such a computation, as we have done for
the plane-wave spectral function with laser fields in mind.
Possible other choices of external fields include noncrossed
constant electric fields, homogeneous magnetic fields, and
Coulomb fields.
In the future, dropping our assumption of reduced tensor

structures (74) with the help of Ref. [50] could clarify the
significance of chiral dynamics [115–118] and spin trans-
port [124], and extend chiral kinetic theory [119–123] to
the collisional regime. To access the transport dynamics of
the axial current jμ5ðXÞ ¼ −etrfγ5γμFΨðX;XÞg, an inter-
acting spectral function that has a nonvanishing axial
component such as the strong-field spectral function
employed in this paper is required (see the expression
for plane-wave fields in Appendix F 4). A leading-order
collisional description including all tensor structures in the
presence of a macroscopic field is now in reach and would
open up diverse applications on chiral dynamics reaching
from astrophysics [163,164] to semiconductors [165,166].
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APPENDIX A: IDENTITIES FOR QED
TWO-POINT FUNCTIONS

The following hermiticity properties of photon and
fermion two-point functions are used in the main text:
The photon two-point functions have the properties
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½ρμνðx; yÞ�� ¼ ρμνðx; yÞ; ðA1Þ

ρμνðx; yÞ ¼ −ρνμðy; xÞ; ðA2Þ

½Fμνðx; yÞ�� ¼ Fμνðx; yÞ; ðA3Þ

Fμνðx; yÞ ¼ Fνμðy; xÞ; ðA4Þ

i.e., ρμνðx; yÞ is real and antisymmetric and Fμνðx; yÞ is real
and symmetric. The definitions for the advanced and
retarded propagators used in Sec. III are

Dμν
R ðx; yÞ ≔ θðx0 − y0Þρμνðx; yÞ; ðA5Þ

Dμν
A ðx; yÞ ≔ −θðy0 − x0Þρμνðx; yÞ; ðA6Þ

ΔRðx; yÞ ≔ θðx0 − y0ÞρΨðx; yÞ; ðA7Þ

ΔAðx; yÞ ≔ −θðy0 − x0ÞρΨðx; yÞ; ðA8Þ

and the same for the self-energies. These functions obey

Dμν
A ðx; yÞ ¼ Dνμ

R ðy; xÞ; ðA9Þ

ΔAðx; yÞ ¼ γ0Δ†
Rðy; xÞγ0: ðA10Þ

They are related to the spectral functions via

ρμνðx; yÞ ¼ Dμν
R ðx; yÞ −Dμν

A ðx; yÞ; ðA11Þ

ρΨðx; yÞ ¼ ΔRðx; yÞ − ΔAðx; yÞ: ðA12Þ

The definitions for the Wightman functions employed in
Sec. IVA are

Dþ−ðx; yÞμν ≔ Fμνðx; yÞ − i
2
ρμνðx; yÞ; ðA13Þ

D−þðx; yÞμν ≔ Fμνðx; yÞ þ i
2
ρμνðx; yÞ; ðA14Þ

Δþ−ðx; yÞ ≔ FΨðx; yÞ −
i
2
ρΨðx; yÞ; ðA15Þ

Δ−þðx; yÞ ≔ FΨðx; yÞ þ
i
2
ρΨðx; yÞ; ðA16Þ

and the same for the self-energies. These Wightman
functions are sometimes denoted as G−þ ¼ G< and
Gþ− ¼ G> in literature. The superscripts indicate on which
part of the Keldysh contour their arguments lie and can be
obtained from the general functions (14), (15) and (33),
(34) by explicit use of the sign functions sgnC. Similarly to
the retarded and advanced functions they obey

ρμνðx; yÞ ¼ iðDþ−
μν ðx; yÞ −D−þ

μν ðx; yÞÞ; ðA17Þ

ρΨðx; yÞ ¼ iðΔþ−ðx; yÞ − Δ−þðx; yÞÞ: ðA18Þ

In Wigner space, one may alternatively exploit the Wigner
transform of the Heaviside function,

