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The Landau-Lifshitz equation is the first in an infinite series of approximations to the Lorentz-Abraham-
Dirac equation obtained from “reduction of order.” We show that this series is divergent, predicting wildly
different dynamics at successive perturbative orders. Iterating reduction of order ad infinitum in a constant
crossed field, we obtain an equation of motion which is free of the erratic behavior of perturbation theory.
We show that Borel-Padé resummation of the divergent series accurately reproduces the dynamics of this
equation, using as little as two perturbative coefficients. Comparing with the Lorentz-Abraham-Dirac
equation, our results show that for large times the optimal order of truncation typically amounts to using the
Landau-Lifshitz equation, but that this fails to capture the resummed dynamics over short times.
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I. INTRODUCTION

Radiation reaction (RR) in electrodynamics becomes
relevant in the presence of strong fields, where RR forces
can become comparable to, or dominate, the Lorentz force.
In the presence of strong gravitational fields RR was
observed decades ago in studies of the Hulse-Taylor binary
pulsar [1]. The recent observation of gravitational waves and
their analysis has further highlighted the importance of RR
e.g. at third post-Minkowskian order [2], triggering a
number of investigations to clarify the subtleties involved
[3–5]. The direct connection between RR in gravity and in
Yang-Mills theory has also recently been explored in the
context of double copy [6–8]. Here we consider RR in
classical electrodynamics [9–11], where it was first formu-
lated theoretically. Our interest is motivated by emerging
experimental access to previously uncharted strong-field
regimes, provided by intense lasers [12–18].
The classical equation ofmotion supposed to describe RR

is the third-order Lorentz-Abraham-Dirac (LAD) equation
[9–11]. Its third-order character is in conflict with Newton-
Laplace determinism, as more than two initial conditions are
needed to uniquely determine a solution. Adding an initial
condition for acceleration makes the initial-value problem
well posed, but leads to unphysical runaway solutions at
temporal infinity. Imposing instead Dirac’s condition of

vanishing final acceleration [11], one has an initial-
boundary value problem, and solutions (the existence and
uniqueness of which is not guaranteed [19–22]) exhibit
preacceleration before the external field is encountered
(albeit on a small timescale of about 2 fm=c). Finally, both
analytical and numerical solutions of LAD are hampered by
the strong nonlinearities present in the fully relativistic
case [23].
In view of these difficulties, it is common to adopt the

method of “reduction of order.”When applied to LAD, this
yields the Landau-Lifshitz (LL) equation [24], which,
being second-order in time derivatives, yields a well-posed
initial-value problem and hence is free of runaway and
preaccelerating solutions [25]. Reduction of order from
LAD to LL is an example of singular perturbation theory
[26]. It is known that the ensuing perturbative approxima-
tions to the full equation will typically miss nonlinear
phenomena such as layers and bifurcation branches unless
one introduces an appropriate amount of parameter fine-
tuning [19–22,27]. Furthermore, LL represents only the
first of an infinite series of approximations to LAD
obtained by iteration of reduction of order.
With this in mind, we show here that the perturbation

expansion generated by iterating reduction of order has
zero radius of convergence and is asymptotic, predicting
wildly different physics at successive orders of perturbation
theory. We are therefore prompted to investigate resumma-
tion of the series, as has recently been highlighted in
investigations of both classical [28] and quantum [29]
radiation reaction, and in strong field problems more
generally [30–33].
We focus mainly on the case of a constant crossed field

(CCF) background, which is relevant to the Ritus-Narozhny
conjecture on the breakdownof perturbation theory in strong
fields [34]. We will show that the simplifications associated
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with the CCF case allow for an almost complete resumma-
tion of the divergent perturbative series: we are able to iterate
reduction of order an infinite number of times, casting the
result as a nonlinear system of first-order, ordinary differ-
ential equations (ODEs). While the perturbative expansion
of this system is divergent, we are able to prove that the
strong-field expansion is convergent, a situation reminiscent
of the analogous expansions of the Heisenberg-Euler
Lagrangian [35].
Furthermore, the system can be solved numerically to high

accuracy, such that the solution may be viewed as numeri-
cally “exact.” We compare this exact result to resummed
Padé-Borel approximants of the perturbative expansion,
showing that these can match the numerical answer to high
precision using only a few terms. We find that infinite
reduction of order gives results which are free of the erratic
behavior seen in perturbation theory, and which match LAD,
but without the nonperturbative, and unphysical runaways or
preacceleration behavior. All our results indicate that radi-
ation reaction rapidly drives particle motion to a regime
where LL is valid; the optimal order of truncation for the
divergent reduction of order expansion is therefore one.
We work in the classical theory throughout; quantum

corrections are typically expected [36–38] when high field
strengths cause hard acceleration gradients and significant
radiation reaction, but the inclusion of such corrections
goes beyond the scope of this paper. Our focus will
therefore be on resummation and physical properties of
radiation reaction equations, rather than on phenomeno-
logical predictions.
This paper is organised as follows. In Sec. II we

introduce reduction of order, and its iterations, of the
relativistic LAD equation in a constant crossed field of
arbitrary strength. We show that the resulting series is
divergent, highlight how this manifests in the physics of
particle motion, and how this can be cured using Borel-
Padé resummation. In Sec. III we iterate reduction of order
to all orders, obtaining an equation of motion that we dub
LL∞. We show that the strong-field expansion of LL∞ is
convergent and use this to investigate the physics of the
strong field regime. In Sec. IV we use the convergent
strong-field behavior to improve our perturbative resum-
mation, and obtain an analytical expression for LL∞. We
then compare this with the numerical solution of LAD. We
conclude in Sec. VI, suggesting a physical explanation of
the divergence of perturbation theory, relating our results
to the previous literature, and discussing extensions.
Throughout we use units where c ¼ ε0 ¼ ℏ ¼ 1.

