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We study a pseudoscalar dark-matter model arising from a complex singlet extension of the standard
model (SM), and show that the dark-matter nucleon scattering is suppressed when two CP-even scalars are
degenerate. In such a degenerate-scalar scenario we explore the model parameter space which satisfies
constraints from the direct detection experiments and the relic density of dark matter. In addition, we
discuss a possibility to verify such a scenario by using the recoil-mass technique at the International Linear
Collider. We find that a pair of states separated by 0.2 GeV can be distinguished from the single SM-like
Higgs state at 5σ with an integrated luminosity of 2 ab−1.
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I. INTRODUCTION

The existence of dark matter (DM) has been suggested
by several cosmological observations, e.g., precise mea-
surements of the cosmic microwave background [1].
Although weakly interacting massive particles (WIMPs)
are known as a good candidate of DM, no signature of the
WIMP DM has been found yet in particle physics experi-
ments. Among various WIMP-DM searches, direct detec-
tion experiments such as XENON1T [2] have significantly
improved the upper bounds on the cross section between
DM and nucleons, so that some new physics models which
predict the DM candidate are severely constrained.
An interpretation of the null result in the direct DM

detection experiments is that the DM is heavy ½≳OðTeVÞ�
or light ½≲OðGeVÞ� enough. Another possibility to explain
the result is that effective interactions between DM and
nucleons are suppressed for some reason. For example, it
has been known that the tree-level amplitudes of DM-quark
scattering in the nonrelativistic limit are proportional to the
momentum transfer in pseudoscalar portal models [3,4] so
that the amplitudes are suppressed at the low-energy limit.
The estimation of the higher-order contributions in such
models and testability of those effects at future direct
detection experiments are given in Ref. [5].
Another example of suppression of the DM-quark

scatterings at the low-energy limit has also been shown
in Ref. [6], where the DM is a pseudo-Nambu–Goldstone

boson as a consequence of a global U(1) symmetry
breaking of the scalar potential. Such a model is known
as the minimal pseudo-Nambu–Goldstone DM model
arising from a complex singlet extension of the standard
model (CxSM) [7] with a softly broken U(1) symmetry by
the DMmass term. In this model, the DM-quark scatterings
are mediated by two scalar particles. The amplitudes of the
DM-quark scattering processes mediated by each scalar
particle have the same magnitude at zero momentum
transfer but the opposite relative sign, and hence the
scattering between the DM and nucleons is highly sup-
pressed at low energy. The model has been studied in
various contexts, e.g., in Refs. [8–15]. It is known,
however, that the minimal model suffers from the so-called
domain-wall problem because the Z2 symmetry of the
scalar potential is spontaneously broken when the singlet
field develops the vacuum expectation value (VEV) [16].
In this paper, we adopt the most general renormalizable

scalar potential of CxSM with soft breaking terms up to
mass dimension of two to avoid the domain-wall problem.
Since the scalar potential has a more general structure
than that in the minimal model, the suppression of the DM-
nucleon scatterings in the low-energy limit is no longer
guaranteed. We show that the scattering amplitudes medi-
ated by the two scalar particles can still be cancelled when
the masses of the two scalars are degenerate. In such a
degenerate-scalar scenario we explore the parameter space
which satisfies the direct detection constraints and the
relic density. In addition, we discuss a possibility to verify
such a scenario by using the recoil-mass technique at the
International Linear Collider (ILC) [17]. We note that
the most general model of pseudoscalar DM has recently
been studied in Ref. [18] with a focus on the gravitational-
wave signal.
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This paper is organized as follows. In Sec. II, we introduce
our DM model. In Sec. III, we show the cancellation
condition on the scattering between DM and quarks, and
constraints on the parameter space from the direct detection
experiments and the relic density of the DM. We discuss a
possibility to verify a degenerate-scalar scenario at the ILC in
Sec. IV. Section V is devoted to a summary.

II. PSEUDOSCALAR DARK-MATTER MODEL

We start with the following scalar potential of the
CxSM [7],

V ¼ m2

2
jHj2 þ λ

4
jHj4 þ δ2

2
jHj2jSj2 þ b2

2
jSj2 þ d2

4
jSj4

þ
�
a1Sþ b1

4
S2 þ c:c:

�
; ð1Þ

where a global U(1) symmetry for the singlet S is softly
broken due to the linear ða1Þ and quadratic ðb1Þ terms.1 All
the coefficients in Eq. (1) are assumed to be real. We note
that the minimal pseudo-Nambu–Goldstone DM model [6]
forbids the linear term of S, i.e., a1 ¼ 0, where the scalar
potential has a Z2 symmetry ðS → −SÞ. This Z2 symmetry
is spontaneously broken by the VEVof the singlet S, and it
causes the domain-wall problem [16]. The linear term
ða1 ≠ 0Þ in the scalar potential, therefore, needs to break
the Z2 symmetry explicitly so that the domain-wall
problem does not arise. Although it is worth considering
the UV completion of the scalar potential (1), including the
linear term of S, we do not discuss it further.
The SM-Higgs field H and the singlet field S are

expressed in terms of the component fields as

H ¼ 1ffiffiffi
2

p
�

0

vþ h

�
; S ¼ 1ffiffiffi

2
p ðvS þ sþ iχÞ; ð2Þ

where we adopt the unitary gauge so that the Goldstone
fields in H are suppressed. The VEVs of H and S are
denoted by v and vS, respectively. The minimization
conditions of the scalar potential (∂V∂H ¼ 0, ∂V