θðx0 − y0Þ ¼ lim
ε→0

Z
dω
ð2πÞ e

−iωs0 i
ωþ iε

; ðA19Þ

to obtain a Källén-Lehmann representation

Dμν
R ðX; kÞ ¼ lim

ε→0

Z
dω
ð2πÞ

iρμνðX;ω; k⃗Þ
k0 − ωþ iε

; ðA20Þ

ΔRðX; pÞ ¼ lim
ε→0

Z
dω
ð2πÞ

iρΨðX;ω; p⃗Þ
p0 − ωþ iε

ðA21Þ

and similarly for the advanced functions with

θðy0 − x0Þ ¼ lim
ε→0

Z
dω
ð2πÞ e

−iωs0 −i
ω − iε

: ðA22Þ

The self-energies obey completely analogous identities. We
stress that any singularity associated to the ε-prescription
does not arise in an exact (early-time) description that
employs Wigner transforms (46) instead of the late-time
Wigner transforms (47) (see also Refs. [105,106]).
The photon Wigner functions have the properties

FμνðX; kÞ ¼ FνμðX;−kÞ; ðA23Þ

ρμνðX; kÞ ¼ −ρνμðX;−kÞ; ðA24Þ

Dμν
A ðX; kÞ ¼ Dνμ

R ðX;−kÞ: ðA25Þ

Similarly, fermion Wigner functions obey

FΨðX; pÞ ¼ γ0F†
ΨðX; pÞγ0; ðA26Þ

ρΨðX; pÞ ¼ −γ0ρ†ΨðX; pÞγ0; ðA27Þ

ΔAðX; pÞ ¼ γ0Δ†
RðX; pÞγ0: ðA28Þ

Given all this, it should be remembered that there are only
two independent two-point functions per field species (see
also our comment at the end of Sec. III A).
The LOOðe2Þ 2PI loop expansion of the Wightman self-

energies is

Σþ−
μν ðx; yÞ ¼ e2trfγμΔþ−ðx; yÞγνΔ−þðy; xÞg; ðA29Þ

Σ−þ
μν ðx; yÞ ¼ e2trfγμΔ−þðx; yÞγνΔþ−ðy; xÞg; ðA30Þ

Σþ−
Ψ ðx; yÞ ¼ −e2γμΔþ−ðx; yÞγνDþ−

μν ðx; yÞ; ðA31Þ

Σ−þ
Ψ ðx; yÞ ¼ −e2γμΔ−þðx; yÞγνD−þ

μν ðx; yÞ: ðA32Þ
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APPENDIX B: 2PI FIELD EQUATION
OF MOTION

As discussed around Eq. (27), the only objects in
Γ½A; D;Δ� that depend on A are the classical action
S½A� and its second derivative iΔ−1

0 ½A� such that

0¼! δΓ½A; D;Δ�
δAμ ¼ δ

δAμ ðS½A� − iTrΔ−1
0 ΔÞ: ðB1Þ

These two terms are the variation of the classical
action (where boundary terms are dropped as initial
conditions)

δ

δAμðxÞ S½A� ¼ ½ημσ□x − ð1 − 1
ξÞ∂μ∂σ�AσðxÞ; ðB2Þ

and the one-loop term

−iTrΔ−1
0 ½A�Δ ¼ −i

Z
C;yz

trfði=∂y − eAðyÞ −mÞδCðy; zÞΔðz; yÞg

¼ −
Z
C;yz

trfði=∂y − eAðyÞ −mÞδCðy; zÞðθCðz; yÞΔþ−ðz; yÞ þ θCðy; zÞΔ−þðz; yÞÞg

¼ −
Z

∞

t0

d4ytrfði=∂y − eAðyÞ −mÞFΨðy; yÞg; ðB3Þ

where we used that θðx − yÞ þ θðy − xÞ ¼ 1 and that on the backward branch of the contour, x; y ∈ C−, δCðx; yÞ ¼
− 1

2
δðx − yÞ, which results in the fact that only the statistical function FΨðx; yÞ ¼ 1

2
ðΔþ−ðx; yÞ þ Δ−þðx; yÞÞ contributes to

this term (see also Ref. [65]). The variation of this term then gives the Maxwell current

