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We investigate nonrelativistic quantum-mechanical potentials between fermions generated by various
classes of quantum field theory (QFT) operators and evaluate their singularity structure. These potentials
can be generated either by four-fermion operators or by the exchange of a scalar or vector mediator coupled
via renormalizable or nonrenormalizable operators. In the nonrelativistic regime, solving the Schrödinger
equation with these potentials provides an accurate description of the scattering process. This procedure
requires providing a set of boundary conditions. We first recapitulate the procedure for setting the boundary
conditions by matching the first Born approximation in quantum mechanics to the tree-level QFT
approximation. Using this procedure, we show that the potentials are nonsingular, despite the presence of
terms proportional to r−3 and ∇i∇jδ

3ðr⃗Þ. This surprising feature leads us to bifurcate the space of
nonrelativistic quantum mechanical potentials into those which can be UV completed to a QFT and those
which cannot. We identify preliminary criteria for distinguishing between these two classes of potentials.
We also consider extensions to potentials in higher dimensions and find that Coulomb potentials are
nonsingular in an arbitrary number of spacetime dimensions.

DOI: 10.1103/PhysRevD.104.036005

I. INTRODUCTION

Quantum-mechanical potentials are a low energy non-
relativistic description of a scattering process. The space of
these potentials is infinite as it contains all possible radial
and angular dependences, as well as combinations of
operators such as spin and angular momentum. From a
bottom-up approach, we are free to analyze any of these
apparently consistent potentials we want in the framework
of quantum mechanics. On the other hand, if the eventual
goal is to obtain an underlying quantum field theory (QFT)
description of the dynamics we are trying to model, then the
space of viable potentials shrinks. This top-down approach
relies on theoretical consistency, which serves as a power-
ful tool to limit the space of effective potentials. Potentials
in this subspace can be UV completed into a QFT and as
such, have a chance of describing the phenomena we see
around us in the nonrelativistic and the relativistic regime.
In contrast, the potentials which are not a part of this
subspace can never be UV completed to a QFT, so
regardless of how good of an empirical fit they might
be, the underlying microphysics will not be amenable to a
QFT description.

Exploring the relationship between quantum-mechanical
potentials and field theory operators is certainly not new. It
was originally studied in the context of Bethe-Salpeter
equations in [1]. The authors concluded that super-
renormalizable operators yielded regular potentials
VrðrÞ, renormalizable operators yielded transition poten-
tials VtðrÞ, and nonrenormalizable operators yielded sin-
gular potentials VsðrÞ (see [2] for a review of singular
potentials). These potentials satisfied the following con-
ditions at the origin (here, C is a finite constant),

lim
r→0

jr2VrðrÞj ¼ 0

lim
r→0

jr2VtðrÞj ¼ C

lim
r→0

jr2VsðrÞj ¼ ∞: ð1Þ

Later, Lepage and Caswell developed a nonrelativistic
effective field theory approach to this problem in [3,4].
Although they didn’t seek to address the relationship
between field theory operators and singular potentials,
their work simplified the analysis of many nonrelativistic
phenomena such as low energy scattering due to the new
toolkit they introduced which leveraged the nonrelativistic
nature of the problem. More recently, we developed a novel
matching procedure in [5], where we rely on a relativistic
field theory description at short distances and a non-
relativistic quantum-mechanical description at large dis-
tances. The matching is performed at the Compton radius
of the scattered particle, which is the natural scale where
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relativistic effects start becoming important. In light of this
new approach, it is worth readdressing the question of what
classes of field theory operators lead to singular potentials.
As we will see, our conclusions about this classification
differ from [1].
In [5], we showed that at short distances, there was a

match between the tree-level relativistic field theory
description and the first Born approximation using the
corresponding quantum-mechanical potential. This under-
lying correspondence between QFT and quantum mechan-
ics naturally leads to the following criteria for determining
which potentials can be consistently UV completed into
a QFT:

The space of consistent, nonsingular quantum-mechanical
potentials consists of those arising from a well-defined
QFT scattering process. As a consequence of this defi-
nition, from the IR perspective, a quantum-mechanical
potential is inconsistent if it is singular, resulting in a
divergent first Born approximation.

