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The isospin doublet scalar field with hypercharge 3=2 is introduced in some new physics models such as
tiny neutrino masses. Detecting the doubly charged scalar bosons from the doublet field can be a good
probe of such models. However, their collider phenomenology has not been examined sufficiently. We
investigate collider signatures of the doubly and singly charged scalar bosons at the LHC for the high-
luminosity upgraded option (HL-LHC) by looking at transverse mass distributions etc. With the
appropriate kinematical cuts we demonstrate the background reduction in the minimal model in the
following two cases depending on the mass of the scalar bosons. (1) The main decay mode of the singly
charged scalar bosons is the tau lepton and missing (as well as charm and strange quarks). (2) That is into a
top bottom pair. In the both cases, we assume that the doubly charged scalar boson is heavier than the singly
charged ones. We conclude that the scalar doublet field with Y ¼ 3=2 is expected to be detectable at the
HL-LHC unless the mass is too large.
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I. INTRODUCTION

In spite of the success of the Standard Model (SM), there
are good reasons to regard the model as an effective theory
around the electroweak scale, above which the SM should
be replaced by a model of new physics beyond the SM.
Although a Higgs particle has been discovered at the LHC
[1], the structure of the Higgs sector remains unknown.
Indeed, the current data from the LHC can be explained in
the SM. However, the Higgs sector in the SM causes the
hierarchy problem, which must be solved by introducing
new physics beyond the SM. In addition, the SM cannot
explain gravity and several phenomena such as tiny
neutrino masses, dark matter, baryon asymmetry of the
universe, and so on. Clearly, extension of the SM is
inevitable to explain these phenomena.
In the SM, introduction of a single isospin doublet scalar

field is just a hypothesis without any theoretical principle.
Therefore, there is still room to consider nonminimal shapes
of the Higgs sector. When the above mentioned problems of
the SM are considered together with such uncertainty of the
Higgs sector, it might happen that it would be one of the

natural directions to think about the possibility of extended
Higgs sectors as effective theories of unknown more funda-
mental theories beyond the SM. Therefore, there have been
quite a few studies on models with extended Higgs sectors
both theoretically and phenomenologically.
Additional isospin-multiplet scalar fields have often been

introduced into the Higgs sector in lots of new physics
models such as models of supersymmetric extensions of the
SM, those for tiny neutrino masses [2–12], dark matter
[13–15], CP-violation [16,17], and the first-order phase
transition [18,19]. One of the typical properties in such
extended Higgs sector is a prediction of existence of charged
scalar states. Therefore, theoretical study of these charged
particles and their phenomenological exploration at experi-
ments are essentially important to test these models of new
physics.
There is a class of models with extended Higgs sectors in

which doubly charged scalar states are predicted. They may
be classified by the hypercharge of the isospin-multiplet
scalar field in the Higgs sector; i.e., triplet fields with Y ¼ 1
[3,4,8], doublet fields with Y ¼ 3=2 [20–25], and singlet
fields with Y ¼ 2 [7,8,12,22]. These fields mainly enter
into new physics model motivated to explain tiny neutrino
masses, sometimes together with dark matter and baryon
asymmetry of the universe [12,20,21,23–25]. The doubly
charged scalars are also introduced in models for other
motivations [26,27]. Collider phenomenology of these
models is important to discriminate the models. There
have also been many studies along this line [20,28–37].
In this paper, we concentrate on the collider phenom-

enology of the model with an additional isodoublet field Φ
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with Y ¼ 3=2 at the high-luminosity-LHC (HL-LHC) with
the collision energy of

ffiffiffi
s

p ¼ 14 TeV and the integrated
luminosity of L ¼ 3000 fb−1 [38]. Clearly, Φ cannot
couple to fermions directly. The component fields are
doubly charged scalar bosons Φ�� and singly charged
ones Φ�. In order that the lightest one is able to decay into
light fermions, we further introduce an additional doublet
scalar field ϕ2 with the same hypercharge as of the SM one
ϕ1, Y ¼ 1=2. Then, Y ¼ 3=2 component fields can decay
via the mixing between two physical singly charged scalar
states. Here, we define this model as a minimal model with
doubly charged scalar bosons from the doublet. This
minimal model has already been discussed in Ref. [20],
where signal events via pp → Wþ� → ΦþþH−

i have been
analyzed, where H�

i (i ¼ 1, 2) are mass eigenstates of
singly charged scalar states. They have indicated that
masses of all the charged states Φ�� and H�

i may be
measurable from this single process by looking at the
Jacobian peaks of transverse masses of several combina-
tions of final states etc. However, they have not done any
analysis for backgrounds. In this paper, we shall investigate
both signal and backgrounds for this process to see whether
or not the signal can dominate the backgrounds after
performing kinematical cuts at the HL-LHC.
This paper is organized as follows. In Sec. II, we

introduce the minimal model with doubly charged scalar
bosons from the doublet which is mentioned above, and
give a brief comment about current constraints on param-
eters in the scalar potential of the model from some
experiments and theoretical issues. In Sec. III, we inves-
tigate decays of doubly and singly charged scalars and a
production of doubly charged scalars at hadron colliders. In
Sec. IV, results of numerical evaluations for the process
pp → Wþ� → ΦþþH−

i are shown. Final states of the
process depend on mass spectrum of the charged scalars,
and we investigate two scenarios with a benchmark value.
Conclusions are given in Sec. V. In Appendix A, we show
analytic formulas for decay rates of two-body and three-
body decays of the charged scalars. In Appendix B, we
discuss conditions for the scalar potential to be bounded
from below. In Appendix C and D, constraints from the
oblique parameters and the diphoton decay of the Higgs
boson are investigated, respectively.

II. MODEL OF THE SCALAR FIELD WITH Y = 3=2

We investigate the model whose scalar potential includes
three isodoublet scalar fields ϕ1, ϕ2, and Φ [20]. Gauge
groups and fermions in the model are samewith those in the
SM. Quantum numbers of scalar fields are shown in
Table I. The hypercharge of two scalars ϕ1 and ϕ2 is
1=2, and that of the other scalar Φ is 3=2. In order to forbid
the flavor changing neutral current (FCNC) at tree level, we
impose the softly broken Z2 symmetry, where ϕ2 and Φ
have odd parity and ϕ1 has even parity [39].

The scalar potential of the model is given by

V ¼ VTHDM þ μ2ΦjΦj2 þ 1

2
λΦjΦj4

þ
X2
i¼1

ρijϕij2jΦj2 þ
X2
i¼1

σijϕ†
iΦj2

þ fκðΦ†ϕ1Þðϕ̃1
†ϕ2Þ þ H:c:g; ð1Þ

where VTHDM is the scalar potential in the two Higgs
doublet model (THDM), and it is given by

VTHDM ¼
X2
i¼1

μ2i jϕij2 þ ðμ23ϕ†
1ϕ2 þ H:c:Þ

þ
X2
i¼1

1

2
λijϕij4 þ λ3jϕ1j2jϕ2j2 þ λ4jϕ†

1ϕ2j2

þ 1

2
fλ5ðϕ†

1ϕ2Þ2 þ H:c:g: ð2Þ

The Z2 symmetry is softly broken by the terms of μ23ϕ
†
1ϕ2

and its Hermitian conjugate. Three coupling constants μ3,
λ5, and κ can be complex number generally. After redefi-
nition of phases of scalar fields, either μ3 or λ5 remains as
the physical CP-violating parameter. In this paper, we
assume that thisCP-violating phase is zero and all coupling
constants are real for simplicity.
Component fields of the doublet fields are defined as

follows;

ϕi ¼
� ωþ

i
1ffiffi
2

p ðvi þ hi þ iziÞ
�
; Φ ¼

�
Φþþ

Φþ

�
; ð3Þ

where i ¼ 1, 2. The fields ϕ1 and ϕ2 obtain the vacuum
expectation values (VEVs) v1=

ffiffiffi
2

p
and v2=

ffiffiffi
2

p
, respec-

tively. These VEVs are described by v≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
≃

246 GeV and tan β≡ v2=v1. On the other hand, the doublet
Φ cannot have a VEV without violating electromagnetic
charges spontaneously.1

TABLE I. The list of scalar fields in the model.

SUð3ÞC SUð2ÞL Uð1ÞY Z2

ϕ1 1 2 1=2 þ
ϕ2 1 2 1=2 −
Φ 1 2 3=2 −

1In this paper, we assume that the electric charge does not
broken in the vacuum.
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From the stationary condition, we have

μ21 ¼ −μ23 tan β þ
λ1
2
v2c2β þ

λ̃

2
v2s2β; ð4Þ

μ22 ¼ −μ23 cot β þ
λ2
2
v2s2β þ

λ̃

2
v2c2β; ð5Þ

where

λ̃ ¼ λ3 þ λ4 þ λ5; cβ ¼ cos β; sβ ¼ sin β: ð6Þ

Mass terms for the scalar fields are given by the
followings.