δ

δAμðxÞ ð−iTrΔ
−1
0 ½A�ΔÞ ¼ etrfγμFΨðx; xÞg: ðB4Þ

APPENDIX C: ON THE GRADIENT EXPANSION OF SPECTRAL EQUATIONS OF MOTION

To NLO in propagator-gradients, the RHS of the tensorial equation for the fermion spectral function consists of
commutators in Dirac space and Poisson-brackets,

Z
d4ðx − yÞeipðx−yÞ½ðρRHSÞΨðx; yÞ þ γ0ðρRHSÞ†Ψðy; xÞγ0�

¼ 1

2
½ΣðΩÞ

Ψ ; ρΨ�ðX; pÞ þ
1

2
½ΣðρÞ

Ψ ;ΩΨ�ðX; pÞ þ
i
2
½ΣðΩÞ

Ψ ; ρΨ�PBðX; pÞ þ
i
2
½ΣðρÞ

Ψ ;ΩΨ�PBðX; pÞ þOðe2ð∂p · ∂XÞ2GÞ: ðC1Þ

Here we introduced the Hermitian i.e., in the sense of
γ0Ω†

ΨðX; pÞγ0 ¼ ΩΨðX; pÞ, parts of retarded components

ΣðΩÞ
Ψ ðX; pÞ ≔ ΣΨ;RðX; pÞ þ ΣΨ;AðX; pÞ ðC2Þ

ΩΨðX; pÞ ≔ ΔRðX; pÞ þ ΔAðX; pÞ: ðC3Þ

An analagous expression is true for the RHS of the photon
spectral equation of motion, where commutators in Dirac
space are replaced by ½A;B�μν ≔ AμσBσ

ν − BμσAσ
ν and

likewise for Poisson brackets.
Kinetic equations describe physics for which occupa-

tions evolve decoupled from the spectrum of the theory.
Eq. (C1) shows that this happens to all orders of the
coupling for small propagator-gradients and sufficiently
simple tensor structures, i.e., vanishing commutators. The
Poisson brackets are NLO in propagator gradients,

Oðe2∂k · ∂XGÞ, and the Dirac commutators can vanish
for simple tensor structures such as those that reduce
dynamics to a single distribution function as discussed
in Sec. III C 1. The interaction terms in the trace of Eq. (C2)
are always suppressed by propagator gradients, such that
the traced equation coincides with the free equation of
motion. In fact, the RHS of the traced Eq. (100) is strictly
Oðe2ð∂p · ∂XÞGÞ [and not justOðe2Þ]. The same thing does
not happen in the traced equations of motion for statistical
functions e.g., Eq. (99), whose leading order in propagator
gradients does not vanish, but provides the collision terms.

APPENDIX D: COVARIANT VS INVARIANT
EXPANSION IN FIELD-GRADIENTS

Simply expanding the gauge-non-invariant one-point
function in its gradients via

FAUTH, BERGES, and DI PIAZZA PHYS. REV. D 104, 036007 (2021)

036007-38



Aμ

�
X þ s

2

�
−Aμ

�
X −

s
2

�
¼

X∞
n¼0

1

ð2nþ 1Þ!
1

22n
ðs · ∂XÞ2nþ1AμðXÞ; ðD1Þ

Aμ

�
X þ s

2

�
þAμ

�
X −

s
2

�
¼

X∞
n¼0

1

ð2nÞ!
1

22n−1
ðs · ∂XÞ2nAμðXÞ ðD2Þ

to NLO gives the following left hand side of the covariant fermion transport equation,

Z
d4ðx − yÞeipðx−yÞ 1

4
tr½ðFLHSÞΨðx; yÞ − γ0ðFLHSÞ†Ψðy; xÞγ0�

¼ i

� ∂
∂Xμ þ e

� ∂
∂Xσ

AμðXÞ
� ∂
∂pσ

�
Fμ
ΨðX; pÞ þOððe0∂p · ∂XÞ3Þ. ðD3Þ

We now change to the gauge-invariant statistical propagator by introducing Wilson lines. For small fields with small
gradients, we may expand the straight Wilson exponent via

