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Models of asymmetric dark matter (ADM) seek to explain the apparent coincidence between the present-
day mass densities of visible and dark matter, ΩDM ≃ 5ΩVM. However, most ADM models only relate the
number densities of visible and dark matter without motivating the similar particle masses. We expand upon
a recent work that obtained a natural mass relationship in a mirror matter ADM model with two Higgs
doublets in each sector, by looking to implement dark electroweak baryogenesis as the means of asymmetry
generation. We explore two aspects of the mechanism: the nature of the dark electroweak phase transition,
and the transfer of particle asymmetries between the sectors by the use of portal interactions. We find that
both aspects can be implemented successfully for various regions of the parameter space. We also analyze
one portal interaction—the neutron portal—in greater detail, in order to satisfy the observational constraints
on dark radiation.
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I. INTRODUCTION

Determining the particle nature of dark matter (DM)
remains one of the most important problems in fundamental
physics. While there are some important constraints on its
nature—for example, it cannot behotDMbecause large-scale
structure formation then yields incorrect results—DM is
famous, or notorious, for being anything from “fuzzy” scalars
at the 10−22 eV mass scale [1], to several solar-mass
primordial black holes [2], with many different kinds of
possibilities at intermediate mass scales [3]. It therefore
makes sense to carefully examine what we do know obser-
vationally about DM, because there may be clues already
lurking in the data about what its fundamental nature is.
One fact that may be important is the apparent coinci-

dence in the present-day cosmological mass densities of
visible and dark matter, which obey

ΩDM ≃ 5ΩVM; ð1Þ

where ΩX is the mass density of X divided by the critical
density [4]. Cosmologically one would expect different

relic species to have very different mass and/or number
densities unless there are fundamental reasons for it to be
otherwise. For example, the equal number densities of
protons and electrons is a consequence of the basic
requirement of electric charge neutrality for the universe.
It is thus worth exploring the hypothesis that Eq. (1) is the
result of a deep connection between visible and dark matter
rather than being a true coincidence.
For most DM candidates, the physics determining the

relic density—for example, the freeze out process for a
thermal relic—has no connection with the physics driving
the mass density of visible matter: baryogenesis, which sets
the proton number density, and the confinement scale of
quantum chromodynamics (QCD), which sets the pro-
ton mass.
Asymmetric DM (ADM) is an exception to this general

rule, since the relic number density of DM particles is then
determined by an asymmetry in the dark sector that is
chemically related to the baryon asymmetry. Asymmetric
DM is a paradigm, and many different models have been
proposed (for reviews, see [5–7]). The vast majority of
these proposals provide specific dynamics to relate the
number density asymmetries, but are silent on why the DM
mass seems apparently to be related to the proton mass. Yet
without such a connection, ADM models fail to explain the
cosmological coincidence. Instead the factor of five in
Eq. (1) is used to “predict” the DM mass within schemes
that only relate the number densities. Clearly, this is
unsatisfactory. The purpose of this paper is to continue
analyzing ways to connect the DM and proton masses
within an ADM model. Note that it is not our goal to
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explain exactly why the approximate ratio is the specific
value of five. Rather, our goal is to construct a theory where
a ratio of order one is relatively generic, and the precise
value can be fitted by choosing parameters appropriately.
We are facedwith the task of explainingwhy theDMmass

should have anything to do with the confinement scale of
QCD. The most obvious idea is that DM is a baryonlike
bound state of an interaction in the dark sector that resembles
QCD. Several such schemes have been proposed and
analysed in the literature, though only a few of them have
the DM-proton mass connection as a motivation [8–24].
Indeed, with an arbitrary confining gauge force in the dark
sector and a general particle content, there is no reason for
the confinement scale to be near that of visible QCD. Two
exceptions to this have been proposed: (i) the dark gauge
group mirrors QCD by being SU(3), and the two confine-
ment scales are related through either an exact or somewhat
broken symmetry that connects the two SU(3) sectors, and
(ii) the particle content is chosen so that the two running
coupling constants approach infrared fixed points whose
magnitudes are similar [22,23]. Both ideas havemerit, and in
this paper we consider option (i).
A priori, the two SU(3) sectors could be related by either

a continuous or a discrete symmetry. But it is difficult to
make the former work, because of the necessary appear-
ance of multiplets that transform under both the dark SU(3)
and the usual standard model (SM) gauge group GSM. We
therefore focus on the discrete symmetry possibility,
specifically the simplest case of Z2. We seek a theory
where the DM is a baryonic bound state of “dark quarks”
which are triplets under dark SU(3) and singlets underGSM.
Because the usual quarks are in the ð3; 2; 1

6
Þ, ð3; 1; 2

3
Þ and

ð3; 1;− 1
3
Þ representations of GSM, the only way their Z2

partners can be singlets under SM forces is if we duplicate
the electroweak sector as well. We are evidently driven to a
mirror-matter type of gauge group,

G ×G0 ð2Þ
where G0 is isomorphic to G with prime denoting the dark
sector.
In this paper we continue in the vein of Ref. [25] and

consider the simplest case where G is just the SM gauge
group SUð3Þ × SUð2Þ × Uð1Þ, which is exactly the mirror-
symmetric extension of the SM. The Z2 symmetry inter-
changes the visible and dark sectors and enforces equal
QCD and dark-QCD coupling constants when it is exact.
To relate the DM mass to the proton mass we need some
kind of a connection between the two QCD coupling
constants. This connection may be the strict equality of
the coupling constants and hence also the confinement
scales, or some Z2 breaking can be introduced so as to
remove the exact equality but retain a relationship. The
unbroken case has been extensively studied—see, for
example, Refs. [10–12,26–44]. We choose to follow
Ref. [25] and explore a spontaneously broken Z2 scenario

(see also Refs. [14,18–21,45–50]). Part of themotivation for
that is to permit the DM candidate to be a single dark-
neutronlike particle, rather than having to deal with the
complicated (though very interesting) situation of exact
mirror-DM.
Reference [25] was based on the process of “asymmetric

symmetry breaking (ASB).” This is a spontaneous sym-
metry breaking scheme that permits the two sectors to
break quite differently despite the Z2 symmetry of the
Lagrangian. It is distinct from the idea of introducing
a Z2-odd scalar whose vacuum expectation value (VEV)
breaks the mirror symmetry, in that in general it affords
more flexibility in the symmetry-breaking outcome.1

Reference [25] analyzed a mirror-symmetric model with
two Higgs doublets in each sector. The ASB process was
then employed to ensure that the doublets, one from each
sector, that gain the dominant VEVs are not Z2 partners.
This allows the dark-fermion masses and mass ratios to be
completely different from the usual quark and lepton
masses and ratios. Reference [25] described an attempt
at a full theory that saw visible and dark baryogenesis occur
through the familiar sphaleron-reprocessed type I seesaw
leptogenesis dynamics driven by the out-of-equilibrium
decays of heavy neutral leptons.
The purpose of the present paper is
(i) To construct an alternative version of the theory

where asymmetry generation occurs through dark
electroweak baryogenesis, which is another reason-
able mechanism that is worth exploring. We show
that there is sufficient freedom to arrange for the
dark electroweak phase transition to be strongly first
order, as required for this mechanism. Such a
phenomenon may give rise to gravitational waves
that are detectable through future space-based inter-
ferometers [53].

(ii) To analyze some minimal possibilities for how the
dark asymmetry may be reprocessed into a visible
asymmetry through various higher dimension portal
interactions.2 We also discuss the generation of these
asymmetries, and contend that there should be

1The ASB mechanism really comes into its own when you
want to break G and G0 to different subgroups. This will not be
the case in the model analyzed in this paper. However, the mirror-
symmetric SM, rather than a mirror-symmetric theory with an
extended gauge group such as a grand unified theory, permits us
to focus on the DM physics rather than being distracted by the
many unrelated issues that arise from SM gauge-group exten-
sions. Ultimately, the proper context for ASBmay well be a grand
unified theory, as discussed in the original papers [51,52]. The
mirror-symmetric SM analysed here could then be the low-energy
effective theory of a more ambitious model.

2For previous applications of asymmetry transfer through
effective operator portal interactions in ADM models, see
[39,54,55]. We also note Ref. [24], in which the renormalizable
neutrino portal is responsible for asymmetry transfer following
dark electroweak baryogenesis in a dark sector with a mirror
gauge group and two Higgs doublets.
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sufficient CP violation in the dark CKM matrix to
produce the required baryon asymmetry.

(iii) To continue to analyze the quite difficult problem of
how observational constraints on dark radiation may
be obeyed in such a theory. One of our goals here is
to present a clear account of the challenges in
achieving this aim without introducing fine-tuning
that is as bad or worse than the cosmological
coincidence puzzle of Eq. (1).

The remainder of this paper is structured as follows: In
Sec. II we outline the model and provide some theoretical
and experimental constraints on the parameters of the
theory. These will help guide our search in Sec. III, where
we analyze the dynamics of the dark electroweak phase
transition and identify areas of parameter space for which
the transition is strongly first-order. Such a transition is
necessary to allow for the generation of a dark baryon
asymmetry through electroweak baryogenesis. In Sec. IV
we discuss the generation of this asymmetry and consider
its partial reprocessing into a visible baryon asymmetry
through a number of effective operator portal interactions.
In Sec. V we then analyze one of these possibilities—the
“neutron portal”—in more detail, as it can also play a role
in avoiding strong observational bounds on additional dark
radiation. This introduces a number of difficulties, which
we clearly outline, before providing some concluding
remarks in Sec. VI.

II. THE MODEL AND CONSTRAINTS

As this work builds off the mirror two Higgs doublet
model of Ref. [25], we do not provide a fully detailed
description of the theory in this section. Rather, we sum-
marize the salient details of the model so that the contents of
this paper can be understood in isolation, as well as high-
lighting the points where we differ. We also provide some
more specific restraints on the parameters of the model, and
in particular on the couplings and mass terms in the scalar
potential. These are especially relevant for Sec. III, wherewe
determine whether the model can accommodate a strong
first-order dark electroweak phase transition; the restrictions
we discuss here will help guide our search through the large
parameter space of the scalar sector.
The gauge group is SUð3Þ×SUð2Þ×Uð1Þ×SUð3Þ0 ×

SUð2Þ0×Uð1Þ0, where the mirror (dark) sector is a dupli-
cated version of the standard model. The dark gauge groups
and particles are indicated by primes. The dark particle
content is a copy of the visible particle content, as required
by a discrete Z2 parity symmetry that exchanges SM
particles with their dark counterparts. The particle trans-
formation properties are given by

ϕ↔ϕ0; Gμ ↔G0
μ; fL ↔ f0R; fR ↔ f0L; ð3Þ

where ϕ, Gμ, and f are scalar, gauge, and fermion fields
respectively.Note that as a parity symmetry, theZ2 exchanges

left-handed and right-handed particles. (The chirality flip
feature is an aesthetic choice, and is not essential.)
The total particle content of the model is given in Table I.

The fermion content consists of the standard model
fermions and their dark partners. Note that unlike the
original paper, we do not list right-handed singlet neutrinos
and their partners. These were introduced to allow for
asymmetry generation through thermal leptogenesis,
whereas we will be considering dark electroweak baryo-
gensis as the asymmetry creation mechanism.3 There are
four scalars in the model: two Higgs doublets, Φ1 and Φ2,
along with their dark counterparts Φ0

1 and Φ0
2. The addi-

tional Higgs doublets allow for the ASB mechanism [51] to
be implemented; as a vital component of the model,
understanding the mechanism will be central to construct-
ing the scalar potential.

A. The scalar potential and
asymmetric symmetry breaking

To introduce the ASB mechanism we first consider the
scalar potential in an illustrative toy model. In addition to
the mirror Z2 symmetry exchanging Φ1 and Φ2 with Φ0

1

and Φ0
2, we impose extra discrete Z2 symmetries such that

only terms with even numbers of a given scalar are allowed.
Then, the scalar potential can be written in the form

VASB¼λ1

�
Φ†

1Φ1þΦ0
1
†Φ0

1−
v2

2

�
2

þλ2

�
Φ†

2Φ2þΦ0
2
†Φ0

2−
w2

2

�
2

þκ1ðΦ†
1Φ1ÞðΦ0

1
†Φ0

1Þ

þκ2ðΦ†
2Φ2ÞðΦ0

2
†Φ0

2Þþσ1ððΦ†
1Φ1ÞðΦ†

2Φ2Þ
þðΦ0

1
†Φ0

1ÞðΦ0
2
†Φ0

2ÞÞ

þσ2

�
Φ†

1Φ1þΦ0
1
†Φ0

1þΦ†
2Φ2þΦ0

2
†Φ0

2−
v2

2
−
w2

2

�
2

:

ð4Þ

TABLE I. The particle content and their representations under
the mirror symmetric gauge group ðSUð3Þ × SUð2Þ × Uð1ÞÞ×
ðSUð3Þ0 × SUð2Þ0 × Uð1Þ0Þ.
qiL ð3; 2;− 1

