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Muon decay is self-analyzing; the spectral-angular distribution of the emitted electron reveals the spin
orientation of the polarized muon. Here, we show that the same feature applies to muons in nonplane-wave
states and helps reveal the rich polarization opportunities available. We focus on the so-called vortex states,
in which the muon carries a nonzero orbital angular momentum with respect to the average propagation
direction and exhibits a cone structure in the momentum distribution. We compute the spectrum and the
angular distribution of the electrons emitted in decays of vortex muons and show that the most revealing
observable is not the angular distribution but the fixed-angle electron spectra. Even for very small cone
opening angles of the vortex muons, it will be easy to observe significant modifications of the electron
spectra which would allow one to distinguish vortex muons from approximately plane-wave muons, as well
as to differentiate among various polarization states. These features will be the key to tracking the evolution
of vortex muons in external magnetic fields.

DOI: 10.1103/PhysRevD.104.036003

I. INTRODUCTION

Particle physics with carefully engineered nonplane-
wave states of initial particles is an emergent field whose
full potential is still to be explored. Although examples of
quantum electrodynamics processes in which the nonplane-
wave nature of colliding beams played an important role
were known since 1980s [1–3], a renewed interest was
triggered recently by the experimental demonstration of the
so-called vortex (or twisted) states of photons and, espe-
cially, electrons. A vortex state refers to a monochromatic
wave with a helicoidal, corkscrewlike, wavefront arising
from the azimuthal phase factor expðilφrÞ. Such a wave
propagates, on average, along axis z and, due to its swirling
current density, also carries a nonzero orbital angular
momentum (OAM) z-projection, lℏ per quantum.
Vortex photons have been known for decades [4–8] and

have become a basis of numerous applications [9,10]. A
decade ago, following the suggestion of [11], vortex
electrons were experimentally demonstrated [12–14].
They are now routinely used to probe magnetic properties
of matter at the atomic scale, to excite plasmons, and to test
behavior of twisted electrons in external magnetic fields

(see reviews [15,16]). In the past few years, neutral particles
such as neutrons [17–19] and, very recently, atoms [20]
were also put in vortex states, opening new promising
venues for fundamental physics and applications.
From the high-energy physics perspective, a particle

prepared in a Bessel vortex state carries definite energy,
definite longitudinal momentum, definite modulus of the
transverse momentum, and a nonzero OAM. This OAM
represents a new degree of freedom, which can be imposed
on the initial state particles to get additional information
about their structure and interactions. In the past decade,
several groups theoretically analyzed high-energy collision
processes involving one or two particles in vortex states
[21–41]. Many nontrivial effects were predicted in these
and other publications, many of which are impossible to
achieve in conventional (approximately) plane-wave colli-
sions. For an overview of such processes with vortex
electrons see review [15] and references therein. Also,
going beyond vortex states, Refs. [30,42] address collisions
of particles in general nonplane-wave states, showing yet
more ways to probe particle structure and dynamics.
In this paper, we add yet another process to this list; the

decay of the vortex muon. Although muons in vortex states
have not yet been demonstrated, we believe it can be done
in the near future. Anticipating these experiments, we find
it timely to theoretically explore the emerging physics
opportunities.
When vortex muons are produced, one may want to

explore their behavior in external electric and magnetic
fields—in particular in storage rings. One may wonder
whether and for how long the vortex state of the muon
survives in external fields, how the vortex parameters and
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the spin evolve, and how this evolution is affected by the
inhomogeneities of the magnetic field of the ring. All these
effects can be monitored through the decay of muons
μ → eν̄eνμ, which is a self-analyzing process [43]; namely,
the correlations between the spectrum and the angular
distribution of the emitted electron reveal the orientation of
the muon spin. It is this self-analyzing property which lies
at the heart of several generations of experiments measur-
ing the muon anomalous magnetic moment g − 2 with
increasing precision [43,44].
In this paper, we study how the spectrum and the

angular distribution of the electron reveal the parameters
of the vortex muon, including its polarization state. We
will show that the most sensitive observable is not the
angular distribution but the electron spectrum at a fixed
emission angle. Even for very small vortex cone opening
angles, this spectrum shows dramatic, easily observable
features which would allow one to distinguish the vortex
state from an (approximately) plane-wave muon as well as
differentiate among various polarization states of the
vortex muon.
The paper is organized as follows. In the next section we

briefly review the well-known properties of the plane-wave
muon decays. We rewrite the classical results in a form
convenient for vortex muon calculations. In Sec. III, we
remind the reader of how polarized vortex fermions are
described, derive analytical results for unpolarized vortex
muon decays, and study them with illustrative examples. In
the same section we analyze the decay of a vortex muon in
various polarization states and show how they can be
detected. Finally, in Sec. IV we discuss the results, briefly
mention experimental prospects, and draw conclusions.