The analysis of low energy scattering is ubiquitous in
various branches of physics. Nonrelativistic nucleon-
nucleon scattering [6,7] was a helpful tool in understanding
the strong force. Nonrelativistic scattering is also of central
importance in determining properties of dark matter.
Scattering processes include dark matter direct detection
[8–12] and dark matter scattering and annihilation in
galaxies [5,13–22]. Furthermore, cross sections can be
nonperturbatively enhanced via the Sommerfeld effect [23]
in the nonrelativistic regime. Analysis of the Sommerfeld
effect, which was carried out in [5] in the context of self-
interacting dark matter models, even showed that the
potential generated by pseudoscalar exchange does not
lead to any enhancement. This was a new result showing
that the matching procedure was sufficient and there was no
need to renormalize, as had previously been suggested in
the literature. In addition, we also showed that the operator
accompanying the potential was critical in reproducing the
physics, and it was incorrect to approximate it as a simple
1=r3 central potential. With such a wide range of applica-
tions, isolating the space of consistent, nonsingular poten-
tials becomes crucial for ensuring that the empirical
description of a low-energy phenomenon can be consis-
tently completed into a QFT. This classification is also an
important tool for effective field theorists tasked with
building a theoretical description underlying these low
energy processes, since it provides theoretical input on
what classes of potentials are viable.
To begin exploring the space of viable potentials, in this

paper we will focus on perturbative QFTs. We will derive
the potential experienced by fermions coupled in a variety
of ways subject to a tree-level matching between QFT and
quantum mechanics. Our focus will be on fermion-fermion
scattering because each particle participating in the scatter-
ing has intrinsic spin which leads to a larger variety of

possible operator structures in the nonrelativistic potential.
We briefly comment on the scalar-scalar and scalar-fermion
scattering cases which work analogously, in Appendix A.
We will begin by reviewing how to set up the initial
conditions for the scattering process of interest in Sec. II.
Then we will start our investigation of potentials. Starting
from an underlying QFT, we will study the potentials
generated from tree-level approximations to the field theory
scattering process. This can be generated by renormalizable
interactions coupling fermions and mediators, which we
study in Sec. III A, or nonrenormalizable interactions, which
we study in Sec. III B. We relegate some detailed calcu-
lations to Appendix B. Having derived all of these potentials,
we will be in a position to critically address which potentials
are truly singular or not. This will conclude our study of tree-
level potentials in (3þ 1)-dimensions. In Sec. IV, we extend
our tree-level results to higher dimensions. We offer con-
cluding remarks in Sec. V.

II. SETTING UP THE SCATTERING
CALCULATION

In this section we will begin by discussing the derivation
of potentials and then review the procedure we formulated
in [5] for setting the boundary conditions. Given a set of
interactions in a perturbative QFT, we can write down the
tree-level QFTamplitude for a particular scattering process.
In nonrelativistic quantum mechanics, the Born approxi-
mation to the scattering amplitude is given by

hp⃗f jiT jp⃗ii ¼ −iṼðq⃗Þð2πÞδðEpf
− Epi

Þ; q⃗ ¼ p⃗f − p⃗i:

ð2Þ

If the relativistic corrections are small, then we can match
the nonrelativistic limit of the QFT amplitude to the
quantum-mechanical amplitude. This gives us the follow-
ing expression for the Fourier transform of the quantum-
mechanical potential, Ṽðq⃗Þ, in terms of the QFT amplitude,

Ṽðq⃗Þ ¼ −
1

2Epf

1

2Epi

M: ð3Þ

Relativistic and nonrelativistic single particle states have a
relative factor of 2Ep in their normalizations which is taken
into account by the prefactor. The quantum-mechanics
calculation occurs in the center-of-mass frame. This effec-
tively reduces it to a single particle problem, and hence
provides only a single factor of 2Ep for the initial and final
state. Once we have Ṽðq⃗Þ, we can Fourier transform with
respect to q⃗ to compute the potential Vðr⃗Þ in real space. We
follow this procedure to arrive at the results in Sec. III.
The observable of interest for a low energy scattering

process is typically a cross section. In the nonrelativistic
regime, there can be significant deviations from a tree-level
QFT approximation, for example from nonperturbative
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Sommerfeld enhancement [23]. A convenient way of
accounting for these effects is to map the problem to
an effective quantum-mechanical problem, solving the
Schrödinger equation, and extracting the scattering matrix
elements. To solve the Schrödinger equation, we need to
supply appropriate boundary conditions in addition to the
potential. The novel insight from [5] was that the physics
occurring on short distance scales influences the wave-
function, which in turn affects the boundary conditions. To
achieve this separation of scales we split the region and
match at the Compton radius of the scattered particle which
is given by a ∼Oðm−1