Z
x

y
dzμAμðzÞ ¼ sμ

X∞
n¼0

1

ð2nþ 1Þ!
1

22n
ðs · ∂XÞ2nAμðXÞ: ðD4Þ

The leading order of straight Wilson lines,Wðx; yÞ ¼ e−ies·AðXÞ þOððe0s · ∂XÞ2Þ (first order vanishes), isOðe0Þ for strong
fields and produces the missing term

W
�
X −

s
2
; X þ s

2

� ∂
∂Xμ

W
�
X þ s

2
; X −

s
2

�
¼ −iesσ

∂
∂Xμ

AσðXÞ þOððe0s · ∂XÞ2Þ; ðD5Þ

that is necessary to identify the gauge-invariant field strength tensor. Changing the prescription (D3) how to derive fermion
kinetic equations to include a Wilson line, we recover the Vlasov term via

Z
d4ðx − yÞeipðx−yÞWðy; xÞ 1

4
tr½ðFLHSÞΨðx; yÞ − γ0ðFLHSÞ†Ψðy; xÞγ0�

¼ i

� ∂
∂Xμ − eF μσðXÞ

∂
∂pσ

�
F̂μ
ΨðX; pÞ þOððe0∂p · ∂XÞ3Þ: ðD6Þ

APPENDIX E: SYMMETRIC AND ANTISYMMETRIC PARTS OF THE VOLKOV PROPAGATOR

By virtue of Eq. (217), ði=∂x − eAvðxÞ −mÞEqðxÞð=qþmÞĒqðyÞ ¼ EqðxÞðq2 −m2ÞĒqðyÞ, such that indeed the plane-
wave spectral function solves

ði=∂x − eAvðxÞ −mÞρΨ;vðx; yÞ ¼ ið2πÞ
Z
q
δðq2 −m2Þsgnðq0Þði=∂x − eAvðxÞ −mÞEqðxÞð=qþmÞĒqðyÞ ¼ 0. ðE1Þ

The Volkov spectral function is antisymmetric because

γ0ρΨ;vðx; yÞ†γ0 ¼ −ið2πÞ
Z
q
δðq2 −m2Þsgnðq0Þγ0Ē†

qðyÞð=qþmÞ†E†
qðxÞγ0 ¼ −ρΨ;vðy; xÞ: ðE2Þ

Wemay put this spectral function into the context of canonical quantization in the Furry picture [147], which is achieved for
plane-wave fields by means of the Volkov states [148]

ΨvðxÞ ¼
X
s

Z
d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffi
2εðp⃗Þp ½csðp⃗ÞUp;sðxÞ þ d†sðp⃗ÞVp;sðxÞ�; ðE3Þ
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Ψ̄vðxÞ ¼
X
s

Z
d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffi
2εðp⃗Þp ½dsðp⃗ÞV̄p;sðxÞ þ c†sðp⃗ÞŪp;sðxÞ�; ðE4Þ

via the canonical commutation relations

fcrðp⃗Þ; c†sðq⃗Þg ¼ fdrðp⃗Þ; d†sðq⃗Þg ¼ δrsð2πÞ3δðp⃗ − q⃗Þ ðE5Þ

for the ladder operators with csðp⃗Þj0vi ¼ 0: The plane-wave spectral function can be written as the expectation value of the
anticommutator of Volkov states with respect to the strong field vacuum j0vi, such that

ρΨ;vðx; yÞ ¼ ihfΨvðxÞ; Ψ̄vðyÞgi ¼ ið2πÞ
Z

d4q
ð2πÞ4 δðq

2 −m2Þ½θðq0Þ − θð−q0Þ�RqðxÞð=qþmÞR̄qðyÞ: ðE6Þ

The symmetric part of the Volkov propagator (that has been discussed e.g., in Ref. [49]) is the commutator

FΨ;vðx; yÞ ¼
1

2
h½ΨvðxÞ; Ψ̄vðyÞ�i ¼ π

Z
d4q
ð2πÞ4 δðq

2 −m2Þ½θðq0Þ þ θð−q0Þ�RqðxÞð=qþmÞR̄qðyÞ: ðE7Þ

The Volkov propagator [148] is then built via the standard asymptotic state identity

Δvðx; yÞ ¼ ρΨ;vðx; yÞ −
i
2
FΨ;vðx; yÞsgnðx0 − y0Þ ¼ h0vjT ΨvðxÞΨ̄vðyÞj0vi; ðE8Þ

where T denotes ordinary time ordering.