6
Þð1; 1; 0Þ q0iR ð1; 1; 0Þð3; 2;− 1

6
Þ

uiR ð3; 1; 2
3
Þð1; 1; 0Þ u0iL ð1; 1; 0Þð3; 1; 2

3
Þ

diR ð3; 1;− 1
3
Þð1; 1; 0Þ d0iL ð1; 1; 0Þð3; 1;− 1

3
Þ

liL ð1; 2;− 1
2
Þð1; 1; 0Þ l0iR ð1; 1; 0Þð1; 2;− 1

2
Þ

eiR ð1; 1;−1Þð1; 1; 0Þ e0iL ð1; 1; 0Þð1; 1;−1Þ
Φ1 ð1; 2; 0Þð1; 1; 0Þ Φ0

1 ð1; 1; 0Þð1; 2; 0Þ
Φ2 ð1; 2; 0Þð1; 1; 0Þ Φ0

2 ð1; 1; 0Þð1; 2; 0Þ

3Of course, we need to generate massive neutrinos somehow,
but we may remain largely agnostic about the precise mechanism
for present purposes, only requiring that it not dominate asym-
metry generation and also not contribute significantly to washout.
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In the parameter space region where each of
½λ1; λ2; κ1; κ2; σ1; σ2� are positive, the global minimum
occurs when all terms are independently zero. This can
be achieved by the following pattern of VEVs:

hΦ1i ¼
�
0
vffiffi
2

p

�
; hΦ0

1i ¼ 0;

hΦ2i ¼ 0; hΦ0
2i ¼

�
0
wffiffi
2

p

�
: ð5Þ

This minimum clearly breaks the mirror Z2 symmetry, with
non-mirror partner Higgs doublets gaining nonzero VEVs
in the two sectors. The motivation for breaking the mirror
symmetry is to obtain differing particle masses in the
visible and dark sectors. As the masses of the visible and
dark baryons result from the QCD confinement energy of
the SU(3) interaction in each sector, we want the QCD
confinement scale in each sector—ΛQCD and ΛDM—to
differ.
This was explored in Ref. [51], which considered the

evolution of the SU(3) gauge couplings α3 and α03. At

temperatures above the scale of mirror symmetry breaking,
these couplings are equal; after the mirror symmetry is
broken by the development of an asymmetric minimum,
their running to low energies depends upon the spectrum of
quark masses in each sector. Thanks to the asymmetric
symmetry breaking minimum, these two spectra are inde-
pendent, as the Higgs doublets that give masses to the
quarks in each sector are not mirror partners. If the
minimum is constructed such that w ≫ v, then depending
on the Yukawa couplings of the quarks to Φ0

2, a dark
confinement scale ΛDM a factor of a few higher than ΛQCD

can be easily achieved. This is encapsulated in Fig. 1 of
Ref. [25], which plots ΛDM against the ratio between
electroweak scales (ρ≡ w=v) for a selection of dark quark
mass spectra.
While an asymmetric symmetry breaking minimum can

be readily obtained for the toy scalar potential, the situation
is more complex when the full scalar potential is consid-
ered. The most general mirror two-Higgs-doublet scalar
potential—where we only impose the mirror Z2 exchange
symmetry—is given by

VM2HDM ¼ m2
11ðΦ†

1Φ1 þΦ0
1
†Φ0

1Þ þm2
22ðΦ†

2Φ2 þΦ0
2
†Φ0

2Þ þ ðm2
12ðΦ†

1Φ2 þΦ0
1
†Φ0

2Þ þ H:c:Þ þ 1

2
z1ððΦ†

1Φ1Þ2 þ ðΦ0
1
†Φ0

1Þ2Þ

þ 1

2
z2ððΦ†

2Φ2Þ2 þ ðΦ0
2
†Φ0

2Þ2Þ þ z3ðΦ†
1Φ1Φ

†
2Φ2 þΦ0

1
†Φ0

1Φ0
2
†Φ0

2Þ

þ z4ðΦ†
1Φ2Φ

†
2Φ1 þΦ0

1
†Φ0

2Φ0
2
†Φ0

1Þ þ
1

2
z5ððΦ†

1Φ2Þ2 þ ðΦ0
1
†Φ0

2Þ2 þ H:c:Þ
þ ½ðz6Φ†

1Φ1 þ z7Φ†
2Φ2ÞΦ†

1Φ2 þ ðz6Φ0
1
†Φ0

1 þ z7Φ0
2
†Φ0

2ÞΦ0
1
†Φ0

2 þ H:c:�
þ z8Φ

†
1Φ1Φ0

1
†Φ0

1 þ z9Φ
†
2Φ2Φ0

2
†Φ0

2 þ ðz10Φ†
1Φ2Φ0

1
†Φ0

2 þ H:c:Þ
þ ðz11Φ†

1Φ2Φ0
2
†Φ0

1 þ H:c:Þ þ z12ðΦ†
1Φ1Φ0

2
†Φ0

2 þΦ0
1
†Φ0

1Φ
†
2Φ2Þ

þ ½ðz13Φ†
1Φ1 þ z14Φ

†
2Φ2ÞΦ0

1
†Φ0

2 þ ðz13Φ0
1
†Φ0

1 þ z14Φ0
2
†Φ0

2ÞΦ†
1Φ2 þ H:c:�: ð6Þ

The large number of new terms prevents us from
constructing the potential in such a way that its minimum
exactly follows the asymmetric symmetry breaking pattern
of Eq. (4). In general, the global minimum is given by

hΦii ¼
�
0
viffiffi
2

p

�
; hΦ0

ii ¼
�
0
wiffiffi
2

p

�
ð7Þ

meaning that all four doublets have nonzero VEVs. To
recover the pattern of Eq. (4), we transform to a basis in
which one Higgs doublet in each sector has a zero VEV.
This “dual Higgs basis” is defined by

H1 ¼
v�1Φ1 þ v�2Φ2

v
; H2 ¼

−v2Φ1 þ v1Φ2

v
;

H0
1 ¼

w�
1Φ0

1 þ w�
2Φ0

2

w
; H0

2 ¼
−w2Φ0

1 þ w1Φ0
2

w
; ð8Þ

where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv1j2 þ jv2j2

q
; w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jw1j2 þ jw2j2

q
: ð9Þ

With these assignments, only H1 and H0
1 gain non-zero

VEVs, and they will not be mirror partners if we have v1 ≠
w1 and v2 ≠ w2.
We wish to maintain the desirable features of exact

asymmetric symmetry breaking, where unrelated Higgs
bosons are responsible for mass generation in each sector.
Thus, we want H1 and H0

1 to be largely independent

admixtures of Φð0Þ
1 and Φð0Þ

2 . This can be achieved by a
global minimum that resembles the ASB minimum; that is,
one where
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v1 ≫ v2; w1 ≪ w2; w2 ≫ v1: ð10Þ

We will refer to this as the “ASB limit.”

To obtain it, we want to choose the parameters for
VM2HDM such that the potential is of a similar form to VASB.
Equating coefficients between the two potentials, we obtain

m11
2 ¼ −λ1v2 − σ2ðv2 þ w2Þ; z1 ¼ 2λ1 þ 2σ2; z8 ¼ κ1 þ 2λ1 þ 2σ2;

m22
2 ¼ −λ2w2 − σ2ðv2 þ w2Þ; z2 ¼ 2λ2 þ 2σ2; z9 ¼ κ2 þ 2λ2 þ 2σ2;

z3 ¼ σ1 þ 2σ2; z12 ¼ 2σ2: ð11Þ

The other parameters in VM2HDM do not correspond with
any terms in VASB. Thus, to approximately replicate the
form of VASB in the full potential, we can initially apply a
rough condition that these additional parameters are small
with respect to those listed above; that is,

z1; z2; z3; z8; z9; z12 ≫ z4; z5; z6; z7; z10; z11; z13; z14:

ð12Þ

To see how this might be applied, we consider the
benchmark parameter point given in Table 1 of the original
paper [25], which we reproduce in Table II. Most of the
parameters satisfy our rough condition, with two notable
exceptions. First, z12 is by far the smallest coupling; this
will be motivated when we consider the scalar masses of
the theory. In addition, z10 is just as large as the other
quartic couplings. Even though it does not correspond to
any terms in the toy model potential, making z10 large does
not alter the asymmetric symmetry breaking pattern of the
minimum; the term ðz10Φ†

1Φ2Φ0
1
†Φ0

2 þ H:c:Þ contains both
Higgs bosons that gain small VEVs, and thus only provides
a small contribution to the potential at the asymmetric
symmetry breaking minimum. By this logic, z4, z5, and z11
also do not necessarily have to be small. Thus, ensuring an
asymmetric symmetry breaking pattern for the minimum of
VM2HDM only requires

z1; z2; z3; z8; z9 ≫ z6; z7; z11; z13; z14: ð13Þ

This is rather a rough condition, and there will be more
nuance in exactly how small these quartic couplings will
need to be.
To conclude this discussion we note what happens for

large values of the dark electroweak scale w. As can be seen
in Table II, a valid parameter point can be achieved with
only one to two orders of magnitude difference between the
couplings (except for the aforementioned z12). This bench-
mark point corresponds to w ¼ 7276 GeV, thirty times
greater than the visible VEV v ¼ 246 GeV. For values of w
one or more orders of magnitude larger than this, an issue
will arise from the term ðz14Φ†

1Φ2Φ0
2
†Φ0

2 þ H:c:Þ.
Expanding around the VEV of Φ0

2 we obtain the term
ðz14w2

2ÞΦ†
1Φ2, which will strongly alter the tree-level ASB

minimum when z14w2
2 is of the order of the larger scalar

couplings. To preserve the asymmetric symmetry breaking
pattern as we increase the value of w, z14 must then be made
smaller than 0.01.

B. Scalar masses

In deriving the masses of the scalar content of the model,
we follow the original paper and define the field content of
the doublets by

Φ1 ¼
� Gþ

1

1ffiffi
2

p ðv1þϕ1þ iG1Þ
�
; Φ0

1 ¼
� Iþ1

1ffiffi
2

p ðw1þϕ0
1þ ia1Þ

�
;

Φ2 ¼
� Iþ2

1ffiffi
2

p ðv2þϕ2þ ia2Þ
�
; Φ0

2¼
� Gþ

2
0

1ffiffi
2

p ðw2þϕ0
2þ iG2Þ

�
:

ð14Þ

Generically we obtain a 16 × 16 mass matrix which
produces 10 nonzero mass eigenstates when diagonalized.
When working with real parameters in VM2HDM, there will
only be mixing between fields at the same position in each
doublet; thus, we only have to diagonalize four separate
4 × 4 mass matrices. These four matrices each involve
mixing between visible and dark fields, and thus the
mass eigenstates are generically admixtures of visible
and dark states.
This is an issue, as we require one of these states to serve

as the SM Higgs boson h, which must not mix strongly

TABLE II. Benchmark parameter point for the full scalar
potential, taken from Table 1 in Ref. [25].

Parameters Values

m11
2 −ð87 GeVÞ2

m12
2 −ð90 GeVÞ2

m22
2 −ð2600 GeVÞ2

z1, z2 0.129
z3, z8, z9, z10 0.8
z4, z5, z6, z7, z11, z13, z14 0.01
z12 1 × 10−8
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with any of the new scalars. We must especially avoid any
dependence of the mass of h on the dark scale w. To see
how this is achieved, we consider the mass mixing matrix
for the ϕ fields. These terms derive from Appendix A in the
original paper, where we work in the ASB limit for the
minimum; that is, we ignore terms involving the small
VEVs v2 and w1, and work only with real quartic
couplings. We then obtain the mass matrix

1

2
ðϕ1;ϕ2;ϕ0

1;ϕ
0
2Þ

0
BBB@

mϕ1ϕ1
mϕ1ϕ2

mϕ1ϕ
0
1
mϕ1ϕ

0
2

mϕ1ϕ2
mϕ2ϕ2

mϕ1ϕ
0
2
mϕ2ϕ

0
2

mϕ1ϕ
0
1
mϕ1ϕ

0
2
mϕ0

1
ϕ0
1
mϕ0

1
ϕ0
2

mϕ1ϕ
0
2
mϕ2ϕ

0
2
mϕ0

1
ϕ0
2
mϕ0

2
ϕ0
2

1
CCCA

0
BBB@
ϕ1

ϕ2

ϕ0
1

ϕ0
2

1
CCCA

ð15Þ
where

mϕ1ϕ1
≃m11

2 þ 3

2
v21z1 þ

1

2
w2
2z12 mϕ2ϕ

0
1
≃
1

2
v1w2z10 þ

1

2
v1w2z11

mϕ1ϕ2
≃m12

2 þ 3

2
v21z6 þ

1

2
w2
2z14 mϕ2ϕ

0
2
≃ v1w2z14

mϕ1ϕ
0
1
≃ v1w2z13 mϕ0

1
ϕ0
1
≃m11

2 þ 1

2
v21z8 þ

1

2
w2
2ðz3 þ z4 þ z5Þ

mϕ1ϕ
0
2
≃ v1w2z12 mϕ0

1
ϕ0
2
≃m12

2 þ 1

2
v21z13 þ

3

2
w2
2z7

mϕ2ϕ2
≃m22

2 þ 1

2
v21ðz3 þ z4 þ z5Þ þ

1

2
w2
2z9 mϕ0

2
ϕ0
2
≃m22

2 þ 1

2
v21z12 þ

3

2
w2
2z2: ð16Þ

We consider the sizes of these terms given the constraint on
relative parameter sizes from Eq. (13). We first note that the
off-diagonal terms involving ϕ1 depend on couplings that
we require to be small, with the exception of z12 in the term
mϕ1ϕ

0
2
. In the diagonal mass term for ϕ1, mϕ1ϕ1

, z12 also
controls the term’s dependence on w2. So, setting z12 to be
very small—as was done in the original paper’s benchmark
point shown in Table II—ensures that ϕ1 is decoupled from
the dark electroweak scale, and has minimal mixing with
any other scalars. This then means that there is a mass
eigenstate composed primarily of ϕ1, which we denote as h
and identify as the SM Higgs boson.
With z12 small, the off-diagonal terms involving ϕ0

2 are
also relatively small, so we identify the dark Higgs boson h0
as the mass eigenstate composed predominantly of ϕ0

2. The
level of mixing between the remaining neutral real scalars,
ϕ2 and ϕ0

1, is controlled by z10. As we noted earlier, this
coupling is relatively large in the given benchmark point;
this allows for the other twomass eigenstates to be heavy, as
their masses depend on the dark electroweak scale w. As in
the original paper, we denote these eigenstates as J01 and J

0
2.

We take a similar approach with the remaining mass
eigenstates. Following the original paper, we name them
A0
1,A

0
2,H

�, andH�0; they too couple to the dark electroweak
scale w and are thus much heavier than the visible Higgs
boson h. This allows the low-energy scalar sector of this
theory to contain solely an SM Higgs state, and is also
relevant for meeting constraints from flavor-changing neu-
tral current measurements.