ψ Þ. The Compton radius is the natural
matching scale because for r < a, the particles start
becoming relativistic with momenta of Oðmψ Þ. The
quantum-mechanical potential is a nonrelativistic effective
description of the scattering process, so at these scales, we
should not expect this description to hold and must resort to
the underlying relativistic QFT description. In [5], it was
shown numerically that the QFT tree-level amplitude
matched with the first Born approximation in quantum
mechanics for r < a. We showed this for a variety of
potentials, and we also showed that this matching was
robust to variations in the matching scale as long as it
wasOðm−1

ψ Þ. Establishing this correspondence allows us to
compute the boundary conditions at r ¼ a, accounting for
the effects of the short distance physics. For r > a, we are
in the nonrelativistic regime where quantum mechanics is
an appropriate description of the physics. In this region, we
can solve the Schrödinger equation and extract scattering
matrix elements which incorporate long distance nonper-
turbative effects. This procedure ensures a separation of
scales and that the appropriate description is used in the
respective regimes. We show this schematically in Fig. 1
and proceed to discuss how to implement this procedure in
more detail.
If we assume rVðrÞ → 0 as r → ∞, then asymptotically,

the wavefunction is a solution of the free particle
Schrödinger equation. sl and cl are solutions to the radial
equation. They are given by

slðkrÞ≡ krjlðkrÞ clðkrÞ≡ −krylðkrÞ; ð4Þ

where the jlðkrÞ and ylðkrÞ are spherical Bessel functions
and l is the angular momentum of the corresponding
partial wave. These solutions form a basis that the asymp-
totic solution to the full Schrödinger equation can be
decomposed on. The decomposition is given by

uls;l0s0 ðrÞ ∼ δls;l0s0slðkrÞ þ Kls;l0s0clðkrÞ: ð5Þ

uls;l0s0 is the reduced radial wavefunction and Kls;l0s0 is a
matrix which generalizes partial wave phase shifts to
account for interactions coupling various partial waves.
As we will see shortly, this will be relevant for potentials
such as those induced by pseudoscalar exchange. In this

case, the differential equations are coupled, so that the
potential VðrÞ is now a matrix Vls;l0s0 ðrÞ.
For a perturbative QFT, the tree-level QFT approxima-

tion of a particular matrix element will be faithfully
reproduced by the first Born approximation which is
given by

Kls;l0s0 ¼
−2μ
k

Z
a

0

drsl0 ðkrÞVls;l0s0 ðrÞslðkrÞ: ð6Þ

In an operator language, the integrand of Eq. (6) can be
understood as

sl0 ðkrÞVls;l0s0 ðrÞslðkrÞ ∝ hl0jV̂ls;l0s0 jli; ð7Þ

where V̂ls;l0s0 is now an operator and jli are states with
angular momentum l. The boundary conditions at r ¼ a
are then given by

uls;l0s0 ðaÞ ∼ δls;l0s0slðkaÞ þ Kls;l0s0clðkaÞ: ð8Þ

Using the method we described above, we now have a
clear analytical diagnostic for evaluating whether a poten-
tial is singular or not.

Diagnostic: If the integral in Eq. (6) diverges for any
combination of incoming and outgoing states, then the
potential is singular.