II. PLANE-WAVE MUONS

Muon decay is a standard process worked out in many
textbooks [45,46]. When calculating the muon decay, we
limit ourselves to the Standard Model and neglect the
electron mass. The four-momentum of the initial plane-
wave muon is denoted as pμ, its energy and mass are
labeled simply as E and m. We will also use the unit vector
n⃗ in the direction of the muon momentum, so that
pμ ¼ Eð1; βn⃗Þ, with β being the speed of the muon in
units of c and γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
is its relativistic factor. The

final electron carries the four-momentum kμ ¼ Eeð1; n⃗eÞ.
The two neutrinos with four-momenta qμ1 and qμ2 escape
detection but their invariant mass q2 ¼ ðq1 þ q2Þ2 affects
the electron energy q2 ¼ m2 − 2ðpkÞ. In particular, the
maximal electron energy is attained when the two neutrinos
are collinear, so that q2 ¼ 0 and 2ðpkÞmax ¼ m2.
A (pure) polarization state of a plane-wave muon is

described by a four-vector sμ orthogonal to the muon four-
momentum ðspÞ ¼ 0 and normalized as s2 ¼ −1. In the
muon rest frame, sμ ¼ ð0; s⃗Þ, with s⃗2 ¼ 1, where s⃗ can be
interpreted as the spin of the muon. In the laboratory

reference frame, in which the muon is moving, it can be
written as

sμ ¼ ðγβðs⃗n⃗Þ; s⃗þ ðγ − 1Þn⃗ðs⃗n⃗ÞÞ: ð1Þ

The Standard Model calculation of the polarized muon
decay width summed over the final-state polarizations gives

dΓPW ¼ G2
F

48π4E
d3k
Ee

· ½ðpkÞð3m2 − 4ðpkÞÞ

−mðskÞðm2 − 4ðpkÞÞ�: ð2Þ

In the muon rest frame we have E ¼ m, β ¼ 0, γ ¼ 1,
ðpkÞ ¼ mEe, and the maximal electron energy Eemax ¼
m=2 independent of the electron emission angle. In this
frame, denoting Ee ¼ ϵEemax, we switch to integration
over ϵ,

dΓPW ¼ Γ0 ·
dΩ
4π

· 2ϵ2dϵ½3 − 2ϵþ ð1 − 2ϵÞ cos θs;e�;

Γ0 ¼
G2

Fm
5

192π3
; cos θs;e ¼ s⃗n⃗e: ð3Þ

Integrating over ϵ from 0 to 1, we obtain the angular
distribution 1 − ðcos θs;eÞ=3 which reveals the forward-
backward asymmetry with respect to the spin orientation.
Finally, integrating over all angles gives the total decay
width Γ0.
In the laboratory frame where the muon is moving, one

can express the spectral-angular distribution as

dΓPW ¼ G2
F

48π4E
EedEedΩf3m2EEeð1 − βn⃗n⃗eÞ

− 4E2E2
eð1 − βn⃗n⃗eÞ2 −mðskÞ½m2

− 4EEeð1 − βn⃗n⃗eÞ�g; ð4Þ

where ðskÞ ¼ Ee½γβs⃗n⃗ − s⃗n⃗e − ðγ − 1Þðs⃗n⃗Þðn⃗n⃗eÞ�: ð5Þ

In this frame, the maximal energy of the electron depends
on the emission angle

Eemax ¼
m2

2Eð1 − βn⃗n⃗eÞ
; ð6Þ

which is illustrated in Fig. 1. The electron spectrum extends
up to the absolute maximum Ee abs max ¼ m2=ð2Eð1 − βÞÞ,
and, near this maximal value, only directions close to the
muon direction contribute to the decay width.
If we are interested in the angular distribution integrated

over all energies, we can again define Ee ¼ ϵEemax,
integrate over ϵ from 0 to 1 for any given direction, and
present the angular distribution as
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dΓPW ¼ Γ0

dΩ
4π

1

γ3
1

ð1 − βn⃗n⃗eÞ2�
1þ γβs⃗n⃗ − s⃗n⃗e − ðγ − 1Þðs⃗n⃗Þðn⃗n⃗eÞ

3γð1 − βn⃗n⃗eÞ
�
: ð7Þ

Integration over all angles yields the total decay width
Γ ¼ Γ0=γ, which reflects the relativistic time dilatation.
Notice that, anticipating transition to vortex muons, we

do not use angles defined with respect to a fixed coordinate
frame but express the angular distribution in terms
of the three unit vectors n⃗, n⃗e, and s⃗. However for future
reference we give the angular distribution of the muon
moving alone axis z and polarized along the same axis,
s⃗ ¼ n⃗,

dΓPW ¼Γ0

dΩ
4π

1

γ3
1

ð1−βcosθÞ2
�
1þ β−cosθ

3ð1−βcosθÞ
�
: ð8Þ

In this expression, θ is the electron polar angle.