V ∋
1

2
ðh1; h2ÞM2

h

�
h1
h2

�
þ 1

2
ðz1; z2ÞM2

z

�
z1
z2

�

þ ðω−
1 ;ω

−
2 ;Φ−ÞM2

ω

0
B@

ωþ
1

ωþ
2

Φþ

1
CAþm2

ΦjΦþþj2; ð7Þ

where λ̃, cβ, and sβ are defined as

M2
h ¼

�−μ23 tan β þ λ1v2c2β μ23 þ λ̃v2cβsβ

μ23 þ λ̃v2cβsβ −μ23 cot β þ λ2v2s2β

�
; ð8Þ

M2
z ¼ ðμ23 þ λ5v2cβsβÞ

�− tan β 1

1 − cot β

�
; ð9Þ

Mω ¼

0
B@

−μ2ω tan β μ2ω − κ
2
v2cβsβ

μ2ω −μ2ω cot β κ
2
v2c2β

− κ
2
v2cβsβ κ

2
v2c2β m2

Φ

1
CA; ð10Þ

m2
Φ ¼ μ2Φ þ v2

2
ðρ1c2β þ ρ2s2βÞ; ð11Þ

μ2ω ¼ μ23 þ
v2

2
cβsβðλ4 þ λ5Þ: ð12Þ

The doubly charged scalar bosons Φ�� are mass eigen-
states without mixing, and their mass is given by mΦ. Mass
eigenstates of the other scalars are defined by�
H

h

�
¼ RðαÞ

�
h1
h2

�
;

�
z

A

�
¼ RðβÞ

�
z1
z2

�
; ð13Þ

0
B@

ω�

H�
1

H�
2

1
CA ¼

0
B@

1 0 0

0 cos χ sin χ

0 − sin χ cos χ

1
CA

×

0
B@

cos β sin β 0

− sin β cos β 0

0 0 1

1
CA
0
B@

ω�
1

ω�
2

Φ�

1
CA; ð14Þ

where the left-hand sides of these equations are mass
eigenstates, and the matrix RðθÞ is the two-by-two rotation
matrix for the angle θ:

RðθÞ ¼
�

cos θ sin θ

− sin θ cos θ

�
: ð15Þ

Mixing angles α and χ are defined as

tan 2α ¼ 2ðM2
hÞ12

ðM2
hÞ11 − ðM2

hÞ22
; ð16Þ

tan 2χ ¼ 2ðM2
ωÞ12

ðM2
ωÞ11 − ðM2

ωÞ22
: ð17Þ

In the following, for simplicity, we assume that sinðβ −
αÞ ¼ 1 so that h is the SM-like Higgs boson. Then, mass
terms in Eq. (7) are diagonalized as

V ∋
1

2
m2

hh
2 þ 1

2
m2

HH
2 þ 1

2
m2

AA
2 þm2

H1
jHþ

1 j2

þm2
H2
jHþ

2 j2 þm2
ΦjΦ��j2; ð18Þ

where

m2
h ¼ v2ðλ1c4β þ 2λ̃s2βc

2
β þ λ2s4βÞ; ð19Þ

m2
H ¼ m2

A þ v2fðλ1 þ λ2 − 2λ̃Þs2βc2β þ λ5g; ð20Þ

m2
A ¼ −

μ23
sβcβ

− λ5v2; ð21Þ

m2
H1

¼ −
μ2ω
sβcβ

cos2 χ þ 1

2
κv2cβ sin 2χ þm2

Φ sin2 χ; ð22Þ

m2
H2

¼ −
μ2ω
sβcβ

sin2 χ −
1

2
κv2cβ sin 2χ þm2

Φ cos2 χ: ð23Þ

The scalars z and ω� are Nambu-Goldstone bosons, and
they are absorbed as the longitudinal components of Z
boson and W� bosons, respectively.
The doublet Φ does not have the Yukawa interaction

with the SM fermions because of its hypercharge.2

Therefore, Yukawa interactions in the model is same with
those in the THDM. They are divided into four types
according to the Z2 parities of each fermion (Type-I, II, X,
and Y [40]). In the following, we consider the Type-I
Yukawa interaction where all left-handed fermions have
even parity, and all right-handed ones have odd-parity. The
type-I Yukawa interaction is given by

2If we consider higher dimensional operators, interactions
between Φ and leptons are allowed [32].
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LYukawa ¼ −
X3
i;j¼1

fðYuÞijQiLϕ̃2ujR þ ðYdÞijQiLϕ2djR

þ ðYlÞijLiLϕ2ljRg þ H:c:; ð24Þ

where QiL ðLiLÞ is the left-handed quark (lepton) doublet,
and ujR, djR, and ljR are the right-handed up-type quark,
down-type quark and charged lepton fields, respectively.
The Yukawa interaction of the singly charged scalars are
given by

−
ffiffiffi
2

p

v
cot β

X3
i;j¼1

fVuidjuiðmuiPL þmdjPRÞdj

þ δijmliνiPLligðcos χHþ
1 − sin χHþ

2 Þ þ H:c:; ð25Þ

where Vuidj is the ðui; djÞ element of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [16,41], δij is the
Kroneker delta, and PL (PR) is the chirality projec-
tion operator for left-handed (right-handed) chirality. In
addition, ðu1; u2; u3Þ ¼ ðu; c; tÞ are the up-type quarks,
ðd1; d2; d3Þ ¼ ðd; s; bÞ are the down-type quarks,
ðl1;l2;l3Þ ¼ ðe; μ; τÞ are the charged leptons, and
ðν1; ν2; ν3Þ ¼ ðνe; νμ; ντÞ are the neutrinos. The symbols
mui , mdi , and mli are the masses for ui, di, and li,
respectively. In the following discussions, we neglect
nondiagonal terms of the CKM matrix.
Finally, we discuss theoretical and experimental con-

strains on some parameters in the model. If the coupling
constant κ in the scalar potential is zero, the model have a
new discrete Z2 symmetry where the doublet Φ is odd and
all other fields are even. This Z2 symmetry stabilizes Φ��

or Φ�, and their masses and interactions are strongly
constrained. Thus, κ ≠ 0 is preferred, and it means that
sin χ ≠ 0. In this paper, we assume that χ ¼ π=4 just for
simplicity. Some quartic scalar couplings are determined by
the masses of new scalars by using the mass formulas in the
above. In addition, quartic couplings have to satisfy
conditions for the potential to be bounded from below.
In Appendix B, these conditions are discussed in detail.
The masses of H�

1;2 are strongly constrained by flavor
experiments in the region where tan β ≲ 2 [42–44]. In
larger tan β regions, the constraints for mH1;2

are given by
direct searches of H�

1;2 at high energy colliders [44,45].
From the LEP, the lower limit for mH1;2

is given by about
80 GeV [46]. The direct search at the LHC give the upper
limit for σH� × ðBranching ratioÞ, where σH� is the cross
section of a production process for H�

1;2. The upper limit
for the decay channel H�

1;2 → τν (H�
1;2 → tb) is given by

Ref. [47] (Ref. [48]), and at 95% C.L., it is about 3.0 pb
(3.6 pb) for mH1;2

¼ 100 GeV (200 GeV). Furthermore,
the new scalars can affect some observables at loop levels.
For example, they contribute to the oblique parameters

(S, T, and U) [49] and the diphoton decay of the Higgs
boson. Some parameters in the scalar potential are con-
strained by measurements of these observables. We discuss
details of these constraints in Appendix C and D.

III. PRODUCTION AND DECAYS OF
CHARGED SCALAR STATES

In this section, we investigate the decay of the new
charged scalars and the production of the doubly charged
scalar at hadron colliders. In the following discussion, we
assume that Φ�� is heavier than H�

1 and H�
2 . Then, H

�
1;2

cannot decay into Φ��. In addition, we assume that H and
A are so heavy that they do not affect significantly the
decay modes of all the charged scalars.

A. Decays of charged scalar sates

First, we discuss the decays of the singly charged scalars
H�

1 and H�
2 . They decay into the SM fermions via Yukawa

interaction in Eq. (25). Since they are lighter than Φ��, H,
and A, their decays into Φ��W∓ð�Þ, HW�ð�Þ, and AW�ð�Þ
are prohibited. On the other hand, the decay of the heavier
singly charged scalars into the lighter one and Zð�Þ is
allowed, and it is generated via the gauge interaction.
In the following, we assume that H�

2 is heavier than
H�

1 (mH2
> mH1

).
In Fig. 1, the branching ratio for each decay channel

of H�
1 is shown. Since we assume that H�

1 is lighter than
H�

2 , it decays via the Yukawa interaction [40].3 In the
region where mH1

≲ 140 GeV, the decay into cs and
that into τν are dominant. When we consider a little
heavier H�

1 , which are in the mass region between
140 GeV and mt þmb ≃ 180 GeV, the branching ratio
for H�

1;2 → t�b → W�bb̄ is dominant [51].4 In the mass

FIG. 1. The branching ratio of H�
1 .

3In this paper, we neglect the effects of one-loop induced
decays H�

i → W�γ and Hi� → W�Z [50].
4In Ref [51], type-II Yukawa interaction is investigated, and

the condition tan β ≲ 1 is needed to make the decay H�
1;2 → t�b

dominant. In our case (type-I), this condition is not necessary
because all fermions couple to ϕ2 universally.
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region mt þmb < mH1
, the branching ratio for H�

1 → tb is
almost 100%.The decays into cs, τν, and tð�Þb are all induced
by the Yukawa interaction. Since we consider the type-I
Yukawa interaction, the dependence on tan β of each decay
channel is same. Thus, the branching ratio in Fig. 1 hardly
depends on the value of tan β. Analytic formulas of decay
rates for each decay channel are shown in Appendix A 1.
The singly charged scalar H�

2 also decays into the SM
fermions via the Yukawa interaction. In addition, H�

2 →
H�

1 Z
ð�Þ is allowed. In Fig. 2, the branching ratios of H�

2 in
two cases are shown. The left figure of Fig. 2 is for tan β ¼
10 and Δmð≡mH2

−mH1
Þ ¼ 20 GeV. In the small mass

region, the decay H�
2 → H�

1 Z
� is dominant. In the region

where mH2
≳ 140 GeV, the decay H�

2 → tð�Þb becomes
dominant, and the branching ratio for H�

2 → tb is almost
100% formH2

≳ 180 GeV. If we consider smaller tan β, the
decays via Yukawa interaction are enhanced because the
Yukawa interaction is proportional to cot β. [See Eq. (25).]
Thus, he branching ratio for H�

2 → H�
1 Z

� decreases.
The right figure of Fig. 2 is for the case where tan β ¼ 3

and Δm ¼ 50 GeV. In the small mass region, the branching
ratio for H�

2 → H�
1 Z

� is about 80%, and those for other
decay channels are negligibly small. However, in the mass
region where mH2

≳ 180 GeV, H�
2 → H�

1 Z
� become neg-

ligibly small, and the branching ratio forH�
2 → tb is almost

100%. If we consider larger tan β, the decays via the Yukawa
interaction is suppressed, and the branching ratio for H�

2 →
H�

1 Z
� increases. Thus, the crossing point of the branching

ratio for H�
2 → tbðt�bÞ and that for H�

2 → H�
1 Z

� move to
the point at heaviermH2

. Analytic formulas of decay rates for
each decay channel are shown in Appendix A 1.
Next, we discuss the decay of the doubly charged scalar

Φ��. The doubly charged scalar Φ�� does not couple to
fermions via Yukawa interaction.5 Therefore, it decays via

the weak gauge interaction.6 We consider the following
three cases.
First, the case where Δm1ð≡mΦ −mH1

Þ < 80 GeV and
Δm2ð≡mΦ −mH2

Þ < 80 GeV is considered. In this case,
Φ�� cannot decay into the on-shell H�

1;2, and three-body
decays are dominant. In the upper left figure of Fig. 3, the
branching ratio of Φ�� in this case is shown. We assume
that tan β ¼ 3, Δm1 < 20 GeV, Δm2 < 10 GeV. In the
small mass region, Φ�� → H�

1 ff is dominant. With
increasing of mΦ, the masses of H�

1;2 also increase because
the mass differences between them are fixed. Thus, the
branching ratio for Φ�� → W�ff is dominant in the large
mass region. At the point mΦ ≃ 260 GeV, the branching
ratio for Φ�� → W�ff changes rapidly. It is because that
at this point, the decay channel Φ�� → W�tb is open. If
we consider the large tan β, the decay rates of Φ�� →
W∓ff becomes small because this process includes
H��

1;2 → ff via Yukawa interaction which is proportional
to cot β. However, the decaysΦ�� → H�

1;2ff are generated
via only the gauge interaction. Thus, for tan β ≳ 3, the
branching ratio for Φ�� → W�ff becomes small.
Second, the case where Δm1 > 80 GeV and Δm2 <

80 GeV is considered. In this case, Φ�� → H�
1 W

� is
allowed while Φ�� → H�

2 W
� is prohibited. In the upper

right figure of Fig. 3, the branching ratio ofΦ�� in this case
is shown. We assume that tan β ¼ 3, Δm1 < 100 GeV,
Δm2 < 50 GeV. In all mass region displayed in the figure,
the branching ratio for Φ�� → H�

1 W
� are almost 100%,

and those for other channels are at most about 0.1%. At the
point mΦ ≃ 260 GeV, the branching ratio for Φ�� →
W�ff changes rapidly. It is because that at this point,
the decay channel Φ�� → W�tb is open.
Third, the case where Δm1 > 80 GeV and Δm2 >

80 GeV is considered. and both of Φ�� → H�
1;2W

� are

FIG. 2. The branching ratio ofH�
2 . In the left figure, we assume that Δmð≡mH2

−mH1
Þ ¼ 20 GeV and tan β ¼ 10. In the right figure,

we assume that Δm ¼ 50 GeV and tan β ¼ 3

5This is different from doubly charged Higgs boson in the
triplet model in which dilepton decays of doubly charged Higgs
bosons are important signature to test the model [36].

6In triplet Higgs models, if the VEVof the triplet field is small
enough the main decay mode of the doubly charged Higgs boson
is the diboson decay [31]. On the other hand, in our model, such a
decay mode does not exist at tree level.
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allowed. In the lower figure of Fig. 3, the branching ratio in
this case is shown. We assume that tan β ¼ 3, Δm1 ¼
100 GeV, Δm2 ¼ 90 GeV. In all mass region displayed
in the figure, the branching ratio does not change because the
mass differences between Φ�� and H�

1;2 are fixed. The
branching ratio forΦ�� → H�

1 W
� is about 75%, and that for

Φ�� → H�
2 W

� is about 25%. These decays are generated
via only the gauge interaction. Thus, the branching ratios of
themdonot depend on tan β, and they are determined by only
the mass differences between Φ�� and mH1;2

.

B. Production of Φ�� at hadron colliders

We here discuss the production of the doubly charged
scalar Φ��. In our model, production processes of charged
scalar states are pp → Wþ� → Hþ

i AðHÞ, pp → Z�ðγÞ →
Hþ

i H
−
i , pp → Wþ� → ΦþþH−

i , and pp → Z�ðγÞ →
ΦþþΦ−−. In the THDM, the first and second processes
(the singly charged scalar production) can also occur
[52,53] However, doubly charged scalar bosons are not
included in the THDM.7 In the model with the isospin

triplet scalar with Y ¼ 1 [3,4,8,26,27], all of these pro-
duction processes can appear. However, the main decay
mode of doubly charged scalar is different from our model.
In the triplet model, the doubly charged scalar from the
triplet mainly decays into dilepton [36] or diboson [31]. In
our model, on the other hand, Φ�� mainly decays into the
singly charged scalar and W boson.
In this paper, we investigate the associated production

pp → Wþ� → ΦþþH−
i (i ¼ 1, 2). In this process, infor-

mation on masses of all the charged states Φ�� and H�
i

appear in the Jacobian peaks of transverse masses of several
combinations of final states [20]. Pair productions are also
important in searching for Φ�� and H�

i , however we focus
on the associated production in this paper. The parton-level
cross section of the process qq̄0→Wþ�→ΦþþH−

i (i¼1, 2)
is given by

σi ¼
G2

Fm
4
W jVqq0 j2χ2i

12πs2ðs −m2
WÞ2

× ½m4
H�

i
þ ðs −m2

Φ��Þ2 − 2m2
H�

i
ðsþm2

Φ��Þ�3=2; ð26Þ

where s is the square of the center-of-mass energy,GF is the
Fermi coupling constant, and Vqq0 is the ðq; q0Þ element of
CKM matrix. In addition, χi in Eq. (26) is defined as

χ1 ¼ sin χ; χ2 ¼ cos χ: ð27Þ

FIG. 3. The branching ratios of the decay of Φ��. The upper left (right) figure is those in the case that Δm1ð≡mΦ −mH1
Þ ¼ 20 GeV

(100 GeV) and Δm2ð≡mΦ −mH2
Þ ¼ 10 GeV (50 GeV). The bottom one corresponds to the case that Δm1 ¼ 100 GeV

and Δm2 ¼ 90 GeV.

7In the THDM, and also in our model with the Y ¼ 3=2
doublet, there are also single production processes of singly
charged Higgs bosons such as gb → tH� [54], qb → q0bH�
[55], bb̄ → W�H∓ [56,57], gg → W�H∓ [57,58], etc. (See also
Ref. [59].) In this paper, we do not consider these processes and
concentrate only on the processes pp → Wþ� → ΦþþH−

i .
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In Fig. 4, we show the cross section for pp → Wþ� →
ΦþþH−

1 in the case that
ffiffiffi
s

p ¼ 14 TeV and χ ¼ π=4. The
cross section is calculated by using MadGraph5_aMC@NLO [60]
and FEYNRULES [61]. The black, red, blue lines are those in
the case that Δm1 ¼ 0, 50, and 100 GeV, respectively.
The results in Fig. 4 do not depend on the value of tan β.
At the HL-LHC (

ffiffiffi
s

p ¼ 14 TeV and L ¼ 3000 fb−1),
about the 6 × 104 doubly charged scalars are expected to
be generated in the case that mΦ ¼ 200 GeV and
Δm1 ¼ 50 GeV. If Φ�� is heavier, the cross section
decreases, and about the 300 doubly charged scalars are
expected to be generated at the HL-LHC in the case that
mΦ ¼ 800 GeV. The cross section increases with increasing
of the mass difference Δm1. Since we assume that χ ¼ π=4,
the cross section of the process pp → Wþ� → ΦþþH−

2 is
samewith that in Fig. 4 ifmH2

¼ mH1
. Ifwe consider the case

that j sin χj > j cos χj (j cos χj > j sin χj), the cross section of
pp → Wþ� → ΦþþH−

1 become larger (smaller) than that of
pp → Wþ� → ΦþþH−

2 even if mH2
¼ mH1

.

IV. SIGNAL AND BACKGROUNDS AT HL-LHC

In this section, we investigate the detectability of the
process pp → Wþ� → ΦþþH−

i (i ¼ 1, 2) in two bench-
mark scenarios. In the first scenario (Scenario I), the masses
of H�

1 and H�
2 are set to be 100 GeV and 120 GeV, so that

they cannot decay into tb. In this case, their masses are so
small that the branching ratio for three body decay H�

1;2 →
W�bb̄ is less than 5% approximately. Thus, their main
decay modes are H�

1;2 → cs and H�
1;2 → τν. In the second

scenario (Scenario II), masses of H�
1 and H�

2 are set to be
200 GeV and 250 GeV, and they predominantly decay into
tb with the branching ratio to be almost 100%.
In our analysis below, we assume the collider perfor-

mance at HL-LHC as follows [38];

ffiffiffi
s

p ¼ 14 TeV; L ¼ 3000 fb−1; ð28Þ

where
ffiffiffi
s

p
is the center-of-mass energy and L is the

integrated luminosity. Furthermore, we use the following
kinematical cuts (basic cuts) for the signal event [60];

pj
T > 20 GeV; pl

T > 10 GeV; jηjj < 5; jηlj < 2.5;

ΔRjj > 0.4; ΔRlj > 0.4; ΔRll > 0.4; ð29Þ

where pj
T (pl

T) and ηj (ηl) are the transverse momentum
and the pseudorapidity of jets (charged leptons), respec-
tively, and ΔRjj, ΔRlj, and ΔRll in Eq. (29) are the
angular distances between two jets, charged leptons and
jets, and two charged leptons, respectively.