C. Yukawa couplings and flavor-changing
neutral currents

The Yukawa sector of this theory is given by

−LY ¼ yu1ijðqiLuRjΦ1þqi0Ru
j0
LΦ0

1Þ
þyd1ijðqiLdjRΦ̃1þqi0Rd

j0
LΦ̃0

1Þþyl1ijðliLejRΦ̃1þ li0Re
j0
LΦ̃0

1Þ
þyu2ijðqiLujRΦ2þqi0Ru

j0
LΦ̃0

2Þ
þyd2ijðqiLdjRΦ̃2þqi0Rd

j0
LΦ̃0

2Þ
þyl2ijðliLejRΦ̃2þ li0Re

j0
LΦ̃0

2ÞþH:c: ð17Þ
where Φ̃ ¼ iτ2Φ⋆. We note that the mirror symmetry
enforces the Yukawa couplings of a doublet and its mirror
counterpart to be equal.
We are interested in how these couplings generate quark

masses, as it is the quark mass spectrum in each sector that
affects the running of α3 and α03 and allows us to achieve
different visible and dark QCD scales after the mirror
symmetry is broken. So, we work in the Higgs basis of
Eq. (8), where only H1 and H0

1 gain VEVs. Then, the
relevant Yukawa matrices are given by

ỹq1 ¼ Vq
L

�
v1y

q
1 þ v2y

q
2

v

�
Vq†
R ;

ỹq2 ¼ Vq
L

�
−v2y

q
1 þ v1y

q
2

v

�
Vq†
R ;

ỹq01 ¼ Wq
L

�
w1y

q
1 þ w2y

q
2

w

�
Wq†

R ;

ỹq02 ¼ Wq
L

�
−w2y

q
1 þ w1y

q
2

w

�
Wq†

R ; ð18Þ

where q ¼ u, d, and ỹqð0Þi is the Yukawa matrix for

couplings betweenHð0Þ
i and either up- or down-type quarks.
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Vq
L;R and Wq

L;R are the left- and right-handed matrices that
respectively diagonalize ỹq1 and ỹq01 .
TheYukawamatrices relevant for generating quarkmasses

in each sector are ỹq1 and ỹ
q0
1 . In the ASB limit of Eq. (10), we

see that the visible and dark quark masses depend primarily
on yq1 and y

q
2 , respectively. This is just the statement that Φ1

and Φ0
2 are the doublets primarily responsible for mass

generation in their respective sectors, allowing the quark
mass spectrum in each sector to be largely independent.
The secondary Yukawa matrices in each sector are not

diagonal. This leads to flavor-changing neutral currents at
tree-level, which are strongly suppressed in the SM and are
subject to strict experimental constraints [56]. This is often
controlled in 2HDMs by introducing additional discrete
symmetries to restrict which types of quarks each doublet
can couple to; in effect, this equates to setting some of yq1 and
yq2 to zero. However, in our case all of these matrices are
relevant for mass generation, and must be nonzero. Thus, in
the visible sector Φ1 and Φ2 will both couple to all quarks;
this corresponds to a type III 2HDM, in which tree-level
FCNCs are present, and must be sufficiently suppressed.
The original paper quoted an approximate result from

[57], where FCNC bounds were avoided in a Type III
2HDM for mH2

≳ 150 TeV. However, this bound was
obtained under the assumptions that all Yukawa couplings
of H2 were the size of the SM top quark coupling. The
more realistic Yukawa coupling selection in this model
leads to much less stringent bounds [58,59]; we follow the
guide of the original paper, in which all stated mass values
for the additional scalars are heavy enough to sufficiently
suppress FCNCs. We then ensure that we consider param-
eter points where all additional scalars have masses at least
as large as those given in Table 1 of Ref. [25].

III. DARK ELECTROWEAK PHASE TRANSITION

To address the apparent coincidence of cosmological
mass densities of Eq. (1), a comprehensive dark matter
theory must explain why both the particle masses and
number densities of visible and dark matter are similar. As
outlined in the previous section, the asymmetric symmetry
breaking structure of the mirror two Higgs doublet model
allows for a dark neutron-like particle with a mass a factor
of a few larger than the visible proton. With the particle
masses thus linked, we now need to produce related
number densities nVM and nDM.
In this section we implement electroweak baryogenesis

(EWBG) as the asymmetry generation mechanism [60].
EWBG occurs at a first-order electroweak phase transition
(EWPT), where the transition proceeds by bubble nucle-
ation. The Sakharov conditions [61] are satisfied by out-of-
equilibriumC- andCP-violating Yukawa interactions at the
bubble walls together with B-violating electroweak spha-
leron processes, and thus a baryon asymmetry is generated
during the transition.
While all these ingredients are present within the SM, the

visible electroweak phase transition (vEWPT) is crossover,

not first-order [62]. Even if that was not so, the CP-
violation in the SM Yukawa matrix would be insufficient to
generate the required asymmetry [63]. In our model,
however, there will be a dark electroweak phase transition
(dEWPT) in which the Φ0

2 gains a VEV of order w. Its
dynamics are controlled by the scalar and Yukawa cou-
plings of the second Higgs doublet, which are only very
weakly constrained by SM measurements. So, we should
have the flexibility to successfully implement EWBG at the
dEWPT, thus generating an asymmetry in the dark baryon
number B0 and/or dark lepton number L0.
In this section we analyze the dynamics of the dEWPT,

searching for parameter selections for the scalar potential
VM2HDM of Eq. (6) such that we obtain a first-order
electroweak phase transition that could allow for EWBG
in the dark sector. We begin by constructing the finite
temperature effective potential, and then specify the
method by which we search for valid dark phase transitions.
We find that for a number of regions of parameter space,
a viable first-order EWPT can be readily achieved in the
dark sector.

A. The finite temperature effective potential

We begin by constructing the finite temperature effective
potential (FTEP) [64,65], our perturbative tool for analyz-
ing the dEWPT.
The one-loop effective potential is calculated in terms of

a constant background classical field φ, and is given in
general by

Veffðφ; TÞ ¼ V0ðφÞ þ V1ðφ; 0Þ þ ΔV1ðφ; TÞ; ð19Þ

where the zero-loop contribution V0ðφÞ is just the
classical tree-level potential and the one-loop contributions
are split into zero-temperature and finite temperature
corrections.
For our mirror two-Higgs-doublet model, the FTEP will

be a function of four variables—φ1, φ2, φ0
1, and φ

0
2—as we

require a real constant classical background field for each
field that gains a VEV. We define the shorthand notation
fðφÞ≡ fðφ1;φ2;φ0

1;φ
0
2Þ for any function f. The back-

ground fields are incorporated by defining

Φ1 ¼
� Gþ

1

1ffiffi
2

p ðφ1þϕ1þ iG1Þ
�
; Φ0

1 ¼
� Iþ1

1ffiffi
2

p ðφ0
1þϕ0

1þ ia1Þ
�
;

Φ2 ¼
� Iþ2

1ffiffi
2

p ðφ2þϕ2þ ia2Þ
�
; Φ0

2¼
� Gþ

2
0

1ffiffi
2

p ðφ0
2þϕ0

2þ iG2Þ
�
:

ð20Þ
Expanding VM2HDM using the above definitions and

assuming real parameters, the tree-level component of
the FTEP is given by

IMPLEMENTING ASYMMETRIC DARK MATTER AND DARK … PHYS. REV. D 104, 035032 (2021)

035032-7



V0ðφÞ ¼
1

2
m2

11ðφ1
2 þ φ0

1
2Þ þ 1

2
m2

22ðφ2
2 þ φ0

2
2Þ þm2

12ðφ1φ2 þ φ0
1φ

0
2Þ þ

1

8
z1ðφ1

4 þ φ0
1
4Þ þ 1

8
z2ðφ2

4 þ φ0
2
4Þ

þ 1

4
ðz3 þ z4 þ z5Þðφ1

2φ2
2 þ φ0

1
2φ0

2
2Þ þ 1

2
z6ðφ1

3φ2 þ φ0
1
3φ0

2Þ þ
1

2
z7ðφ1φ2

3 þ φ0
1φ

0
2
3Þ þ 1

4
z8φ1

2φ0
1
2

þ 1

4
z9φ2

2φ0
2
2 þ 1

2
ðz10 þ z11Þφ1φ2φ

0
1φ

0
2 þ

1

4
z12ðφ1

2φ0
2
2 þ φ0

1
2φ2

2Þ

þ 1

2
z13ðφ1

2φ0
1φ

0
2 þ φ0

1
2φ1φ2Þ þ

1

2
z14ðφ2

2φ0
1φ

0
2 þ φ0

2
2φ1φ2Þ: ð21Þ

1. One-loop corrections and renormalization

The one-loop corrections V1ðφ; 0Þ and ΔV1ðφ; TÞ are
calculated using the Coleman-Weinberg [66] and finite
temperature [67] methods respectively, and are given by

V1ðφ; 0Þ ¼
X
i

� ni
2

Z
d4p
ð2πÞ4 log ðp

2 þm2
i ðφÞÞ;

ΔV1ðφ; TÞ ¼
T4

2π2
X
i

� niJ�

�
mi

2ðφÞ
T2

�
; ð22Þ

where i counts over all particle species with þ for bosons
and − for fermions, and ni and miðφÞ are the multiplicity
and field-dependent mass of species i. The thermal func-
tions J�ðy2Þ are given by

J�ðy2Þ≡
Z

∞

0

dx x2 log ð1 ∓ e−
ffiffiffiffiffiffiffiffiffi
x2þy2

p
Þ; ð23Þ

and will be calculated numerically via the package
COSMOTRANSITIONS [68].
Before specifying a renormalization scheme for the

UV-divergent integral V1ðφ; 0Þ, we calculate the field-
dependent masses mi

2ðφÞ. The scalar boson mass matrix
is obtained from VM2HDM given the field definitions from
Eq. (20). The Goldstone bosons that are massless at the
tree-level minimum will not be massless in general when
we expand around the background fields, and thus must be
included in the one-loop corrections. In total, 16 scalars are
included: the six neutral mass eigenstates h, h0, A0

1, A
0
2, J

0
1,

and J02, four charged scalars H� and H�0, and six
Goldstone bosons G0, G�, G00, and G�0, each with a
multiplicity of one.
In the visible sector the gauge boson mass matrix with

respect to the basis W�, W3, B is [69]

Mgauge ¼
φ1

2 þ φ2
2

4

0
BBB@

g2 0 0 0

0 g2 0 0

0 0 g2 gg0

0 0 gg0 g02

1
CCCA ð24Þ

By mirror symmetry, the dark gauge bosons have an
equivalent mass matrix with respect to the basis W�0, W30,
B0, with φ0

1 and φ0
2 replacing φ1 and φ2. All gauge bosons

have multiplicity three, corresponding to one longitudinal
and two transverse modes.
The mass of the top quark dominates the contributions

from the visible fermions, and is given by

mt
2ðφÞ ¼ 1

2
ðyt1φ1

2 þ yt2φ2
2Þ; ð25Þ

where yti indicates the Yukawa coupling of the doublet Φi
to the top quark. In the dark sector, the heaviest quark is not
necessarily the mirror partner of the visible top quark. We
denote the Yukawa couplings of the heaviest dark quark by
yhi , and obtain its mass by replacing yti, φ1 and φ2 with yhi ,
φ0
1 and φ

0
2 respectively in the above equation. Since onlyΦ0

2

gains a VEV during the dEWPT, yh2 is the relevant
parameter when considering the fermionic contributions
to the FTEP; its value depends on the choice of dark
Yukawa couplings. The multiplicities of the top quark and
heaviest dark quark are both 12.
With the field-dependent masses determined, the next

point to address is the choice of renormalization scheme
for the zero-temperature one-loop corrections. We will use
a cutoff regularization scheme4 given by

V1ðφ; 0Þ ¼
X
i

� ni
64π2

�
mi

4ðφÞ
�
log

mi
2ðφÞ

mi
2ðvÞ −

3

2

�

þmi
2ðφÞmi

2ðvÞ
�
; ð26Þ

where mi
2ðvÞ indicates that the mass is calculated at the

tree-level minimum given by φi ¼ vi and φ0
i ¼ wi.

4This scheme differs from the standard MS dimensional
regularization commonly applied in two-Higgs-doublet models.
This is due to the disparate electroweak scales in our model, v and
w, which lead to the FTEP being highly sensitive to the choice of
renormalization scale μ. In particular, the tree-level minimum will
change drastically for differing values of μ, whereas cut-off
regularization automatically preserves tree-level minima.
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However, logðmi
2ðφÞ=mi

2ðvÞÞ is logarithmically diver-
gent for i ¼ G0, G�, G00, and G�, as the Goldstone bosons
are massless at the tree-level minimum,. This has been
addressed in both the standard model [70] and a two-Higgs-
doublet model [71]; the issue is alleviated by adjusting the
Goldstone contributions to be

X
i¼G0;G�

ni
64π2

�
mi

4ðφÞ
�
log

mi
2ðφÞ

mIR
2ðvÞ −

3

2

��
; ð27Þ

where mIR
2ðvÞ is some infrared mass scale that both

references take to be mh
2ðvÞ, the mass of the SM Higgs

boson. We adapt this condition to our situation by choosing
mIR

2ðvÞ to be mh
2ðvÞ for the visible Goldstone bosons G0

and G�, and m0
h
2ðvÞ for the dark Goldstone bosons G00

and G�0.
So, altogether, the one-loop corrections are given at zero

temperature by

V1ðφ;0Þ¼
X
i∈F

� ni
64π2

�
mi

4ðφÞ
�
log

mi
2ðφÞ

mi
2ðvÞ−

3

2

�

þmi
2ðφÞmi

2ðvÞ
�

þ
X

i¼G0;G�

ni
64π2

�
mi

4ðφÞ
�
log

mi
2ðφÞ

mh
2ðvÞ−

3

2

��

þ
X

i¼G0 0;G�0

ni
64π2

�
mi

4ðφÞ
�
log

mi
2ðφÞ

m0
h
2ðvÞ−

3

2

��
;

ð28Þ

where F¼½h;h0;A0
1;A

0
2;J

0
1;J

0
2;H

�;H�0;W�;Z;W�0;Z0;t;t0�
lists all species except the Goldstone bosons.