II. ITERATION OF REDUCTION OF ORDER

Consider the orbit xμðτÞ of a particle, charge e and mass
m, in an external field FμνðxÞ. The orbit is parametrized by
proper time τ, the particle velocity is written uμ ¼ _xν, and
overdots denote derivatives with respect to τ. The LAD
equation of motion is, writing fμν ¼ eFμν=m,

_uμ ¼ fμνuν þ τ0Pμνüν; ð1Þ

in which Pμν ¼ ημν − uμuν projects orthogonally to uμ and
τ0 ¼ e2=6πm ¼ 2α=3m, α being the fine-structure con-
stant, is the characteristic time scale of RR; for an electron
τ0 ≈ 6.3 × 10−24 s. Note that (1) is a third-order ODE for
the orbit xμ; the associated difficulties of either runaways or
preacceleration motivate the adoption of reduction of order
in derivatives. This refers to formally differentiating the
LAD equation, then using the equation itself to eliminate üμ

(and higher derivatives) in favor of new τ0-dependent
terms. This results, in principle, in an infinite series of
terms which can be truncated at any chosen order in τ0 due
to the smallness of that parameter compared to relevant
timescales. Truncating at order τ0 yields the Landau-
Lifshitz equation [24,39] (LL1 from here, for reasons
which will become clear),

_uμ ¼ fμνuν þ τ0fμν;ρuνuρ þ τ0Pμνf2νρuρ þOðτ20Þ: ð2Þ

Unlike (1), this is now a second-order ODE for xμ, hence
the term “reduction of order.” This process can be iterated,
truncating at higher orders in τ0, but rapidly becomes
complicated due to the appearance of new tensor structures
and higher derivatives of the field tensor.
As we are interested in large orders in τ0 we simplify

matters by limiting the number of possible terms which can
appear. To this end we begin by restricting our consid-
erations to constant backgrounds for which all field
derivatives are identically zero, and we need make no
approximation on them. Note that, for general fields, this
may be viewed as the leading order in a derivative
expansion, and there are good arguments for dropping
derivative terms: these scale with powers of ωτ0 where ω is
a typical field frequency scale. For realistic fields ωτ0 ≪ 1,
and indeed it can be seen in e.g. the exact solution of LL1 in
a plane wave [40–42] that the derivative terms only ever
yield subleading effects in the field strength. Iterating
reduction of order to Oðτ20Þ [43,44], it can again be shown
explicitly that derivative terms have negligible impact on
the physics [44]. This is also consistent with the standard
effective field theory ordering of field “operators” accord-
ing to their dimension. This argument comes with the
caveat that the derivative terms can contribute to the
nonperturbative features of LAD [11,23,45], which are
also of interest.
The tensor structures appearing are further simplified by

taking the background to be a CCF (the zero frequency
limit of a plane wave), as discussed in the Introduction. The
field strength is fμν ¼ mEðnμϵν − ϵμnνÞ with nμ lightlike,
ϵμ spacelike, ϵ · n ¼ 0, and dimensionless amplitude E.
Consider now iterating reduction of order with this back-
ground. Because f3μν ≡ 0, there are only two tensor
structures, proportional to f or f2, which can ever appear.
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For a CCF, all field invariants vanish, and the only
nontrivial, dimensionless, invariant which can be con-
structed from the particle velocity uμ and the field is

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uμf2μνuν

m2

s
¼ En · u; ð3Þ

which can be interpreted as the field magnitude “seen” by
the particle in its instantaneous rest frame, in units of the
Sauter-Schwinger field m2=e [46,47]. Note that χ is a
composite parameter, essentially the product of field
strength and particle energy.
It follows that reduction of order, iterated to arbitrary

order in τ0, will yield an equation of the form

_uμ ¼ AðχÞfμνuν þ τ0BðχÞðPf2Þμνuν; ð4Þ

with the functionsA and B depending on χ. It is easily seen
that LL1 corresponds to A ¼ B ¼ 1 which sets the initial
condition for the iteration procedure. The equation of
motion (4) is our first result. Iterated reduction of order
in more general fields may be explored by applying
resummation to a perturbative expansion of the integro-
differential formulation of LAD, see Refs. [36,48].
We now turn to the explicit construction of the functions

A and B. From here on we set the electron mass m to 1 in
the text, in order to simplify our equations. We reinstate m
in some figures so that the reader can easily see the physical
scales.

A. Perturbation theory and divergence

Iterating reduction of order, i.e., retaining terms of order
up to and including τk0, yields a sequence of equations of
form (4) which we refer to as LLk, k ≥ 1. The functions A
and B then have series expansions in τ20χ

2, given by

A → AðkÞ ≡ Xbk=2c
l¼0

Alðτ0χÞ2l;

B → BðkÞ ≡Xb
k−1
2
c

l¼0

Blðτ0χÞ2l; ð5Þ

in which A0 ¼ B0 ¼ 1, recovering the Lorentz force and
LL1 equations, respectively. After some algebra, reduction
of order implies the following recursion relations for the
coefficients Ak and Bk:

Akþ1 ¼ −2
Xk
l¼0

ðlþ 1ÞAlBk−l;

Bkþ1 ¼
Xk
l¼0

AlAk−l − 2
Xk−1
l¼0

ðlþ 1ÞBlBk−l−1: ð6Þ

Calculating the first few coefficients we find

Ak ¼ f1;−2; 20;−328; 7024;−179264;…g;
Bk ¼ f1;−6; 80;−1520; 35760;−976704;…g; ð7Þ

which are seen to alternate in sign and grow quickly. There
are no matching entries in the Online Encyclopedia of
Integer Sequences [49], and we are not aware of a
combinatorical interpretation. Because of the factors l
appearing inside the sums, the coefficients can be expected
to grow factorially; a simple fit confirms graphically that
both sequences grow asymptotically as 3nΓð0.95n − 0.5Þ,
see1 Fig. 1. The series thus has zero radius of convergence.
To highlight the physical implications of the divergence

of perturbation theory, we present some explicit solutions
to the equations of motion LLk for low k > 1. To do so we
use lightfront coordinates x� ≔ x0 � x3; x⊥ ¼ fx1; x2g,
choosing n · x ¼ xþ, lightfront time, and χ ¼ Euþ. The
LLk equations of motion for uþ and u⊥ decouple for all k,
and become, for any approximation to the functions A
and B,

duþ

dxþ
¼ −τ0χ2BðχÞ; uþ

d
dxþ

u⊥
uþ

¼ −AðχÞϵ⊥; ð8Þ

with u− determined by the mass-shell condition. The u⊥
components are determined by quadrature once uþ is
known, so we will focus on determining uþ in what
follows. The equation in (8) for uþ is separable, with
solution

τ0

Z
xþ

0

dyþ ¼ τ0xþ ¼ −
Z

uþ

uþ
0

dv
E2v2BðEvÞ : ð9Þ

FIG. 1. The sequence An (circles) and a fit using the Γ function
(solid). The sequence Bn has the same behavior.