A. Scenario I

In this scenario, the singly charged scalars decay
into cs or τν dominantly. (See Figs. 1 and 2.) We
investigate the process pp → Wþ� → ΦþþH−

1;2 →
τþlþννjj (l ¼ e, μ). The Feynman diagram for the
process is shown in Fig. 5. In this process, the doubly
charged scalar Φþþ and one of the singly charged scalars
H−

1;2 are generated via s-channel Wþ�. The produced
singly charged scalar decays into a pair of jets, and Φþþ
decays into τþlþνν through the on-shell pair of the
singly charged scalar and Wþ. Thus, in the distribution of
the transverse mass of τþlþ=ET , where ET is the missing
transverse energy, we can see the Jacobian peak whose
endpoint corresponds to mΦ [20].8 In the present process,
furthermore, in the distribution of the transverse mass of

FIG. 5. The Feynman diagram for the signal process in
Scenario I, where q and q0 are partons.FIG. 4. The cross section for pp → Wþ� → ΦþþH−

1 , whereffiffiffi
s

p ¼ 14 TeV and χ ¼ π=4. The black, red, blue lines are those
in the case that Δm1ð≡mΦ −mH1

Þ ¼ 0, 50, and 100 GeV,
respectively.

8In general, the transverse massMT of n particles is defined as
follows;

M2
T ¼ ðET1 þ ET2 þ � � � þ ETnÞ2 þ jpT1 þ pT2 þ � � � þ pTnj2;

ð30Þ
E2
Ti ¼ jpTij2 þm2

i ði ¼ 1; 2;…; nÞ; ð31Þ

where pTi and mi are the transverse momentum and the mass of
ith particle, respectively.
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two jets, we can basically see twin Jacobian peaks at mH1

and mH2
[20]. Therefore, by using the distributions of

MTðτþlþ=ETÞ and MTðjjÞ, we can obtain the information
on masses of all the charged scalars H�

1 , H
�
2 , and Φ��.

This is the characteristic feature of the process in this
model. When we consider the decay of the tau lepton, the
transverse mass of the decay products of the tau lepton
and lþνν can be used instead of MTðτþlþννÞ.
In the following, we discuss the kinematics of the

process at HL-LHC with the numerical evaluation. For
input parameters, we take the following benchmark values
as Scenario I;

mΦ ¼ 200 GeV; mH1
¼ 100 GeV;

mH2
¼ 120 GeV; tan β ¼ 10; χ ¼ π

4
;

mH ¼ 130 GeV; mA ¼ 140 GeV: ð32Þ

The doubly charged scalar Φ�� is heavier than neutral
scalarsH andA, and it can decay into final states includingH
or A. However, the branching ratios of these decay channels
are negligibly small because of small mass differences
betweenΦ�� and neutral scalars. Therefore, the discussions
in Sec. III A are accurate in this scenario. In Appendix B 1,
we show benchmark values of the scalar coupling constants
to realize this mass spectrum, and we discuss the condition
for the potential to be bounded from below.
In this scenario, we take large tan βð¼ 10Þ, so that they

satisfy the constraints from flavor experiments [42,43].

In addition, H�
1;2 are heavier than the lower limit from the

LEP (80 GeV) [46]. At the LHC, H�
1;2 in this scenario can

be generated primarily via tt̄ production. The cross section
of this production process for H�

1 (H�
2 ) is about 1.2

pb (0.73 pb) at
ffiffiffi
s

p ¼ 13 TeV. The branching ratio of
H�

1 → τ�ν (H�
2 → τ�ν) is about 0.4. (See Sec. III A)

Then, we obtain σH� × BrðH�
1 → τνÞ ¼ 0.48 pb and

σH� × BrðH�
2 → τνÞ ¼ 0.29 pb. Therefore, they satisfy

the constraint from the LHC Run2 [47]. We also considered
the constraints from the measurements of the oblique
parameters [62] and the diphoton decay of the Higgs boson
[63], and we found that this scenario satisfies both con-
straints. The details are shown in Appendix C and D.
The final state include the tau lepton, and we consider the

case that the tau lepton decays into πþν̄. In this case, πþ
flies in the almost same direction of τþ in the center-of-
mass (CM) frame because of the conservation of the
angular momentum [53]. The branching ratio for τþ →
πþν̄ is about 11% [62], and we assume that the efficiency of
tagging the hadronic decay of tau lepton is 60% [64]. Under
the above setup, we carry out the numerical evaluation of
the signal events by using MadGraph5_aMC@NLO [60],
FEYNRULES [61], and TauDecay [65]. As a result, about
600 signal events are expected to be produced at HL-LHC.
The distributions of the signal events forMTðπþlþ=ETÞ and
MTðjjÞ are shown in red line in the left figure of Fig. 6 and
in the right one, respectively.
Next, we discuss the background events and their reduc-

tion. The main background process is pp → WþWþjj →
τþlþνν̄jj. The leading order of this background process is

FIG. 6. The distribution of the signal and background events forMTðπþlþ=ETÞ (the left figure) andMTðjjÞ (the right one) We use the
basic cut in Eq. (29). The width of the bin in the figures is 10 GeV. We use the benchmark values in Eq. (32).

TABLE II. Numbers of signal event and background events at HL-LHC in Scenario I. In the first column, the
number of events under only the basic cuts are shown. The number of events under the all cuts are shown in the
second column. We use the benchmark values in Eq. (32).

Signal S Background B S=
ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p

Basic cuts Eq. (29) 592 3488 9.3
Basic cuts [Eq. (29)] and ΔRjj < 2, jΔηjjj < 2.5 487 412 16
All cuts Eq. (29) and Eq. (33) 487 75 20
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Oðα6Þ and Oðα4α2sÞ. For Oðα6Þ, the vector boson fusion
(VBF) and tri-boson production pp → WþWþW− →
WþWþjj are important. On the other hand, for Oðα4α2sÞ,
the main process is t-channel gluon mediated pp →
q�q0� → WþWþjj, where q and q0 are quarks in internal
lines. The number of the total background events under the
basic cuts in Eq. (29) is shown in Table II. Transverse mass
distributions of background events for MTðπþlþ=ETÞ and
MTðjjÞ are shown in the blue line in the left figure of Fig. 6
and in the right one, respectively. The number of the
background events is larger than that of the signal. Clearly,
background reduction has to be performed by additional
kinematical cuts. We give some comments about other
background processes in the end of this subsection.
First, we impose the pseudorapidity cut for a pair of two

jets (Δηjj). The Δηjj distributions of the signal and back-
ground processes are shown in the upper left figure in
Fig. 7. For the signal events, the distribution has a maximal
value at Δηjj ¼ 0 as they are generated via the decay ofH−

1

orH−
2 . On the other hand, for the VBF background, two jets

fly in the almost opposite directions, and each jet flies
almost along the beam axis. Large jΔηjjj is then expected to
appear [66], so that we can use jΔηjjj < 2.5 to reduce the
VBF background. We note that this kinematical cut is not
so effective to reduce other Oðα6Þ and Oðα4α2sÞ processes

because in these background, the distribution are maximal
at Δηjj ¼ 0.
Second, we impose the angular distance cut for a pair of

two jets (ΔRjj). The ΔRjj distributions of the signal and
background processes are shown in the upper right figure in
Fig. 7. For the signal events, the distribution has a maximal
value at ΔRjj ≃ 1.0. On the other hand, for the Oðα4α2sÞ
background events,ΔRjj has a peak atΔRjj ∼ π. In addition,
in the Oðα6Þ ones, ΔRjj has large values between 3 and 6.
Therefore, for ΔRjj < 2, the background events are largely
reduced while the almost all signal events remains.
Third, we impose invariant mass cut for a pair of two jets

(Mjj). The Mjj distributions of the signal and background
processes are shown in the bottom figure in Fig. 7. For the
signal events, as they are generated via the decay of the
singly charged scalars, the distribution has twin peaks at
the masses of H�

1 and H�
2 (100 GeVand 120 GeV). On the

other hand, for the background events, the jets are gen-
erated via on-shell W or t-channel diagrams. Then, the
distribution of the background has a peak at the W boson
mass (∼80 GeV). Thus, the kinematical cut 90 GeV <
Mjj < 180 GeV is so effective to reduce the background
events. We note that this reduction can only be possible
when we already know some information on the masses of
the singly charged scalars.

FIG. 7. The distributions of signal and background events for Δηjj (the upper left figure), ΔRjj (the upper right one), and Mjj (the
bottom one). The red lines are those for the signal events. The blue (yellow) lines are those for the background events of Oðα6Þ
(Oðα4α2sÞ). In the figures for Δηjj and ΔRjj, we take the width of bins as 0.1. In the figure forMjj, the width of bins is 10 GeV. We use
the benchmark values in Eq. (32).

PROBING DOUBLY CHARGED SCALAR BOSONS FROM THE … PHYS. REV. D 104, 035040 (2021)

035040-9



We summarize three kinematical cuts for the background
reduction.

ðiÞ jΔηjjj < 2.5; ð33Þ

ðiiÞ ΔRjj < 2; ð34Þ

ðiiiÞ 90 GeV < Mjj < 180 GeV; ð35Þ

Let us discuss how the backgrounds can be reduced
by using the first two kinematical cuts (i) and (ii), in
addition to the basic cuts given in Eq. (29). This corre-
sponds to the case that we do not use the information on the
masses of the singly charged scalars. The results are shown
in the third column of Table II. In this case, about 88%
of the background events are reduced, while about 82% of
the signal events remain. We obtain the significance as
S=

ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p ¼ 16. The distributions for MTðπþlþ=ETÞ and
MTðjjÞ are shown in Fig. 8. In the left figure of Fig. 8, we
can see the Jacobian peak of MTðπþlþ=ETÞ. Consequently,
the signal process can be detected at HL-LHC in Scenario I
of Eq. (32). However, the endpoint of the signal is unclear
due to the background events, so that it would be difficult to

precisely decide the mass of Φþþ. On the other hand, we
can see the twin Jacobian peaks of MTðjjÞ in the right
figure of Fig. 8. Therefore, we can also obtain information
on masses of both the singly charged scalars. In this way, all
the charged scalar states Φ��, H�

1 , and H
�
2 can be detected

and their masses may be obtained to some extent.
Furthermore, if we impose all the kinematical cuts (i),

(ii), and (iii) with the basic cuts, the backgrounds can be
further reduced. The results are shown in the fourth column
of Table II. The number of signal events are same with
that in the previous case. On the other hand, the back-
ground reduction is improved, and 98% of the background
events are reduced. The significance is also improved as
S=

ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p ¼ 20. Distributions for MTðπþlþ=ETÞ and
MTðjjÞ are shown in Fig 9. In the left figure of Fig 9,
we can see that there are only few background events
around the end point of Jacobian peakMTðπþlþ=ETÞ. Thus,
it would be expected we obtain the more clear information
on mΦ than that from the case where only (i) and (ii) are
imposed as additional kinematical cuts. We can also clearly
see the twin Jacobian peaks in the right figure of Fig. 9, and
a large improvement can be achieved for the determination
of the masses of both the singly charged scalar states.