FIG. 1. A schematic for the matching procedure adapted
from [5]. We use the Born approximation to set the boundary
conditions since we expect it to approximate the scattering
process well in the deep UV. r > a probes the IR of our theory
where we expect the quantum-mechanical potential to be a good
description of our system. Since we have excised the origin, we
no longer have to worry about the (potentially) singular nature of
the potential while solving the Schrödinger equation. The exact
wavefunction, which is the solution to the Schrödinger equation,
can deviate from the Born wavefunction and these deformations
are of physical significance, as evidenced by the analysis of
Sommerfeld enhancement.
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Since we are working in the nonrelativistic regime, the
argument kr is always small over the interval of integration.
For small arguments, we expand the spherical Bessel
function and find that slðkrÞ∼ðkrÞlþ1. Setting l¼l0 ¼0
in Eq. (6) and using the small argument expansion of sl, we
recover the familiar fact that if a potential diverges faster
than r−2 as r → 0, the potential might be singular. We now
derive tree-level potentials for various interactions and
analyze whether they are singular or not using the analytic
diagnostic discussed above.

III. TREE-LEVEL POTENTIALS

In this section, we will compute the tree-level potentials
experienced by fermions coupled via various interactions.
By tree-level potential, here we mean that the amplitude in
the QFT is the tree-level amplitude. For concreteness, we
will study the process ψ1ψ2 → ψ1ψ2 where ψ i are spin-1=2
fermions. We will consider cases with and without a
mediator.

A. Renormalizable interactions

We begin by considering potentials generated by renor-
malizable operators in the QFT. For concreteness we will
consider the following operators

Ls ¼ λϕψ̄ψ Lps ¼ iλϕψ̄γ5ψ

Lv ¼ λϕμψ̄γμψ Lav ¼ λϕμψ̄γμγ
5ψ : ð9Þ

Here the subscripts s, ps, v, and av denote scalar,
pseudoscalar, vector, and axial vector respectively. To
encompass all possible pairings of interactions, we consider
two fermion species ψ1 and ψ2 each of which is inde-
pendently subject to one of the interactions in Eq. (9). At
tree-level, the process ψ1ψ2 → ψ1ψ2 only has a t-channel
Feynman diagram contributing to it.1 From the tree-level
amplitude, we obtain the following potentials:

Vs;sðrÞ ¼ −
λ1λ2
4πr

e−mϕr; ð10Þ

Vps;psðrÞ ¼
λ1λ2

4πm1m2

e−mϕr

��
m2

ϕ

3r
−
4πδ3ðr⃗Þ

3

�
S⃗1 · S⃗2

þOT

r3

�
1þmϕrþ

m2
ϕr

2

3

��
; ð11Þ

Vv;vðrÞ ¼
λ1λ2
4πr

e−mϕr; ð12Þ

Vav;avðrÞ ¼ −
λ1λ2
πr

e−mϕrS⃗1 · S⃗2 þ
4m1m2

m2
ϕ

Vps;ps; ð13Þ

Vs;psðrÞ ¼
λ1λ2
4πm2

1þmϕr

r2
e−mϕrS⃗2 · r̂; ð14Þ

Vv;avðrÞ ¼
λ1λ2
2π

e−mϕr

r

�
1þmϕr

m1r
ðS⃗1 × S⃗2Þ · r̂

þ S⃗2 ·

�
p⃗2

m2

−
p⃗1

m1

�

þ iðm1 þm2Þ
2m1m2

1þmϕr

r
S⃗2 · r̂

�
: ð15Þ

The potentials we derive above agree with previous
results [9,11,20,24–27].2 The subscripts for V indicate the
type of interaction vertices present in the Feynman diagram.
The first subscript denotes the ψ1 coupling and the second
subscript denotes the ψ2 coupling. Here, mi denotes the
mass of fermion ψ i and S⃗i its spin. We also define the
operator OT as

OT ¼ 3ðS⃗1 · r̂ÞðS⃗2 · r̂Þ − S⃗1 · S⃗2: ð16Þ
We note that the only potential which has terms diverging
faster than r−2 near the origin is Vps;ps (and in turn Vav;av).
The OT term is potentially problematic since it has a
piece diverging as r−3. In particular, the first Born approxi-
mation is well behaved for every combination of
states besides potentially the l ¼ l0 ¼ 0 case. While this
scenario could be divergent, in [5] we showed that
hl0 ¼ 0jOT jl ¼ 0i ¼ 0. So, the operator structure in the
potential prevents the divergence from arising and Vps;ps is
not singular. Therefore, all of the potentials we consider in
this section are nonsingular.