1While it is known that there is information encoded in such
asymptotic growth rates [50], it is out of scope for our present
purposes, as we will obtain accurate resummations with only a
handful of terms.
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This causal integral can be performed as (for B calculated
in perturbation theory) the integrand is a rational function.
At first and third order this yields

LL1∶ uþ ¼ uþ0
1þ τ0E2xþ

; ð10Þ

LL3∶
1

E2v
−

ffiffiffi
6

p
τ0

Ev
arctanh

ffiffiffi
6

p
Eτ0v

����v¼uþ

v¼uþ
0

¼ τ0xþ; ð11Þ

with LL5 admitting a similar, but unwieldy and unenlighten-
ing expression, which we omit. Note that, even at only third
order, we just obtain an implicit expression for uþ. We
therefore proceed graphically, showing solutions to LL1,
LL3, and LL5 in Fig. 2. The features of these solutions can be
read off from the respective series expansion ofB. Recall first
that uþ is conserved according to the Lorentz force equation,
but not according to LL1. As Bð3ÞðχÞ ¼ 1 − 6ðτ0χÞ2 < 1,
LL3 predicts less RR than LL1, up until a stationary solution
where Bð3Þ crosses zero and hence χ, therefore uþ, is again
conserved. For χ above the zero-crossing LL3 gives an RR
force in the “wrong” direction, hence predicting a runaway
uþ which goes to infinity. On the other hand LL5 eventually
predicts stronger RR than LL1, as Bð5Þ → þ∞ for large χ.
This is quantitatively inconsistent with LAD; it has
been shown that, writing uþ0 for the initial velocity, uþ0 ≥
uþLAD ≥ uþLL1

[51], i.e., LL1 overestimates RR compared to
LAD [48]. So, whenever uþLLn

< uþLL1
, the latter is the better

approximation.
The conclusions for LL3 and LL5 generalize: as the BðnÞ

alternate between diverging to �∞, solutions to LLn will
be radically different from order to order. For orders
without a runaway, quantitative agreement with LAD
becomes worse and worse as BðnÞ grows more rapidly
with χ. We speculate that some of these features may be
related to a bifurcation phenomenon associated with LAD

in plane wave fields which has recently been discovered in
the nonrelativistic limit2 [22]. In the absence of any fully
relativistic solution to LAD in a plane wave, we try to
extract physical results from the diverging series (5) by
resumming them. We will thus obtain an equation of
motion, LL∞, which is free of the problems of LLk.

B. Resummation

We note that the series (5) with coefficients (7) are,
although divergent, Borel summable. This prompts two
questions. First, is there an optimal order of truncation (an
optimal LLk), as is typical of asymptotic series? Second,
what insights can be gained from resumming the series? We
investigate the second question here, returning to the first
later on. We will use the Borel-Padé [52–54] method to
resum the series Ak, Bk. While there are other resummation
methods of potentially higher accuracy, such as Meijer-G
resummation [55], Borel-Padé has been successfully
applied to several topics in QED [29,33,56–58], is com-
paratively simple to implement, and we can easily generate
many terms, should they be needed. (We do not expect any
instabilities related to nonperturbative imaginary parts
typical for nonalternating coefficients [59,60].)
The method is as follows. Given N þM perturbative

coefficients Al for A as a series in ðτ0χÞ2, their Borel
transform is

P
Altl=l!. One constructs a Padé approx-

imant of order N=M of the Borel transform,

PA½N=M�ðtÞ ¼
P

N
l¼0 clt

l

1þPM
j¼1 dlt

l

¼
XMþN

l¼0

Al

l!
tl þOðtMþNþ1Þ; ð12Þ

(a) (b) (c)

FIG. 2. Lightfront momentum according to the LL1, LL3, and LL5 equations of motion. For a critical value of χ, LL3 has a stationary
solution; for larger χ this becomes a runaway. LL5 is quantitatively wrong in overpredicting the strength of RR at early times, before χ
becomes small.

2For simple potential steps similar observations go back to
[19,20].
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and the resummed series is given by the inverse Borel
transform

A½N=M�ðχÞ ≔
Z

∞

0

dte−tPA½N=M�ðtðτ0 χÞ2Þ; ð13Þ

with similar expressions holding for B. The rate of
convergence can depend on the choice of N, M. We have
found N ¼ M − 1 to give the fastest convergence (and we
will see in the next section why this is). However, we stress
that other choices converge to the same functions, just
requiring more terms to do so. The lowest-order resumm-
ants have comparatively simple analytical expressions,

A½0=1�ðχÞ¼
e

1

2τ2
0
χ2E1ð 1

2τ2
0
χ2
Þ

2τ20χ
2

⟶
χ→∞ 2 logτ0χþ log2− γE

2τ20χ
2

; ð14Þ

B½0=1�ðχÞ¼
e

1

6τ2
0
χ2E1ð 1

6τ2
0
χ2
Þ

6τ20χ
2

⟶
χ→∞ 2 logτ0χþ log6− γE

6τ20χ
2

; ð15Þ

where E1 is the exponential integral [61] (chap. 5). These
give, comparing against resummants calculated using more
terms, accurate results up τ0 χ ≲ 0.3, as shown in Fig. 3. In
contrast to the perturbative series the resummants are
monotonically decreasing with χ. The resummed LLn
equations of motion therefore predict less RR than LL1,
and may have better agreement with LAD. Notably, since
the resummants are always positive, the unphysical run-
away solution is eliminated from those LLn that feature it,
such as LL3. Instead, uþ is monotonically decreasing,
which means that at large lightfront times χ → 0; as a
result, A;B → 1, so that the dynamics becomes governed
by LL1.
The right-hand panels of Fig. 3 show that for a given χ

the perturbative series agrees with the resummants when no
more than ∼ 1

2
ðτ0 χÞ−2 terms are included. This is in line

with the heuristic rule for asymptotic series, that the
optimal truncation order is after the smallest term, which
occurs at order inversely proportional to the expansion
parameter [62]. As the coefficients defined by (6) grow
factorially from the outset, the optimum order of truncation
is one, i.e., LL1 for τ0 χ ≳ 0.3. This suggests that, given

(a) (b)

(c) (d)

FIG. 3. (a),(c) Borel-Padé resummants of the sequences Ak, Bk. The dashed vertical line marks the radius of convergence of the large-χ
expansion, see Sec. III A. (b),(d) Finite-order partial sums (dashed) and the lowest-order resummant (solid black). On the interval
displayed in these panels one term is sufficient for convergence.
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their much more complicated form and A, B not differing
greatly from unity for small χ, in practice no finite-order
LLk, k ≥ 1, is “better” than LL1. In the following we will
examine the resummed, all-orders equation of motion. [We
will see that the asymptotic logarithms in (14) and (15) are
artifacts of the resummation procedure, but the qualitative
features are as described here.]
The resummation above should be contrasted with that in

the nonrelativistic limit. In that case the LAD equation is
linear in the field strength, resummation only involves
derivative terms, and turns out to be straightforward. It can
be used to recover the preacceleration solution of LAD
from perturbative, reduction of order approximations [45].