FIG. 8. The distribution of the signal and background events forMTðπþlþ=ETÞ (the left figure) andMTðjjÞ (the right one) We use the
basic cuts in Eq. (29), jΔηjjj < 2.5, and ΔRjj < 2. The width of bins in the figures is 10 GeV. We use the benchmark values in Eq. (32).

FIG. 9. The distribution of the signal and background events for MTðπþlþ=ETÞ (the left figure) and MTðjjÞ (the right figure) We use
the basic cut in Eq. (29) and all the kinematical cuts in Eq. (33). The width of the bin in the figures is 10 GeV.
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Now, we give a comment about the detector resolution.
In the process, the transverse momenta of jets (pj

T) are
mainly distributed between 0 and 200 GeV, and the typical
value of them is about 100 GeV. According to Ref. [67],
at the current ATLAS detector, the energy resolution for
pj
T ≃ 100 GeV is about 10%. In Figs. 6–9, we take the

width of bins as 10 GeV. Therefore, it would be possible
that the twin Jacobian peaks in the distribution for MTðjjÞ
overlap each other and they looks like one Jacobian peak
with the unclear endpoint at the ATLAS detector if the
mass differences is not large enough. Then, it would be
difficult to obtain the information on both mH1

and mH2

from the transverse momentum distribution. Even in this
case, it would be able to obtain the hint for the masses by
investigating the process.
Before closing Sec. IVA, we briefly discuss other

SM background processes. In our analysis, we did not
consider the background where the Z boson decays into
dijet such as qq → Z� → Zh → jjττ̄ → jjπþν̄τl−ντν̄l,
which can be expected to be reduced by veto the events
of Mjj at the Z boson mass and the cut of the transverse
mass MTðπþlþ=ETÞ below 125 GeV. It does not affect the
Jacobian peak and the endpoint at the mass of doubly
charged scalar boson Φ��. In addition, in the above
analyses, we did not consider the background from other
vector boson fusion processes ZWjj and ZZjj. These
processes generate final states similar to that of the signal;

pp → WþZjj → τþτ−lþνljj; ð36Þ

pp → WþZjj → τþτ−lþl−ντjj; ð37Þ

pp → ZZjj → lþl−νν̄jj; ð38Þ

pp → ZZjj → τþτ−νν̄jj → τþl−ντν̄lνν̄jj: ð39Þ

These processes generate the same final state with that of
the signal (τþlþjj=E) with misidentifications at detectors,
for example the charge misidentification of leptons [68],
misidentifying isolated leptons as candidates of hadronic
decays of τ [64], and so on. Considering rates of these
misidentifications, the expected numbers of these processes
at the HL-LHC (

ffiffiffi
s

p ¼ 14 TeV, L ¼ 3000 fb−1) are Oð1Þ
under the kinematical cuts in Eqs. (29) and (33). Therefore,
it is concluded that these background processes do not
affect the Jacobian peaks in the signal events.

B. Scenario II

In this scenario, the singly charged scalars predominantly
decay into tb with the branching ratio almost 100%.
We investigate the signal pp → Wþ� → ΦþþH−

1;2 →
tt̄bb̄lþν → bbb̄ b̄lþl0þννjj (l;l0 ¼ e, μ). The Feynman
diagram for the process is shown in Fig. 10. The decay
products of Φþþ and H�

1;2 are bb̄lþl0þνν and bb̄jj,

respectively. Therefore, in the same way as Scenario I, we
can obtain information on masses of all the charged scalars
by investigating the transverse distributions of signal and
background events for MTðbb̄lþl0þννÞ and MTðbb̄jjÞ.
However, in the Scenario II, decay products of both Φþþ

and H−
1;2 include a bb̄ pair, and it is necessary to distinguish

the origin of the two bb̄ pairs. We suggest the following two
methods of the distinction.
In the first method, we use the directions of b and b̄. In

the process, Φþþ and H−
1;2 are generated with momenta in

the opposite directions, and decay products fly along the
directions of each source particle. The both of two W
bosons generated via the decay of Φþþ decay into charged
leptons and neutrinos, while the W boson via the decay of
H1;2 decays into a pair of jets. By using this topology of the
process, we can distinguish the origin of two bb̄ pairs. The
bb̄ pair which flies along the charged leptons lþ and l0þ
(and flies along the almost opposite direction of a pair of
jets) comes from the decay ofΦþþ. The other bb̄ pair is the
decay product of H−

1;2.
In the second method, we use the transverse momenta of

b and b̄. As shown in the Feynman diagram in Fig. 10, in
the decay chain of Φþþ, b is generated via the decay of the
top quark while b̄ is generated via the decay of the singly
charged scalars from the decay of Φþþ. On the other hand,
in the decay chain of H−

1;2, b is generated via the decay of
the singly charged scalars while b̄ is generated via the
decay of the antitop quark. Therefore, when the singly
charged scalars are heavy enough to satisfy the inequality,

mH1;2
−mt −mb > mt −mW −mb; ð40Þ

the typical value of the transverse momentum of b from
H−

1;2 is larger than that of b from the top quark. In the same
way, the typical value of transverse momentum of b̄ from
Hþ

1;2 is larger than that of b̄ from the antitop quark.
Therefore, in this case, we can construct the bb̄ pair which
mainly comes from the decay of Φþþ by selecting b with
the smaller transverse momentum and b̄ with the larger

FIG. 10. The Feynman diagram for the signal process in
Scenario II, where q and q0 are partons.
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transverse momentum. The other bb̄ pair comes from the
decay of H−

1;2. On the contrary, when the singly charged
scalars are light enough to satisfy the inequality,

mH1;2
−mt −mb < mt −mW −mb; ð41Þ

the typical value of the transverse momentum of b (b̄) from
H−

1;2 (H
þ
1;2) is smaller than that of b (b̄) from the top quark

(the antitop quark). Therefore, in the case where the singly
charged scalar is so light that they satisfy the inequality
in Eq. (41), we can construct the bb̄ pair which mainly
comes from the decay ofΦþþ by selecting bwith the larger
transverse momentum and b̄ with the smaller transverse
momentum. The other bb̄ pair comes from the decay of
H−

1;2. Finally, when the masses of singly charged scalars are
around 250 GeV, they satisfy the equation,

mH1;2
−mt −mb ≃mt −mW −mb: ð42Þ

Then, the typical values of the transverse momenta of two b
are similar, and those of two b̄ are also similar. Therefore,
we can construct the correct bb̄ pair only partly by using the
above method, and it is not so effective. In this case, the
first method explained in the previous paragraph is needed.
In the following, we discuss the signal and the back-

ground events at HL-LHC with the numerical calculation.
In the numerical evaluation, we take the following bench-
mark values as Scenario II;

mΦ ¼ 300 GeV; mH1
¼ 200 GeV;

mH2
¼ 250 GeV; tan β ¼ 3; χ ¼ π

4
;

mH ¼ 210 GeV; mA ¼ 220 GeV: ð43Þ

In this scenario, Φ�� and H�
2 are heavier than neutral

scalars H and A, and they can decay into final states
including H or A. However, the branching ratios of these
channels are negligibly small because of the small mass
differences between charged scalars and neutral scalars.
Therefore, the discussions in Sec. III A are accurate in this
scenario. In Appendix B 2, we show benchmark values of
the scalar coupling constants to realize this mass spectrum,
and we discuss the condition for the potential to be bounded
from below.
In this scenario, we assume that tan β ¼ 3 so that they

satisfy the constraints from flavor experiments [42,43]. In
addition, H�

1;2 are heavier than the lower limit from the
LEP (80 GeV) [46]. At the LHC, H�

1;2 in this scenario
can be generated primarily by associate production with
tb (gg → H�

1;2tb). The cross section of this production
process for H�

1 (H�
2 ) is about 0.12 pb (0.073 pb) atffiffiffi

s
p ¼ 13 TeV. The singly charged scalars H�

1;2 decay into
tb at almost 100%. (See Sec. III A) Then, we obtain σH� ×
BrðH�

1 → tbÞ≃0.12 pb and σH� ×BrðH�
2 → tbÞ≃0.073 pb.

Therefore, they satisfy the constraint from the LHC Run2
[48]. We also have considered the constraints from the
measurements of the oblique parameters [62] and the
measurement of the diphoton decay of the Higgs boson
at the LHC [63], and we have found that this scenario
satisfies both of them. The details are shown in Appendix C
and D.
In addition, we adopt the assumption about the collider

performance at HL-LHC in Eq. (28), and we use the basic
kinematical cuts in Eq. (29). The final state of the signal
includes two bottom quarks and two antibottom quarks,
and we assume that the efficiency of the b-tagging is 70%
per one bottom or antibottom quark [69]. Thus, the total
efficiency of the b-tagging in the signal event is about 24%.
In the numerical calculation, we use MadGraph5_aMC@NLO

[60], FEYNRULES [61].
As a result, 145 events are expected to appear at

HL-LHC as shown in Table III. In this benchmark scenario
of Eq. (43), H�

1 is so light that we can use the distinction of
the bb̄ pair in the case where mH1

−mt −mb < mt −
mb −mW . Therefore, we can construct the bb̄ pair
which mainly comes from the decay of H−

1 by selecting
b with the smaller transverse momentum and b̄ with
the larger transverse momentum. On the other hand, the
mass of H�

2 is 250 GeV, and it satisfies the equation
mH2

−mt −mb ≃mt −mb −mW . Therefore, the selection
of b and b̄ by their transverse momenta is partly effective in
the signal where H−

2 is produced with Φþþ via Wþ�.9

In Figs. 11, we show the distributions of
MTðb1b̄2lþl0þ=ETÞ and MTðb2b̄1jjÞ, where b1 (b̄1) is
the bottom quark (anti-bottom quark) with the larger
transverse momentum and b2 (b̄2) is the other. In the left
figure of Fig. 11, the endpoint of the Jacobian peak is not
so sharp because the selection of the bb̄ pairs do not work
well in the associated production of Φþþ and H−

2 . In
the right figure of Fig. 11, we can see the twin Jacobian
peaks at the masses of the singly charged scalars. However,
the number of events around the Jacobian peaks, especially
the one due to H�

2 , are small, and it would be difficult to
obtain information on masses form the distribution for
MTðb2b̄1jjÞ. In order to obtain the clearer information on
mH1;2

, we can use the invariant mass of b2b̄1jj instead
of MTðb2b̄1jjÞ.

