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We develop a robust method to extract the pole configuration of a given partial-wave amplitude. In our
approach, a deep neural network is constructed where the statistical errors of the experimental data are
taken into account. The teaching dataset is constructed using a generic S-matrix parametrization, ensuring
that all the poles produced are independent of each other. The inclusion of statistical error results into a
noisy classification dataset which we should solve using the curriculum method. As an application, we use
the elastic πN amplitude in the IðJPÞ ¼ 1=2ð1=2−Þ sector where 106 amplitudes are produced by
combining points in each error bar of the experimental data. We fed the amplitudes to the trained deep
neural network and find that the enhancements in the πN amplitude are caused by one pole in each nearby
unphysical sheet and at most two poles in the distant sheet. Finally, we show that the extracted pole
configurations are independent of the way points in each error bar are drawn and combined, demonstrating
the statistical robustness of our method.
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I. INTRODUCTION

Identifying the nature of observed enhancements in
hadron-hadron scatterings is one of the central goals of
hadron spectroscopy [1–7]. The primary concern is to
associate the enhancements with nearby S-matrix poles
[8–12]. Ideally, we make a complete measurement of
observables, such as elastic and reaction cross sections
with spin dependence if possible. For low energy processes,
the measurement is followed by partial wave analysis of the
experimental data to obtain the amplitudes. The poles,
Riemann sheets, and other resonance parameters are
extracted from the amplitudes. To achieve this program,
conventionally, one often uses a simple parametrization of
the amplitude such as Breit-Wigner or Flatte parametriza-
tions, or some more rigorous formulation like the K-matrix
formalism [13,14]. Alternatively, one can use a dynamical
model using suitable hadron degrees of freedom and their
interactions. In these methods, some parameters are deter-
mined to fit the experimental data. In general, however, the

applicability of these methods is somewhat limited by the
assumptions of the model.
In this study, we propose an alternative method to the

above parameter-fitting approach using deep learning
[15–18]. Eventually, we would aim at the program that
determines detailed properties of poles of the amplitude,
including their positions, residues, among others. However,
this is extremely difficult at this moment, and therefore, we
limit our program to identify the pole configuration, that is,
the number of poles in each Riemann sheet associated with
the structures in the amplitude. The information we obtain
is limited but valuable enough to draw some physical
insights (see Refs. [19–23]). Furthermore, the obtained pole
configuration is useful in designing an appropriate para-
metrization with minimal number of parameters to extract
the pole positions. In this way, the information obtained
using deep learning in a model-independent manner is
complemented by a more practical model-dependent
parameter fitting method.
We design and develop a deep neural network (DNN) to

detect the pole configuration using only the partial-wave
amplitude. The idea is to produce a general set of simulated
amplitudes with known pole configuration to build the
training dataset. In doing so, the general properties of the
S-matrix (analyticity, unitarity, and Hermiticity) are sat-
isfied. Furthermore, the poles that we generate must be
independent of each other to ensure that the detected poles
by the DNN are free from any bias. The next step is to
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construct a DNN program. In the optimization of the DNN,
we use the training dataset to teach the DNN to recognize
physically realizable amplitudes from the experimental data
and extract the pole configuration. As anticipated, our
method is a classification program that gives a general
description of the data. Therefore, to extract the physical
properties of the enhancement structures in the amplitudes,
a dynamical model approach must be used while main-
taining the result obtained by our program. We emphasize
that once the DNN model are constructed, the optimized
parameters in DNN can be reused to analyze different
processes. This treatment is possible since our formulation
does not rely on a specific functional form of amplitudes.
We consider the two-hadron scatterings with two

coupled channels. For a more specific demonstration, we
take the elastic πN partial-wave amplitude, collected and
analyzed by the GW-SAID in Refs. [24,25], as our
experimental data. We choose this amplitude because of
the interesting role of threshold effects to the noticeable
structures seen just above the ηN and below the KΣ
thresholds as shown in Fig. 1. We use the coupled πN
and ηN channels treatment for the present study. In addition
to the deep learning approach, we also introduce an
alternative way to utilize the error bars to interpret
experimental data. Instead of generating several parameters
of a model that fits within the experimental result, we do the
reverse treatment. We produce several amplitudes directly
from the experimental results by combining points in the
error bars then feed them to the trained DNN. Since there
are infinitely different ways to combine points in each error
bar, we expect to get different pole configurations. We can
interpret the DNN inference with the highest count as the
best pole configuration associated with the experimental
data. Thus, we are extracting the information directly from
the experimental data and not just constraining the model.
The structure is as follows. First, we discuss in Sec. II the

general properties of the S-matrix used to generate the

training dataset. Then, we proceed with the construction
and optimization of our DNN in Sec. III. The treatment of
experimental data for the DNN inference is done in Sec. IV.
Finally, we give our conclusion in Sec. V.