III. LANDAU-LIFSHITZ EQUATION
TO ALL ORDERS

Consider now Eq. (4) obtained by iterating reduction of
order infinitely many times, i.e., including (5) to all orders
in τ0. We call this equation LL∞. By demanding that this be
a fixed point of reduction of order, or equivalently by
demanding that uμ in (4) obeys LAD, one finds that A and
B are fully defined by the initial value problem

8<
:

τ20χ
3BðχÞA0ðχÞ ¼ 1 −AðχÞ − 2τ20χ

2AðχÞBðχÞ;
τ20χ

3BðχÞB0ðχÞ ¼ −BðχÞ − 2τ20χ
2BðχÞ2 þAðχÞ2;

Að0Þ ¼ Bð0Þ ¼ 1:

ð16Þ

The solution of these ODEs (which, see below, is easily
found numerically) determines LL∞ and its associated
dynamics. There is a subtle sense in which this dynamics
must be equivalent to that in LAD, and yet cannot be—on
the one hand, (16) is defined by a fixed point condition
matching it to LAD, but on the other hand LL∞ is second-
order in time derivatives and so must be free from
preacceleration. While it is clearly not possible to analyze
preacceleration before the field turns on in our constant
field setup, we can easily see that LL∞ is causal; the general
form (9) expresses the particle velocity as an integral over
past, not future times. It appears, then, that LL∞ may match
LAD to all orders in τ0, but misses nonperturbative effects
in τ0 (runaways and preacceleration), the recovery of which
would likely require trans-series resummation [63]. We will
compare to LAD below, but first we investigate the
properties of LL∞ in more detail.
The dynamics of LL∞ has the same qualitative features

as the dynamics of the resummed LLn: A, B are mono-
tonically decreasing and as B ≤ 1, the RR force is no
stronger than that of LL1; as B is always positive, uþ and
hence χ are always driven to zero. The asymptotics of the
solutions to LL∞ and LL1 are therefore the same. There are
however quantitative differences at large χ, as we will
now see.

A. Large χ behavior and convergence

We cannot solve the fixed-point ODEs analytically, but a
series ansatz around χ ¼ 0 reproduces exactly the recursion
relations (6). This prompts us to try a (Frobenius) series
expansion for large χ; we find

AðχÞ ¼
X∞
k¼0

ak

�
3τ0ffiffiffi
2

p χ

�
−ðkþ1Þ=2

;

BðχÞ ¼
X∞
k¼0

bk

�
3τ0ffiffiffi
2

p χ

�
−ðkþ3Þ=2

; ð17Þ

where the factor 3=
ffiffiffi
2

p
has been introduced for conven-

ience. The leading coefficients are a0 ¼ 1, b0 ¼ 3, with the
higher orders determined by the recursion relation

1

3

�
3 − k 1

−6 2 − k

��
ak
bk

�

¼
� −ak−1 þ 1

9

Pðl − 3Þalbk−l
−bk−1 þ

P
alak−l þ 1

9

Pðl − 1Þblbk−l

�
; ð18Þ

the sums running over 1 ≤ l ≤ k − 1. Unlike the factorially
growing Ak, Bk in (7), the coefficients ak, bk grow no faster
than exponentially with k, as we illustrate for the first
hundred in Fig. 4 and prove in Appendix B. The series (17)
therefore have finite radii of convergence in χ−1=2; our
proof provides a way to estimate the criterion for con-
vergence as

τ0χ ≳ 1.37; ð19Þ

FIG. 4. The first few terms ak (blue) and bk (orange) of the
series (17) and trendlines jb1jrk−1 (solid lines). Trend lines that lie
above all data points give an estimate for the radius of con-
vergence. The elements of the sequences have essentially random
signs; to resolve these on a log scale, circles (squares) indicate
positive (negative) values.
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using the data in Fig. 4. We investigate the convergence of
the series (17) in more detail in Fig. 5, by comparing
against a numerical solution of the equations (16) for χ
large; the latter requires setting conditions at χ ¼ ∞, where
the fixed-point ODEs are singular, but since the series
solution is convergent, we can set an initial condition
Aðð 3ffiffi

2
p τ0χÞ−1=2 ¼ εÞ ¼ εþ a1ε2 þ � � �, thereby avoiding

the singularity. Figure 5 shows the partial sums indeed
converging to the numerical solution when condition (19)
holds. The numerical solution can be extended down to
small values of χ, which can also be used to check on the
resummation of the perturbative series, see below.
As the series (17) are convergent for large χ, we are

encouraged to investigate the leading-order high-χ dynam-
ics implied by LL∞ (16), which is encoded in the k ¼ 0
terms of (17). These yield the large-χ asymptotics

A ∼
21=4

31=2
χ−1=2; B ∼

23=4

31=2
χ−3=2; ð20Þ

in which we note that the powers appearing are the inverse
of those typically associated with the Ritus-Narozhny
conjecture [31]. As before we focus on the uþ component,
the equation for which, recall (8), here becomes

Z
uþ

uþ
0

dvþ

2
ffiffiffiffiffiffi
vþ

p ¼ −
Z

xþ

0

�
mE

3
ffiffiffi
2

p
τ0

�
1=2

dyþ

⇒ uþðxþÞ ¼ uþ0

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mE

3uþ0
ffiffiffi
2

p
τ0

s
xþ
!