TABLE III. Numbers of signal event and background events
under the basic cuts in Eq. (29) in Scenario II. We assume that
the efficiency of b-tagging is 70%. We use the benchmark values
in Eq. (43).

Signal S Background B S=
ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p

Basic cuts (Eq. (29)) 145 40 11

9We note that we assume some information on the mass of
singly charged scalars to select the kinematical cuts.
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In Fig. 12, we show the distributions of signal and
backgrounds for the invariant mass of b2b̄1jj. The numbers
of events at the twin peaks areOð30Þ andOð10Þ, which are
larger than thaose at the twin Jacobian peaks in the figure
for MTðb2b̄1jjÞ (the right figure of Fig 11).
Next, we discuss the background events at HL-LHC. We

consider the process pp→ tt̄bb̄Wþ → bbb̄ b̄WþWþW− →
bbb̄ b̄lþl0þννjj as the background. As a result of the
numerical calculation, 40 events are expected to appear
at HL-LHC as shown in Table III. This is the same order
with the signal events. In Fig. 11, the distributions of
MTðb1b̄2lþl0þ=ETÞ and MTðb2b̄1jjÞ in the background
events are shown. We use only the basic cuts in Eq. (29) in
the numerical calculation. Nevertheless, in the both figures
of Fig. 11, the number of signal events around the Jacobian
peaks are much larger than those of the background events.
In Fig. 12, the distribution of the background events for

the invariant massMðb2b̄1jjÞ in the background events are
shown. The numbers of signal events around the two peaks
are much larger than those of the background events.
In summary, it would be possible that we obtain

information on masses of all the charged scalars H�
1 ,

H�
2 , and Φ�� by investigating the transverse mass

distribution for MTðb2b̄1lþl0þ=ETÞ and MTðb1b̄2jjÞ and
the invariant mass distribution for Mðb1b̄2jjÞ at HL-LHC.
Before closing subsection B, we give a comment about

the detector resolution. In the process of Scenario II, the
typical value of the transverse momenta of jets and bottom
quarks is about 100 GeV. As mentioned in the end of the
section for Scenario I, at the ATLAS detector, the energy
resolution for pj

T ≃ 100 GeV is about 10% [67]. In Figs. 11
and 12, we take the width of bins as 10 GeV. Therefore, it
would be possible that the twin Jacobian peaks in the
distribution for MTðjjÞ or MðjjÞ overlap each other and
they looks like one Jacobian peak with the unclear endpoint
at the ATLAS detector if the mass differences is not large
enough. Then, it would be difficult to obtain the informa-
tion on both mH1

and mH2
from the transverse momentum

distribution. Even in this case, it would be able to obtain the
hint for masses by investigating the process.

V. SUMMARY AND CONCLUSION

We have investigated collider signatures of the doubly and
singly charged scalar bosons at theHL-LHCby lookingat the
transverse mass distribution as well as the invariant mass
distribution in the minimal model with the isospin doublet
with the hypercharge Y ¼ 3=2. We have discussed the
background reduction for the signal process pp → Wþ� →
ΦþþH−

1;2 in the following two cases depending on the mass
of the scalar bosons with the appropriate kinematical cuts.
(1) Themain decaymode of the singly charged scalar bosons
is the tau lepton and missing (as well as charm and strange
quarks). (2) That is into a top bottom pair. In the both cases,
we have assumed that the doubly charged scalar boson is
heavier than the singly charged ones. It has been concluded
that the scalar doublet field with Y ¼ 3=2 is expected to be
detectable for these cases at theHL-LHCunless themasses of
Φ�� and H�

1;2 are too large.
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APPENDIX A: SOME FORMULAS FOR THE
DECAYS OF CHARGED SCALARS

In this section, we show some analytic formulae for
decay rates of the charged scalars H�

1;2 and Φ��.

1. Formulas for decays of the singly
charged scalars H�

1;2

a. 2-body decays

The decay rate for the decay of H�
i (i ¼ 1, 2) into a pair

of quarks qq0 is given by

ΓðH�
i → qq0Þ ¼ 3mHi

8π

�
m2

Hi

v2

�
χ02i cot

2βjVqq0 j2ððrq þ rq0 Þ

− ðrq þ rq0 Þ2 − 4rqrq0 ÞFðrq; rq0 Þ; ðA1Þ

where rq (rq0) is the ratio of the squared mass of quark q
(q0) to the squared mass of H�

i :

rq ¼
m2

q

m2
Hi

; rq0 ¼
m2

q0

m2
Hi

; ðA2Þ

and χ0i is defined as follows;

χ01 ¼ cos χ; χ02 ¼ sin χ: ðA3Þ

The function Fðx; yÞ in Eq. (A1) is defined as

Fðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx − yÞ2 − 2ðxþ yÞ

q
: ðA4Þ

The decay rate for the decay of H�
i into a charged lepton l

and a neutrino νl is given by

ΓðH�
i → lνlÞ ¼

mHi

8π

�
ml

v

�
2

χ02i cot
2β

�
1 −

m2
l

m2
Hi

�
; ðA5Þ

where ml is mass of l.
In the case that mHi

> mHj
þmZ ði; j ¼ 1; 2; i ≠ jÞ,

the decay H�
i → H�

j Z is allowed, and its decay rate is
given by

ΓðHi�→H�
j ZÞ ¼

mHi

16π

�
mHi

v

�
2

sin22χFðrZ; rjÞ3 ði≠ jÞ;

ðA6Þ

where

rZ ¼ m2
W

m2
Hi

; rj ¼
m2

Hj

m2
Hi

: ðA7Þ

b. 3-body decays

The decay rate for H�
i → t�b → W�bb̄ is given by

ΓðH�
i → t�b → W�bb̄Þ ¼ 3mHi

128π3

�
mt

v

�
4

χ02i cot
2βjVtbj2

Z
1

rW

dx
x
ð1 − xÞ2ðx − rWÞ2ðxþ 2rWÞ

ðx − rtÞ2 þ rtrΓt

; ðA8Þ

where mass of the bottom quark is neglected, and rW , rt, and rΓr
are defined as follows;

rW ¼ m2
W

m2
Hi

; rt ¼
m2

t

m2
Hi

; rΓt
¼ Γ2

t

m2
Hi

; ðA9Þ

where Γt is the total decay width of the top quark.
In the case that mHi

> mHj
(i ≠ j), the decay H�

i → H�
j Z

� → H�
j ff̄, where f is a SM fermion, is allowed. The decay

rate is given by

ΓðH�
i → H�

j Z
� → H�

j ff̄Þ ¼
Nf

cmHi

192π3

�
mZ

v

�
4

sin22χððCf
VÞ2 þ ðCf

AÞ2Þ
Z ð1− ffiffiffirjp Þ2

0

dx
Fðx; rjÞ3

ðx − rZÞ2 þ rZrΓZ

; ðA10Þ

where Nf
c is the color degree of freedom of a fermion f, rZ and rj are defined same with that in Eq. (A7), and rΓZ

is the ratio
of the squared decay rate of Z boson to squared mass of H�

i :

rΓZ
¼ Γ2

Z

m2
Hi

: ðA11Þ
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In addition, the coefficient Cf
V (Cf

A) in Eq. (A10) is the
coupling constant of the vector (axial vector) current:

L ¼ gL
2 cos θW

f̄γμðCf
V þ Cf

Aγ5ÞfZμ; ðA12Þ

where gL is the gauge coupling constant of the gauge group
SUð2ÞL, and θW is the Weinberg angle. In Eq. (A10), mass
of fermions are neglected.

2. Formulas for decays of the doubly
charged scalar Φ��

a. 2-body decay

If mΦ�∓ > mHi
þmW , the decay Φ�� → H�

i W
� (i ¼ 1,

2) is allowed. The decay rate is given by

ΓðΦ�� → H�
i W

�Þ ¼ mΦ

8π

�
mΦ

v

�
2

χ2i FðRW; RiÞ3; ðA13Þ

where χi is defined in Eq. (27), the function Fðx; yÞ is
defined in Eq. (A4), and Ri and RW is defined as follows;

RW ¼ m2
W

m2
Φ
; Ri ¼

m2
Hi

m2
Φ
: ðA14Þ

b. 3-body decay

In the case that where the mass differences between Φ��

and H�
i is so small that decays Φ�� → H�

i W
� are prohib-

ited, three-body decays Φ�� → H�
i ff̄

0, where f and f0 are
SM fermions, are dominant in smallmΦ region. (See Fig. 3.)
The branching ratio for Φ�� → H�

i ff̄
0 is given by

ΓðΦ�� → H�
i ff̄

0Þ

¼ Nf
c

96π3
χ2i

Z ð1− ffiffiffiffi
Ri

p Þ2

0

dx
x

Fðx; RiÞ3
ðx − RWÞ2 þ RΓW

RW
; ðA15Þ

whereRΓW
is the squared ratio of the decaywidth ofW boson

(ΓW) to mΦ;

RΓW
¼ Γ2

W

m2
Φ
: ðA16Þ

In Eq. (A15), we neglect the masses of f and f0.
In the largemΦ region,Φ�� → W�ff̄0 is also important.