B. Nonrenormalizable interactions

The case of potentials arising from nonrenormalizable
interactions factors into two scenarios; ones with a media-
tor and ones without. Examples of the former include the
fermions coupled to a field strength tensor or derivatively
coupled to a Goldstone while examples of the latter include
four-fermion operators.
We begin by analyzing the Goldstone and tensor

couplings

LGoldstone ¼
1

Λ
ψ̄γμγ5ψ∂μϕ Ltensor ¼

1

2Λ
ψ̄σμνψFμν:

ð17Þ

1Processes like ψψ̄ → ψψ̄ also have a contribution from an s-
channel Feynman diagram. This gives rise to a δ3ðr⃗Þ contact
interaction in the nonrelativistic limit. It can explicitly be shown,
by computing Eq. (6), that δ3ðr⃗Þ gives a finite nonsingular result
for all possible values of l and l0.

2Vs;psðrÞ and Vv;avðrÞ differ by an overall sign relative to the
results in [27]. This discrepancy arises because we choose ψ1 to
have a scalar (or vector) interaction and ψ2 to have a pseudoscalar
(or axial vector) interaction while they consider the opposite
scenario.
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These couplings are examples of scenarios where we
have a scalar or vector mediator but the coupling is
nonrenormalizable. Here we define σμν ¼ i

4
½γμ; γν� and

Fμν ¼ ∂μϕν − ∂νϕμ.
From the tree-level amplitude, we obtain the following

potentials

VGoldstoneðrÞ ¼
e−mϕr

πΛ2

��
m2

ϕ

3r
−
4πδ3ðr⃗Þ

3

�
S⃗1 · S⃗2

þOT

r3

�
1þmϕrþ

m2
ϕr

2

3

��
; ð18Þ

V tensorðrÞ ¼
e−mϕr

4πΛ2

�
OT

r3

�
1þmϕrþ

m2
ϕr

2

3

�

−
�
2m2

ϕ

3r
þ 4πδ3ðr⃗Þ

3

�
S⃗1 · S⃗2

�
þ δ3ðr⃗Þ

Λ2
S⃗1 · S⃗2:

ð19Þ

We can also consider tensor couplings of the form
iψ̄σμνγ5ψFμν. Together, these two tensor couplings are
the magnetic and electric-dipole interactions, respectively.
These two interactions are related via 2iσσρ ¼ ϵμνσρσμνγ

5.
The potential generated by this interaction has an additional
ϵ tensor inserted at each vertex, but this does not change the
overall radial dependence of the potential. The difference
between these two interactions manifests when we consider
monopole-dipole type couplings. Particles with an intrinsic
electric dipole moment experience enhancements in the
nonrelativistic regime when scattering off a charged par-
ticle, whereas particles with intrinsic magnetic dipole
moments do not. Understanding the nature of this enhance-
ment warrants solving the Schrödinger equation with the
appropriate potential. For the purpose of our study, we are
only interested in the structure of the potential and whether
it gives rise to a finite first Born approximation. It can be
shown that this is the case for both tensor potentials and the
Goldstone potential, so all these potentials are consistent
and nonsingular.
Next, we consider the scenario where we don’t have a

mediator. Scenarios like this arise when a heavy mediator

has been integrated out leaving effective four-fermion
operators. The most general four-fermion operator we
can write down has the form

λ

Λ2
ψ̄1Γ1ψ1ψ̄2Γ2ψ2: ð20Þ

In Table I, we tabulate the leading nonrelativistic potentials
in position space for various four-fermion operators, which
agree with the results in [9].
The Goldstone and tensor potentials both have poten-

tially problematic terms which are accompanied by OT
preventing the singularity from arising. The potentials from
four-fermion operators are all accompanied by δ3ðr⃗Þ, as
seen in Table I. For a simple delta function, the integrand of
Eq. (6) scales as δðrÞrlþl0

which is finite for l ¼ l0 ¼ 0
and zero otherwise. Potentials with derivatives might seem
problematic at first, but we show in detail in Appendix B
that they also produce finite well-behaved first Born
approximations. So we see that any tree-level potential
arising from a QFT is nonsingular. In the next section, we
consider generalizations to arbitrary spatial dimensions.