2

: ð21Þ

Note, again, that the solution is explicitly causal: the
solution uðxþÞ does not sample the field at future times.
The solution shows that from an initial value of uþ0 at

xþ ¼ 0, the momentum uþ drops to zero after a finite
lightfront time, corresponding to the particle being accel-
erated to the speed of light [64]. This is qualitatively
consistent with the general discussion of LL∞ above, but
the result (21) cannot be quantitatively valid for all times
because as uþ drops so does χ and we leave the high-χ
region, hence the regime of validity of our approximation.
We can estimate, directly from (21), that the particle
remains at χ ≫ 1 only for

xþ ≲
�
uþ0 τ0
mE

�
1=2

; ð22Þ

which can be understood as a measure of the time it takes
for the initial lightfront energymuþ to be radiated away in a
field of strength E. Consequently the differences between
LL1 and LL∞ will be most apparent if high χ is reached
through high energy. Note that observables in QED have
very different behaviors depending on whether χ is made
large through high energy or high intensity, which has
implications for the Ritus-Narozhny conjecture [65,66].

IV. IMPROVED RESUMMATION

The preceding results demonstrate that we need the full χ
dependence of the functionsA and B, even at high intensity
where their series expansions are convergent, because the
solution of LL∞ is driven with lightfront time to the low-χ
regime. In this section we use resummation to obtain an
analytic approximation of the functions A and B which
holds for 0 ≤ χ < ∞.
We can see directly from (20) that the Borel-Padé

resummed perturbative series considered in Sec. II B,
e.g., (14) and (15), do not give the correct high-χ scaling.
This is due to Padé approximants always having integer

(a) (b)

FIG. 5. Partial sums with N terms for the functionsA, B (color) and a numerical solution of the fixed-point ODEs (black). The dashed
lines indicate unconditional and estimated radii of convergence; see Appendix B. Here ζ ¼ ð3τ0χ=

ffiffiffi
2

p Þ−1=2.
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power scaling, N −M, for large arguments. With integer
powers, taking N −M ¼ 1 is the closest we can get to the
correct falloffs (20), which is why this choice leads to the
most rapid convergence. We can improve upon this by
instead using a resummation method that incorporates
asymptotic data; one such method is “educated match”
or Φ-Padé resummation [67]. In one variant of this method
one constructs a Padé approximant

ΦPA½N;M�ðtÞ ¼
P

N
l¼0 clt

l

1þPM
j¼1 dlt

l

¼
XAltl

l!
ΓðκÞ

Γðκ þ lÞ
ΓðλÞ

Γðλþ lÞ
þOðχNþMþ1Þ; ð23Þ

where the Borel transform has been replaced by a “hyper-
geometric transform” depending on two parameters κ and
λ. The resummant is obtained from the integral

AðχÞ ¼ 1

ΓðκÞΓðλÞ
Z

∞

0

dte−ttκ−1ΦPðtðτ0χÞ2Þ

× Uð1 − λ; κ þ λþ 1; tÞ; ð24Þ

where U is a confluent hypergeometric function [61]
(chap. 13). The asymptotic behavior of the resummant is

A ⟶
χ→∞ ðτ0χÞ−2λ

Γðκ − λÞ
ΓðκÞ þ ðτ0χÞ−2κ

Γðλ − κÞ
ΓðλÞ ; ð25Þ

from which κ, λ can be chosen to match a known
asymptote. As with the order of the Padé approximant,
different choices affect the rate of convergence. A conven-
ient choice is λ ¼ 1, as then one can make the replacement
U ↦ 1. The integral can then be performed analytically for
the [0, 1] approximants, superseding (14) and (15),

A½0=1�ðχÞ ¼ e
1

8τ2
0
χ2

8τ20χ
2
E1

4

�
1

8τ20χ
2

�
⟶
χ→∞

0.73ðτ0χÞ−1=2; ð26Þ

B½0=1�ðχÞ ¼ e
1

8τ2
0
χ2

8τ20χ
2
E3

4

�
1

8τ20χ
2

�
⟶
χ→∞

0.76ðτ0χÞ−3=2; ð27Þ

where again En is an exponential integral [61] (chap. 5).
These have the correct asymptotic powers of χ by con-
struction, with coefficients that are notably close to the
correct values 21=4=

ffiffiffi
3

p
≃ 0.69 and 23=4=

ffiffiffi
3

p
≃ 0.97, despite

us having used only a single perturbative coefficient to
construct this lowest-order resummant. (Matching the
coefficients exactly would require solving a transcendental
equation for λ, leading to an integral we cannot perform
analytically.) The analytic results (26) and (27) represent an
excellent approximation to the numerically exact solution

of (16) across the whole range of χ, as we demonstrate in
Fig. 6. With this, we turn to a direct comparison of the
dynamics implied by LL∞ with those implied by LAD. (For
comparisons with LL1, see Refs. [37,68–70].)

V. BEYOND CONSTANT FIELDS:
COMPARISON WITH LAD

Consider now LL∞ for fields which are not constant, but
which vary on time scales much longer than τ0. For such
fields the derivative terms neglected in the derivation of
LL∞ are small. We show in Appendix A that our methods
can be applied, and our conclusions remain robust, at
leading order in derivatives. We therefore proceed to
analyze motion in nonconstant fields using a “locally
constant field approximation” [71], in which we simply
promote f and χ appearing in LL∞ to lightfront-time
dependent variables.
Our test case is a particle created by some mechanism

(e.g., the nonlinear Breit-Wheeler process), in the peak of a
circularly polarized pulse with a sin2 envelope and finite
duration; the field strength is fμν ¼ nμa0ν − a0μnν, where

a0⊥ðϕÞ ¼ Esin2
ϕ

4
fcosϕ; sinϕg; 0 ≤ ϕ ≤ 4π;

and zero otherwise: ð28Þ

We consider this situation, rather than a particle already
present before the pulse arrives, for the following reason. In
a strong pulsed field, the large-χ regime where we expect
differences between the equations of motion to become
sizable is never reached; even if the peak field and initial uþ
are taken to be large, almost all of the particle’s lightfront
energy will be radiated away long before it reaches the
strong-field region [38,44]. Our scenario thus mimics the
situation where a charged particle encounters a “step” at a
given phase ϕi where the field is suddenly switched on.
In the differential formulation (1) of LAD, an additional

boundary condition for _uμ is needed, which can in principle
be the physically motivated final condition _uþðϕfÞ ¼ 0,
ϕf ≥ 4π, in our case, i.e., that the acceleration vanishes
after the field has been turned off. ’‘Numerically exact”
solutions of LAD must resolve the particle’s proper time on
the scale of τ0 or less, as this multiplies the highest
derivative in LAD. The analytical solution to LL1 implies,
though, that the proper time spent in the pulse is of order
3π2E2τ0, implying an unreasonable number of time steps
for the case of interest, namely high intensities, E2 ≫ 1. We
will thus use the integro-differential [20,23,72,73] formu-
lation of LAD. It substitutes for the additional boundary
condition a preaccelerating integral over future times of the
form