2. Thermal masses

To be able to trust our perturbative calculations at
the critical temperature, we need to apply a daisy resum-
mation procedure to account for higher-loop corrections.
Considering the one-loop corrections as a function of the
field-dependent masses,

V1ðmi
2ðφÞ; TÞ≡ V1ðφ; 0Þ þ ΔV1ðφ; TÞ; ð29Þ

the standard resummation methods according to Parwani
[72] and Arnold and Espinosa [73]) produce

V1;P ¼ V1ðmi
2ðφ; TÞ; TÞ ð30Þ

and

V1;A−E ¼ V1ðmi
2ðφÞ; TÞ

þ T
12π

X
i¼bosons

ni½mi
3ðφÞ −mi

3ðφ; TÞ� ð31Þ

respectively.
These expressions require the calculation of the thermal

masses mi
2ðφ; TÞ. Only scalars and the longitudinal com-

ponents of the gauge bosons gain thermal masses. These
are calculated by adding thermal correction matrices to the
scalar and gauge boson mass matrices prior to diagonal-
ization [74]. For the scalars, this is given by

ðδMscalarÞij ¼
T2

24

X
i

cini
∂2mi

2ðφÞ
∂φi∂φj

ð32Þ

where ci is 1 for bosons and −1=2 for fermions, and φi runs
over all four background fields φ1, φ2, φ0

1, and φ0
2. For the

gauge bosons, the thermal correction matrix is

δMgauge ¼ 2T2

0
BBB@

g2 0 0 0

0 g2 0 0

0 0 g2 0

0 0 0 g02

1
CCCA: ð33Þ

B. Characterizing the phase transition

With the effective potential in hand, we can now
determine the properties of the dEWPT. To allow for
electroweak baryogenesis, we search for phase transitions
that are first-order—that is, where the effective potential
develops multiple minima separated by energy barriers.
Such a transition is characterized by the critical temperature
TC, determined by

Veffð0ÞjT¼TC
¼ VeffðϕCÞjT¼TC

; ð34Þ

where ϕC indicates the field values at the symmetry-
breaking minimum at T ¼ TC. The other relevant param-
eter of the phase transition is its strength, given by
ξ ¼ ϕC=TC. For the dark baryon asymmetry to avoid being
washed out following the dEWPT, the sphaleron rate must
be sufficiently suppressed; this corresponds to the condition
ξ≳ 1, or that the phase transition is strongly first-order.5

In this section we describe our method for calculating
these properties and identifying strong first-order phase
transitions. A number of difficulties arise in this discussion
that produce non-negligible theoretical uncertainties in our

5While this is the conventional criterion used to avoid
sphaleron washout in electroweak baryogenesis theories, it is
not gauge invariant; both ϕC and TC suffer gauge dependence
when calculated to a finite order of perturbation theory [75,76].
Despite this, it remains in use in the literature, including in
2HDM implementations of EWBG (see, e.g., [77,78]).
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calculations; however, we find that these are manageable,
as we are not aiming to precisely calculate the strength of
phase transition, but are merely ensuring that the bound
ξ≳ 1 is satisfied.

1. Finding the critical temperature

The actual temperature at which a first-order EWPT
commences is the nucleation temperature TN , where
tunnelling between the minima occurs at a sufficient rate
for bubbles of broken phase to be nucleated. This is a
difficult quantity to precisely determine, and requires
calculation of tunneling probabilities and bubble profiles
that are beyond the scope of this analysis [79]. TC is much
easier to determine, and is a common stand-in when
analyzing first-order phase transitions, as it usually lies
just above TN .
We now describe an algorithm for finding TC. At T ¼ 0,

the global minimum of the effective potential is given by
the ASB limit φi ¼ vi, φ0

i ¼ wi where v1 ≫ v2, w2 ≫ w1,
and w2 ≫ v1. At very high temperatures, the only mini-
mum of the effective potential is at the origin. To identify a
dark first-order transition, we track the value of φ0

2 at the
minimum of Veffðφ; TÞ, denoting this quantity as w2ðTÞ.
As T increases, we observe that w2ðTÞ decreases from
w2 at T ¼ 0 until a given temperature at which it has a
sudden discontinuity and drops to the symmetric phase
where w2ðTÞ ∼ 0. The temperature at which this drop
occurs is the critical temperature TC. We take the transition
strength to be

ξ ¼ w2ðTCÞ=TC; ð35Þ

as all other background field values are much smaller than
φ0
2 at the asymmetric minimum near the dEWPT.
To find the temperature at which the drop occurs, we start

at T ¼ 0 and begin by increasing the temperature with a
large step size (on the order of w2). At each new temper-
ature T, we calculate w2ðTÞ by numerically finding the
minimum of the effective potential using the methods
provided by the coding package COSMOTRANSITIONS.
When w2ðTÞ jumps to being very small (we use the
condition that w2ðTÞ < 1 GeV), the symmetric minimum
is now the global minimum. We then decrease the step size
by an order of magnitude and begin decreasing the temper-
ature until the asymmetric minimum becomes the global
minimum again and w2ðTÞ jumps back up to a large value.
Repeating this process, we zero in with increasing accuracy
on the temperature at which there is a discontinuity in
w2ðTÞ, and we terminate the process when the step size is
small enough that the critical temperature has been deter-
mined to a desired precision.
However, when we apply this algorithm we run into an

issue: for many parameter values of interest, w2ðTÞ under-
goes not one but two discontinuities as the temperature
changes. This corresponds to the presence of a second

asymmetric minimum between the symmetric minimum
and the main asymmetric minimum in regions near the
critical temperature. This extra minimum can be seen in
Fig. 1, where we plot the effective potential as a function of
φ0
2 for a range of temperatures around the critical temper-

ature, setting φ1 ¼ φ2 ¼ φ0
1 ¼ 0. This secondary minimum

was identified in Ref. [77] as an anomalous effect due to the
presence of small or negative field-dependent particle
masses. To explain and account for the presence of this
artifact, we must address the perturbative validity of our
daisy-resummed effective potential.

2. The perturbative validity of the effective potential

In Ref. [67], the perturbative validity of the daisy
resummation scheme was discussed in the context of a
simple model involving a scalar singlet ϕ with a quartic
coupling λ. They identified an expansion parameter
λT=mðϕÞ that must be small for daisy resummation to
be valid. SincemðϕÞ ∝ jϕj, the expansion parameter will be
larger for smaller values of ϕ, and indeed it is at low values
of the background field that the anomalous minimum
appears—we suggest that its presence implies that our
perturbative calculations are not valid when background
field values are too small.
To quantify this, we need to adapt the expansion

parameter for the simple case to our more complex theory.
This was done in a two-Higgs-doublet model in Ref. [77];
their expansion parameter was of the same form as for the
simple case, with λ chosen to be largest quartic coupling in
their potential, andmðϕÞ taken to be the mass of the lightest
of the additional scalars in the Higgs sector. Their argument
for considering only the masses of the new scalars was that
these provided the dominant corrections to the one-loop
potential. In our case, we have a similar situation, where the

FIG. 1. The effective potential Veff as a function of φ0
2 for a

range of temperatures around the critical temperature at
TC ∼ 1500 GeV. The other background fields have been set to
φ1 ¼ φ2 ¼ φ0

1 ¼ 0. The potentials at different temperatures have
been vertically translated such that they coincide at the origin in
order to more clearly illustrate the anomalous behavior of Veff for
small values of φ0

2.
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heavy additional scalars—A0
1, A

0
2, J

0
1, J

0
2, H

�, and H�0—
give the strongest contributions to the effective potential.
So, by analogy, we define the perturbative expansion
parameter ϵ for our model to be

ϵ≡ maxðziÞT
minðmjðφÞÞ

; ð36Þ

where zi is any of the fourteen quartic couplings in
VM2HDM, and j counts over the heavy scalar species listed
above.
So, for a given value of T, and with φ1 ¼ φ2 ¼ φ0

1 ¼ 0,
there is a specific value of jφ0

2j at which ϵ ¼ 1, which we
call the perturbative boundary. For values of jφ0

2j below
this, the expansion parameter will be greater than one and
we can not trust the perturbative techniques used to
calculate Veffðφ; TÞ. To account for this, we adjust the
algorithm to find the temperature at which w2ðTÞ drops
discontinuously not to a value close to zero, but to a value
below this perturbative boundary. This gives only an
estimate for TC, as we cannot measure the true critical
temperature directly if we do not trust the effective potential
at the origin. However, as noted before, we are not looking
to calculate the specific value of the strength; as we are only
identifying phase transitions satisfying the condition ξ≳ 1,
our new method for calculating TC is sufficiently accurate
for our purposes.

C. Results

We begin our search for a strong dark electroweak phase
transition at a parameter point given by Table III. This
corresponds to the parameter selection from the original
paper that we considered in Sec. II, but with z1 and z2 each
increased by a factor of two to account for an erratum in
Ref. [25]. These values provide a good starting point as
they satisfy all conditions from Sec. II, producing an
asymmetric symmetry breaking minimum with v ¼
246 GeV and w ¼ 7276 GeV. We also note that we set
yh2 ¼ 1 and do not change this throughout the search. This
is due to considerations from Sec. IV, where we require

Oð1Þ dark Yukawa couplings to generate a sufficient
asymmetry.
The phase transition at this parameter point is second-

order. In the following sections, we alter these parameters
to find regions of parameter space in which the dark
electroweak phase transition is strongly first-order. We
identify a number of qualitatively different regions for
which this is possible, guided by considerations from
Sec. IV in which extra requirements are placed on the
VEVs and particle masses of the scalar sector to ensure the
feasibility of certain portal interactions.

1. Decreasing the mass of the dark Higgs boson

In the standard model the EWPT is expected to be first-
order for small values of the Higgs mass [62]. So, we adjust
our parameters such that the dark Higgs mass m0

h is
reduced: the relevant coupling to consider is z2. To keep
w the same when z2 is altered, we set m22

2 ¼ − 1
2
z2w2. In

Fig. 2, we plot the strength of the phase transition, ξ, in red
for small values of z2. As expected, for low values of z2 the
dEWPT is sufficiently strong, and gets stronger as z2 gets
smaller. This general behavior remains true for both and the
Parwani and Arnold-Espinosa resummation procedures—
given by the left-hand and right-hand plots, respectively—
with the latter method producing slightly stronger
transitions for the same value of z2. In the same figure
we also plot the value of the perturbative expansion
parameter ϵ at the critical temperature in blue. Since we
can only trust our calculation of Veffðφ; TÞ for ϵ < 1, we
only extend the graph until the value of z2 at which ϵ
becomes too large. The inverse relationship between ϵ and
ξ implies that our perturbative methods are most reliable
when the phase transition is very strong, which allows us to
be confident in our results in the relevant regions of
parameter space.

2. Increasing the dark electroweak scale

We now explore what happens when we alter the dark
electroweak scale w. This is motivated by the upcoming
discussion in Sec. IV, where varying the dark electroweak
scale gives us greater freedom in choosing portal inter-
actions. From now on we follow the lead of the original
paper and work primarily with the quantity ρ≡ w=v. Since
the value of v is fixed by the VEVof the SM Higgs boson,
we have that w ¼ ð246ρÞ GeV.
When we increase ρ, the only necessary change to make

to the parameters of Table III to satisfy the constraints of
Sec. II is to decrease z14. For ρ ¼ 1000, we set
z14 ¼ 1 × 10−4. As before, we calculate the strength and
expansion parameter of the phase transition for small z2;
these are shown in Fig. 3, and are qualitatively very similar
to the results of Fig. 2, where ρ ¼ 30. So, for a given
selection of quartic couplings, altering ρ has minimal effect
on the strength of the phase transition.

TABLE III. The initial parameter selection for the scalar
potential VM2HDM at which we start the search of the parameter
space.

Parameters Values

m11
2 −ð87 GeVÞ2

m12
2 −ð90 GeVÞ2

m22
2 −ð2600 GeVÞ2

z1, z2 0.258
z3, z8, z9, z10 0.8
z4, z5, z6, z7, z11, z13, z14 0.01
z12 1 × 10−8
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3. Decreasing the masses of the additional scalars

In these regions of parameter space, while the small
values of z2 lower the mass of the dark Higgs boson h0, the
additional scalars—A0

1, A
0
2, J

0
1, J

0
2, H

�, and H�0—remain
heavy. This allows for the FCNC constraints to be met;
however, the lepton portal interactions in Sec. IV require
these heavy scalars to be in thermal equilibrium, and
thus they must have masses lower than the critical temper-
ature of the dark electroweak phase transition, TC. This
cannot be achieved with the parameter selections we have
identified so far. For example, consider a strong first-order
dEWPT phase transition at which z2 ¼ 0.02, ρ ¼ 30,
m22

2 ¼ − 1
2
z2w2, and all other parameters are given as in

Table III. At this parameter point we have a strong-
first order transition with ξ ¼ 2.2 and TC ¼ 1715 GeV,
while the heavy scalar masses range between 4500 and
4800 GeV; so, we must identify new regions of parameter
space for these masses to lie under TC.
The masses of the additional scalars depend primarily on

z3 and z9, so we must reduce these parameters. However, to
maintain an asymmetric symmetry breaking structure for
the scalar potential, we must satisfy the constraint that
z3; z8; z9 ≫ z6; z7; z11; z13; z14. To roughly achieve both
requirements in way that can be easily parametrized, we
divide all scalar couplings zi (with i counting from 3 to 14)
by a scaling factor k. This leaves z1 and z2 unchanged—z1

FIG. 2. Plots of the phase transition strength ξ (triangles) and perturbative expansion parameter ϵ (squares) at the critical temperature
for different values of the quartic coupling z2. The left-hand plot uses the Parwani daisy resummation scheme, and right-hand plot uses
the Arnold-Espinosa resummation scheme. These values are calculated for ρ ¼ 30 and yh2 ¼ 1. Other unspecified parameters of the
scalar potential are as described in the text.