II. GENERAL PROPERTIES OF S-MATRIX

In this section, we review the general properties of the
S-matrix that we will use in the generation of the training
dataset. For the present purpose, it will suffice to consider
the two-hadron scatterings with two channels. Here, we
take into account the πN as channel 1 and ηN as channel 2.
The KΛ channel can be ignored due to its weak coupling to
the πN channel [27]. We can also ignore the KΣ channel by
restricting the energy region of analysis up to the KΣ
threshold energy. The proximity of the peak structures to
ηN threshold allows us to utilize the nonrelativistic relation,

E ¼ p2
i

2μi
þ Ti: ð1Þ

where E is the center-of-mass scattering energy, pi is the
relative momentum of the ithe channel (i ∈ f1; 2g) with
two-particle reduced mass μi and threshold energy Ti. Here,
the smooth variation of the lower-channel is approximated
using p1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ1ðE − T1Þ

p
.

To reveal the full analytic properties of the S-matrix, we
let the energy and momentum take complex values. With
the relation in Eq. (1), the complex energy is a two-valued
function of complex momenta with the positive or negative
imaginary part. We call the energy plane associated with
the positive (negative) imaginary part of the ith momentum
channel as the top [t] (bottom [b]) Riemann sheet. For the
coupled two-channels, the four Riemann sheets are con-
veniently labeled using the intuitive notation in Ref. [28] as
½s1s2� where si ¼ ft; bg is the sheet of the ith channel. The
scattering region, the energy region where we plot the cross
section, lies along the real axis on the upper half of the
physical ½tt� sheet. The other Riemann sheets are collec-
tively called unphysical sheets, and they are connected,
together with the physical sheet, in a nontrivial way due to
the presence of branch cut. Figure 2 shows the connection
of the relevant regions of all the Riemann sheets in two
perspectives. First, the upper-half of ½tt� (½tb�) is connected
to lower-half of ½bt� (½bb�) between the interval T1 to T2.
Figure 2(a) shows that the upper-half of ½tt� is connected to
the lower half of ½bb� above T2. Second, Fig. 2(b) shows
that the lower half of ½bt� is connected to the upper-half of
½tb� above T2. Note that all the Riemann sheets are
disconnected from each other below the lowest threshold
T1. Generally, poles near the scattering region, thus on the
½bb� and ½bt� sheets, may generate a prominent peak, but
some poles on the ½tb� sheet can still give a noticeable
effect, especially if close to the threshold energy.
The properties of the S-matrix govern the collision of

particles with short-range interaction. The most important

FIG. 1. The elastic πN amplitude of the GW-SAID in [26]. The
two-hadron thresholds are shown as vertical thin lines. Only the
πN and ηN channels are considered in the present study. The KΛ
and KΣ thresholds are shown for reference purposes only.
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property is causality, which means that no scattered wave
will reach the detector before the incident wave reaches the
scattering target. Causality imposes that the scattering
amplitudes take the real-boundary values of some analytic
functions of complex energy on the physical sheet [10,29].
It follows that there should be no pole on the physical sheet
except possibly some bound state poles on the real axis
below the lowest threshold. Next, we also expect that the
total probability is conserved, which requires that the
S-matrix S be unitary, i.e., SS† ¼ 1. This property allows
us to restrict the form of the full S-matrix and its elements
in the corresponding interval of scattering energy. Finally,
below the lowest threshold, the S-matrix should be real-
valued or Hermitian [30]. The well-known consequence of
Hermiticity is the reflection principle [8,9], i.e., the energy
poles come in conjugate pairs. By combining analyticity,
unitarity, and hermiticity on the relevant energy region, we
can construct a general parametrization for our S-matrix.
Using Hermiticity and unitarity, we can perform analytic

continuation [31,32] and obtain the following S-matrix
elements:

S11ðp1; p2Þ ¼
Dð−p1; p2Þ
Dðp1; p2Þ

S22ðp1; p2Þ ¼
Dðp1;−p2Þ
Dðp1; p2Þ

S11S22 − ðS12Þ2 ¼
Dð−p1;−p2Þ
Dðp1; p2Þ

; ð2Þ

where the subscripts refer to the channels. Here, the
function Dðp1; p2Þ determines the pole positions of the
S-matrix. We can calculate the scattering amplitudes using
the relation Sii0 ¼ δii0 þ 2iTii0 where δii0 is the Kronecker
delta and i; i0 ∈ f1; 2g. If we can control the singularities
using a specified form ofDðp1; p2Þ, then we can generate a

set of simulated amplitudes Tii0 ðp1; p2Þ with known pole
configuration.

A. Controlled poles and Riemann sheets

To accommodate a large pole-configuration space,
we have to generate a set of simulated amplitudes
with arbitrary number of independent poles. We look for

Djðp1; p2Þ ¼ 0 that can give exactly one pole EðjÞ
pole

occupying one of the unphysical Riemann sheet and then
form the product,

Dðp1; p2Þ ¼
Y
j

Djðp1; p2Þ: ð3Þ

This prescription ensures that all EðjÞ
poles are produced

independently of each other. Now, from the reflection

principle, we know that if EðjÞ
pole is a pole, then the complex

conjugate EðjÞ�
pole must also be a pole. To fix the Riemann

sheet of EðjÞ
pole and accommodate its conjugate partner,

we use

Djðp1; p2Þ ¼ ½ðp1 − iβðjÞ1 Þ2 − αðjÞ21 �
þ λ½ðp2 − iβðjÞ2 Þ2 − αðjÞ22 �: ð4Þ

The absolute values of the real parameters αðjÞi ; βðjÞi are

already determined by the real and imaginary parts of EðjÞ
pole

through the relation in Eq. (1). To specify the Riemann

sheet of EðjÞ
pole, we choose the signs of βðjÞ1 and βðjÞ2 . This

feature allows us to uphold the analyticity requirement by

not choosing simultaneous positive βðjÞ1 and βðjÞ2 . The
importance of the extra parameter λ is discussed in the
following.
A quick inspection shows that, if Eq. (1) is imposed on