ι ∼
Z

∞

τ
dse−ðs−τÞ=τ0F ðsÞ; ð29Þ
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where F is a certain function of uμ and fμν, see (C3) for
details; ι must be known at ϕf ¼ ωxþf to solve backwards
in time. The integral vanishes if the field vanishes for all
future times, but again we need to resolve proper time on
the scale τ0 and so integrating backwards from ϕ ¼ 4π is
again unfeasible. However, after a very short time ε, almost
all of the initial lightfront energy present at “creation,”
ϕi ¼ 2π, will have been radiated away, and we can use the
solution to LL1 or LL∞ to compute ιðϕ ¼ 2π þ εÞ, since by
this point the particle has reached the regime where all the
equations of motion agree. In any case, the solution is only
weakly sensitive to the starting value of ι, as it is
exponentially damped on the scale τ0. The details of our
numerical discretization scheme are further described in
Appendix C.

We compare the solution to LAD thus obtained with
that of LL∞ in Fig. 7, using the analytical resummants (26)
and (27) for A, B. Remarkable agreement is obtained in
uþ despite the minimum of information used in this
representation of LL∞; the error of at most ≃5% near
ϕ ¼ 2π is partly numerical, and otherwise stems from the
relative error of the resummation (27) becoming signifi-
cant for very large χ. (The much more apparent disagree-
ment in u⊥ is predominantly error propagation from uþ.)
In Fig. 7 the low-χ regime is reached within a few percent
of a cycle, well before the field changes significantly. This
justifies ex post discarding derivative terms on this
interval. We have also solved LAD and LL∞ over one
half of a cycle and seen that they still agree to within
numerical precision.
As the field is only ever integrated in solving LAD,

it is not a problem to explicitly turn off the field for ϕ ≤ 2π
and extend the LAD solution further back in time.
The preacceleration contained in ι is thus explicitly seen in
Fig. 7(a), becoming noticeable around ΔðωxþÞ ≃ 0.01
before the field switches on. Estimating Δτ=τ0 ≈
ΔðωxþÞ=ωτ0uþð2πÞ ≈ 3.5, the preacceleration occurs, as
expected, over a few τ0 of proper time.
We mention finally that the accuracy of the approach

used here can be improved further by constructing piece-
wise approximations toA and B (“stitching”), in which one
uses the resummed expressions below some cutoff in χ, and
the convergent large-χ expansion above the cutoff. As few
as 5 terms each for Φ-Padé resummation and series
expansion suffice to approximate A and B to within a
few percent over the full range of χ, leading to a relative
error in uþ of ≃1%. This confirms that LL∞ reproduces the
physical solution of LAD, while being explicitly causal and
second-order in time.

FIG. 6. Numerical solutions to the fixed-point ODEs (dashed)
and the lowest-order Φ-Padé resummant (solid). Remarkable
agreement is obtained using only a single perturbative coefficient,
and by construction the correct asymptotic behavior (gray curves)
is reproduced. Vertical dashed gray lines indicate the radius of
convergence of the large-χ series.

(a) (b)

FIG. 7. Numerical solutions to LL1, LL∞, and LAD for a particle created at the peak of the pulse (28). The latter can be extended to
earlier lightfront times with the field switched off, revealing its preaccelerating nature. After the field has switched on, LL∞ and LAD
agree to within numerical precision. The dynamics of LL1 differs significantly from these. In (b) the disagreement in transverse
components near ωxþ ¼ 2π is due to numerical error, the scale of which is set by uþ ≫ u⊥.
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VI. CONCLUSIONS

In this paper we have applied iterated reduction of order
to the LAD equation of motion in classical electrodynam-
ics. This generates an infinite sequence of possible approx-
imations to LAD which is typically truncated at leading
order, yielding the well-known Landau-Lifshitz equation.
Working for simplicity with a constant crossed field
background, we have investigated the ultimate fixed point
of the iteration, the equation LL∞. (The constant field
approximation can be viewed as the leading order in a
derivative expansion, with the extension to next-to-leading
order sketched in Appendix A.)
We were able to map this problem to a nonlinear initial

value problem for two functions A, B of the invariant χ,
which we have approached through (i) a direct numerical
solution, which provides an “exact” benchmark, (ii) a
perturbative, weak-field analysis, (iii) resummation of
the resulting asymptotic weak-field expansion, and (iv) a
strong-field expansion, which is convergent.
Regarding (ii), we can understand why the weak-field

perturbative expansion is divergent through a variation of
Dyson’s argument [74] that the perturbation series of QED
has zero radius of convergence due to the instability of the
vacuum against pair production when α < 0. We adapt this
for our case as follows: since α > 0, an accelerating particle
emits radiation in the direction of its motion, and thus RR
opposes the motion. If α were negative, though, particles
would instead gain momentum due to the reaction,
enhancing the emission of radiation. In such a universe
particles in magnetic or Coulomb fields would spiral out,
not in. This instability cannot be connected to the physical
universe, with α > 0, by a perturbative expansion
around α ¼ 0.
Turning to (iii), Borel-Padé resummation gives a good

approximation to the numerically exact solution. Using
improved resummation methods, only a single perturbative
coefficient, along with data from the convergent asymptotic
series (iv), is needed to yield a resummant which agrees to
within a few percent for all χ. We thus have an approximate
analytic expression for the fixed-point, all-orders LL
equation, LL∞. It is second order in time derivatives,
and can be solved numerically to arbitrary precision. An
important qualitative feature of LL∞ is that (because the
function B is always positive) χ is always driven to 0. As a
result large-time dynamics are governed by LL1, and
asymptotic quantities match those of LL1. (In particular
the motion becomes aligned with the “radiation-free
direction” in which there is no acceleration transverse to
the motion, minimizing radiation losses, as also holds for
LAD [44,48,51,75].) Without resummation, though, it
follows that the practical, optimal, order of truncation
for the series generated by iterated reduction of order is 1.
Interestingly, though, we note that the short-time dynam-

ics of LL∞ depends on whether it is, in the composite
parameter χ ¼ uþE, the energy uþ or the intensity E which

is made large. This is also the case in QED in strong fields,
where the high-energy and high-intensity limits of observ-
ables are drastically different, scaling with powers or
logarithms, respectively [65,66].
Continuing with connections to the quantum theory, a

common adage is that LL1 overpredicts the strength of RR
compared to QED. In this sense LL∞ gives results “closer”
to QED: because the functionsA, B are strictly decreasing,
with a maximum of 1, LL∞ predicts less RR than LL1. This
is explicitly seen in Fig. 7.
Both LL1 and LAD are known to be consistent with