∂S ¼ 0) leads
to the following relations among parameters in Eq. (1),

−m2 ¼ λ

2
v2 þ δ2

2
v2S; ð3Þ

−b2 ¼
δ2
2
v2 þ d2

2
v2S þ b1 þ 2

ffiffiffi
2

p a1
vS

: ð4Þ

The mass matrix M2 of the charge and parity (CP)-even
scalars ðh; sÞ is given by

M2 ¼
� λ

2
v2 δ2

2
vvS

δ2
2
vvS Λ2

�
; ð5Þ

where Λ2 is defined as

Λ2 ≡ d2
2
v2S −

ffiffiffi
2

p a1
vS

: ð6Þ

The mass eigenstates ðh1; h2Þ are defined by using the
orthogonal matrix O

�
h1
h2

�
¼ O

�
h

s

�
; O ¼

�
cos α sin α

− sin α cos α

�
: ð7Þ

Then, the mass eigenvalues (mh1 , mh2) and the mixing
angle α are given by

m2
h1;h2

¼1

2

(
λ

2
v2þΛ2∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λ

2
v2−Λ2

�
2

þðδ2vvSÞ2
s )

; ð8Þ

cos 2α ¼
λ
2
v2 − Λ2

m2
h1
−m2

h2

: ð9Þ

Since the global U(1) symmetry is softly broken, the
CP-odd scalar χ has a mass mχ as

m2
χ ¼ −b1 −

ffiffiffi
2

p a1
vS

: ð10Þ

The CP symmetry of the scalar potential (1) forbids the
pseudoscalar χ to decay into the CP-even scalars so that χ
could be identified as a DM particle.
We give the interaction Lagrangians which are necessary

to our study below. The scalar-trilinear interactions for χ
and h1 or h2 are given by

LS ¼ −
1

2vS

��
m2

h1
þ

ffiffiffi
2

p
a1

vS

�
sin αh1χ2

þ
�
m2

h2
þ

ffiffiffi
2

p
a1

vS

�
cos αh2 χ2

�
: ð11Þ

The Yukawa interactions of a fermion f and the CP-even
scalar h1 or h2 are given by

LY ¼ −
mf

v
f̄fðh1 cos α − h2 sin αÞ; ð12Þ

where mf denotes the mass of the fermion f.
Here, we summarize the theoretical constraints on the

model parameters. In the scalar potential, the quartic

1There are other renormalizable operators which break the
global U(1) symmetry. But we have only adopted terms that close
under renormalization [7]. The study of Ref. [18] includes all
operators which we have dropped in the scalar potential Eq. (1).
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couplings λ and d2 are required to satisfy the following
conditions from the perturbative unitarity [19]

λ <
16π

3
; d2 <

16π

3
: ð13Þ

Also the stability condition of the scalar potential is given
by [7]

λ

�
d2 −

2
ffiffiffi
2

p
a1

v3S

�
> δ22: ð14Þ

We finally summarize the model parameters which will
be used in the following analyses. There are seven
parameters in the scalar potential and two VEVs. Since
there are two minimization conditions on the scalar
potential in Eqs. (3) and (4), the number of the model
parameters is seven. We take v ≃ 246 GeV and identify h1
as a scalar particle which has been discovered at the LHC
with mh1 ≃ 125 GeV. We choose the remaining five
parameters

mh2 ; mχ ; α; a1; vS; ð15Þ

as inputs. so that other parameters

m2; λ; δ2; b2; d2; b1; ð16Þ

are given as functions of (15). It is convenient to express
output parameters (16) by inputs (15) for later discussions;

m2 ¼ −
λ

2
v2 −

δ2
2
v2S; ð17Þ

λ ¼ 2

v2
ðm2

h1
cos2αþm2

h2
sin2αÞ; ð18Þ

δ2 ¼
λ
2
v2 − Λ2

vvS
tan 2α; ð19Þ

b2 ¼ −
δ2
2
v2 −

d2
2
v2S − b1 − 2

ffiffiffi
2

p a1
vS

; ð20Þ

d2 ¼ 2

�
m2

h1

vS

�2

sin2αþ 2

�
m2

h2

vS

�2

cos2αþ 2
ffiffiffi
2

p a1
v3S

; ð21Þ

b1 ¼ −m2
χ −

ffiffiffi
2

p a1
vS

: ð22Þ

III. SUPPRESSION OF
DM-NUCLEON SCATTERING

In this section, we discuss a suppression mechanism of
the scattering process of the DM χ off a quark q, χq → χq,
whose Feynman diagram is shown in Fig. 1. We also
discuss constraints on the model parameter space from

the direct detection experiments and the relic density of
the DM.
The amplitudes mediated by h1 and h2 are given by