Djðp1; p2Þ ¼ 0 with Djðp1; p2Þ given by Eq. (4), we get
four solutions in either p1 or p2. Two of these are the

assigned pole EðjÞ
pole and its conjugate partner while the

other two are known as the shadow and its conjugate
partner [33–36]. The position and Riemann sheet of the
shadow pole is obtained by expressing Djðp1; p2Þ ¼ 0 in

terms of p1 (or p2) and factoring out ðp1 − iβðjÞ1 Þ2 − αðjÞ21

[or ðp2 − iβðjÞ2 Þ2 − αðjÞ22 ]; these are

�
p1− iβðjÞ1

�
μ1−μ2λ

μ1þμ2λ

��
2

−
�
αðjÞ21 þ 4λμ21β

ðjÞ2
2

ðμ1þμ2λÞ2
�
¼ 0 ð5Þ

and

�
p2þ iβðjÞ2

�
μ1−μ2λ

μ1þμ2λ

��
2

−
�
αðjÞ22 þ 4λμ22β

ðjÞ2
1

ðμ1þμ2λÞ2
�
¼ 0: ð6Þ

FIG. 2. Relevant regions of two-channel Riemann sheets. The
red ray, with two dots, represents the scattering region lying on the
upper ½tt�. The curve surface in (a) shows the ½tt� − ½bb� connection,
while the curve in (b) shows the ½bt� − ½tb� connection.
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The reversed sign of Imp2 tells us that the Riemann sheet of
the shadow is different to that of the assigned pole. This

means that EðjÞ
pole can respect analyticity but the shadow may

not. To avoid the possible violation of analyticity, we throw
the shadow far from the relevant scattering region. In
particular, we choose a sufficient negative λ that can put the
shadow (and its conjugate partner) on the real axis below

the lowest threshold. By doing this, each EðjÞ
pole will have its

own distant background pole. Thus, we can guarantee that
eachDjðp1; p2Þwill produce exactly one isolated pole on a
specified Riemann sheet. In this way, the poles are
produced independent of each other while respecting
analyticity, giving us a general parametrization.

B. Observable effects of shadow

We push the shadow pole solution of Djðp1; p2Þ ¼ 0 far
from the relevant scattering region to arrive at a general
parametrization. However, there are situations where a
shadow pole exists and may have observable consequences
in the scattering region around the relevant threshold.
Consider, for example; the familiar two-channel Breit-
Wigner model [33,34] with the pole-position condition
taking the form,

Dðp1; p2Þ ¼ E − EBW þ iγ1p1 þ iγ2p2 ¼ 0; ð7Þ

where EBW is the Breit-Wigner mass and γi ≥ 0 is the
coupling to the ith channel. For γ2 < γ1, we can have a pole
in ½bb� and a shadow in ½bt�. If we slowly turn off γ2, the
pole and shadow will move towards a common energy
point (the same real and imaginary part) but in different
Riemann sheets. The cusp at T2, due to p2 ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − T2

p
,

disappears on the scattering amplitude indicating that the
situation is now reduced to a single-channel scattering.
It turns out that putting another independent pole in

our parametrization can mimic the effect of shadow. To
demonstrate this effect, let us consider the extreme case

where we fixed the position of an isolated pole on the ½bt�
sheet such that its real part is equal to T2. Figure 3 shows
the resulting jT11j2 (solid blue line) where a peak structure
below T2 with a noticeable cusp (infinite slope) at the
threshold is observed. The addition of an arbitrary ½bb� pole
below T2 push the peak structure slightly closer to T2

(dashed red line) and slightly diminish the cusp structure.
Finally, if the ½bb� pole is placed exactly at the same
position as the fixed ½bt� pole, the peak occurs at the actual
real part of the pole (which is at T2), and the cusp
disappeared (dotted green line). This behavior is an
indication that the pole decouples to the second channel,
similar to turning off γ2 in the two-channel Breit-Wigner
model. It follows that, we can turn off the channel coupling
by using an arbitrary trajectory for two independent poles
on different sheets. This behavior shows that the arbitrary
pole we placed on a different Riemann sheet effectively
functions as a shadow of the fixed pole. In our formulation,
we can generate the pole and shadow independently.
The decoupling effect of a pair of independent poles on
different Riemann sheets can be proven in a general way as
discussed in the Appendix.
We now have a parametrization that can produce as many

poles as we want with an arbitrary way of controlling the
strength of channel coupling. In the next section, we use
our general S-matrix parametrization to produce a set of
simulated amplitudes for the teaching dataset.