III. VORTEX MUON DECAY

A. Describing a polarized vortex muon

A vortex state of any particle can be constructed as a
superposition of plane waves organized in such a way that
a straight line of phase singularity, identified with axis z,
appears in the coordinate space. There exist different
prescriptions for constructing such a state. From the
computational point of view, the simplest option is given
by the so-called Bessel vortex state. This is a mono-
chromatic solution of the corresponding wave equation
written as a superposition of plane waves with the same
energy E, the same longitudinal momentum pz, and the
same modulus of the transverse momentum jp⃗⊥j ¼ ϰ but
with different azimuthal angles φp (see further definitions

and normalization conditions in [21–24]). As we run
through all the plane-wave components inside a Bessel
state, the vectors of their momenta revolve around axis z
and cover the surface of a cone with the opening angle θ0,
defined as

cos θ0 ¼ pz=jp⃗j; sin θ0 ¼ ϰ=jp⃗j: ð9Þ

In realistic situations, this cone opening angle is small; a
few degrees at most.
For a spinless particle, each plane-wave component

jPWðp⃗Þi inside the vortex state is multiplied by the phase
factor expðilφpÞ,

jϰ;li ∝
Z

d2p⃗⊥δðjp⃗⊥j − ϰÞeilφp jPWðp⃗Þi

∝
Z

dφpeilφp jPWðp⃗Þi; ð10Þ

which produces the phase vortex in the coordinate space;
expðilφrÞ [21,22]. For particles with polarization degrees
of freedom such as photons or fermions the construction is
more subtle. For fermions, one can construct exact mono-
chromatic solutions of the Dirac equation [24,25,47],
which are eigenstates of the total angular momentum
z-projection operator ĵz but not of spin ŝz or OAM l̂z
operators individually. The spin degrees of freedom in these
solutions can be parametrized in a way similar to the vector
s⃗ [47], which, however, cannot be interpreted as the spin of
vortex electron in the rest frame because there exists no
reference frame for all plane-wave components simulta-
neously. Alternatively, one can describe the polarization
state of a vortex fermion with a given helicity which is a
conserved quantum number [24,25].
Whatever the choice, one can define a twisted fermion in

the same wave as in Eq. (10) bearing in mind that now each
individual plane wave jPWðp⃗Þi contains a bispinor up;s. It
must satisfy the Dirac equation and, therefore, it depends
on the plane-wave momentum p⃗ and cannot be taken out of
the integral.
However, this dependence brings up not only technical

difficulties but also novel opportunities absent in the
plane-wave case. Indeed, the spin degrees of freedom
used to define up;s can depend on p⃗ in a nontrivial way. As
a result, a polarization state of a nonplane-wave fermion
is, in general, described with a polarization field rather
than polarization parameters. For vortex fermions, the
polarization field can exhibit a polarization singularity
along the phase singularity line. Such singularities are
well known for vector fields, in particular in optics, and
were classified in [48]. For fermion fields, they were
described in a similar way in [18] with applications to
vortex neutrons.

FIG. 1. The shaded region shows the range of energies, in GeV,
of the electron emitted at polar angle θ in the decay of a muon
moving with β ¼ 0.5. The solid line shows the maximal electron
energy as a function of θ.
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In this exploratory study, we will consider three bench-
mark options for the vortex muon polarization states, which
are illustrated in Fig. 2.
(a) Parallel polarization; For each plane-wave component

with a given direction n⃗, we choose s⃗ ¼ n⃗. A moti-
vation for this choice comes from the observation that,
when a muon moves in an external magnetic field, its
spin precession approximately follows the momen-
tum. Thus, if a vortex muon is obtained from a forward
polarized plane-wave muon through interaction with
an external magnetic field, the parallel polarization
state will result.