The decay rate is given by

ΓðΦ�� → W�ff̄0Þ ¼ Nf
cmΦ

256π3

�
mΦ

v

�
4

sin 2χ cot β2jVff0 j2

×
Z ð1− ffiffiffiffiffi

RW
p Þ2

ð
ffiffiffiffi
Rf

p
þ ffiffiffiffiffi

Rf0
p Þ2

dxF

�
Rf

x
;
R0
f

x

�

× Fðx; RWÞGðxÞ; ðA17Þ

where the function GðxÞ is defined as follows;

GðxÞ ¼ fðRf þ Rf0 Þðx − Rf − Rf0 Þ − 4RfRf0g

×

�
1

ðx − R1Þ2 þ R1RΓ1

þ 1

ðx − R2Þ2 þ R2RΓ2

�
2

:

ðA18Þ

The symbols Rf, Rf0 , Ri, and RΓi
(i ¼ 1, 2) are given by

Rf ¼ m2
f

m2
Φ
; Rf0 ¼

m2
f0

m2
Φ
; Ri ¼

m2
Hi

m2
Φ
; RΓi

¼ Γ2
Hi

m2
Φ
;

ðA19Þ

wheremf (mf0 ) is mass of f (f0), and ΓHi
is the decay width

of H�
i .

APPENDIX B: CONDITIONS FOR THE SCALAR
POTENTIAL TO BE BOUNDED FROM BELOW

In this paper, we suppose that the electric charge is not
broken. Even in this case, it is necessary to investigate
conditions for the scalar potential to be bounded
from below.
Quartic terms in the scalar potential are as follows;

V4 ¼
λ1
2
jϕ1j4 þ

λ2
2
jϕ2j4 þ λ3jϕ1j2jϕ2j2 þ λ4jϕ†

1ϕ2j2 þ
1

2
ðλ5ðϕ†

1ϕ2Þ2 þ H:c:Þ

þ 1

2
λΦjΦj4 þ ρ1jϕ1j2jΦj2 þ ρ2jϕ2j2jΦj2 þ σ1jϕ†

1Φj2 þ σ2jϕ†
2Φj2

þ fκðΦ†ϕ1Þðϕ̃†
1ϕ2Þ þ H:c:g: ðB1Þ

First, we consider directions where one of the three doublets has a large value. Obviously, conditions for the potential to be
bounded from the below in these directions are given by

λ1 > 0; λ2 > 0; λΦ > 0: ðB2Þ
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Second, we consider directions where two of the three
doublets have large values. Especially, we show details
for directions where jϕ1jð≡

ffiffiffiffiffiffiffiffiffiffi
jϕ1j2

p
Þ and jϕ2jð≡

ffiffiffiffiffiffiffiffiffiffi
jϕ2j2

p
Þ

approach to infinity. Conditions for other directions can be
derived in the same way. Quartic terms constituted by ϕ1

and ϕ2 are as follows;

Vð1Þ
4 ¼ λ1

2
jϕ1j4 þ

λ2
2
jϕ2j4 þ λ3jϕ1j2jϕ2j2 þ λ4jϕ†

1ϕ2j2

þ λ5
2
ððϕ†

1ϕ2Þ2 þ H:c:Þ ðB3Þ

From the Cauchy-Schwarz inequality,

jϕ†
1ϕ2j≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϕ†

1ϕ2j2
q

≤ jϕ1jjϕ2j; ðB4Þ

in the direction where ϕ1 and ϕ2 are linearly independent,
the terms λ4 and λ5 do not need to be considered. The scalar
potential is then approximately evaluated as

V ¼ r4

2
ðλ1cos2θ þ 2λ3 cos θ sin θ þ λ2sin2θÞ; ðr → ∞Þ;

ðB5Þ

where we define a polar coordinate as

jϕ1j2 ¼ r2 cosθ; jϕ2j2 ¼ r2 sinθ; ð0< r;0< θ < π=2Þ:
ðB6Þ

The condition for the potential to be bounded from below
includes

λ1cos2θ þ 2λ3 cos θ sin θ þ λ2sin2θ > 0; ð0 < θ < π=2Þ:
ðB7Þ

This inequality yields

λ1 > 0; λ2 > 0; λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ðB8Þ

Next, we consider the direction where ϕ1 is proportional
to ϕ2, and jϕ1j and jϕ2j approach to infinity. We then have
to consider the terms λ4 and λ5. In the same way of deriving
the condition in Eq. (B8), conditions for the potential to be
bounded from below in this direction is given by as follows.

λ1 > 0; λ2 > 0; λ3 þ λ4 − jλ5j > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ðB9Þ

The conditions in Eqs. (B8) and (B9) are samewith those in
the THDM [14,70,71].
For directions where other two doublets have large values,

the following conditions can be derived in the same way.

λ1 > 0; λ2 > 0; λΦ > 0; ρ1 > −
ffiffiffiffiffiffiffiffiffi
λ1λΦ

p
; ρ1 þ σ1 > −

ffiffiffiffiffiffiffiffiffi
λ1λΦ

p
;

ρ2 > −
ffiffiffiffiffiffiffiffiffi
λ2λΦ

p
; ρ2 þ σ2 > −

ffiffiffiffiffiffiffiffiffi
λ2λΦ

p
: ðB10Þ

Third, we consider directions where all of three doublets have large values. In directions where ϕ1, ϕ2, andΦ are linearly
independent, the scalar potential is approximately evaluated as

V ¼ λ1
2
jϕ1j4 þ

λ2
2
jϕ2j4 þ λ3jϕ1j2jϕ2j2 þ

1

2
λΦjΦj4 þ ρ1jϕ1j2jΦj2 þ ρ2jϕ2j2jΦj2: ðB11Þ

We define a polar coordinate as

jϕ1j2 ¼ r2 cos θ; jϕ2j2 ¼ r2 sin θ cosφ;

jΦj2 ¼ r2 sin θ sinφ; ð0 < r; 0 < θ < π=2; 0 < ϕ < π=2Þ: ðB12Þ

The condition for the potential to be bounded from below includes

λ1cos2θ þ 2 sin θ cos θðλ3 cosφþ ρ1 sinφÞ þ ðλ2cos2φþ 2ρ2 sinφ cosφþ λΦsin2φÞsin2θ > 0: ðB13Þ

In the same way to derive Eq. (B8), we obtain

λ1 > 0; λ2cos2φþ 2ρ2 sinφ cosφþ λΦsin2φ > 0; F1ðφÞ > 0; ð0 < φ < π=2Þ; ðB14Þ

where

F1ðφÞ ¼ λ3 cosφþ ρ1 sinφþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðλ2cos2φþ 2ρ2 sinφ cosφþ λΦsin2φÞ

q
: ðB15Þ
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From the second in equality, we obtain λ2 > 0, λΦ > 0 and
ρ2 > −

ffiffiffiffiffiffiffiffiffi
λ2λΦ

p
, and they are already included in Eq. (B10).

Therefore, the independent condition is only the third
inequality in Eq. (B14).
Next, we consider conditions some especial directions

where ϕ1 ∝ ϕ2, ϕ1 ∝ Φ, ϕ2 ∝ Φ, and ϕ1 ∝ ϕ2 ∝ Φ. In the
same way of deriving Eq. (B14), conditions for these
directions are given by

F1ðφÞ þ ðλ4 − jλ5jÞ cosφ > 0; ðB16Þ

F1ðφÞ þ σ1 sinφ > 0; ðB17Þ

F2ðφÞ > 0; ðB18Þ

F2ðφÞ þ ðλ4 − jλ5jÞ cosφþ σ1 sinφ > 0; ðB19Þ

for 0 < φ < π=2, where

F2ðφÞ ¼ λ3 cosφþ ρ1 sinφþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðλ2cos2φþ 2ðρ2 þ σ2Þ sinφ cosφþ λΦsin2φÞ

q
: ðB20Þ

Finally, we consider the direction where ϕ1 ∝ Φ ∝ ϕ̃2. The term κðΦ†ϕ1Þðϕ̃†
1ϕ2Þ then approaches to infinity when

jϕ1j → ∞, jϕ2j → ∞, and jΦj → ∞. The condition for the potential to be bounded from below in this direction is given by

F1ðφÞ þ σ1 sinφ − 2jκj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinφ cosφ

p
> 0; ð0 < φ < π=2Þ: ðB21Þ

Finally, we have derived all conditions for the potential to be bounded from below. They are summarized in the following:

λ1 > 0; λ2 > 0; λΦ > 0; λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; λ3 þ λ4 − jλ5j > −

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

ρ1 > −
ffiffiffiffiffiffiffiffiffi
λ1λΦ

p
; ρ1 þ σ1 > −

ffiffiffiffiffiffiffiffiffi
λ1λΦ

p
; ρ2 > −

ffiffiffiffiffiffiffiffiffi
λ2λΦ

p
; ρ2 þ σ2 > −

ffiffiffiffiffiffiffiffiffi
λ2λΦ

p
;

F1ðφÞ > 0; F1ðφÞ þ ðλ4 − jλ5jÞ cosφ > 0; F1ðφÞ þ σ1 sinφ > 0;

F2ðφÞ > 0; F2ðφÞ þ ðλ4 − jλ5jÞ cosφþ σ1 sinφ > 0;

F1ðφÞ þ σ1 sinφ − 2jκj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinφ cosφ

p
> 0; for φ ∈ ð0; π=2Þ: ðB22Þ

1. Scenario I

In this subsection, we investigate the conditions for the potential to be bounded from below in Scenario I. In Scenario I,
we assume that

mΦ ¼ 200 GeV; mH1
¼ 100 GeV; mH2

¼ 120 GeV; tan β ¼ 10; χ ¼ π

4
;

mH ¼ 130 GeV; mA ¼ 140 GeV: ðB23Þ
These input parameters can be realized by, for example, the following scalar coupling constants.