III. CONSTRUCTION OF DEEP NEURAL
NETWORK MODEL

A. Generation of training dataset

The design of our DNN generally depends on the
features of input data, which we take to be the real and
imaginary parts of amplitude, and the number of possible
classifications in the teaching dataset. In the final stage of
analysis, we will use the experimental data to make DNN
inferences. It is, therefore, essential to include the limited

FIG. 3. The partial cross section (a) and the corresponding pole configuration (b). The pole in ½bt� sheet is fixed and is the same for all
cases with real part equal to T2. The ½bb� pole is added without assuming any trajectory.
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energy resolution in the design of DNN. To do this, we
generate a set of amplitudes on randomly spaced energy
points. Specifically, we divide the region of interest in the
experimental data into some number of bins, say B bins.
One can think of each bin as the energy resolution of a
particle detector. It is safe to assume that some probability
distribution determines the energy of a particle entering a
detector. We can use this distribution to pick one repre-
sentative energy in each bin to calculate the real and
imaginary parts of the amplitude. For our specific task,
we divide the πN center-of-mass energy range, from πN to
KΣ thresholds, into 37 bins since there are 37 data points in
the GW-SAID data [24,25]. Also, for simplicity, we use a
uniform distribution to choose a point in each energy bin.
The number of possible pole-configuration classifica-

tions depends on how many poles we are willing to count
within some specified Riemann sheet region. The number
of configurations will also determine the number of output
nodes assigned to our DNN model. Appealing once again
to the GW-SAID data, there are two prominent structures—
one is around the ηN threshold, and the other is between
KΛ and KΣ thresholds. The number of poles that we have
to count should not be less than two. In our study, it suffices
to consider a maximum of four distributed poles in any
combination of Riemann sheets. With this restriction, we
identified 35 possible configurations. Each of these con-
figurations corresponds to one output node in our DNN.
The possible configurations and output-node assignment
are shown in Table I.
The enhancements in the GW-SAID πN amplitude occur

only on a limited portion of the scattering region. Thus, it is
practical to limit the region where we produce and count
our poles in each Riemann sheet. We define the counting
region as

8<
:

T2 − 50 ≤ ReEpole ≤ T2 þ 200 all RS

−200 ≤ ImEpole < 0 ½bt�& ½bb�
0 < ImEpole ≤ 200 ½tb�;

where the energies are in units of MeV. Here, we do not
have to count the conjugate poles on the upper half of ½bt�
or ½bb� and the lower half of ½tb� since they do not
correspond to different independent states. In addition to
the counted poles, we also produce distant background
poles far from the scattering region, but these are not
counted. By randomly generating at-most four poles inside
the counting region, we constructed 1.8 × 106 labeled
amplitudes divided uniformly into 35 configurations for
the training set. Our task is to find a map between the input
amplitude to the corresponding output pole configuration in
the form of a DNN model. To monitor the performance of
DNN, we also produce an independent 3.5 × 104 labeled
amplitudes for the testing set.

B. DNN architecture

Figure 4 shows the basic architecture of our DNNmodel.
The first 37 nodes in the input layer are for the random
energy points chosen in each bin, and the last two 37 nodes
are for real and imaginary parts of the amplitude. For the
output layer, we use 35 nodes such that each one corre-
sponds to the pole configuration listed in Table I. There are
no general guidelines into how many hidden layers and
nodes in each layer we should assign to obtain an optimal
result. It is, therefore, useful to test some architectures. In
this study, we experiment with six different architectures
with hidden layer designs shown in Table II. Here, we use
the notation [XXX-� � �-XXX] to denote the number of
layers and number of nodes in each hidden layer. For
example, [200-200] means that the architecture has two
hidden layers with 200 nodes in each layer while [100-100-

TABLE I. Classification output-node label.

Label S-matrix pole configuration

0 No nearby pole
1 1 pole in ½bt�
2 2 poles in ½bt�
3 3 poles in ½bt�
4 4 poles in ½bt�
5 3 poles in ½bt� and 1 pole in ½bb�
6 2 poles in ½bt� and 1 pole in ½bb�
7 2 poles in ½bt� and 2 poles in ½bb�
8 1 pole in ½bt� and 2 poles in ½bb�
9 1 pole in ½bt� and 3 poles in ½bb�
10 1 pole in ½bt� and 1 pole in ½bb�
11 1 pole in ½bb�
12 2 poles in ½bb�
13 3 poles in ½bb�
14 4 poles in ½bb�
15 3 poles in ½bb� and 1 pole in ½tb�
16 2 poles in ½bb� and 1 pole in ½tb�
17 2 poles in ½bb� and 2 poles in ½tb�
18 1 pole in ½bb� and 2 poles in ½tb�
19 1 pole in ½bb� and 3 poles in ½tb�
20 1 pole in ½bb� and 1 pole in ½tb�
21 1 pole in ½tb�
22 2 poles in ½tb�
23 3 poles in ½tb�
24 4 poles in ½tb�
25 3 poles in ½tb� and 1 pole in ½bt�
26 2 poles in ½tb� and 1 pole in ½bt�
27 2 poles in ½tb� and 2 poles in ½bt�
28 1 pole in ½tb� and 2 poles in ½bt�
29 1 pole in ½tb� and 3 poles in ½bt�
30 1 pole in ½tb� and 1 pole in ½bt�
31 2 poles in ½bt�, 1 pole in ½bb� and 1 pole in ½tb�
32 1 pole in ½bt�, 2 poles in ½bb� and 1 pole in ½tb�
33 1 pole in ½bt�, 1 pole in ½bb� and 2 poles in ½tb�
34 1 pole in ½bt�, 1 pole in ½bb� and 1 pole in ½tb�

MODEL INDEPENDENT ANALYSIS OF COUPLED-CHANNEL … PHYS. REV. D 104, 036001 (2021)

036001-5



100] has three hidden layers with 100 nodes in each hidden
layer. Note that one can design a DNN with different
number of nodes in each hidden layer. We use the uniform
number of nodes used in Table I to make the analysis
tractable.
Except for the input layer nodes and the biases, all the

other nodes are equipped with an activation function. For
the hidden layer nodes, we use the rectified linear unit
(ReLU) such that for the nth node,

ReLUðzðNþ1Þ
n Þ ¼ max ð0; zðNþ1Þ

n Þ; ð8Þ

where zðNþ1Þ
n is the linear combination of all the Nth layer

node values multiplied by the appropriate weights and
shifted by the bias of the same layer. For the output layer, it
is optimal to use the softmax given by

softmaxðzðLþ1Þ
n Þ ¼ expðzðLþ1Þ

n ÞPNLþ1
m expðzðLþ1Þ

m Þ
; ð9Þ

where L is the last hidden layer. The softmax cross entropy
is the appropriate cost function for a general classification
problem. This is given by

Cðw;bÞ ¼ 1

X

X
x⃗

a⃗ðx⃗Þ · log ½y⃗w;bðx⃗Þ�; ð10Þ

where X is the total number of items in training set, x⃗ is an
array containing the input-node values, a⃗ðx⃗Þ is an array that
corresponds to the true label of input x⃗ and y⃗w;bðx⃗Þ is
the output of the DNN with weights and biases ðw;bÞ.
The goal of training is to find the optimal ðw;bÞ that
minimizes the cost Cðw;bÞ. The construction of the DNN
models and the execution of training loop are all done in
Chainer [37–40].
In a typical training loop, we feed the teaching dataset

using some mini-batch procedure to add stochasticity in
estimating the cost-function. Then, we execute the
optimization of weights and biases using some variant of
stochastic gradient descent [41]. We perform these proce-
dures on all our models and found that none is learning the
classification problem. In particular, the training and testing
accuracies remain at around 2.86% no matter how many
training epochs we use. The observed accuracy is, in fact,
the accuracy that we will get if we make a random guess out
of 35 possibilities. We tried different optimizers and
different combinations of hyperparameters shown in
Table III but still obtained a nonimproving performance.
The difficulty in learning the classification problem is

due to the noise introduced in the generation of the training
dataset. This noise includes the random choice of energy
points in evaluating amplitudes and the randomly added
unitary background poles. It is often advisable to use a
dataset with less noise to improve the training performance
[42], but this defeats the purpose of simulating the energy
resolution in the experimental data. The inclusion of energy
resolution in the design of DNN inevitably results in a
noisy dataset. Thus, we resort to a different approach to
initiate the learning process without tampering with our
teaching dataset. In the following, we introduce the idea of
the curriculum method and how it can start the learning of a
complicated classification problem.

C. Curriculum method

The curriculum method was first developed in Ref [43]
for simple cases. Depending on the difficulties of classi-
fication problems, a more rigorous treatment requires a

FIG. 4. DNN architecture. The circles are for input nodes,
crossed circles are for bias nodes, single cross circles are for
hidden layer nodes, and shaded circles are for output nodes. The
lines are the weights and biases.

TABLE II. Hidden layer architectures of DNN models consid-
ered in this study. The input and output layer nodes are identical
for all models.

DNN model label Hidden layer architecture

1 [200-200]
2 [200-200-200]
3 [200-200-200-200]
4 [100-100]
5 [100-100-100]
6 [100-100-100-100]

TABLE III. List of optimizers and hyperparameters used in the
noncurriculum training. For further descriptions see Ref. [40].

Optimizers Adam, AdaDelta, AdaGrad
AMSGrad, AdaBound, AMSBound

Minibatch sizes 32, 64, 512, 1024, 1536
2048, 2560, 4096

Weight initializers Normal, HeNormal, Uniform
HeUniform, Orthogonal

Others with dropout, without dropout

SOMBILLO, IKEDA, SATO, and HOSAKA PHYS. REV. D 104, 036001 (2021)

036001-6



well-organized training dataset [44–46]. For our purpose, it
is sufficient to adopt a more heuristic approach where we
subjectively identify the simplest dataset and introduce new
classification until we present all the training sets. With the
35 pole-configuration classifications, four of which corre-
sponds to at-most-one-pole configuration (labels 0, 1, 11,
and 21 of Table I). We treat these four classes as the
simplest examples and call them curriculum 1. Then we add
one of the two-pole classifications and call the new set
curriculum 2. We do this until we have included all the 35
classifications in the final curriculum 32. Table IV shows
the incremental progression of the curriculum training.
Note that by the end of curriculum 7, we have introduced
all the two-pole configurations. Similarly, all the three-pole
configurations are presented at curriculum 17 and all four-
pole configurations at curriculum 32. The code used to
build each curriculum is in the public repository [47].