(b) Radial polarization; For each plane-wave component
with a given n⃗, we consider the plane spanned by axis
z and n⃗ and define the unit vector n⃗t via n⃗tn⃗ ¼ 0,
ðntÞz > 0. The radial polarization corresponds to
choosing s⃗ ¼ n⃗t

(c) Azimuthal polarization; with n⃗ and n⃗t defined above,
we construct the azimuthally pointing unit vector n⃗φ ¼
n⃗ × n⃗t and assume that s⃗ ¼ n⃗φ.

We would like to make a few remarks concerning these
states. In the plane-wave limit, the parallel polarization
state approaches the muon with spin along axis z. On the
other hand, for the radial and azimuthal polarizations, there
are no plane-wave counterparts because the definition of
such states requires the presence of a polarization singu-
larity line. These states represent novel forms of polariza-
tion possible for nonplane-wave fermions. In the plane-
wave limit they will disappear, corresponding to the
unpolarized case.
When exploring these polarization states, we would like

to stress that do not claim that all these states can be easily
created. We just use them to illustrate the sensitivity of the
muon decay to the polarization state beyond plane waves.
Once vortex muons are created, one should perform a
detailed study of the effects taking into account the realistic
parameters achieved in the experiment.
Finally, notice that all of these polarization states are

azimuthally invariant. As a consequence, the final electron
angular distribution will be azimuthally symmetric. Of
course, other polarization states of Bessel vortex fermions
can be defined, see various examples in [18]. In many of

these cases, the azimuthal symmetry of the angular dis-
tribution is broken. Although we will not analyze such
states below, our formalism can be readily extended to any
of them.

B. Decay of unpolarized vortex muons: Exact results

When passing from the plane wave to vortex muon
decay, we still use the plane-wave basis for description of
the final state, not attempting to measure the
possible vortex nature of the emitted electron but just
exploring, as before, its energy spectrum and angular
distribution.
In this case we do not need to recalculate the decay

process itself. We know that each plane-wave component
inside the vortex muon decays to a final state with its
own kinematic configuration and, as a result, different
plane-wave components do not interfere. Thus, the decay
width of a Bessel vortex muon can be written as an
azimuthal average of the corresponding plane-wave decay
widths [23]

dΓ ¼
Z

dφp

2π
dΓPWðp⃗Þ; ð11Þ

where dΓPW is given by (4) or (7). Notice that this decay
rate becomes independent of the value of OAM. This is an
unavoidable feature in processes involving only one twisted
particle in a single OAM state. Dependence on the value of
the OAM may arise only if we measure the final particle
OAM (which represents an additional challenge in high-
energy physics processes) or if we prepare the initial state
in a superposition of different OAM states.
However, even without the access to the value of the

OAM, one can certainly explore its nontrivial momentum
distribution. It is the vortex cone structure which will lead
to significant modifications for the vortex muon with
respect to the plane-wave case.
Let us first consider the decay of an unpolarized vortex

muon. We choose the direction of the final electron to define
the ðx; zÞ plane; n⃗e ¼ ðsin θ; 0; cos θÞ. In this coordinate
system, any chosen plane-wave component inside the vortex
muon is defined by n⃗ ¼ ðsin θ0 cosφp; sin θ0 sinφp; cos θ0Þ,

FIG. 2. Three examples of nontrivial polarization states for vortex fermions; parallel (left), radial (center), and azimuthal (right). Long
thin arrows illustrate the momenta of individual plane-wave components inside a vortex state; the thick short arrows indicate the vector s⃗
for each plane-wave component.
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where θ0 is the cone opening angle given in (9). Then, at
fixed Ee, the angular dependence comes from the factor

1 − βn⃗n⃗e ¼ a − b cosφp; where a ¼ 1 − β cos θ cos θ0;

b ¼ β sin θ sin θ0: ð12Þ
This factor changes between 1 − β cosðθ − θ0Þ to
1 − β cosðθ þ θ0Þ. According to Eq. (6), for any electron
angle θ0, these plane-wave components produce different
maximal energies of the electron, spanning the interval

from Ee1 ¼
m2

2Eð1 − β cosðθ þ θ0ÞÞ

to Ee2 ¼
m2

2Eð1 − β cosðθ − θ0ÞÞ
: ð13Þ

As a result, the electron spectrum acquires additional
features. For any given θ, it contains two regions which
differ by the range of plane-wave components inside the
vortex muon contributing to the decay,

lower energy region∶ Ee < Ee1; contributingφp∶ 0 ≤ φp ≤ 2π;

higher energy region∶ Ee1 ≤ Ee ≤ Ee2; contributingφp∶ − τ ≤ φp ≤ τ: ð14Þ

Here, the azimuthal range τ is given by the inverse of
Eq. (6) and can be presented as