FIG. 3. Plots of the phase transition strength ξ (triangles) and perturbative expansion parameter ϵ (squares) at the critical temperature
for different values of the quartic coupling z2. The left-hand plot uses the Parwani daisy resummation scheme, and right-hand plot uses
the Arnold-Espinosa resummation scheme. These values are calculated for ρ ¼ 1000 and yh2 ¼ 1. Other unspecified parameters of the
scalar potential are as described in the text.

ALEXANDER C. RITTER and RAYMOND R. VOLKAS PHYS. REV. D 104, 035032 (2021)

035032-12



must remain fixed to preserve the tree-level mass of the
visible Higgs boson at the standard model value of
125 GeV, and we vary z2 independently from k to find
parameter points for which the phase transition is strongly
first-order and the additional scalars are sufficiently light.
As the additional scalars are now lighter, we have a

potential conflict with the FCNC constraints. We can avoid
this concern by working in regions with large values of ρ, as
the higher dark electroweak scale w raises both the critical
temperature and the masses of the additional scalars. This
allows these masses to be large enough to suppress the
FCNCs while still being smaller than the temperature of
the dEWPT.
For our search we choose ρ ¼ 300; this necessitates that

prior to being divided by the scaling factor k, z14 is set to
1 × 10−3. The eleven scalar couplings from z3 to z13 again
have their values before scaling given by those from
Table III. We vary the scaling factor k from 1 up to 75,
and work in a region of very small values for z2 given by
5 × 10−4 ≤ z2 ≤ 5 × 10−3. The results of this scan are
given in Fig. 4, where all calculations are performed using
both the Parwani and Arnold-Espinosa daisy resummation
schemes. The left-most column of figures gives the value of
the ratio TC=MH, where TC is the critical temperature of the
dEWPT and MH is the mass of the heaviest additional

scalar. Regions in white have TC=MH < 1, indicating
parameter selections for which the additional scalars are
not lighter than the dEWPT temperature. The middle
column of figures show the strength of the phase transition;
here, white regions indicate that ξ < 1, and thus give
parameters for which the phase transition is not sufficiently
strong. The final column of figures give the perturbative
expansion parameter ϵ at TC. The black regions of these
plots correspond to ϵ > 1, and thus indicate regions where
we cannot trust the calculations at the critical temperature.
So, the valid parameter points in this region of parameter
space are those that are not contained in any of these
forbidden regions.
These results display some features that we expect to see,

and some that are more curious. Increasing the scaling
factor k allows for the masses of the additional scalars to be
below the critical temperature; decreasing z2 both strength-
ens the phase transition and increases the validity of the
perturbative expansion, as expected. However, there are
notable artifacts in our results: points where the perturba-
tive expansion parameter unexpectedly becomes large
again for low values of z2. While similar features occur
when using both daisy resummation schemes, they do not
occur at the same parameter points, so we take them to be
anomalous effects.

FIG. 4. Plots of the ratio of the critical temperature TC and heaviest additional scalar mass MH (left-most column), phase transition
strength ξ (middle column), and perturbative expansion parameter ϵ at the critical temperature (right-most column) for parameter points
with a varying scalar coupling z2 and scaling factor k. The upper (lower) plot in each column corresponds to calculations using the
Parwani (Arnold-Espinosa) daisy resummation scheme. These values were calculated for ρ ¼ 300 and yh2 ¼ 1. Other unspecified
parameters of the scalar potential are as described in the text.

IMPLEMENTING ASYMMETRIC DARK MATTER AND DARK … PHYS. REV. D 104, 035032 (2021)

035032-13



4. Summary of results

In this section we identified a number of regions of
parameter space for which the dark electroweak phase
transition is strongly first-order, providing the out-of-
equilibrium dynamics that allow for electroweak baryo-
genesis to occur in the dark sector. To summarize these
results, in Table IV we give an example parameter selection
for each region, along with a link to the subsection in which
that region was motivated. To keep the results concise, we
only state the parameters of VM2HDM that differ from those
listed in Table III, noting that m2

22 is given by − 1
2
z2ðvρÞ2.

The exception to this is when the scaling factor k is
increased. Then, the quoted values of all parameters from
z3 to z14 must be reduced by this scaling factor, with the
value of z14 given prior to scaling. For each parameter point
we list the strength of the phase transition as well as two
parameters relevant to the discussions of the following
section: the critical temperature TC and heaviest scalar
mass MH.

IV. ASYMMETRY REPROCESSING

Following electroweak baryogenesis at the dark electro-
weak phase transition, asymmetries are produced in the
dark particle numbers B0 and/or L0. In this section we
briefly discuss the generation of these asymmetries and
investigate the cross-sector portal interactions through
which these asymmetries may be transferred to the visible
sector. Our goal is to transfer the asymmetries in such a way
that we reproduce the 5∶1 ratio between the present-day
cosmological mass densities of visible and dark matter,
ΩDM ≃ 5ΩVM, where ΩX ¼ nXmX=ρc. Since both visible
and dark matter are predominantly comprised of stable
baryonic matter, then nVM and nDM are proportional to the
net baryon numbers B and B0 and mVM and mDM are
proportional to the confinement scales ΛQCD and ΛDM. We
can then recast the mass density relationship as

B0

B
ΛDM

ΛQCD
≃ 5: ð37Þ

In the original paper [25], the thermal leptogenesis
mechanism produced equal baryon asymmetries between
the two sectors, and so only the relative sizes of the
confinement scales could reproduce the ratio. As the
standard model confinement scale ΛQCD ∼ 200 MeV, this
required ΛDM ∼ 1 GeV. In our work, the transfer of baryon
asymmetry from the visible sector to the dark sector can
produce a range of different values for the ratio B0=B, and

thus allow for greater variance in ΛDM. However, we
require that ΛDM > ΛQCD, as this is necessary to lower
the temperature of the dark sector relative to the visible
sector and satisfy bounds from big bang nucleosynthesis.
So, the asymmetry reprocessing must be able to produce a
baryon number ratio satisfying

B0

B
≲ 5: ð38Þ

Directly after the dEWPT phase transition, the initial
conditions are B;L ¼ 0 and B0; L0 ≠ 0, with the initial dark
particle asymmetries determined by the specifics of dark
EWBG. In this paper we consider dark EWBG proceeding
solely through CP-violating Yukawa interactions involving
the dark Higgs doublet H0

1. We do not provide a full
calculation of the asymmetry generation, but show that this
new source of CP violation can readily reproduce a
sufficiently large dark asymmetry if at least one dark
Yukawa coupling is Oð1Þ. Since we do not investigate
the specifics of the asymmetry, we leave the initial
asymmetry in B0 and L0 as free parameters. Their relative
sizes can then be restricted by the condition Eq. (38).
In this section we analyze the asymmetry transfer by

working with chemical potentials, where for a relativistic
species i, its chemical potential μi is related to its number
density asymmetry (for jμij ≪ T) by

ni − n̄i ¼
giT3

6

�
βμi; ðfermionsÞ
2βμi; ðbosonsÞ ð39Þ

where gi is the multiplicity of the particle species and β ¼
1=T [80]. At a given temperature, constraints on these
potentials arise from the reactions that are in thermal
equilibrium. If there are fewer constraints than chemical
potentials, then there is a conserved charge associated with
each free parameter, and we can determine the ratio B0=B in
terms of the initial values of the conserved charges.
We consider cross-sector effective operators that con-

serve a total particle number—that is, some combination of
particle numbers from each sector—to avoid the washout of
the initial dark asymmetries. There is no restriction on
whether viable operators need to involve just leptonic
species, just baryonic species, or both, in either sector.
However, operators involving just leptonic species in the
visible sector must be active prior to the vEWPT to allow
electroweak sphaleron reprocessing to generate a visible
baryon asymmetry.

TABLE IV. Example parameter points for each of the regions of parameter space discussed in the sections indicated in the first column.

Section z2 z14 k ρ ξ TC [GeV] MH [GeV]

III C 1 0.01 0.01 1 30 2.7 1.5 × 103 4.8 × 103

III C 2 0.02 0.0001 1 1000 2.6 5.0 × 104 1.6 × 105

III C 3 0.0035 0.001 25 300 2.3 1.7 × 104 8.8 × 103
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A. CP violation and asymmetry generation

We begin by briefly discussing the generation of the dark
baryon asymmetry through electroweak baryogenesis at the
dark electroweak phase transition. In this work we take the
source of CP violation to be the “dark CKM matrix,”

WCKM ¼ Wu
LW

d†
L ð40Þ

whereWu
L,W

d
L are the left-handed diagonalization matrices

for the dark quark mass matrix as given in Eq. (18). This
mirrors the implementation of EWBG in the minimal
standard model, where CP violation is only present in
the SM CKM matrix.
We note that this differs from the standard approach to

electroweak baryogenesis in two-Higgs-doublet models,
where the complex terms in the scalar potential provide the
new source of CP violation. In this work we take the scalar
potential to be real, and so do not consider this possibility;
however, it is a valid alternative that is worth exploring.
Complex scalar couplings would indeed provide a strong
source of CP violation, while also altering the scalar mass
spectrum of the theory and potentially contributing sizable
electric dipole moments.
In the minimal SM implementation of electroweak

baryogenesis, the CP violation in the CKM matrix is
insufficient to generate the required asymmetry [63,81].
The standard rough argument presented in the literature is
that the size of CP violation in the CKM matrix can be
characterized by the invariant

dCP ¼ Jðmt
2 −mu

2Þðmt
2 −mc

2Þðmc
2 −mu

2Þ
× ðmb

2 −md
2Þðmb

2 −ms
2Þðms

2 −md
2Þ; ð41Þ

where J ∼ 10−5 is the Jarlskog invariant and mq are the
quark masses. In order to make a comparison to the baryon
asymmetry, we consider the dimensionless parameter

δCP ¼
dCP
T12

ð42Þ

whereT is taken to be 100GeV, the typical temperature scale
of electroweak baryogenesis. This then gives δCP ∼ 10−20,
far smaller than the baryon asymmetry η ∼ 10−10.6

The CP violation in the dark CKM matrix is charac-
terized by a similar invariant d0CP which we now write as

d0CP ¼ J0
�
vρffiffiffi
2

p
�

12Y
i>j

ðy2u0i − y2u0j
Þðy2d0i − y2d0j

Þ; ð43Þ

where J0 is the Jarlskog invariant for the dark CKM matrix
and ỹq0i is the Yukawa coupling of the dark quark q0i with
generation index i ∈ f1; 2; 3g. We then consider the
dimensionless parameter

δ0CP ¼
d0CP
T 012 ð44Þ

where T 0 is the relevant temperature scale for dark EWBG,
which we take to be TC, the critical temperature of
the dEWPT.
As there are no observational constraints on the values

of the dark CKM matrix, we are able to alter J0 and the
dark Yukawa couplings. We consider ρ and TC values given
by the parameter points from Sec. III C. Using the SM
values for the Jarlskog invariant and Yukawa couplings,
we obtain δ0CP ∼ 10−17. However, taking J0 to be 10−1, and
increasing yd0

3
and yu0

2
each by a factor of 10, we then obtain

δ0CP ∼ 10−7. So, given the freedom we have in the dark
CKM matrix, this naive estimate suggests that we can
readily achieve sufficient CP violation to generate a large
dark baryon asymmetry as long as at least one Yukawa
coupling is Oð1Þ. This is the only restriction we apply as a
result of this discussion; it informed our choice of param-
eter points in Sec. III, and will inform our discussion in the
remainder of this section.
As with any new source of CP violation, the main

phenomenological consideration is its effect on various
electric dipole moments. The CP violation in the dark
CKM matrix generates EDMs for the dark electron and
neutron similarly to the SM contributions to the visible
electron and neutron EDMs. In the SM these contributions
arise at a high loop order and are many orders of magnitude
smaller than the current experimental limits [83,84]. In the
dark sector, the dominant diagrams that contribute to the
dark EDMs could differ slightly—depending on the dark
Yukawa coupling structure—but we expect them to pro-
duce similar contributions. The main enhancement to the
dark sector EDM contributions will come from the larger
Jarlskog invariant we are assuming, which is at most an
increase of around four orders of magnitude.
However, we have no constraints on the dark EDMs,

and so can only consider the extra contribution they may
provide to the visible EDMs. The EDMs for the dark
electron and neutron will produce EDMs for their visible
counterparts through diagrams involving mixing between
the sectors. This will generically introduce large suppres-
sion factors: for example, any diagram involving photon-
dark photon mixing will be suppressed by the kinetic
mixing parameter ϵ which is constrained by experiment
[85] to be smaller than 1.55 × 10−7. Other forms of mixing
between sectors—say by the cross-sector portal

6The validity of this naive argument has been questioned [82],
as it treats the Yukawa interactions as perturbations at
T ∼ 100 GeV. For quarks with momentum p ∼mq, this estimate
will not be valid and a larger asymmetry may be realized.
However, this effect was found to be largely suppressed by
the damping of the quarks into the plasma after their reflection off
the bubble wall [63]. These more detailed analyses of CP
violation in the SM did indeed find very small asymmetries
close to 10−20.
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interactions we will consider later in this section—
will provide less drastic suppression factors, but
will nevertheless only suppress the visible EDM
contributions, not enhance them. Additionally, to avoid
kinetic mixing in these diagrams, one must introduce extra
loops involving charged visible particles, further reducing
these terms. Taken all together, we then argue that the
additional CP violation in the dark CKM matrix will only
provide negligible contributions to the observable vis-
ible EDMs.

B. Chemical equilibrium conditions

Before addressing any specific cross-sector portal inter-
actions, we list the general chemical potential constraints
that hold separately in each sector. We also discuss the
temperatures at which these interactions will be in thermal
equilibrium.

1. The visible sector

For the effective operatorswe consider later in this section,
the asymmetry transfer will occur before the vEWPT. We
assign chemical potentials to the Higgs doubletsΦa, the left-
handed lepton doublets liL, the right-handed leptons eiR,
the left-handed quark doublets qiL, and the right-handed
quarks uiR and diR,

7 where a ¼ 1, 2 and i ¼ 1, 2, 3 are
generation indices. We choose to work in the diagonal
Yukawa basis for the quark fields as in Eq. (18); thus
Cabibbo mixing between left-handed quarks of different
generations implies that μq1L ¼ μq2L ¼ μq3L ≡ μqL .