QED to leading order in α [76–78], with a very recent
resummation of quantum RR in plane waves [29] recov-
ering LL1 to all orders in α, but leading order in the pulse
duration and intensity. As this is a result for long times and
in the high-intensity limit, it is still consistent with LL∞,
which differs markedly from LL1 only for short times,
except in the high-energy limit. Making more precise,
quantitative statements about the relation between LL∞,
LAD, and QED requires going beyond leading order in the
pulse duration or understanding the high-energy limit of
strong-field QED, which remains challenging.
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for in-depth discussions on this.

APPENDIX A: LL∞ TO LEADING ORDER
IN DERIVATIVES

The characterization of LL∞ as a fixed-point of reduction
of order is not limited to a constant field, which serves only
to limit the tensor that can appear. In a nonconstant field
LL∞ must contain, among others, terms with arbitrary
number of derivatives,

_uμ¼
X
l¼0

Alðu ·∂ÞlfμνuνþBl½Pðu ·∂Þlf2�μνuνþ… ðA1Þ

where the functions Al;Bl depend on not just the one
invariant y, but also on, among others, yl ∝ ½ðn · ∂Þlfμνuν�2.
The fixed-point condition is then, in general, an infinite
tower of PDE:s in an infinite-dimensional space.
Truncating the expansion at l ¼ 0 is justified as long as

ωτ0 remains small, where ω is a typical frequency of the
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field, and the Al;Bl do not blow up. We cannot prove this
in full generality, but we can consider the next simplest case
in the derivative expansion.
To first order in derivatives LL∞ must have the form

_uλ ¼ ðA1 þ zB1Þfμνuν þ
1

τ0
ðyA2 þ zB2Þ

�
nμ

n · u
− uμ

�
þ τ0A3fμν;ρuνuρ ðA2Þ

where the invariant z is

z ¼ τ30uμf
μνfνρ;σuρuσ ¼ τ30ðn · uÞ3ða0⊥ · a00⊥Þ ðA3Þ

and the coefficient functions Ai, Bi depend only on χ. The
initial conditions are set by LL1 as A3ðy ¼ 0Þ ¼ 1 and a
simple calculation to find B1ð0Þ ¼ −12, B2 ¼ 4.
Applying reduction of order, identifying terms by tensor

structure and order by order in z, the fixed-point condition
now results in the initial value problem

−2y2A2A0
1 − 2yA1A2 þ 1 ¼ A1;

−2y2A2A0
2 − 2yA2

2 þ A2
1 ¼ A2;

A1 − 2y2A2A0
3 − 3yA2A3 ¼ A3; ðA4Þ

2ð1−yB2ÞA0
1−2y2A2B0

1−5yA2B1−2A1B2¼B1;

2ð1−yB2ÞyA0
2þ2A2−2y2A2B0

2−5yA2B2

þ2yA1B1þ2A1A3¼B2;

A1ð0Þ¼A2ð0Þ¼A3ð0Þ¼1 B1ð0Þ¼−12 B2ð0Þ¼4: ðA5Þ

The first two equations and initial conditions are, naturally,
precisely the fixed-point conditions at zeroth order in
derivatives. This system can be solved numerically,
Fig. 8, showing that all four functions fall off monoton-
ically with y. We can determine their asymptotics for y ≫ 1
by assuming a power law falloff, resulting in

A1 ∼
21=4

3
y−1=4; A2 ∼

23=4ffiffiffi
3

p y−3=4; A3 ∼
1

23=2
y−1=2;

B1 ∼ −
1

23=4
y−3=2; B2 ∼

1

3
y−1: ðA6Þ

Furthermore, the asymptotic forms suggest that A3, A4

also have convergent series expansion around χ ¼ ∞. As
the structure of the initial-value problem is the same as
without derivatives, a recursion relation similar to (18) can
be found, and the proof in Appendix B will apply.

APPENDIX B: PROOF OF CONVERGENCE
OF THE SERIES AROUND χ =∞

We will prove that the series (18) has a finite radius of
convergence. First, assume that k is large enough that we
can disregard terms subleading in k, viz.,

�
ak
bk

�
≈ −

1

3k

�P
lalbk−lP
lblbk−l

�
þOð1=kÞ: ðB1Þ

Let βk be the sequence

βk ¼
1

2λk

Xk−1
l¼1

lβlβk−l ¼ 1

4λ

Xk−1
l¼1

βlβk−l; k > 1: ðB2Þ

If jβlj > jblj; jalj for l < k, the derivative term is bounded
by βk, so ak, bk differ by at most Oð1=kÞ. Thus βk will
bound jakj; jbkj as long as it does so until k becomes
sufficiently large. Wewill now prove that through induction
on k that

βk ≤ λ
βk1
λk

; ðB3Þ

the base case k ¼ 1 is obviously true. To reduce clutter let
us introduce the shorthand

½n1; n2;…; nN � ≔
YN
i¼1

βni : ðB4Þ

First note that β2 ¼ β21=ð4λÞ; then for k > 2 write

βk ¼
β1
2λ

βk−1 þ
1

4λ

X
ni≥2

½n1; n2�δ
�
k −

X
ni
�
: ðB5Þ

¼ β1
2λ

βk−1þ
1

ð4λÞ2
X
n1≥2

½l1;l2;n1�δ
�
k−l1−l2−

X
ni
�

ðB6Þ

“splitting” either of the summation indices using a the
definition (B2). Since n1 ≥ 2 the maximally indexed
factors that appear in the triple product are βk−3 and