APPENDIX F: COMPUTATION OF PLANE-WAVE SPECTRAL COMPONENTS
IN LIGHT-CONE GAUGE

1. Computation of the scalar component and the dressed mass phase factor

We compute the scalar component by first computing the traces

1

4
trfð=qþmÞg ¼ m; ðF1Þ

1

4
tr

�
=nA

�
X þ s

2

�
ð=qþmÞ

�
¼ 1

4
tr

�
ð=qþmÞA

�
X −

s
2

�
=n

�
¼ 1

4
tr

�
=nA

�
X þ s

2

�
ð=qþmÞA

�
X −

s
2

�
=n

�
¼ 0; ðF2Þ

where we have used that n ·A ¼ 0. The scalar component of the plane-wave spectral function is therefore

ρS;vðX; pÞ ¼ mið2πÞ
Z
q
δðq2 −m2Þsgnðq0Þ

Z
s
eiðp−qÞse−iN qðX;sÞ ðF3Þ

with N q defined by Eq. (223). Next we compute the integrals. The exponent in light-cone gauge, Aþ ¼ A− ¼ 0, is

Sq

�
X þ s

2

�
− Sq

�
X −

s
2

�
¼ −q · s −N qðX; sÞ

¼ −qþs− − q−sþ þ q⃗⊥ · s⃗⊥ −
1

2q−

Z n·s
2

−n·s
2

dλ½−2eA⃗⊥ðn · X þ λÞ · q⃗⊥ þ e2jA⃗⊥ðn · X þ λÞj2�:

Since this expression is under the integral with

δðq2 −m2Þ ¼ 1

j2q−j δ
�
qþ −

jq⃗⊥j2 þm2

2q−

�
; ðF4Þ

we can set qþ ¼ ðjq⃗⊥j2 þm2Þ=2q−, such that under the integral
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Z
dqþ½q · sþN qðX; sÞ�δ

�
qþ −

jq⃗⊥j2 þm2

2q−

�

¼ m2s−

2q−
þ q−sþ − q⃗⊥ · s⃗⊥ þ s−

2q−

�
jq⃗⊥j2 − 2e

q⃗⊥
s−

·
Z n·s

2

−n·s
2

dλ½A⃗⊥ðn · X þ λÞ� þ e2

s−

Z n·s
2

−n·s
2

dλ½jA⃗⊥ðn · X þ λÞj2�
�
:

Next we complete the square via

jq⃗⊥j2 − 2e
q⃗⊥
s−

·
Z s−

2

−s−
2

dλA⃗⊥ðn · X þ λÞ ¼
�
q⃗⊥ −

e
s−

Z s−
2

−s−
2

dλA⃗⊥ðn · X þ λÞ
�
2

−
e2

ðs−Þ2
�Z s−

2

−s−
2

dλA⃗⊥ðn · X þ λÞ
�
2

:

Since q⃗⊥ is also under the integral, we can simply substitute

q⃗⊥ → q⃗⊥ þ e
ðn · sÞ

Z n·s
2

−n·s
2

dλA⃗⊥ðn · X þ λÞ ðF5Þ

without changing the d4q measure or boundaries, such that

Z
dqþ½q · sþN qðX; sÞ�δ

�
qþ −

jq⃗⊥j2 þm2

2q−

�

¼ q−sþ −
�
q⃗⊥ þ e

s−

Z s−
2

−s−
2

dλA⃗⊥ðn · X þ λÞ
�
· s⃗⊥ þ jq⃗⊥j2s−

2q−

þ s−

2q−

�
m2 þ e2

s−

Z n·s
2

−n·s
2

dλ½jA⃗⊥ðn · X þ λÞj�2 − e2

ðs−Þ2
�Z s−

2

−s−
2

dλA⃗⊥ðn · X þ λÞ
�
2
�

¼ q−sþ − q⃗⊥ · s⃗⊥ þ e
Z

Xþs
2

X−s
2

dzμAμðn · zÞ þ jq⃗⊥j2 þ m̃2ðX; sÞ
2q−

s−;