IV. EXTENSION TO ARBITRARY DIMENSIONS

We begin by considering the Schrödinger equation for a
particle that is not subject to any potential, in d spatial
dimensions [28–31]. This is given by

−
1

2μ
∇2

dΨðrÞ ¼ EΨðrÞ ∇2
d ¼ ∂2

r þ
d − 1

r
∂r þ

1

r2
Ω2:

ð21Þ

∂r represents derivatives with respect to the radial coor-
dinate, Ω2 is the Laplacian on the (d − 1)-sphere and μ is
the reduced mass. We can decomposeΨðrÞ into the product
of a radial function RðrÞ and Gegenbauer polynomials,
which are eigenfunctions of Ω2. The Gegenbauer poly-
nomials are a generalization of the spherical harmonics to
higher dimensions. We notice that for d ¼ 3, we recover the
familiar eigenvalue of lðlþ 1Þ for the angular momentum
term. Analogous to the (3þ 1)-dimensional case, we obtain
a radial equation for every harmonic.

TABLE I. Leading nonrelativistic potentials generated for various effective four-fermion operators.

Effective operator Position space potential

λ
Λ2 ψ̄1ψ1ψ̄2ψ2

λ
Λ2 δ3ðr⃗Þ

λ
Λ2 ψ̄1γ

5ψ1ψ̄2γ
5ψ2

λ
m1m2Λ2 ðS⃗1 · ∇⃗ÞðS⃗2 · ∇⃗Þδ3ðr⃗Þ

iλ
Λ2 ψ̄1ψ1ψ̄2γ

5ψ2
λ

m2Λ2 ðS⃗2 · ∇⃗Þδ3ðr⃗Þ
λ
Λ2 ψ̄1γ

μψ1ψ̄2γμψ2
λ
Λ2 δ3ðr⃗Þ

λ
Λ2 ψ̄1γ

5γμψ1ψ̄2γ
5γμψ2 − 4λ

Λ2 S⃗1 · S⃗2δ3ðr⃗Þ
λ
Λ2 ψ̄1γ

μψ1ψ̄2γ
5γμψ2

λ
Λ2 ð2S⃗2 · ðp⃗2

m2
− p⃗1

m1
Þ − i m1þm2

m1m2
ðS⃗2 · ∇⃗Þ þ 2

m1
ðS⃗2 × S⃗1Þ · ∇⃗Þδ3ðr⃗Þ
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∂2
rRþ d − 1

r
∂rR −

lðlþ d − 2Þ
r2

R ¼ −k2R: ð22Þ

To cancel the term with the first derivative of RðrÞ, we
can set uðrÞ ¼ rðd−1Þ=2RðrÞ. This simplifies the radial
equation to

∂2
ruþ

�
k2 −

jðjþ 1Þ
r2

�
u ¼ 0 j ¼ lþ d − 3

2
: ð23Þ

The radial free-particle solutions are denoted sj and cj and
are given in terms of spherical Bessel functions as before,
with the only difference being that the order is now
dimension dependent.

sjðkrÞ ¼ krjjðkrÞ cj ¼ −kryjðkrÞ: ð24Þ

As a test case, we will consider the Coulomb potential
which in d spatial dimensions is given by VðrÞ ¼ α=rd−2.
For d > 4, this potential diverges faster than r−2 and there
is no accompanying operator structure that can give
vanishing matrix elements between potentially problematic
states. Naively, this potential appears to be problematic. To
test whether this potential is singular, we compute the first
Born approximation using Eq. (6)

Kjs;j0s0 ¼
−2μ
k

Z
a

0

drsj0 ðkrÞVjs;j0s0 ðrÞsjðkrÞ

≈
−2αμ
k

Z
a

0

drrj
0þ1r2−drjþ1

≈
−2αμ
k

Z
a

0

drrl
0þlþ1: ð25Þ

The most divergent case corresponds to l ¼ l0 ¼ 0, which
we explicitly see is finite and nonsingular. This is a clear
indication that potentials diverging faster than r−2 should
not be the sole diagnostic for evaluating whether they are
singular or not. Furthermore, the dependence on dimension
drops out. This indicates that Coulomb potentials, which
have well-defined QFT descriptions in any number of
dimensions, are always nonsingular, and our proposed
diagnostic for testing this works. By extending our analysis
to an arbitrary number of dimensions, we see that our
earlier results were not just an artifact of working in
(3þ 1)-dimensions. It also indicates that there exists a
deeper connection between QFT and quantum mechanics,
where a tree-level perturbative QFT will always produce a
nonsingular potential. These results clearly support our
refined definition of what a singular potential is as well as
our criteria for determining if a potential is singular or not.