cos τ ¼ ðEe − Ee1ÞEe2 − ðEe2 − EeÞEe1

EeðEe2 − Ee1Þ
: ð15Þ

One can see that, as Ee goes from Ee1 to Ee2, the value of
cos τ goes from −1 to 1.
If θ > θ0 (detecting electrons outside of the vortex cone),

the spectrum extends to higher energies than for the plane-
wave muon of the same energy. Indeed, one sees that the
end point of the plane-wave spectrum Eemax would lie
between Ee1 and Ee2. Angles θ < θ0, corresponding to the
region inside the cone, which is unavailable for the plane-
wave case, display a more intricate situation. The upper
energy limit Ee2 can be either higher than Eemax (for
θ > θ0=2) or lower than Eemax (for θ < θ0=2). Thus, the
spectral-angular distribution is predicted to have a forward
dip for the vortex muon, in sharp contrast with the plane-
wave muons.
Next, we define the spectral-angular distribution

wðEe; θ;φÞ and the angular distribution Wðθ;φÞ in the
following way,

dΓ
dEedΩ

¼ Γ0

γ
wðEe; θ;φÞ;

dΓ
dΩ

¼ Γ0

γ

Z
wðEe; θ;φÞdEe ¼

Γ0

γ
Wðθ;φÞ;

Z
Wðθ;φÞdΩ ¼ 1: ð16Þ

The angular distribution Wðθ;φÞ is dimensionless, while
the spectral-angular distribution wðEe; θ;φÞ, or simply the
spectrum if only the fixed-angle energy distribution is
concerned, has dimension GeV−1. Since the distributions
will always be azimuthally symmetric in the examples we
consider in this paper, we will suppress φ to simplify the

notation and write wðEe; θÞ and WðθÞ. However, the
normalization conditions (16) are always assumed.
Now, substituting the unpolarized version of the plane-

wave decay rate (4) in (11) and performing the φp
integration within the limits (14), we obtain the following
generic expression for the spectral-angular distribution

wðEe; θÞ ¼
4γE2

e

πm5
ð3m2 · A − 4EEe · BÞ; ð17Þ

with the coefficients A andB displaying different behavior in
the two energy regions. In the lower-energy region, we get

A ¼ a; B ¼ a2 þ 1

2
b2; ð18Þ

with angular variables a and b defined in (12). These
coefficients do not depend on the electron energy. For the
higher energy region, the range of theφp integration depends
on Ee through τðEeÞ given by (15), and we get

AðEeÞ ¼ a
τ

π
− b

sin τ
π

;

BðEeÞ ¼
�
a2 þ 1

2
b2
�
τ

π
− 2ab

sin τ
π

þ b2
sin 2τ
4π

: ð19Þ

If we do not measure the energy of the electron and want
just to explore its angular distribution, we can integrate over
all electron energies available for a fixed θ. For this
calculation, it is convenient to insert the unpolarized
version of Eq. (7) into Eq. (11) and perform the φp integral.
Here and below, we will make use of the integrals

I2 ¼
1

2π

Z
dφp

1

ða − b cosφpÞ2
¼ a

ða2 − b2Þ3=2 ;

I3 ¼
1

2π

Z
dφp

1

ða − b cosφpÞ3
¼ 1

2

2a2 þ b2

ða2 − b2Þ5=2 ; ð20Þ

with the same a and b as in (12). With these integrals,
we get
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WðθÞ ¼ 1

4πγ2
I2

¼ 1

4πγ2
1 − β cos θ cos θ0

f½1 − β cosðθ þ θ0Þ�½1 − β cosðθ − θ0Þ�g3=2
:

ð21Þ

Notice the invariance of this result under the excha
nge θ0 ↔ θ.
In the nonrelativistic limit β ≪ 1, we recover the usual

isotropic decay rate. Notice that the exact limit β → 0
cannot be taken for vortex muons due to the nonzero ϰ.
Even if one performs a Lorentz boost and sets pz ¼ 0, one
gets a nonzero value β ¼ ϰ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϰ2 þm2

p
. In the opposite

limit of the ultrarelativistic muon β → 1, γ ≫ 1, we get a
narrow angular distribution peaked at θ ¼ θ0. The exact
integration over all angles still yields Γ ¼ Γ0=γ. Finally, in
the plane-wave limit θ0 → 0, we recover Eq. (7).