where we have identified the dressed mass (290) and the exponent of the Wilson line (284). The substitution (F5), together
with taking the qþ integral over the delta function, changes the argument of the sign function to

sgnðq0Þ → sgnðq̃0ðX; sÞÞ ¼ sgnðq−Þ; with q̃0ðX; sÞ ≔
�
jq⃗⊥ þ e

ðn · sÞ
Z n·s

2

−n·s
2

dλ A⃗⊥ðn · X þ λÞj2 þm2

�
=2q− þ 1

2
q−:

Since here the field appears only under the absolute value, this is simply the sign function sgnðq−Þ familiar from light-cone
quantization and compensates the absolute value in the identity (F4). The exact scalar plane-wave spectral function in
position-space thereby is

ρΨ;v;S

�
Xþ s

2
;X −

s
2

�
¼ imð2πÞ

Z
q
δðq2 −m2Þsgnðp0Þe−i½q·sþN qðX;sÞ�

¼ imW
�
Xþ s

2
;X −

s
2

�Z
dq−

ð2πÞ
1

2q−

Z
d2q⊥
ð2πÞ2 exp

�
−i
�jq⃗⊥j2 þ m̃2ðX;sÞ

2q−
s− þ q−sþ − q⃗⊥ · s⃗⊥

��
:

ðF6Þ

With this we can immediately identify the gauge-invariant part via ρΨðx; yÞ ¼ Wðx; yÞρ̂Ψðx; yÞ. Without gradient
expansion, the Wilson line is exactly canceled and no additional substitution of p → pþ eA is necessary. The
Wigner transform can easily be computed up to the s− integral via

ρ̂Ψ;v;SðX;pÞ ¼ im
Z

dq−

ð2πÞ
1

2q−

Z
d2q⊥
ð2πÞ2

Z
ds−eip

þs− exp

�
−i
�jq⃗⊥j2 þ m̃2ðX; sÞ

2q−
s−
��

ð2πÞδðp− − q−Þð2πÞ2δðp⃗⊥ − q⃗⊥Þ;
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where we have used that m̃ only depends on s− not on sþ; s⃗⊥. The result (298) mentioned in the main text, follows after
taking the trivial integrals over the delta functions. Next we prove that the leading order in gauge-invariant field-gradients of
the function (306) is equivalent to the Airy expressions (307). For this purpose we make use of

Z
dφeiaφ−bφ

3 ¼ ð3bÞ−1=3Aið−að3bÞ−1=3Þ: ðF7Þ

We may apply this identity to Eq. (306) with

a ¼ 1

ω

�
pþ −

jp⃗⊥j2 þm2

2p−

�
¼ 1

ω

p2 −m2

2ðn · pÞ ; b ¼ 1

24

ξ30
χ0ðpÞ

E2ðXÞ
F 0

ðF8Þ

such that the prefactor and argument of the result (307) are obtained via

im
ω

ð3bÞ−1=3
2ðn · pÞ ¼ imððn · pÞeEðXÞÞ−2=3; −að3bÞ−1=3 ¼ −ðp2 −m2Þððn · pÞeEðXÞÞ−2=3: ðF9Þ