V. CONCLUSIONS

In this work, we have studied the nonrelativistic
potentials generated for a variety of interactions between

spin-1=2 particles. These include interactions mediated by
scalars or vectors as well as four-fermion operators. We
reviewed the procedure laid out in [5] for setting boundary
conditions. In addition to setting the boundary conditions
for the Schrödinger equation, this procedure also provided us
with an analytic cross-check for determining whether a
potential is singular or not. Using this diagnostic, we showed
that all of the potentials generated from tree-level QFT
descriptions of scattering processes give rise to nonsingular
well-behaved quantum-mechanical potentials. In many
cases, this nonsingular behavior is preserved by nontrivial
cancellations that arise due to the accompanying operators.
Furthermore, we extended this analysis to higher dimensions
and showed that Coulomb potentials in an arbitrary number
of dimensions are also nonsingular. These results lend
credence to the notion of a subspace of consistent, effective
quantum-mechanical potentials and indicate that subject to
our matching procedure, singular potentials in quantum
mechanics are irrelevant when considering a matching to
an underlying perturbative tree-level QFT.
We emphasize that all of the evidence presented so far is

from tree-level examples. This motivates various different
avenues to follow up on our results. In particular, it would
be interesting to understand how to extend the matching
procedure beyond tree-level. This extension will be relevant
for computing loop-level corrections to these potentials as
well as processes where the leading order scattering occurs
at one-loop in QFT [32–50]. QFTs that spontaneously
break Lorentz invariance also yield long-range potentials
and it will be interesting to explore the structure of these
potentials in more detail [51]. Nonperturbative QFTs, such
as coupling to CFT sectors [46], presents an additional
class of nontrivial examples; at present, it is not clear
whether this can give rise to singular potentials from the
quantum mechanics viewpoint. As such, it is worth
exploring the types of potentials which can arise in these
theories. These various investigations will help further
refine the boundary between quantum-mechanical poten-
tials which can be UV completed to a QFT and those
which cannot.
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APPENDIX A: HIGHER DERIVATIVE TERMS
AND THE POTENTIAL INVOLVING SCALARS

Scalars do not possess any intrinsic spin. As a result, the
nonrelativistic limit of the amplitude can only depend on
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the vector qi. In particular, the amplitude, and hence Ṽðq⃗Þ,
can be parametrized in the following manner

Ṽðq⃗Þ ¼ fðq2Þ
q2 þm2

¼
X∞
n¼0

anq2n

q2 þm2
: ðA1Þ

m is the mass of the mediator and fðq2Þ is a function that
can be determined by the specific structure of the inter-
actions in the QFT.Wewill show explicitly that the first few
terms in this series are nonsingular and then generalize to
the case of arbitrary n.
For concreteness, we will consider an example where

fðq2Þ ¼ a0 þ a1q2 þ a2q4. We find that

Ṽðq⃗Þ ¼ a0 þ a1q2 þ a2q4

q2 þm2

¼ a2q2 þ a1 − a2m2 þ a0 − a1m2 þ a2m4

q2 þm2
: ðA2Þ

The last term generates a Yukawa potential and the constant
terms generate δ3ðr⃗Þ. Both of these potentials are non-
singular. The first term is nontrivial. It generates a term
proportional to ∇2δ3ðr⃗Þ. To show that the first Born
approximation in Eq. (6) is finite, we will evaluate the
integrand

∇2δðrÞrlþl0 ¼ 1

r
∂2

∂r2 ðδðrÞr
lþl0þ1Þ

¼ ðlþ l0Þðlþ l0 − 1ÞδðrÞrlþl0−2: ðA3Þ

The integral is divergent when lþ l0 < 2, but we see that
the coefficient vanishes for those choices of l and l0.
We can generalize these results to higher-order q2 terms.
The expression in Eq. (A1) can be rewritten as follows