1. Decay of unpolarized vortex muon: Numerical
examples

To illustrate the above analysis and to stress the
modifications expected for vortex muons, let us fix
the muon energy at E ¼ 3.1 GeV, which corresponds to
the “magic value” γ ¼ 29.3 used in all modern g − 2
experiments [43,44]. For the cone opening angle θ0, we
choose two benchmark values,

narrow cone∶ θ0 ¼ 0.01 ≈ 0.6°;

wide cone∶ θ0 ¼ 0.1 ≈ 6°: ð22Þ

We consider the narrow cone to be closer to the realistic
values, but we will also show results for the wide cone to
highlight strong distortions of the distributions.
Since for ultrarelativistic muons, the angular distribution

of the emitted electron develops a sharp forward peak, from

now on we focus on the forward region θ < 0.2 ≈ 12°. In
Fig. 3 we plot the angular dependence of the energies Ee1
and Ee2 defined in (13) as functions of the electron-
emission angle θ in the forward region and compare them
with the maximal electron energy for the plane-wave muon
case (6). The left and right plots correspond to the narrow
and wide opening angles (22).
The key observation here is that, even for the narrow

cone with θ0 ≪ 1, we observe a very significant shift of
the two energies with respect to the plane-wave case.
The “higher energy” region of the spectrum, shown in
these plots with a lighter shading, represent a sizable
part of the total energy range. In order to see what
part of the spectrum is occupied by this new region, we
compute

Ee2 − Ee1

Ee2 þ Ee1
¼ β sin θ sin θ0

1 − β cos θ cos θ0
≈ 2

θ0
θ
; ð23Þ

where the last estimate assumes β → 1. We conclude that
even for very narrow vortex cones, we have access to a
parametrically large part of the electron spectrum, pro-
vided we can measure electrons emitted at angles θ
comparable to θ0. This part of the spectrum is unavailable
in the plane-wave case and represents a new kinematic
feature of the vortex muon.
For wider cones, the difference between Ee1, Ee2, and the

plane-wave end point Eemax is dramatic, Fig. 3, right. For
θ ∼ θ0, the energy spectrum extends far beyond what one
would get, at these angles, from plane-wave muons. This is,
of course, no surprise since the vortex muon contains plane-
wave components pointing close to the observation
direction.
Next we check how the electron angular distribution,

integrated over energies, differs with respect to the plane-
wave case. In Fig. 4 we plot the angular distributions (21) in
the forward region for the same two values of the cone

FIG. 3. The electron energy range for the decay of 3.1 GeV muons as a function of the electron emission angle θ in the forward region.
The black line corresponds to Eemax from the plane-wave muon. The two colored lines correspond to Ee1 and Ee2 from the vortex muon
with θ0 ¼ 0.01 (left) and 0.1 (right).
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opening angle. For the realistic narrow cone, we just
observe minor angular broadening, which could also be
mimicked by energy and angular smearing. Thus, if we
want to distinguish the vortex muon with a small opening
angle from the plane-wave muon, the angular distribution
alone is not a particularly revealing observable. For a wide
cone, the picture changes: we see a pronounced forward
dip, as the angular distribution peaks at θ ¼ θ0 and gets
significantly depleted near θ ¼ 0.
Since the angular distribution alone is not particularly

useful, we turn to the energy spectrum of electrons wðEe; θÞ
detected at a given emission angle θ. In Fig. 5 we show how
the electron spectrum is modified with respect to the plane-
wave muons. The two plots correspond to the same electron
polar angle θ ¼ π=10 ¼ 18° with the two choices for the
opening cones (22).
Even for the narrow vortex cone, the modifications are

quite substantial, Fig. 5, left. The plane-wave muon would
result in a smoothly rising spectrum extending to Eemax ¼
36 MeV for this observation angle. In the vortex muon case
with θ0 ¼ 0.01, the spectrum follows this behavior in the

lower-energy region. However, in the higher-energy region,
the spectrum exhibits a break and steadily drops to zero.
Notice that this higher energy region is quite large,
extending from 34 to 39 MeV, representing more than
10% of the total energy range.
We conclude that the key observable is the energy

spectrum at a small fixed angle, not the angular distribution.
It is this spectrum in its higher-energy range that displays
the clearest distinction between the (approximately) plane-
wave and the vortex muons.
For larger opening cone values, we see a dramatic

distortion of the spectrum, Fig. 5, right. Instead of
smoothly rising to the end point, the spectrum first
develops a cusp at Ee1 ¼ 20 MeV, then develops a broad
plateau, and finally drops to zero at the new end
point Ee2 ¼ 77 MeV.
For smaller observation angles θ, the difference becomes

more pronounced. In Fig. 6 we plot the same energy spectra
but for θ ¼ π=20 ¼ 9°. Detecting such a behavior would be
an unmistakable indication of the cone structure of the
muon wave function.