8 When
both Higgs doublets are in thermal equilibrium, mixing
between them sets μΦ1

¼ μΦ2
≡ μΦ.

When in thermal equilibrium, Yukawa interactions
provide the following restrictions [80]:

μqL þ μΦ − μuiR ¼ 0; μqL − μΦ − μdiR ¼ 0;

μliL − μΦ − μeiR ¼ 0: ð45Þ

There are also restrictions from sphaleron processes—
above the vEWPT transition, both electroweak and
QCD sphalerons will be in equilibrium, leading to the
conditions [86,87]

9μqL þ
X3
i¼1

μliL ¼ 0; 6μqL −
X3
i¼1

ðμuiR þμdiRÞ¼ 0: ð46Þ

The final condition to consider above the EWPT is the
hypercharge neutrality of the universe, which gives the
relation

2NΦμΦþ3μqL þ
X3
i¼1

ð2μuiR −μdiR −μliL −μeiRÞ¼ 0; ð47Þ

whereNΦ is the number of Higgs bosons that are in thermal
equilibrium.
While hypercharge neutrality applies at all temperatures

above the vEWPT, the other relations quoted above only
apply when the interaction is in thermal equilibrium.
Above the vEWPT temperature, both sphaleron processes
are in thermal equilibrium for all temperatures T <
1012 GeV [80]. For a Yukawa interaction with dimension-
less coupling λ, the approximate rate Γ ∼ λ2T implies that
a given Yukawa interaction is in equilibrium for
T ≲ λ21016 GeV. Lighter fermions thus enter thermal
equilibrium at lower temperatures.
Finally, we give the combinations of chemical potentials

that correspond to the visible baryon and lepton numbers, B
and L ¼ P

3
i¼1 Li:

B ↔ 6μqL þ
X3
i¼1

ðμuiR þ μdiRÞ;

Li ↔ 2μliL þ μeiR : ð48Þ

C. The dark sector

In the dark sector we only consider asymmetry transfer at
temperatures below the dEWPT. At this transition, the W�0
gauge bosons will become massive and initially gain a
chemical potential; thus, we assign a different chemical
potential for each field in a doublet. Due to the parity
symmetrybetween thevisible anddark sectors, thesedoublets
will be right-handed, and we define their field content by

q0iR¼
�
u0iR
d0iR

�
; l0iR¼

�
ν0iR
e0iR

�
; Φ0

jR¼
�ϕþ

j
0

ϕ0
j
0

�
; ð49Þ

where i and j are generation indices. We assign a chemical
potential to each of these fields, as well as to the left-handed
leptons e0iL and left-handed quarks u

0
iL and d

0
iL. Herewework

in the diagonal Yukawa basis for the dark quarks9 and thus
Cabibbo mixing sets μu0

1R
¼ μu0

2R
¼ μu0

3R
≡ μu0R and μd0

1R
¼

μd0
2R
¼ μd0

3R
≡ μd0R . If both Higgs doublets are in thermal

equilibrium, mixing between them sets μϕþ
1
0 ¼ μϕþ

2
0 ≡ μϕþ0

7Note that each doublet only receives one chemical potential.
This is due to weak interactions involving the W� gauge bosons,
which are massless above the scale of electroweak symmetry
breaking and thus have μW� ¼ 0.

8PMNS mixing would imply an equivalent relationship for
left-handed leptons. However, as we do not specify a neutrino
mass generation mechanism in this work, we keep the analysis
general by maintaining independent chemical potentials for left-
handed leptons of different generations, as in Refs. [38,39].

9In this basis the dark fields we assign chemical potentials to
are not the mirror partners of the visible fields that are assigned
potentials. Thus, when we refer to dark fermion generations and
flavors, we are not referring to the mirror counterparts of the
visible fermion generations. Instead, the “dark top” and “dark
bottom” quarks, for example, refer to the most massive dark
quarks with dark electric charge þ2=3 and −1=3, respectively.
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and μϕ0
1
0 ¼ μϕ0

2
0 ≡ μϕ0 0 . The formation of a vacuum conden-

sate of ϕ0 bosons also sets μϕ0 0 ¼ 0 [88].
Below the dEWPT, all dark particles are now massive.

So, at temperatures below a particle’s mass, Boltzmann
suppression leads the reactions which involve it to fall out
of thermal equilibrium. If the particle is unstable, it then
decays into other species, sending its chemical potential to
zero. We thus will not consider the chemical potential of
species that fall out of equilibrium. In the dark sector, this
will always apply to the W�0 gauge bosons, as for all the
parameter selections in Sec. III, they will be more massive
than the phase transition temperature TC, and thus will
swiftly fall out of thermal equilibrium below the dEWPT.10

With independent chemical potentials for the fields in
each doublet, the Yukawa interactions provide twice as
many constraints:

μu0R þ μϕ0 0 − μu0iL ¼ 0; μd0R − μϕ0 0 − μd0iL ¼ 0;

μe0iR − μϕ0 0 − μe0iL ¼ 0; μd0R þ μϕþ0 − μu0iL ¼ 0;

μu0R − μϕþ0 − μd0iL ¼ 0; μν0iR − μϕþ0 − μe0iL ¼ 0: ð50Þ
Below the dEWPT the dark electroweak sphaleron process
is strongly suppressed while the dark QCD sphaleron
remains active down until the dark quark-hadron phase
transition and provides the constraint:

3ðμu0R þ μd0RÞ −
X3
i¼1

ðμu0iL þ μd0iLÞ ¼ 0: ð51Þ

Even though the W�0 bosons are too heavy for gauge
interactions with on-shell W�0 to be in equilibrium, they
can act as a mediator for four-lepton and four-quark
interactions. We only consider the four-lepton interactions
e0iR þ ν̄iR

0 → e0jR þ ν̄jR
0, as the four-quark interactions

involve dark right-handed quark fields that already have
equal chemical potentials between generations and thus
introduce no new constraints. A reaction mediated by a
massive gauge boson of mass m is in thermal equilibrium
for T ≳ ðm=100 GeVÞ4=3 MeV [89]. So, for even the
largest values of mW�0 that we consider, these interactions
are in thermal equilibrium from at least T ¼ 1 GeV. This is
far below the temperature ranges we are interested in, so the
four-lepton reactions provide the additional constraints:

μe0iR − μν0iR − μe0jR þ μν0jR ¼ 0: ð52Þ

Below the dEWPT, dark hypercharge is broken to dark
electric charge Q0. The dark charge neutrality of the
universe then enforces [88]:

6μu0R −3μd0R þ2NΦ0μϕþ0 þ
X3
i¼1

ð2μu0iL −μd0iL −μe0iR −μe0iLÞ¼0;

ð53Þ
where NΦ0 is the number of dark Higgs doublets in thermal
equilibrium.
Lastly, we state the chemical potentials combinations

that correspond to the dark baryon and lepton numbers, B0

and L0 ¼ P
3
i¼1 L

0
i:

B0 ↔ 3ðμu0R þ μd0RÞ þ
X3
i¼1

ðμu0iL þ μd0iLÞ;

L0
i ↔ μe0iR þ μν0iR þ μe0iL : ð54Þ

D. The neutron portal

The neutron portal operators are dimension-9 quark
interactions involving one singlet up-type and two singlet
down-type quarks from each sector, for example:

1

M5
ū d̄ d̄ u0d0s0 þ H:c: ð55Þ

where we have simplified our notation by defining u≡ u1R,
d≡ d1R, u0 ≡ u01L d0 ≡ d01L, and s0 ≡ d02L. This specific
neutron portal operator11 was already considered in the
original paper [25] in the context of satisfying bounds on
dark radiation from big bang nucleosynthesis. Satisfying
these phenomenological constraints is a vitally important
aspect of the original model; thus, we briefly review and
summarize the mechanism by which this is achieved, and in
so doing motivate the neutron portal as the asymmetry
transfer mechanism.

1. Dark radiation and thermal decoupling

The presence of dark relativistic degrees of freedom is a
generic feature of ADM models that faces strong con-
straints from BBN and CMB measurements. These con-
straints can be satisfied if the temperature of the dark sector
is sufficiently less than that of the visible sector at the time
of BBN; to achieve this, the original paper considered a
situation where the two sectors decouple between the
visible and dark confinement scales (also see Ref. [18]).
In this temperature region, the dark quark-hadron phase
transition has taken place and dark-color confinement
reduces the number of dark degrees of freedom. This
allows for a large transfer of entropy from the dark to
the visible sector while they are still in thermal equilibrium,
causing the dark sector to cool at a faster rate than the

10Although μW�0 ¼ 0, the fields in each doublet do not need to
have equal potentials as in the visible sector. This is because the
W�0 bosons have fallen out of thermal equilibrium and so the
weak interactions that related the relevant chemical potentials
have now frozen out.

11We note the flavor structure of this operator, involving u0, d0,
and s0 quarks in the dark sector. If this portal instead involved one
u0 and two d0 quarks, then the dark neutron would be unstable to
decay into visible neutrons. As the dark neutron comprises the
dark matter in the dark sector, we cannot permit this to occur.
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visible sector and leading to the necessary temperature
difference between the sectors.
For this process to naturally take place, there must be

interactions that maintain thermal equilibrium between the
visible and dark sectors down to a decoupling temperature
between the two confinement sectors, Tdec ∼ 1 GeV. While
it is not the only suggestion given for this interaction, the
neutron portal of Eq. (55) is the most promising candidate
proposed in the original paper; once the dark quarks
become confined into hadrons, they can decay through
the neutron portal into unconfined visible quarks, naturally
providing the mechanism through which to transfer entropy
between the sectors. This portal also allows for the
apparently fine-tuned decoupling temperature Tdec to arise
naturally; the large masses for the dark hadrons—gained
below the dark quark-hadron phase transition by dark QCD
confinement—cause these particles to become Boltzmann
suppressed, thus decoupling the neutron portal interaction
in the desired temperature range.

2. Thermal equilibrium

The approximate rate of the neutron portal interaction
is Γ ∼ T11=M10. Comparing this to the expansion rate
H ∼ T2=mPl, we find that the interaction is in thermal
equilibrium for the temperature range

M > T >

�
M10

mPl

�1
9

: ð56Þ

where the upper bound is from the region of validity of the
effective field theory. The lower bound only applies if all
quarks involved in the portal interaction have masses below
the lower bound temperature; otherwise, the heaviest quark
involved in the portal (of mass mq) becomes Boltzmann
suppressed for T < mq and the interaction falls out of
thermal equilibrium.
In this section, we perform a simplified analysis in which

we only consider neutron portals active at temperatures
above the vEWPT temperature. This captures some of the
general properties of the asymmetry transfer that this portal
can achieve. However, we also lose the strong motivation
from the thermal decoupling considerations, as these
require neutron portals to be active down to the quark-
hadron phase transition, well below the vEWPT temper-
ature.12 Analyzing the asymmetry transfer down to this

level of around 1 GeV introduces a large number of
difficulties, which we outline in Sec. V.
To find a neutron portal that operates in this temperature

range, we either take M to be large enough that
ðM10=mPlÞ1=9 > TC, where TC ∼ 200 GeV is the critical
temperature of the vEWPT; or, we choose a flavor structure
for the specific portal operator such that it involves at least
one dark quark species with a mass greater than the vEWPT
temperature. Given the freedom we have in choosing the
dark quark masses, the latter case is easy to implement; for
example, for ρ ∼ 50 a dark quark with a Yukawa coupling
on the order of the bottom quark coupling has a mass over
200 GeV.

3. Equilibrium conditions

The additional chemical potential constraint due to the
neutron portal operator of Eq. (55) is given by

μu þ 2μd − μu0 − μd0 − μs0 ¼ 0: ð57Þ

Similar constraints arise from neutron portal operators with
different flavor structures. We note that when all Yukawa
interactions involving non-Boltzmann suppressed quarks
are in thermal equilibrium, the right-handed visible singlet
quarks (uiR, diR) and the left-handed dark singlet quarks
(u0iL, d0iL) have equal chemical potentials between the
various generations, and so the final value for B0=B does
not depend on the specific flavor structure of the operator.
In the visible sector, the electron is in thermal equilib-

rium for T ≲ 105 GeV, and so for temperatures below
105 GeV all visible Yukawa interactions are in equilibrium
in addition to the electroweak and QCD spahlerons.
Assuming that the mass of the additional heavy scalars
is above 105 GeV,Φ2 will have fallen out of equilibrium by
the temperatures of interest and so for the hypercharge
neutrality condition Eq. (47) we set NΦ ¼ 1.
In the dark sector, the dark quarks are massive and thus

have the potential to become Boltzmann suppressed in our
temperature range of interest. As we have at least oneOð1Þ
dark Yukawa coupling, the heaviest dark quark has a mass
greater than the dEWPT temperature, and so falls out of
thermal equilibrium by the temperature at which the portal
is active. So, all dark sector Yukawa constraints will apply,
except for the Yukawa interaction involving the dark top
quarks. The charge neutrality and QCD sphaleron con-
ditions must also be altered by removing the chemical
potentials associated with the top quarks—that is, removing
the μu0

3L
terms entirely and reducing the μu0R terms by a

factor of 1=3. We similarly alter the definition of B0.
Similarly to the visible sector, we set NΦ0 ¼ 1 in the charge
neutrality condition.
There are 6 unconstrained chemical potentials, corre-

sponding to six conserved charges. Not considering the
portal interaction, the conserved charges in each sector are
given by B=3 − Li for the visible sector and B0 and L0

i for

12The high-scale neutron portal we consider here can still be
possible in this model if one of the other interactions from the
original paper is implemented to maintain thermal equilibrium
below the vEWPT temperature. The CP-odd Higgs-mediated
interactions, for example, could fulfill this role as they do not
violate lepton or baryon number within a given sector, and so
could maintain thermal equilibrium down to the decoupling
temperature without affecting the asymmetry transfer.
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the dark sector. As the portal conserves Bþ B0, the six
conserved charges will then be given by:

L1 ¼
1

3
ðBþ B0Þ − L1; L4 ¼ L0

1;