The free scalar component is obtained for E ¼ 0 via

1

2p−

Z
dφ
ω

exp

�
i

�
pþ −

jp⃗⊥j2 þm2

2p−

�
φ

ω

�
¼ ð2πÞδðp2 −m2Þsgnðp0Þ: ðF10Þ

2. Computation of the vector component

We compute the vector component by first computing the traces

1

4
trfγμð=qþmÞg ¼ qμ; ðF11Þ

1

4
tr

�
γμ=nA

�
X þ s

2

�
ð=qþmÞ

�
¼ nμA

�
X þ s

2

�
· q −Aμ

�
X þ s

2

�
ðn · qÞ; ðF12Þ

1

4
tr

�
γμð=qþmÞA

�
X −

s
2

�
=n

�
¼ nμA

�
X −

s
2

�
· q −Aμ

�
X −

s
2

�
ðn · qÞ; ðF13Þ

1

4
tr

�
γλ=nA

�
X þ s

2

�
ð=qþmÞA

�
X −

s
2

�
=n

�
¼ −2nλA

�
X þ s

2

�
·A

�
X −

s
2

�
ðn · qÞ: ðF14Þ

The vector component of the plane-wave spectral function therefore is

ρμΨ;v;VðX;pÞ ¼ ið2πÞ
Z
q
δðq2 −m2Þsgnðq0Þ

Z
s
eiðp−qÞse−iN qðX;sÞ ×

�
qμ −

e
2

�
Aμ

�
X þ s

2

�
þAμ

�
X −

s
2

��

þ nμ
1

2ðn · qÞ e
�
A
�
X þ s

2

�
þA

�
X −

s
2

��
· q − nμ

1

2ðn · qÞ e
2A

�
X þ s

2

�
·A

�
X −

s
2

��
: ðF15Þ

The last term involves a product of two fields which we can write as

A
�
X þ s

2

�
·A

�
X −

s
2

�
¼ 1

4

�
A
�
X þ s

2

�
þA

�
X −

s
2

��
2

−
1

4

�
A
�
X þ s

2

�
−A

�
X −

s
2

��
2

; ðF16Þ

such that we can identify the plane-wave momentum (287) at the field 1
2
½AμðX þ s

2
Þ þAμðX − s

2
Þ�,
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π̄μqðX; sÞ ≔ qμ − e
1

2

�
Aμ

�
X þ s

2

�
þAμ

�
X −

s
2

��
þ nμ

�
e 1
2
½AðX þ s

2
Þ þAðX − s

2
Þ� · q

ðn · qÞ −
e2 1

4
½AðX þ s

2
Þ þAðX − s

2
Þ�2

2ðn · qÞ
�

ðF17Þ

in the pre-exponential and make use of Eq. (313) to write

1

4
trfγμKðX; l; p − lnÞg ¼

Z
ds−eils

−
e−iN pðX;s−Þ

�
π̄μpðX; sÞ − lnμ − nμ

1

8

ðn · sÞ2e2hEi2ðX; sÞ
ðn · pÞ

�
; ðF18Þ

from which the gauge-invariant vector spectral component (312) used in the main text follows. To leading order in field
gradients, we may drop the gauge-invariant higher orders of

1

2

�
Aμ

�
X þ s

2

�
þAμ

�
X −

s
2

��
¼ AμðXÞ þ 1

8
ðn · sÞ2ÄμðXÞ þOðe0ðs · ∂XÞ3Þ; ðF19Þ

Aμ

�
X þ s

2

�
−Aμ

�
X −

s
2

�
¼ ðn · sÞ _AμðXÞ þ 1

24
ðn · sÞ3Aμ;ð3ÞðXÞ þOðe0ðs · ∂XÞ4Þ; ðF20Þ

such that π̄qðX; sÞ ¼ πqðXÞ þOðe0s · ∂XÞ and

1

4
trfγμK̃qðX; sÞg ¼ πμqðXÞ − nμ

1

8

ðn · sÞ2e2E2ðXÞ
ðn · qÞ þOðe0s · ∂XÞ: ðF21Þ

3. Computation of the pseudoscalar component

We compute the pseudoscalar component by first computing the traces

1

4
trfγ5ð=qþmÞg ¼ 1

4
tr

�
γ5=nA

�
X þ s

2

�
ð=qþmÞ

�
¼ 1

4
tr

�
γ5ð=qþmÞA

�
X −

s
2

�
=n

�
¼ 0; ðF22Þ

1

4
tr

�
γ5=nA

�
X þ s

2

�
ð=qþmÞA

�
X −

s
2

�
=n

�
¼ −iεμνσρnμAν

�
X þ s

2

�
Aσ

�
X −

s
2

�
nρ ¼ 0: ðF23Þ

The pseudoscalar component therefore vanishes identically, ρΨ;v;PðX; pÞ≡ 0 because εμνσρnμnρ ¼ 0.