μ3 ¼ 38.6 GeV; μΦ ¼ 191 GeV; λ1 ¼ 3.30; λ2 ¼ 0.259; λ3 ¼ −0.786; λ4 ¼ 1.09;

λ5 ¼ −0.075; κ ¼ −0.731; ρ1 ¼ 1.5; ρ2 ¼ 0.1: ðB24Þ
In addition, we assume the following coupling constants10;

σ1 ¼ 2.0; σ2 ¼ 0.1; λΦ ¼ 1.5: ðB25Þ

In this case, the conditions

λ1 > 0; λ2 > 0; λΦ > 0; λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; λ3 þ λ4 − jλ5j > −

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

ρ1 > −
ffiffiffiffiffiffiffiffiffi
λ1λΦ

p
; ρ1 þ σ1 > −

ffiffiffiffiffiffiffiffiffi
λ1λΦ

p
; ρ2 > −

ffiffiffiffiffiffiffiffiffi
λ2λΦ

p
; ρ2 þ σ2 > −

ffiffiffiffiffiffiffiffiffi
λ2λΦ

p
; ðB26Þ

10These coupling constants are irrelevant to the mass spectrums of the scalars. However, they contribute to cubic couplings between
the Higgs boson and the charged scalars. See Appendix D.
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are obviously satisfied. Left conditions include functions of φ in the left-hand sides of inequalities. In Fig. 13, we show
these functions, and all of them have to be positive in order to bound the potential from below. The minimum value of
F1ðφÞ þ σ1 sinφ − 2jκj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinφ cosφ
p

(the blue dotted line) is closed to 0, however it is about 0.033. Therefore, all conditions
are satisfied, and the scalar potential in Scenario I is bounded from below.

2. Scenario II

In this subsection, we investigate the conditions for the potential to be bounded from below in Scenario II. In Scenario II,
we assume that

mΦ ¼ 300 GeV; mH1
¼ 200 GeV; mH2

¼ 250 GeV; tan β ¼ 3; χ ¼ π

4
;

mH ¼ 210 GeV; mA ¼ 220 GeV: ðB27Þ

These input parameters can be realized by, for example, the following scalar coupling constants.

μ3 ¼ 95.3 GeV; μΦ ¼ 247 GeV; λ1 ¼ 2.32; λ2 ¼ 0.284; λ3 ¼ −0.557; λ4 ¼ 0.886;

λ5 ¼ −0.30; κ ¼ −1.18; ρ1 ¼ 1.5; ρ2 ¼ 0.90: ðB28Þ

In addition, we assume the following coupling constants;

σ1 ¼ 1.5; σ2 ¼ 1.5; λΦ ¼ 2.0: ðB29Þ
Then, as in the case of Scenario I, conditions in Eq. (B26)
are obviously satisfied. In Fig. 14, left-hand sides of
inequalities which are not included in Eq. (B26) are shown.
The minimum value of F1ðφÞþ σ1 sinφ− 2jκj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinφcosφ
p

(the blue dotted line) is closed to 0, however it is about
0.046. Therefore, all conditions are satisfied, and the scalar
potential in Scenario II is bounded from below.

APPENDIX C: THE OBLIQUE PARAMETERS

In this section, we discuss constraints on masses of new
scalars from oblique parameters S, T, andU [49]. By fixing
U ¼ 0, S and T are constrained as follows [62]11;

S ¼ 0.00� 0.07; T ¼ 0.05� 0.06: ðC1Þ

Here, we consider only the T parameter. In the model,
the T parameter from scalar loop diagrams is given by

T ¼
ffiffiffi
2

p
GF

16π2α
½c2β−αc2χΔFðmH1

; mhÞ þ c2β−αs
2
χΔFðmH2

; mhÞ
þ s2β−αc

2
χΔFðmH1

; mHÞ þ s2β−αs
2
χΔFðmH2

; mHÞ
þ c2χΔFðmH1

; mAÞ þ s2χΔFðmH2
; mAÞ

þ 2s2χΔFðmΦ; mH1
Þ þ 2c2χΔFðmΦ; mH2

Þ
− c2β−αΔFðmA;mhÞ − s2β−αΔFðmA;mHÞ
− 2s22χΔFðmH1

; mH2
Þ�; ðC2Þ

FIG. 14. Conditions for the potential to be bounded from below
in Scenario II.

FIG. 13. Conditions for the potential to be bounded from below
in Scenario I.

11By definition of S, T, and U, the SM prediction is
S ¼ T ¼ 0.
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where cθ ¼ cos θ, sθ ¼ sin θ, and the function ΔFðm1; m2Þ is defined as follows;

ΔFðm1; m2Þ ¼
m2

1 þm2
2

2
−

m2
1m

2
2

m2
2 −m2

1

log

�
m2

2

m2
1

�
: ðC3Þ

In the case that sinðβ − αÞ ¼ 1 (the alignment limit) and χ ¼ π=4, T can be simplified as

T ¼
ffiffiffi
2

p
GF

16π2α

�
1

2
ΔFðmH1

; mHÞ þ
1

2
ΔFðmH2

; mHÞ þ
1

2
ΔFðmH1

; mAÞ þ
1

2
ΔFðmH2

; mAÞ

þ ΔFðmΦ; mH1
Þ þ ΔFðmΦ; mH2

Þ − ΔFðmA;mHÞ − 2ΔFðmH1
; mH2

Þ
�
: ðC4Þ

By using the mass spectra in Scenario I and II, T in the
scenarios are predicted as

T ≃
�
0.0099 ðScenario IÞ;
0.0052 ðScenario IIÞ: ðC5Þ

By comparing Eqs. (C1) and (C5), it is concluded that in
bosh scenarios, the T parameter are consistent with the
current constraint.

APPENDIX D: THE DIPHOTON DECAY
OF THE HIGGS BOSON

In this section, we discuss constraints from the meas-
urement of h → γγ at the LHC. The current limit is given by

ðσ × BγγÞobs ¼ 127� 10 fb; ðD1Þ

where σ is the cross section of the Higgs production, and
Bγγ is the branching ratio of the diphoton decay of the
Higgs boson [63]. On the other hand, the expectation value
in the SM is as follows [63];

ðσ × BγγÞSM ¼ 116� 5 fb: ðD2Þ

In this model, the diphoton decay is generated by one-
loop diagrams of charged scalars in addition to those of the
SM charged particles. The decay rate is given by

Γγγ ¼
GFα

2m3
h

128
ffiffiffi
2

p
π3

				AW

�
m2

h

4m2
W

�
þ
X
f

Q2
fN

f
cAF

�
m2

h

4m2
f

�

þ v2

2m2
h

X
s¼H1;H2;Φ

ξs
v
Q2

sAS

�
m2

h

4m2
s

�				2; ðD3Þ

where f is the SM fermion, and Qf (Nf
c) is the electric

charge (the color degree of freedom) of f [72,73]. The
parameter mW, mf, and ms are masses of W boson, a
fermion f, and a charged scalar s�ð�Þ, respectively. The
functions AWðrÞ, AFðrÞ, ASðrÞ are defined as follows;

AWðrÞ ¼ −
1

r2
ð2r2 þ 3rþ 3ð2r − 1ÞfðrÞÞ; ðD4Þ

AFðrÞ ¼
2

r2
ðrþ ðr − 1ÞfðrÞÞ; ðD5Þ

ASðrÞ ¼ −
1

r2
ðr − fðrÞÞ; ðD6Þ

where

fðrÞ ¼
( ðArcsin ffiffiffi

r
p Þ2 r < 1;

− 1
4

h
log 1þ

ffiffiffiffiffiffiffiffiffi
1−r−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−r−1

p − iπ
i

r > 1.
ðD7Þ

In addition, Qs is the electric charge of a charged scalar s,
and ξs is cubic coupling constant between the Higgs boson
and a charged scalar s�ð�Þ (s ¼ H1; H2;Φ);

Lhss ¼ ξH1
hjHþ

1 j2 þ ξH2
hjHþ

2 j2 þ ξΦhjΦþþj2: ðD8Þ

By using parameters in the scalar potential, the coupling
constants ξs (s ¼ H1; H2;Φ) are given by

ξH1
¼ vðλ1c2βs2βc2χ þ λ2s2βc

2
βc

2
χ þ λ3s4βc

2
χ þ λ3c4βc

2
χ

− 2λ4s2βc
2
βc

2
χ − 2λ5s2βc

2
βc

2
χ þ ðρ1 þ σ1Þc2βs2χ

þ ðρ2 þ σ2Þs2βs2χ þ 2κcβsχcχÞ; ðD9Þ

ξH2
¼ vðλ1c2βs2βs2χ þ λ2s2βc

2
βs

2
χ þ λ3s4βs

2
χ þ λ3c4βs

2
χ

− 2λ4s2βc
2
βs

2
χ − 2λ5s2βc

2
βs

2
χ þ ðρ1 þ σ1Þc2βs2χ

þ ðρ2 þ σ2Þs2βc2χ − 2κcβsχcχÞ; ðD10Þ

ξΦ ¼ vðρ1c2β þ ρ2s2βÞ: ðD11Þ

We assume that new physics does not contribute to the
Higgs production processes. The value of ðσ × BγγÞ in the
model is then given by

ðσ × BγγÞY¼3=2 ¼ ðσ × BγγÞSM ×
ðBγγÞY¼3=2

ðBγγÞSM
: ðD12Þ
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By using the benchmark values of scalar coupling constants
in Subsections B 1 and B 2 and Eqs. (D3) and (D12), σ ×
Bγγ in the scenarios are predicted as

ðσ × BγγÞY¼3=2 ≃
�
132 fb ðScenario IÞ;
120 fb ðScenario IIÞ: ðD13Þ

By comparing Eqs. (D1) and (D13), it is concluded that
these predictions are consistent with the current measure-
ment at the LHC. On the other hand, this deviation from the
SM prediction might be detected at future high-energy
colliders, for example the HL-LHC or the international
linear collider (ILC).
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