L2 ¼
1

3
ðBþ B0Þ − L2; L5 ¼ L0

2;

L3 ¼
1

3
ðBþ B0Þ − L3; L6 ¼ L0

3: ð58Þ

The various particle numbers in the two sectors can then
be expressed as a linear combination of these conserved
charges, as per

B ¼
X6
i¼1

aiLi; L ¼
X6
i¼1

biLi;

B0 ¼
X6
i¼1

ciLi; L0 ¼
X6
i¼1

diLi: ð59Þ

Solving the linear system of chemical potential constraints
then allows us to calculate the values of the coefficients in
these expressions. As an example, we give the results of
this calculation in Table V.
To obtain the final ratios of particle numbers, we simply

specify the initial conditions for the particle asymmetries.
For example, we may assume that we start only with an
asymmetry in dark baryon number B0, and call this
value X. Then, the only nonzero conserved charges are
L1 ¼ L2 ¼ L3 ¼ X=3, and we obtain

B ¼
X3
i¼1

aiX
3

; L ¼
X3
i¼1

biX
3

;

B0 ¼
X3
i¼1

ciX
3

; L0 ¼
X3
i¼1

diX
3

: ð60Þ

Although we can now directly calculate B0=B from these
results, that only gives the ratio of particle numbers directly
after the portal falls out of thermal equilibrium. As this
occurs at a temperature that is still above the visible
electroweak phase transition, B is violated by the visible

electroweak sphaleron process. B − L is preserved, how-
ever, and we can relate it to B after the freeze-out of the
neutron portal operation by the standard relationship [80]

B ¼ 28

79
ðB − LÞ: ð61Þ

Below the visible electroweak phase transition, B is
conserved, and the ratio between the final baryon numbers
B0
f and Bf is given by

B0
f

Bf
¼ 79

28

B0

B − L

¼ 79

28

c1 þ c2 þ c3
a1 þ a2 þ a3 − b1 − b2 − b3

: ð62Þ

4. Results

The results for the neutron portal are given in Table VI.
We note that the ratio satisfies the rough condition of
Eq. (38) that B0=B≲ 5, ensuring that the dark confinement
scale lies above the visible confinement scale. From
Eq. (37), and taking ΛQCD ∼ 200 MeV, we can also
calculate the dark confinement scale ΛDM. This then allows
us to restrict the permissible values of ρ, as given in the last
column of the table. This restriction is determined from
Fig. 1 in the original paper [25], which plots ΛDM against ρ
for a selection of different choices for the spectrum of
Yukawa couplings to Φ2. For the given value of ΛDM, we
can only choose values of ρ for which the necessary
Yukawa spectrum matches the requirement that yh2 ¼ 1.
We note that in this simplified analysis, the neutron portal
successfully reprocess the asymmetries for smaller values
of ρ, due to the requirements on the dark Yukawa
couplings.

E. The lepton portal

The effective interaction mediating this portal involves a
lepton doublet and a Higgs doublet from each sector, and is
given by

1

Mab
l̄iLΦc

al0jRΦ0
b þ H:c: ð63Þ

where the indices i, j ¼ 1, 2, 3 and a, b ¼ 1, 2 specify the
lepton generation and Higgs doublet number, respectively.

TABLE V. The values of the coefficients defined in Eq. (59).

i ai bi ci di

1 476
1959

−289
653

158
5877

0

2 476
1959

−289
653

158
5877

0

3 476
1959

−289
653

158
5877

0

4 −56
5877

−34
1959

158
5877

0

5 −56
5877

−34
1959

158
5877

0

6 −56
5877

−34
1959

158
5877

1

TABLE VI. The results for the neutron portal. B0
f=Bf is the

final ratio of B0 to B following the asymmetry transfer, ΛDM is the
dark confinement scale then required to reproduce the 5∶1 ratio of
dark and visible mass densities, and ρ gives the possible ratios of
electroweak scales for which this value of ΛDM is achievable.

B0
f=Bf ΛDM ρ

1.29 0.77 GeV ≲100
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These interactions allow for neutrino mass terms after
electroweak symmetry breaking; the Higgs doublets gain
VEVs given by hΦai ¼ va=

ffiffiffi
2

p
and hΦ0

bi ¼ wb=
ffiffiffi
2

p
and a

mass term is produced with

mν ¼
vawb

2Mab
: ð64Þ

The observational data for neutrino masses give an upper
bound of mν ≲ 0.12 eV [4]. This translates to a lower
bound on Mab given by

Mab ≳ vawb

0.5 eV
ð65Þ

1. Thermal equilibrium

The approximate rate of the lepton portal interaction is
Γ ∼ T3=M2

ab. Γ > H then implies that a given lepton portal
is in thermal equilibrium for T > Mab

2=mPl. Combining
this with Eqs. (64) and (65), we recast the condition as

T ≳ 0.25

�
vawb

GeV2

�
2

GeV: ð66Þ

Thus, the temperature range for which a given lepton
portal is in thermal equilibrium depends on which Higgs
doublets take part in the interaction. Consider the lepton
portal involving Φ1 and Φ0

2—the two doublets which gain
large VEVs v1 ≈ v and w2 ≈ w. For a given value of ρ, we
have v ¼ 246 GeV and w ¼ 246ρ GeV, so this lepton
portal is only in thermal equilibrium for T > 109ρ2 GeV.
This is a temperature range well above the dEWPT
temperature, and so this lepton portal operator cannot serve
to reprocess the asymmetries.
The other Higgs doublets in each sector have VEVs that

are much smaller than v and w, typically on the order of at
most 1 GeV. Thus, ignoring Boltzmann suppression, the
lepton portal involving Φ2 and Φ0

1 remains in thermal
equilibrium down to at least 1 GeV—well below the
temperature ranges we consider. However, these doublets
are comprised of the heavy additional scalars, which
become Boltzmann suppressed at high temperatures near
the dark electroweak phase transition. For this portal to
remain in thermal equilibrium long enough to reprocess the
particle asymmetries between the sectors, we must work at
a point in parameter space where the additional scalars have
masses lower than the dEWPT temperature. In Sec. III, we
found such parameter selections; for example, see the
parameter point for region 3 in Table IV. We analyze the
asymmetry transfer at this parameter point, and thus work
in an approximate temperature range between the critical
temperature, TC ¼ 1.7 × 104 GeV, and the mass of the
heaviest additional scalar, MH ¼ 8.8 × 103 GeV.

2. Equilibrium conditions

The lepton portal in Eq. (63) induces chemical potential
constraints given by

μliL þμΦ−μν0jR −μϕ0 0 ¼ 0; μliL þμΦ−μe0jR −μϕþ0 ¼ 0:

ð67Þ

As we are also working in a temperature regime below
105 GeV where all Yukawa interactions are in equilibrium,
the discussion of the additional constraints in the visible
and dark sectors is very similar to the neutron portal. The
only difference is that the additional scalars are in equi-
librium while the portals are active, and so we must set
NΦ ¼ NΦ0 ¼ 2 in the visible hypercharge and dark charge
neutrality conditions. As we must have at least one Oð1Þ
dark Yukawa coupling, we consider a case where the dark
top quark is Boltzmann suppressed in our temperature
region of interest. We alter the charge neutrality and QCD
sphaleron conditions as in the neutron portal case.
Recall that the visible lepton mass eigenstates are

not mirror partners of the dark lepton mass eigenstates.
So, a lepton portal respecting the mirror symmetry will
induce interactions between all pairs of visible and dark
lepton mass eigenstates. As we assign chemical potentials
to the mass eigenstates in each sector, the lepton portal
thus introduces all possible constraints of the form given in
Eq. (67). This has the effect of setting the chemical
potentials to be equal for all left-handed visible leptons
and for all right-handed dark leptons; that is, μl1L ¼ μl2L ¼
μl3L ≡ μlL , μe0

1R
¼ μe0

2R
¼ μe0

3R
≡ μe0R and μν0

1R
¼ μν0

2R
¼

μν0
3R
≡ μν0R . This then sets L1 ¼ L2 ¼ L3 ¼ L=3 and

L0
1 ¼ L0

2 ¼ L0
3 ¼ L0=3; thus, when the lepton portal is

active, there are only two conserved charges:

L1 ¼ B − L − L0; L2 ¼ B0: ð68Þ

As before, we define the visible and dark particle
numbers as linear combinations of the conserved charges,

B ¼
X2
i¼1

aiLi; L ¼
X2
i¼1

biLi;

B0 ¼
X2
i¼1

ciLi; L0 ¼
X2
i¼1

diLi: ð69Þ

We define X and Y as the initial asymmetries in B0 and L0
respectively, leading to the conserved charges L1 ¼ −Y
and L2 ¼ X. The same behavior occurs as before with the
final visible baryon asymmetry depending on the B − L
asymmetry transferred to the visible sector, and so we
obtain

B0
f

Bf
¼ 79

28

−c1Y þ c2X
−a1Y þ a2X þ b1Y − b2X

: ð70Þ
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3. Results

For this section we give results as the range of relative
sizes between X and Y that produce appropriate baryon
ratios. To roughly identify the allowed range of baryon
ratios, we again look to Fig. 1 from the original paper [25].
We are working at a parameter point where ρ ¼ 300, and
the heaviest of the new Yukawa couplings is on the order of
the standard model top quark Yukawa coupling. Thus, we
have a value of ΛDM between 0.9 and 2 GeV. To reproduce
the 5∶1 ratio between the dark and visible mass densities,
from Eq. (37) it follows that we need a value for the baryon
ratio satisfying 0.5≲ B0

f=Bf ≲ 1.1.
The asymmetry transfer by our lepton portal produces a

valid baryon ratio for

−3.6 <
Y
X
< −1.6; ð71Þ

where Y=X is the ratio of the initial dark lepton and baryon
asymmetries. Thus we favor a dark EWBGwhich generates
a lepton asymmetry of slightly larger magnitude than and
opposite sign to the baryon asymmetry. While we have not
provided a detailed calculation of the initial asymmetry
generation dynamics in this work, to achieve similar initial
asymmetries we expect that the heaviest dark quarks and
leptons should have masses of similar sizes. This then
requires at least oneOð1Þ dark lepton Yukawa coupling. To
make any more precise statements about the viability of this
portal would require a detailed analysis of the dark
electroweak baryogenesis dynamics.

V. DARK RADIATION AND THE NEUTRON
PORTAL

So far, we have investigated the transfer of particle number
asymmetries at temperatures well above the visible electro-
weak scale, providing a general analysis of effective oper-
ators which preserve a total particle number. Of these, the
neutron portal was especially promising, as it could also
naturally allow for the stringent bounds on dark radiation to
be alleviated. However, to serve this dual role the neutron
portal must remain in equilibrium until a decoupling temper-
atureTdec that lies between thevisible and dark quark-hadron
phase transition (QHPT) temperatures; in addition, this must
be achieved in a way that does not introduce excessive fine-
tuning to the extent that the model can no longer serve
as a natural explanation of the cosmological coincidence
ΩDM ≃ 5ΩVM. In this section we discuss the difficulties that
arise when attempting to implement the neutron portal at
these low temperatures, in particular: (i) specifying a valid
UV completion of the neutron portal and (ii) tracking the
asymmetry transfer over a larger temperature range.

A. UV-completing the neutron portal

For the neutron portal to be active below the dark
QHPT, it must remain in thermal equilibrium down to a

temperature below ΛDM. While the specific value of ΛDM
depends on the spectrum of dark quark masses, it is at most
a few GeV. From Eq. (56), the neutron portal effective
operator falls out of equilibrium at T ≈ ðM10=mPlÞ1=9. So,
for the neutron portal to remain in operation at T ∼ 1 GeV,
we require a cutoff scale M ≲ 63 GeV. At temperatures
above this scale the effective operator description will be
invalid, and so to properly analyze the asymmetry transfer
we must provide a renormalizable realization of the neutron
portal effective operator.
AUV completion for this operator was given in Ref. [90],

and a similar interactionwas given in Ref. [91] in the context
of neutron-antineutron oscillation. Similarly to these papers,
we introduce a scalar diquark S ∼ ð3; 1; 2

3
Þ with baryon

number B ¼ − 2
3

and a gauge singlet fermion NR ∼
ð1; 1; 0Þwith baryon numberB ¼ −1, as well as their mirror
partners S0 andN0

L. Assuming B − B0 conservation, the new
Yukawa and mass terms are given by

L ⊃ λiðSūRiNc
R þ S0ū0LiN

c0
L Þ þ κijðSd̄cRidRj þ S0d̄c0Lid

0
LjÞ

þM2
SðS�Sþ S�0S0Þ þMNNRN0

L: ð72Þ

B − B0 conservation forbids Majorana mass terms for the
singlet fermions, preventing the washout of any dark or
visible baryon number asymmetry carried by the respective
singlet fermion. While the mirror symmetry gives equal
mass terms for S and S0, they can obtain differing masses
following symmetry breaking through their couplings to
the Higgs doublets. In the ASB limit, the relevant couplings
are given by

L ⊃ η1ðS�SΦ†
1Φ1 þ S0�S0Φ0

1
†Φ0

1Þ
þ η2ðS�SΦ†

2Φ2 þ S0�S0Φ0
2
†Φ0

2Þ
þ η3ðS�SΦ0

1
†Φ0

1 þ S0�S0Φ†
1Φ1Þ

þ η4ðS�SΦ0
2
†Φ0

2 þ S0�S0Φ†
2Φ2Þ; ð73Þ

producing scalar diquark masses

m2
S ¼ M2

S þ
v2

2
ðη1 þ ρ2η4Þ;

m2
S0 ¼ M2

S þ
v2

2
ðη3 þ ρ2η2Þ: ð74Þ

The neutron portal operators are induced by diagrams
such as that given in Fig. 5. As before, to ensure the
stability of the dark neutron—our dark matter candidate—
we cannot allow the neutron portal to involve only the
lightest dark quarks, u0 and d0. We thus need to introduce
some additional flavor structure to the Yukawa interactions,
such that one of λ1 or κ11 is equal to zero.
At temperatures T < mS;mS0 ;MN , and assuming Oð1Þ