FIG. 4. Electron angular distributions WðθÞ emitted from the 3.1 GeV vortex muon decays near the forward direction for θ0 ¼ 0.01
(left) and 0.1 (right), plotted in red, compared with the plane-wave muons (black lines).

FIG. 5. Electron energy spectrum from 3.1 GeV vortex muon decays, wðEe; θÞ calculated at fixed θ ¼ π=10 ¼ 18°, for θ0 ¼ 0.01
(left) and 0.1 (right) compared with the plane-wave muons.
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2. Decay of polarized vortex muon

The decay rate of a polarized vortex muon is given by the
same Eq. (11) with dΓPW taken from (4) for the spectral-
angular distribution of the electron wðEe; θÞ or from (7) if
the energy-integrated angular distribution WðθÞ is con-
cerned. To specify the polarization state of the vortex muon,
we need to explicitly give the dependence of s⃗ on the
plane-wave momentum p⃗. Let us begin with the energy-
integrated angular distribution and go through the polari-
zation states outlined listed in Sec. III A.
(a) The parallel polarization implies s⃗ ¼ n⃗, so that the

plane-wave decay rate (7) now simplifies to

dΓPW ¼Γ0

dΩ
4π

1

γ3
1

ð1−βn⃗n⃗eÞ2
�
1þ β− n⃗n⃗e

3ð1−βn⃗n⃗eÞ
�
: ð24Þ

As a result, the angular distributionhas the following
form

WðθÞ ¼ 1

4πγ2

�
I2

�
1þ 1

3β

�
− I3

1

3βγ2

�
; ð25Þ

where the integrals I2 and I3 are given in Eq. (20). In
the plane-wave limit, one must recover the plane-wave
result (8).

(b) For the radial and azimuthal polarization states, one
has s⃗ n⃗ ¼ 0 for each plane-wave component. In this
case, the plane-wave decay rate simplifies to

dΓPW ¼Γ0

dΩ
4π

1

γ3
1

ð1−βn⃗n⃗eÞ2
�
1−

s⃗n⃗e
3γð1−βn⃗n⃗eÞ

�
: ð26Þ

After integration over all the plane-wave components
of the vortex muon, we get the angular distributionfor
the radial polarization state

WðθÞ¼ 1

4πγ2

�
I2

�
1−

cosθ0
3βγsinθ0

�
þI3

cosθ0−βcosθ
3γβsinθ0

�
:

ð27Þ

For the azimuthal polarization state we get s⃗n⃗e ¼
sin θ sinφp. Since the other factors in the integrand
depend on cosφp, we see that the spin contribution of
the azimuthally-polarized vortex muon vanishes after
the φp integration. Thus, the azimuthally-polarized
vortex muon will produce the angular distribution just
as in the unpolarized case.

In Fig. 7 we plot the above angular distributions in the
forward region for the narrow cone with θ0 ¼ 0.01. Here,
the plane-wave muon cases are shown in black, vortex
muon cases are shown in red. The dotted lines, both for
plane-wave and vortex muons, correspond to the unpolar-
ized case; they are identical to Fig. 4, left. The solid lines
correspond to the parallel polarization for vortex muon and
the z polarization for the plane-wave muon. The red dashed

FIG. 6. The same as in Fig. 5 but for θ ¼ π=20 ¼ 9°.

FIG. 7. The electron angular distribution WðθÞ emitted from
plane-wave (black) and vortex (red) muons in various polariza-
tion cases; unpolarized (dotted lines), parallel polarization (solid
lines), radial polarization (dashed line). The cone opening angle
is θ0 ¼ 0.01.
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line shows the radial polarization case, which is possible
only for vortex muon. We observe here the same pattern as
before; when passing from plane-wave to vortex muons
with very small cone opening angle θ0, we just see the
forward peak to get slightly broader. Thus, the main
message from this plot is that the spectrum-integrated
angular distribution is not of much help when distinguish-
ing different polarization states.
The distinction becomes much more clear when we look

into the energy spectrum, especially in the higher-energy
region. In Fig. 8 we show these spectra for the same five
states; unpolarized plane-wave and vortex muons, parallel
polarization for plane-wave and vortex muons, and the
radial polarization. The spectra are given for the electron
emission angle of π=60 ¼ 3°. We see critically different
patterns for various polarization options in the higher
energy region, which occupies at this observation angle
the region from about Ee1 ¼ 700 to Ee2 ¼ 1200 MeV.
In particular, the spectrum of the electrons from radially

polarized muons, which closely follows the unpolarized
case below Ee1, displays a strong second peak at high
energies. The explanation of this effect is straightforward.
For lower energies, all plane-wave components of the
radially polarized muon contribute to spectrum, and since
all of them point in different directions, the end result looks
almost like the unpolarized case. However, in the higher-
energy region, only some of the plane-wave components
contribute [see Eq. (14)]. Therefore, the closer to the end
point Ee2, the more the process resembles the transversely
polarized case.