We trained all the six models using curriculum 1 for the
first 300 epochs, curriculum 2 for the subsequent 300
epochs, and then curriculum 3 until epoch 650. The goal
here is to find which architecture performs best and then
devote the rest of the training to the chosen DNN. Figure 5
shows the performance of the six DNNs. All models give
decent accuracies at the start of curriculum 1, indicating that
the chosen simple classification is indeed learnable. There is
a noticeable accuracy drop at the start of curriculum 2 and
curriculum 3 due to the introduction of a new classification
set. Nevertheless, we can perform a few more training
epochs within the curriculum to improve accuracy. The
essential point here is that all our models start to learn the
classification problem using the curriculum approach. Of
all the six models, the architecture with a hidden layer
[200-200-200] shows a promising performance, especially
at the onset of curriculum 3.We, therefore, devote the rest of
our computing resources to DNN model 2.
Note that it is not practical to perform more epoch per

curriculum since the accuracy will definitely drop at the
start of a new curriculum. It will suffice to have some
decent accuracy for each curriculum and continue the
training after introducing all the classifications. Hence,
we restart the training of the chosen DNN and, to accelerate
the process, we only use 100 epochs per curriculum which
are then continued after all the pole configurations are
introduced. The training performance is shown in Fig. 6.
We also vary the minibatch size from 512 in the early part
of the curriculum epoch, so we can take advantage of large
stochasticity to 4,608 in the later part to stabilize the
accuracy. At the end of epoch 3,200 (end of curriculum 32),
we now have a DNN model that can detect up to four poles
in any Riemann sheet with training and testing accuracies
of 63.5% and 68.3%, respectively. We continue until epoch
31,050 using the typical training loop and obtained a final
training and testing accuracies of 76.5% and 80.4%,
respectively.
Recall that in the construction and training of our DNN

model, only the energy resolution is included and not the
fluctuation of the amplitudes, which correspond to stat-
istical errors in experimental data. The goal of using a
generic S-matrix is to teach the DNN to recognize only
those amplitudes that satisfy the unitarity, analyticity, and
Hermiticity requirements. This restriction is justified
because we expect the actual experimental data to conform
to the mentioned general properties. Inserting a random
error or offset in the training amplitudes will violate such
requirements. In the inference stage, the trained DNN will
reinterpret the input experimental amplitudes as if they
satisfy the expected properties even if there are some
offsets. This feature is the advantage of having a model
with many parameters (weights and biases) where the
trained DNN automatically discards the irrelevant peculi-
arities of the input data. We further describe the inference
stage in the next section.

TABLE IV. Scheme that we used in the curriculum learning
stage. One new classification label is added in the subsequent
curriculum. The label descriptions are given in Table I.

Curriculum
label Dataset addition scheme

Configuration
presented

1 Labels 0,1,11,21 At-most one pole
2 Curriculum 1þ label 2
3 Curriculum 2þ label 12
4 Curriculum 3þ label 22
5 Curriculum 4þ label 10
6 Curriculum 5þ label 20
7 Curriculum 6þ label 30 At-most two poles

8 Curriculum 7þ label 3
9 Curriculum 8þ label 13
10 Curriculum 9þ label 23
11 Curriculum 10þ label 6
12 Curriculum 11þ label 8
13 Curriculum 12þ label 16
14 Curriculum 13þ label 18
15 Curriculum 14þ label 26
16 Curriculum 15þ label 28
17 Curriculum 16þ label 34 At-most three poles

18 Curriculum 17þ label 4
19 Curriculum 18þ label 14
20 Curriculum 19þ label 24
21 Curriculum 20þ label 5
22 Curriculum 21þ label 7
23 Curriculum 22þ label 9
24 Curriculum 23þ label 15
25 Curriculum 24þ label 17
26 Curriculum 25þ label 19
27 Curriculum 26þ label 25
28 Curriculum 27þ label 27
29 Curriculum 28þ label 29
30 Curriculum 29þ label 31
31 Curriculum 30þ label 32
32 Curriculum 31þ label 33 At-most four poles
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IV. APPLICATION TO πN SCATTERING

We can now use our trained DNN to make inferences on
the experimental data. Due to the presence of error bars of
the data, we can expect that there are multiple possible
interpretations associated with the amplitude of interest.
The result of DNN inferences must reflect the uncertainty
due to the error bars in the experimental data. We can
accomplish this by combining points in each error bar to
produce several amplitudes. Here, we can further assume
that some probability distribution weights the points in each
error bar. Except for the assumed probability distribution,
the generated amplitudes for the DNN inference comes

directly from the experimental data without imposing
anything.

A. Interpreting the error bar

We usually interpret each error bar to be 1 standard
deviation σ of the Gaussian distribution around the central
value. Therefore, we can generate 106 amplitudes directly
from the experimental data by drawing points in each error
bar using the Gaussian distribution. Note that the way we
interpret the error bar corresponds to the confidence level
that the points used to generate the amplitudes are within
the error bar of the data. For example, increasing the σ to 2σ

FIG. 5. Performance of the DNN models for the first three curricula. The blue lines are for the training performance while the orange
lines are for the testing performance.