Yukawa couplings, the cutoff scale for the neutron portal
effective operator is given by M ∼ ðm2

Sm
2
S0MNÞ15. Visible
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scalar diquarks at masses below a few TeV have been
disfavored by collider searches [92], so we take
mS ∼ 104 GeV, which can be easily achieved with ρ ∼
100 and Oð1Þ values of η4. Then, for the cutoff scale to
satisfy M ≲ 63 GeV, we require m2

S0MN ≲ 10 GeV3. For
m2

S0 ≳ 10 GeV2 we then require MN ≲ 1 GeV, which
means that at the dark QHPT NR and N0

L remain in
equilibrium and the neutron portal is not described by a
single portal operator. Achieving m2

S0 ≲ 10 GeV2 is not
feasible without significant fine-tuning, requiring η3 ≲
10−3 and η2 ≲ 10−7 for ρ ∼ 100. Thus, we do have to
consider the situation where NR and N0

L have masses
smaller than the dark QHPT temperature T ∼ 1 GeV.
In this case, for the neutron portal to be active at the dark

QHPT, we need the effective operators induced by the
S-/S0-mediated interactions of Fig. 6 to be in thermal
equilibrium at T ∼ 1 GeV. Assuming Oð1Þ Yukawa cou-
plings, these operators are in thermal equilibrium for T ≳
ðm4

Sð0Þ=mPlÞ1=3 ¼ 200 MeV assuming mS;mS0 ∼ 104 GeV.
So, the given completion for the neutron portal allows it to
be active at the dark QHPT temperature for mS;mS0 ∼
104 GeV andMN small enough for NR and N0

L to remain in
thermal equilibrium.
However, this situation introduces an issue for the

stability of our dark matter candidate, the dark neutron:
if MN is lower than mn0 , then the decay mode n0 → N0

Lγ
0

becomes available. The dark neutron mass is a factor of a
few times ΛQCD, which also approximately gives the dark
QHPT temperature. So, if MN is smaller than the dark
QHPT temperature to allow the neutron portal to decouple
between the visible and dark QHPTs, then it will be lighter

than n0 and the dark matter will not be stable. The flavor
structure of the Yukawa couplings does prevent this decay
occurring at tree-level; however, the kinematically-allowed
decay can still occur at one-loop level.
This instability could be avoided if MN is greater than

m0
n, at a value around a few GeV, and if the singlet fermions

do not fall out of thermal equilibrium until a temperature a
factor of 10 or so smaller than their mass. While possible,
this places quite a tight restriction on the MN , as it must be
only slightly higher thanm0

n to be able to remain in thermal
equilibrium down to a temperature between the visible and
dark QHPT temperatures. If this is the case, however, then
the neutron portal can remain active down to the desired
decoupling temperature.

B. Asymmetry transfer

We now analyze the asymmetry transfer due to this
specific neutron portal. As this cross-sector interaction is
active from the dEWPT at around 105 GeV down to the
decoupling temperature between the visible and dark
QHPTS at around 1 GeV, determining the final baryon
ratio B0=B is more complicated than the cases considered
in Sec. IV.
Recall that at a given temperature, our process is to

(i) identify which particle species are in equilibrium and
assign them chemical potentials, (ii) identify the inter-
actions in thermal equilibrium that constrain these chemical
potentials, (iii) identify the conserved charges that corre-
spond to the remaining free parameters, and (iv) solve
for the chemical potentials in terms of the initial conditions
on these conserved charges. Since the neutron portal is
now active over a large temperature range, the chemical
potentials reequilibrate and new charges become conserved
as various particle species and interactions fall out of
equilibrium.
To account for this reequilibration, we first identify the

new conserved charges as well as the temperatures at which
they begin to be conserved following the freeze-out of
particular particle species and interactions. When each new
charge begins to be conserved, we can calculate its
asymmetry in terms of the other conserved charges at that
temperature. So, beginning at the dEWPT temperature T ∼
105 GeV with initial asymmetries given by B0 ¼ X and
L0 ¼ Y, we can calculate each new conserved charge in
terms of X and Y. Continuing this process down to 1 GeV,
we obtain the final baryon ratio B0=B immediately prior to
the dark QHPT.
Although the neutron portal freezes out between the

visible and dark QHPT temperatures due to the Boltzmann
suppression of the quarks involved, we do not continue to
track the baryon ratio after the dark QHPT commences.
This is due to the nonperturbative strong dynamics of the
dark QHPT, which cannot be handled by our approximate
calculation method. While this introduces additional uncer-
tainty to our calculations, our goal is not to calculate a

FIG. 5. Diagram inducing the neutron portal effective operator
for temperatures T < mS;mS0 ;MN .

FIG. 6. Diagrams inducing effective operators for temperatures
given by MN < T < mS;mS0.
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precise ratio, but just to show that a reasonable ratio of
B0=B < 5 can be obtained by the neutron portal operator
acting until low temperatures. Additionally, given that the
neutron portal freezes out shortly after the dark QHPT
commences, we claim that the final baryon number ratio
should not change after the transition by more than a factor
of a few.

1. Conserved charges

To simplify the analysis further, we will drop genera-
tional indices from our chemical potentials, setting equal
chemical potentials for the particles of each type in thermal
equilibrium. We first work at a temperature on the order of
104 GeVwhere the scalar diquarks S and S0 have frozen out
but the dark Higgs boson h0 is still in equilibrium. The
particle species and interactions in equilibrium are then the
same as in Sec. IV D, but with the neutron portal constraint
replaced by constraints from the S- and S0-mediated
effective operators

μuR þ μNR
þ 2μdR ¼ 0; μu0L þ μN0

L
þ 2μd0L ¼ 0 ð75Þ

and the gauge singlet mass term setting μNR
¼ μN0

l
. Then

there are only two conserved charges,

L1 ¼ Bþ B0 − L; L2 ¼ L0; ð76Þ

with initial conditions L1 ¼ X and L2 ¼ Y.
After the dark Higgs boson h0 freezes out at around

104 GeV, the dark Yukawa interactions are replaced by
four-fermion interactions mediated by the dark Higgs
doublets,

μu0R −μu0L þμe0R −μe0L ¼ 0; μu0R −μu0L þμd0R −μd0L ¼ 0;

μd0R −μd0L −μe0R þμe0L ¼ 0; ð77Þ

and there is a new conserved charge given by
L3 ¼ μu0R − μd0R þ μν0R − μe0R ; that is, u

0
R and ν0R have L3

charge 1 and d0R and e0R have L3 charge −1.
These Higgs-mediated interactions remain in equilib-

rium for temperatures given by T > ððmh0wÞ4=
ð4m1

2m2
2mPlÞÞ1=3, where m1 and m2 are the masses of

the fermion species involved and we have used the Cheng-
Sher Ansatz [58] for the dark Yukawa couplings.
We work at a benchmark scenario with ρ≃ 100, z2 ≃

0.025, and selected dark quark masses of mc0 ≃ 50 GeV,
mμ0 ≃ 50 GeV, and mb0 ≃ 500 GeV. Then the Higgs-
mediated interaction constraints of Eq. (77) apply until
T ≃ 60 GeV (for c0L þ c0R ↔ μ0L þ μ0R), T ≃ 500 GeV
(for c0L þ c0R ↔ b0L þ b0R), and T ≃ 500 GeV (for
b0L þ b0R ↔ μ0L þ μ0R), respectively.
So, after the constraints μu0R − μu0L þ μd0R − μd0L ¼ 0 and

μd0R − μd0L − μe0R þ μe0L ¼ 0 freeze out at T ∼ 500 GeV, the

conserved charge L3 ¼ μu0R − μd0R þ μν0R − μe0R splits into
two conserved charges L3¼ μu0R −μe0R and L4 ¼ μd0R − μν0R .
The next stage is shortly after the vEWPT at the electro-

weak sphaleron freeze out temperature T ∼ 150 GeV. This
assumes the vEWPT is crossover as it is in the SM [62]; we
make this assumption since the dynamics of the vEWPT are
controlled by the couplings of Φ1 which are very similar to
that of the SM Higgs doublet. After this point, the charge
L1 ¼ Bþ B0 − L splits into two conserved charges, L1 ¼
Bþ B0 and L5 ¼ L.
After the freeze out of the visible Higgs around its

mass of 125 GeV, there is a new conserved charge
L6 ¼ μuL − μdL þ μνL − μeL . The final new conserved
charge is L7 ¼ μu0R þ μd0R , which becomes conserved
following the freeze out of the dark Higgs-
mediated constraint μu0R − μu0L þ μe0R − μe0L ¼ 0 at 60 GeV.
A summary of these conserved charges and the temper-
atures at which they are first conserved is presented in
Table VII.

2. Results

At around 1 GeV, just before the dark QHPT commen-
ces, we can calculate B0 and B in terms of the seven
conserved charges. Starting with the initial conditionsL1 ¼
X and L2, we determine each new conserved charge in
terms of X and Y; continuing all the way to 1 GeV, we
obtain

B0
f ≃ 0.28X þ 0.07Y

Bf ≃ 0.24X − 0.003Y: ð78Þ

Consider a case where no dark lepton asymmetry is
generate during dark EWBG and thus Y ¼ 0; this could
easily arise if the Yukawa couplings of the dark leptons are
all smaller thanOð1Þ, as they are in the SM. Then, the final
ratio of baryon numbers is given by

TABLE VII. The set of conserved charges fLig along with the
approximate temperature T at which each new charge first
becomes conserved.

T [GeV] Conserved Charges

105 fBþ B0 − L0; L0g
104 fBþ B0 − L0; L0; μu0R − μd0R þ μν0R − μe0Rg
500 fBþ B0 − L0; L0; μu0R − μe0R ; μd0R − μν0Rg
150 fBþ B0; L0; μu0R − μe0R ; μd0R − μν0R ; Lg
125 fBþ B0; L0; μu0R − μe0R ; μd0R − μν0R ; L; μuL

−μdL þ μνL − μeLg
60 fBþ B0; L0; μu0R − μe0R ; μd0R − μν0R ; L; μuL − μdL

þμνL − μeL ; μu0R þ μd0Rg
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B0
f

Bf

����
Y¼0

≃ 1.1 ð79Þ

So, the neutron portal scenario we consider can naturally
generate similar asymmetries in visible and dark baryon
number. We also check when the constraint B0=B < 5
applies in terms of the relative sizes of the initial dark
baryon and lepton asymmetries, finding that is it satisfied
for Y=X ≲ 11.4. Thus, we can remain fairly agnostic about
the specifics of the asymmetry generation through dark
EWBG, as a reasonable and related baryon ratio can be
obtained for an initial lepton asymmetry up to an order of
magnitude larger than the initial baryon asymmetry.

VI. CONCLUSION

The 5∶1 ratio between the present-day mass densities of
dark matter and visible matter is one of the few tantalizing
hints we have toward the fundamental nature of dark
matter. This apparent coincidence of both cosmological
number densities and mass scales between dark and visible
relic species suggests a deep link between the two forms of
matter, motivating the search for a comprehensive dark
matter model where this relationship arises naturally.
While asymmetric dark matter models provide a variety

of ways to relate the number densities of visible and dark
matter, relating the particle masses presents a challenge that
is more difficult and thus less frequently addressed. In this
work we focused on extending the mirror two Higgs
doublet model of Ref. [25], where the dark matter consists
of neutrons of a dark QCD whose confinement scale is
related to ΛQCD by a discrete symmetry that is sponta-
neously broken at a high scale. While this earlier work
generated related visible and dark baryon number densities
through thermal leptogenesis, we sought to implement
electroweak baryogenesis at the dark electroweak phase
transition as the method for generating a particle
asymmetry.
In this work we did not present a fully detailed theory of

electroweak baryogenesis; rather, we completed some
preliminary steps to demonstrate the feasibility of such a
model, and to show that it could be naturally realized within
the mirror 2HDM framework of Ref. [25]. We first showed
in Sec. III that for a number of regions of parameter space
the dark electroweak phase transition is strongly first-order,
as is necessary to provide the out-of-equilibrium dynamics
in EWBG. In Sec. IV we then considered the generation
and reprocessing of the dark baryon asymmetry generated
through dark EWBG by cross-sector effective operator

interactions. For both interactions we analyzed—the neu-
tron portal and the lepton portal—the final visible and dark
baryon number densities obtained were of a similar order.
However, in the case of the lepton portal, the present-day
baryon asymmetry ratio depended on the relative sizes of
the dark lepton and baryon asymmetries generated at the
dEWPT. Determining these initial conditions requires a full
calculation of the EWBG dynamics.
In addition to providing the initial conditions for the

lepton portal, a full EWBG calculation would also show
whether a sufficiently large dark baryon asymmetry can be
generated; that is, large enough that the correct visible
baryon number density is reproduced following the asym-
metry transfer. Using a rough condition we showed that,
given at least one Oð1Þ dark quark Yukawa coupling, a
sufficiently large baryon asymmetry should be able to be
generated through CP violation in the dark CKMmatrix. A
quantitative EWBG analysis is necessary to turn this work
into a complete theory.
Lastly in Sec. V we considered the tricky issue of

alleviating the BBN bounds on dark radiation, which
presents a common challenge in ADM theories. The most
promising and natural solution given in the original paper
was a neutron portal operator holding the visible and dark
sectors in thermal equilibrium until a point shortly after the
dark quark-hadron phase transition. The notion of the
neutron portal serving a dual role by transferring asymme-
tries and addressing the dark radiation issue is greatly
appealing; however, we showed it is difficult to implement
the neutron portal down to temperatures around 1 GeV. In
particular, we identified a UV completion that allowed the
neutron portal to operate successfully, but only if the gauge
singlet fermionsNR andN0

L have a mass just larger than the
dark neutron. This is quite a tight restriction, and presents
an unwanted source of fine-tuning. Given this UV com-
pletion, we then calculated the asymmetry transfer—noting
the large uncertainty introduced by the non-perturbative
dynamics of the dark QHPT—and showed that the neutron
portal can generate visible and dark baryon asymmetries of
a similar order while also helping to obey the dark radiation
constraints.
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