IV. DISCUSSION AND CONCLUSIONS

Exploring collisions and decays of elementary particles
prepared in vortex states with a nonzero orbital angular
momentum is a novel promising way to probe particle

structure and dynamics. Kinematic dependences, angular
distributions, and spin effects have been predicted to differ
in a significant way with respect to the (approximate)
plane-wave case. These predictions still await experimental
verification, mostly due to the absence of suitable instru-
mentation which would enable such studies. In order to
stimulate instrumentation development, one can theoreti-
cally explore what new features could become observable
in experiments with vortex particles.
In this paper, we studied, for the first time, the peculiar

features which could be seen in decays of muons prep
ared in a vortex state. We obtained the spectral-angular
distribution of the emitted electron, both for unpolarized
and polarized muons. In the latter case, we took into
account the richer list of opportunities which exists for
nonplane-wave fermions.
The hallmark feature of vortex particles is their “cone

structure” in momentum space. Thus, almost all studies of
vortex particle collisions look into the modifications of the
angular distribution of the final state. However, when the
cone opening angle θ0 is small, these modifications with
respect to the plane-wave case are usually minor.
The key finding of this work is that it is the higher

energy part of the electron spectrum, not the angular
distribution, that displays the strongest differences with
respect to the plane-wave muons and that allows one to
distinguish various polarization states. Even for very
small opening angles used in our numerical examples
we could observe very significant modifications of the
energy spectrum, if the electron observation angle θ is also
small. Figure 8 offers a clear illustration; for muons with
E ¼ 3.1 GeV and θ0 ¼ 0.01 ≈ 0.6° and for the electron
observation angle θ ¼ 3°, we predict electron spectra to
dramatically differ for plane-wave and vortex muons, as
well as for different vortex muon polarization states. In a
sense, these findings confirm once again that muon decay
is a self-analyzing process, as it offers a clear information
on the muon polarization state even beyond the plane-
wave case.
In this paper, we left aside the issue of producing vortex

muons. No experiment has tried it so far. However, we see
no fundamental obstacles to producing such states,
although we admit that it requires instrumentation which
is not presently available. It is true that traditional schemes
for generating vortex states based on fork diffraction
gratings are not suitable for muons due to their large
penetration depth. However, muons are charged particles
and, therefore, they can be manipulated with electric and
magnetic fields. If a nearly plane-wave muon passes
through an aperture with an artificial magnetic monopole
(the tip of a magnetized needle), it will acquire orbital
angular momentum proportional to the effective magnetic
charge, which has already been demonstrated for electrons
[49]. Alternatively, if muons can be emitted from a point-
like source placed inside a wide solenoid, then, at the exit of

FIG. 8. The electron spectra wðEe; θÞ at the observation angle
θ ¼ π=60 ¼ 3° for plane-wave (black) and vortex (red) muons in
various polarization cases; unpolarized (dotted lines), parallel
polarization (solid lines), radial polarization (dashed line). The
cone opening angle is θ0 ¼ 0.01.
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solenoid, the muon wave function can acquire an OAM,
just as it was predicted for electrons [50,51]. Thus, “twist-
ing” muons is technically possible, provided initial nearly
plane-wave muons can be created with a sufficient trans-
verse coherence length.
Once vortex muons are produced and accelerated, one

could use the standard electron spectrometers and detec-
tors to explore the subtle features of vortex muons. As
demonstrated in this paper, the small electron observation
angle θ serves as a magnification tool for discerning the
features which exist near the narrow cone of the vor-
tex muon.
Once a proof-of-principle experiment detects these

modifications, a research program can begin which would
explore spin and OAM evolution of vortex muons in
external magnetic fields. There exist theoretical studies
of how vortex electrons could behave in external fields, in

particular, in the transverse magnetic field of a storage ring
[52]. This evolution may be difficult to track for electrons.
However, vortex muons, thanks to the self-analyzing
nature of their decays, may offer a better glimpse on this
evolution.
Finally, we mention that, since the main effects discussed

here are kinematic, we expect that similar easily observable
features may appear in decays of other unstable relativistic
particles.
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