FIG. 6. Training (blue) and testing (orange) performance of our DNN model. Curriculum learning is used until epoch 3200 (red
vertical solid line). The scale of horizontal axis is changed to epoch=20 after the curriculum learning at the vertical red line.
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means that we increase the confidence level from 68% to
95%, and so on. In Fig. 7 we use different interpretations of
the error bar in the generation of 106 amplitudes and then
count the number of DNN inference output. The result
shows that out of 35 possibilities, only four-pole configu-
rations are identified by the DNN. These detected con-
figurations are shown in the legend of Fig. 6. Notice that as
we increase the confidence level of the error bar, the most
likely configuration emerges. Specifically, we find that the
structures in the elastic πN amplitude are caused by one
pole in ½bt�, one pole in ½bb�, and two poles in ½tb�.
The other three configurations are suppressed as the
confidence level is increased, implying that these three
configurations correspond to amplitudes produced by
points outside the error bars.
One advantage of our approach is that we can go beyond

the typical Gaussian distribution of points in each error bar
and use other distributions. In particular, all the points in
each error bar may be equally important, and a uniform
distribution might be appropriate. In this way, all points
used to generate the amplitudes are guaranteed to remain
within the error bar. The DNN inference result, with the
uniformly distributed points in each error bar, is shown in
Table V. It is interesting to note that changing the weights at
which the points are combined to produce the amplitudes

does not affect the DNN inference very much. That is, we
still get the same conclusion that the πN amplitude is best
described by one pole in each adjacent Riemann sheet, one
at most two poles in the distant sheet. Our approach
contrasts with the conventional model-fitting scheme,
where only a selected region of each error bar is used to
describe the data. Thus, our deep learning approach is
statistically robust compared to the conventional model-
fitting scheme.

B. Discussion of results

Note that we made no assumptions on the poles detected
by the DNN. At this point, one can now use a model to
interpret the origin of the detected poles. Here, we give
some general statements based on the expected effects of
Riemann sheet poles on the scattering amplitude. First, the
most prominent structure in Fig. 1 is the enhancement
between the KΛ and KΣ thresholds. For the two-channel
analysis, such enhancement can only be produced by at
least one ½bb� pole above the second threshold. Meaning,
we can associate this enhancement to the ½bb� pole that our
trained DNN consistently identifies.
The next noticeable structure is around the ηN threshold.

As an intuitive interpretation, onemay associate the detected
½bt� pole to this near-ηN structure. However, a near-thresh-
old ½bt� pole is expected to give rise to an amplitude peak
below the threshold with an imaginary part close to unity,
i.e., reaching the unitarity limit. This description is not the
case with the near-ηN enhancement. Also, notice that the
DNN sometimes identifies the ½bt� pole as a ½tb� pole
(compare the first and the third rows of Table V). The
comparison suggests that the ½bt� pole is near the ½bt� − ½tb�
interfacewhich is located above the ηN threshold [see Fig. 2
(b)]. The detected ½bt� pole may be associated with the
enhancement between theKΛ andKΣ thresholds in the form
of a shadow pole. Thus, we can only attribute the ηN
threshold enhancement to a non-½bt� sheet pole.
The enhancement around ηN threshold could be due to

the threshold cusp effect. However, to make the structure
prominent, some nearby poles must be associated with it.
Notice that our trained DNN consistently detected ½tb�
poles in all of its inferences. With the ½bb� pole already
allocated to the other enhancement and with ½bt� pole ruled
out, we are only left with at most two poles in the ½tb� sheet
to account for the ηN threshold enhancement. The limita-
tion imposed on our counting region guarantees that at least
one of the detected ½tb� poles is close to the ηN threshold.
The peak structure slightly above the ηN threshold suggests
that one of the ½tb� poles is close to the ½bb� − ½tb� interface.
We can only make further statements about the origin of

the detected poles by appealing to some dynamical model.
Nevertheless, we can give some general speculations on the
nature of the detected poles. It might be the case that in the
zero-coupling limit of πN and ηN channels, the detected
½bb� and the ½bt� poles move towards a common position

FIG. 7. DNN inference on amplitudes generated from exper-
imental data with points drawn from Gaussian distribution in each
error bar. The legend shows the identified pole configurations by
the DNN.

TABLE V. Result of the DNN inferences on the GW-SAID πN
amplitude. The points used to generate the 106 experimental
amplitudes are drawn in each error bar using a uniformdistribution.

Percentage bt bb tb

60.3% 1 1 2
30.9% 1 1 1
7.5% 0 1 3
1.3% 0 1 2
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resulting in a typical Breit-Wigner resonance of the lower
channel. Such is a typical feature of a pole-shadow pair. On
the other hand, in the zero coupling limit, one of the ½tb�
poles go to the ½bb� sheet and approaches the same position
as the other ½tb� pole. In this way, the pole decouples
the lower channel and results in either a near-threshold
resonance or just a virtual state of the higher channel. Note
that a dynamical model is needed to verify the above
speculations.