4. Computation of the axial component

We compute the axial component by first computing the traces

1

4
trfγ5γμð=qþmÞg ¼ 0; ðF24Þ

1

4
tr

�
γ5γμ=nA

�
X þ s

2

�
ð=qþmÞ

�
¼ −inρAσ

�
X þ s

2

�
qνεμρσν; ðF25Þ

1

4
tr

�
γ5γμð=qþmÞA

�
X −

s
2

�
=n

�
¼ −inρAσ

�
X −

s
2

�
qνεμνσρ; ðF26Þ

1

4
tr

�
γ5γμ=nA

�
X þ s

2

�
ð=qþmÞA

�
X −

s
2

�
=n

�
¼ 2inμnλAν

�
X þ s

2

�
qρAσ

�
X −

s
2

�
ελνρσ: ðF27Þ

The axial component of the plane-wave spectral function is therefore
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ρμΨ;v;AðX; pÞ ¼ ð2πÞ
Z
q
δðq2 −m2Þsgnðq0Þ

Z
s
eiðp−qÞse−iN qðX;sÞ ×

�
e
2

1

n · q
εμνρσnρqν

�
Aσ

�
X þ s

2

�
−Aσ

�
X −

s
2

��

−
e2

4

1

ðn · qÞ2 2n
μnλAν

�
X þ s

2

�
qρAσ

�
X −

s
2
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ελνρσ

�
: ðF28Þ

5. Computation of the tensor component

We compute the tensor component by first computing the traces

1

4
tr

�
σμν=nA

�
X þ s

2

�
ð=qþmÞA

�
X −

s
2

�
=n

�
¼ 1

4
trfσμνð=qþmÞg ¼ 0; ðF29Þ

1
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tr
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¼ im
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2

��
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1

4
tr

�
σμνð=qþmÞA

�
X −

s
2

�
=n

�
¼ −im

�
nνAμ

�
X −

2

2

�
− nμAν

�
X −

s
2

��
: ðF31Þ

The tensor component of the plane-wave spectral function is therefore

ρμνΨ;v;TðX; pÞ ¼ mð2πÞ
Z
q
δðq2 −m2Þsgnðq0Þ

Z
s
eiðp−qÞse−iN qðX;sÞ

×
1

2ðn · qÞ e
�
nμ
�
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�
X þ s

2
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−Aν

�
X −

s
2

��
− nν

�
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�
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2

�
−Aμ

�
X −

s
2

���
ðF32Þ

To leading order in field gradients, the gauge-invariant tensor component is

ρ̂μνΨ;v;TðX; pÞ ¼ meF μνðXÞ 1

ð2p−Þ2
Z

dφ
ω

φ

ω
exp

�
i

�
pþ −
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2p−

�
φ

ω
− i

1

24

ξ30
χ0

jE⃗ðXÞj2
F 2

0

φ3

�
þOðe0∂p · ∂XÞ: ðF33Þ

APPENDIX G: MAXWELL CURRENT FOR PLANE-WAVE FIELDS

For the case of an external plane-wave field, the Maxwell current (160) can be written solely in terms of the plane-wave
degrees of freedom (257) and (160)

jμðXÞ ¼ −4e
Z

dl
ð2πÞ

Z
d3p
ð2πÞ3

1

2εp⃗ðlÞ
�
1

2
½K−

μ ðX; l; p⃗Þ þKþ
μ ðX; l; p⃗Þ� þK−

μ ðX; l; p⃗Þf−ΨðX; l; p⃗Þ þKþ
μ ðX; l; p⃗ÞfþΨðX; l; p⃗Þ

�
;

ðG1Þ

with the fermion and antifermion drift kernels

K−
μ ðX; l; p⃗Þ ≔

1

4
trfγμKðX; l; p − lnÞg at p0 ¼ lþ εlðp⃗Þ; ðG2Þ

Kþ
μ ðX;−l;−p⃗Þ ≔

1

4
trfγμKðX; l; p − lnÞg at p0 ¼ l − εlðp⃗Þ: ðG3Þ

The zero-field current (82) of Sec. III C may be obtained as the special case of

K∓
μ ðX; l; p⃗Þ ⟶Av→0 � ð2πÞδðlÞpμ at p0 ¼ εðp⃗Þ: ðG4Þ
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