FIG. 8. Numerical solutions for the coefficient functions Ai in
the leading-order derivative expansion of LL∞, (A4)–(A5).
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βk−4, according to the minimal sums of li. The former has
combinatorical weight 1 and the latter 2. Thus,

βk ¼
β1
2λ

βk−1 þ
β21
8λ2

βk−2 þ
β31
16λ3

βk−3

þ 1

ð4λÞ3
X
ni≥2

½n1; n2; n3�δ
�
k −

X
ni
�
: ðB7Þ

and the triple product can be split into a quadruple product
with maximal indices k − 4 and k − 5. The combinatorical
weights are 1 × 2 and 2 × 2, respectively. In general,
splitting an index in a product with N indices [which will
have a factor ð4λÞ−Nþ1 from previous splits], will work out
like

X
ni≥2

½n1;…; nN �δ
�
k −

X
ni
�
:

¼ 1

4λ

X
ni≥2

½l1;l2; n1;…; nN−1�δ
�
k − l1 − l2 −

X
ni
�

ðB8Þ

¼ N − 1

4λ
βN−2
2 ðβ21βk−2Nþ2 þ 2β1β2βk−2N−1Þ

þ 1

4λ

X
ni

½n1;…; nNþ1�δ
�
k −

X
ni
�
: ðB9Þ

≤
β2N−2
1

2N−1λN−1 βk−2Nþ2 þ
β2N−1
1

2N−2λN
βk−2N−1

þ 1

4λ

X
ni

½n1;…; nNþ1�δ
�
k −

X
ni
�
: ðB10Þ

Repeating and using the induction hypothesis (B3) we can
bound βk by a geometric series:

βk ≤
X
l¼1

βl1
ð2λÞl βk−l ≤ λ

βk1
λk
X
l¼1

1

2l
¼ β1

βk1
λk

: ðB11Þ

To get a bound for our bk:s we should take β1 ¼ jb1j ¼ 9
2

and λ ≤ 3=2 which implies ρ ≥ 3
2jb1j ¼ 1=3. As evidenced

in Fig. 5, the actual radius of convergence is larger. This is
because al; bl are more or less alternating. To take this into
account, we can consider the analogous sequence β̃k where
we set β̃2 ¼ −β̃21=4λ. Now realize that every time we pick
an li ¼ 2, we get a minus sign from this, so the geometric
series (B11) becomes alternating, and we can actually
bound

jβ̃kj ≤ λ

�jβ̃1j
2λ

�
k
: ðB12Þ

Thus, our sequences ak, bk are bounded by���� aka1
����;
���� bkb1
���� ≤ rk ðB13Þ

as long as r is large enough to both satisfy r >
1
2
maxðja1j; jb1jÞ and provide a bound even for 1≪ k.

We can estimate such an r by a linear fit to a few hundred
elements, or by graphical estimation; see again Fig. 4: if r is
such that all the points are below its trend line, the radius of
convergence in ð3τ0ffiffi

2
p χÞ−1=2 is at least 1=r. We see that r ¼ 3

2

fails to give a bound for the ak, bk around k ≈ 50, but
r ≈ 1.7—found by fitting—provides the bound (19),
mτ0χ ≳ 1.37.

APPENDIX C: NUMERICAL SCHEME FOR LAD

The runaway solutions can be removed by writing LAD
in an integro-differential form; that presented in Ref. [73] is
suitable. It is obtained by rearranging LAD into

fμρuρ þ τ0uμ _uρ _uρ ¼ −τ0eτ=τ0
d
dτ

ðe−τ=τ0 _uμÞ ðC1Þ

tensoring by uν and antisymmetrizing to kill the term
quadratic in _uμ, viz.,

−
e−τ=τ0

τ0
ðfμρuρuν − fνρuρuνÞ ¼ u½ν

d
dτ

ðe−τ=τ0 _uμ�Þ

¼ d
dτ

ðe−τ=τ0u½ν _uμ�Þ: ðC2Þ

The equation is now solved by formal integration
(dxþ ¼ xþdτ) and dotting with uνðxþÞ,

duμ

dxþ
¼ eτ=τ0

τ0

uν
uþ

Z
∞

xþ

dye−τðyÞ=τ0

uþðyÞ
× ½fμρuρuν − fνρuρuμ�ðyÞ; ðC3Þ

free of runaways as long as fμν vanishes sufficiently
quickly.
Our discretization scheme is a simple finite difference

scheme. Letting τ̃ ¼ τ=τ0, and subscript k indicating
evaluation at ϕk, we proceed according to

uμkþ1 − uμk ¼ Δϕ
1

τ0ω

uνk
uþk

Z
∞

ϕ
dϕ0 e

ðτ̃ðϕÞ−τ̃ðϕ0Þ

uþðϕ0Þ
× ½f̃μρuρuν − f̃νρuρuμ�ðϕ0Þ;

f̃μν ¼ n½μ
daν�

dϕ
ðC4Þ

where we evaluate the integral by the trapezoid method,
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Ik¼
Z

∞

ϕk

eτ̃k−τ̃ðyÞ ���dy

¼
Z

ϕk−1

ϕk

eτ̃k−τ̃ðyÞ ���dyþeτ̃k−τ̃k−1
Z

∞

ϕk−1

eτ̃k−1−τ̃ðyÞ ���dy ðC5Þ

≈
Δϕ
2

ðfðϕk; ukÞ þ eτ̃k−τ̃k−1fðϕk−1; uk−1ÞÞ
þ eτ̃k−τ̃k−1Ik−1Þ: ðC6Þ

The trapezoid method is also used to evaluate the proper
time step,

τ̃k − τ̃k−1 ¼
τk − τk−1

τ0
¼ −

Δϕ
2ωτ0

�
1

uþk
þ 1

uþk−1

�
; ðC7Þ

while I0 ¼
R
∞
ϕ0
dy is evaluated using a solution of LL1,

since by assumption all later times are in the low-χ regime
where LL1 and LAD agree; this initialization decays over a
very short phase interval, as uþ is small near ϕ0, and the
solution is not sensitive to it. While the equation is written
in covariant form, we treat only uþ; u⊥ as independent,
fixing the final component through the mass-shell con-

dition u− ¼ 1þðu⊥Þ2
uþ .
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