V. CONCLUSION AND OUTLOOK

We have demonstrated how to design a DNN that can
extract the pole configuration of a given scattering ampli-
tude. Using a generic S-matrix, we can produce a sizable
teaching dataset to train our model to detect the number of
poles in each Riemann sheet. Pole generation using
Eqs. (2)–(4) gives us the advantage of performing deep
learning analysis on any elements of the S-matrix. This
prescription allows us to use the method on any scattering
processes such as 2 → 2 or 1 ↔ 2. Our approach can
be extended to higher channels by putting an extra
λ½ðp − iβÞ2 − α2� term. Here, the new parameter λ can be
adjusted to control the new shadow produced by the new
channel. Additionally, the uniformization method intro-
duced in Refs. [48,49] also provides an alternative way to
control the poles and generate the training dataset. One
possible advantage of uniformization is that it can be
extended to relativistic scattering; this will be considered
elsewhere.
Also, we have shown the effectiveness of the curriculum

method in initiating the learning process with a noisy
dataset. The curriculum method allows us to accommodate
the limited energy resolution in the design of DNN.We also
provided a method of utilizing the error bars in the
experimental data in a statistically robust way. By gen-
erating several experimental amplitudes, we can make a
reasonable interpretation of the data based on the most
consistent inference of the DNN.
Finally, our proposed S-matrix treats the experimental

results in a model-independent way. The poles produced for
the training dataset are independent of each other and are
not constrained by any a priori trajectory. The above
implies that the trained DNN makes no assumptions in
detecting the poles associated with the experimental data. It
is now up to some dynamical model to interpret which set
of poles are supposed to be paired as pole-shadow partners
or which one is independent of the other. Upon obtaining
the pole-configuration using a model-independent analysis,
one can now design an appropriate parametrization to
extract the relevant pole parameters.
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APPENDIX: ARBITRARY TRAJECTORY TO
DECOUPLE TWO CHANNELS

We show that an irrelevant independent pole can remove
the cusp at the higher threshold of a coupled channel
scattering. Note that the origin of a threshold cusp is purely
kinematical. This will occur at E ¼ T2 when the amplitude
has an explicit dependence on p2, where p2 ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − T2

p
. If

we can manage to remove the p2 (like turning off γ2 in two-
channel Breit-Wigner) or turn p2 into some analytic
function of E in the amplitude, then the cusp singularity
should disappear.
Let the relevant pole Epole in, say, ½bb� sheet (i.e.,

ReEpole > T2) satisfies the condition,

FðEpoleÞ þ ig1ðEpoleÞp1 þ ig2ðEpoleÞp2 ¼ 0;

where F; g1; g2 are analytic functions of E. We can always
find F; g1; g2 such that the nearest singularity to the
scattering region is an isolated simple pole. Since Epole

is in ½bb�, then we can express the momentum poles
ðp1; p2Þ as

p1 ¼ −iβ1 � α1

p2 ¼ −iβ2 � α2;

where we set α1, α2, β1 and β2 to be positive. It is
understood that p1 and p2 are related to the Epole via
the energy constraint in Eq. (1). It follows that, the modified
equation,

FðEpoleÞ þ ig1ðEpoleÞp1 − ig2ðEpoleÞp2 ¼ 0:

is satisfied by the same E ¼ Epole but in the ½bt� sheet, i.e.,
the momentum poles are

p1 ¼ −iβ1 � α1

p2 ¼ iβ2 ∓ α2:

Now, consider the S-matrix element S11ðp1; p2Þ given by

S11ðp1; p2Þ ¼
�
F − ig1p1 þ ig2p2

F þ ig1p1 þ ig2p2

�

×

�
F − iḡ1p1 − iḡ2p2

F þ iḡ1p1 − iḡ2p2

�
:
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The above form is consistent with S11ðp1; p2Þ ¼
Dð−p1; p2Þ=Dðp1; p2Þ in Eq. (2). From the previous
discussion, we know that the first parenthetical factor will
generate a relevant pole Epole in ½bb� sheet.
Deform ḡ1 and ḡ2 arbitrarily such that ḡ1 → g1 and

ḡ2 → g2, respectively. The second factor will produce an
irrelevant pole at E ¼ Epole in ½bt� sheet. Using this limiting
procedure, the S-matrix element becomes

S11ðp1; p2Þ ¼
ðF − ig1p1Þ2 þ ðg2p2Þ2
ðF þ ig1p1Þ2 þ ðg2p2Þ2

:

The explicit dependence of S11ðp1; p2Þ on p2 is now
replaced with p2

2. We still have a peak at around
E ¼ ReEpole due to the relevant pole since the denominator
did not cancel out as we perform the limiting procedure.
However, the amplitude will no longer have a branch cut or
threshold cusp at E ¼ T2 due to the absence of explicit p2

dependence. Furthermore, from Eq. (2), the limit ḡ1 → g1
and ḡ2 → g2, will give us S22 → 1 and S212 → 0. This means
that putting an arbitrary irrelevant pole in the same position
as the main pole, but on a different Riemann sheet,
effectively decouples the two channels.
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