Ṽðq⃗Þ ¼
X∞
n¼0

anq2n

q2 þm2
¼ ã−1

q2 þm2
þ
X∞
n¼0

ãnq2n: ðA4Þ

The q2n terms generate terms in the potential proportional
to ∇2nδ3ðr⃗Þ. Evaluating the integrand, we find

∇2nδðrÞrlþl0 ¼ ðlþ l0Þðlþ l0 − 1Þ � � �
× ðlþ l0 þ 1 − 2nÞδðrÞrlþl0−2n: ðA5Þ

This integral is divergent for lþ l0 < 2n, which happens
to be where the coefficient vanishes. Therefore, all the
higher derivative terms are well behaved and produce finite
nonsingular first Born approximations.
We can construct a similar argument for the scalar-

fermion case as well. Due to the fermion’s spin, q · S exists
as an additional independent operator. Therefore, the
general amplitude can be parametrized as follows:

Ṽðq⃗Þ ¼ fðq2Þð1þ αq · SÞ
q2 þm2

¼
X∞
n¼0

anq2n

q2 þm2
þ bnq2nq · S

q2 þm2
:

ðA6Þ

The second set of terms in this sum generate terms
proportional to S · r̂∂r∇2δ3ðr⃗Þ. Evaluating the integrand,
and using the results of Eq. (A5), we find

S · r̂∂r∇2nδðrÞrlþl0 ¼ S · r̂ðlþ l0Þðlþ l0 − 1Þ � � �
× ðlþ l0 þ 1 − 2nÞ∂rδðrÞrlþl0−2n

¼ S · r̂ðlþ l0Þðlþ l0 − 1Þ � � �
× ðlþ l0 þ 1 − 2nÞ
× ðlþ l0 − 2n − 1ÞδðrÞrlþl0−2n−1:

ðA7Þ

This integral is divergent for lþ l0 < 2nþ 1. The
coefficient vanishes for lþl0<2n as before. lþl0 ¼2n
seems problematic, but here we note that an additional
operator exists for this potential. In particular, S · r̂ link
states with angular momenta that differ by one unit.
Therefore, lþ l0 must be odd, but 2n is manifestly even,
and the operator prevents the singularity from arising for
this combination of states.

APPENDIX B: EVALUATING THE
DERIVATIVES ON δ3ð⃗rÞ

As an example, we explicitly evaluate the derivatives on
the following position space potential

λ

m1m2Λ2
ðS⃗1 · ∇⃗ÞðS⃗2 · ∇⃗Þδ3ðr⃗Þ: ðB1Þ

We make use of the following relations

δ3ðr⃗Þ ¼ δðrÞ
4πr2

; −rδ0ðrÞ ¼ δðrÞ; r2δ00ðrÞ ¼ 2δðrÞ:
ðB2Þ

In particular, we want to show that the first Born approxi-
mation in Eq. (6) is finite. For clarity of notation, we will
omit overall factors

Z
a

0

drsl0 ðkrÞðS⃗1 · ∇⃗ÞðS⃗2 · ∇⃗Þδ3ðr⃗ÞslðkrÞ

≈ Si1S
j
2

Z
a

0

dr∇i∇j
δðrÞ
r2

ðkrÞlþ1ðkrÞl0þ1: ðB3Þ

Now we isolate and evaluate the integrand.
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∇i∇jδðrÞrlþl0 ¼ δðrÞ∂i∂jrlþl0 þ ∂irlþl0∂jδðrÞ þ ∂jrlþl0∂iδðrÞ þ rlþl0∂i∂jδðrÞ
¼ δðrÞrlþl0−2½ðlþ l0 − 1Þδij þ ð3þ ðlþ l0Þðlþ l0 − 4ÞÞr̂ir̂j�: ðB4Þ

We see that the integral is divergent when lþ l0 < 2. If
l ¼ l0 ¼ 0, the operator simplifies to OT which vanishes
when sandwiched between states of l ¼ l0 ¼ 0. If l ¼ 1
or l0 ¼ 1, then the integrand also vanishes. The cancella-
tion is nontrivial in both cases and the operator structure

conspires to produce a nonsingular first Born approxima-
tion. We have checked explicitly that the other potentials
in Sec. III B also produce nonsingular first Born
approximations.
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