iMh1 ¼ −i
mq

vvS

m2
h1
þ

ffiffi
2

p
a1

vS

t −m2
h1

sin α cos αūðp2Þuðp1Þ; ð23Þ

iMh2 ¼ þi
mq

vvS

m2
h2
þ

ffiffi
2

p
a1

vS

t −m2
h2

sin α cos αūðp2Þuðp1Þ; ð24Þ

where t≡ ðp1 − p2Þ2, and p1 (p2) is the momentum of
quark q in the initial (final) state. Since the momentum
transfer t in the process is very small with respect to the
mass of the scalarsmh1;2 , the sum of the two amplitudes can
be written as

iðMh1þMh2Þ≃i
mq

vvS
sinαcosαūðp2Þuðp1Þ

×
1

m2
h1
m2

h2

��
m2

h2
−m2

h1
þ

ffiffiffi
2

p
a1

vS

m4
h2
−m4

h1

m2
h1
m2

h2

�
t

þ
ffiffiffi
2

p
a1

vS
ðm2

h2
−m2

h1
Þ
�
: ð25Þ

The first term in the curly braces in the right-hand side is
negligible when t ≃ 0 as shown in Ref. [6]. The second
term, on the other hand, vanishes when the two scalars are
degenerate (mh1 ¼ mh2). The cancellation of the two
amplitudes in the degenerate limit is by virtue of the
orthogonal condition of the matrix O in Eq. (7),
OikOjk ¼ δij. Constraints on this model from the direct
detection experiments, therefore, are weakened when the
mass of the CP-even scalar h2 is close to the mass of h1,
mh1 ≃ 125 GeV. This motivates us to study the phenom-
enological consequences of such a degenerate-scalar sce-
nario in the pseudoscalar DM model. We note that in the
mh1 ≈mh2 case the two amplitudes in Eqs. (23) and (24) are
cancelled not only for low energy but also for any energy

FIG. 1. Feynman diagram of the scattering process χq → χq
mediated by CP-even scalars h1 and h2.
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scale. This fact is relevant to understand the DM relic
density in this model, which will be discussed later.
Before turning to numerical studies, we note that the

scattering between DM and quarks at the one-loop level in
the minimal model of [6] has been studied in
Refs. [9,10,15]. Although the cancellation of the ampli-
tudes at the low-energy limit does not hold any more at the
one-loop level, the contributions are small enough to be
neglected. For the mh1 ≈ mh2 case, especially, those con-
tributions are strongly suppressed [9], which can be applied
for our degenerate scenario even at the one-loop level.
In the following numerical studies, we implemented the

pseudoscalar-DMmodel (i.e., the CxSM) as the UFO format
[20] by using FeynRules v2.3 [21], and used it in MADDM v3.0

[22–24] to compute the DM-nucleon scattering cross
section and the relic density of DM.
In Fig. 2, we show the spin-independent cross section for

the scattering between the DM and a nucleon σpSI as a
function of mh2 . Three figures correspond to the DM mass
mχ ¼ 200 GeV (left), 600 GeV (center), and 1000 GeV
(right), respectively. Other parameters are fixed at α ¼ π=4,
vS ¼ ffiffiffiffiffi

a13
p ¼ 246 GeV as an example. The upper and lower

shaded regions represent the excluded region by the
XENON1T experiment [2] and the background from the
elastic neutrino-nucleus scattering (the so-called neutrino
floor) [25]. As a1 ≠ 0 in our model, the larger the mass
difference between h1 and h2 is, the larger the DM-nucleon
scattering cross section is. As expected, the cross section is
highly suppressed around mh2 ∼mh1 .
We now examine dependences of the DM-nucleon cross

section on the other parameters. In the following analyses
we set the mixing angle α ¼ π=4, where the cross section is
maximal. Then, the remaining four parameters in (15); the
mass difference Δm ¼ mh2 −mh1 (instead of mh2), the DM
mass mχ , the tadpole coupling a1, and the VEV of the
singlet field vS are constrained from the experimental data.
In Fig. 3, we show contour plots of the spin-independent

cross section σpSI on mχ–vS (top), mχ–
ffiffiffiffiffi
a13

p
(middle), and

vs–
ffiffiffiffiffi
a13

p
(bottom) planes. The upper limit on σpSI from

XENON1T [2] is shown by the black-solid curve while the

dotted-curve denotes the neutrino floor [25]. The mass
difference Δm is fixed at 1 GeV for all the panels.
Three graphs in the first row of Fig. 3 correspond to

a1 ¼ ð123 GeVÞ3; ð246 GeVÞ3, and ð492 GeVÞ3, respec-
tively. In these graphs, the cross section σpSI decreases for
larger vS. The reason can be understood as follows. For
larger vS, the χ-χ-hi interactions are relatively dominated
by the χ-χ-s interaction, because it is proportional to vS
while the χ-χ-h interaction is proportional to v.2 Since the
singlet s does not interact with quarks, the scattering
processes between the DM and quarks are suppressed
for larger vS. This is why the scattering amplitude of the
DM and quarks in Eq. (25) is inversely proportional to vS.
On the other hand, the cross section increases as a1
increases from the left to right panels. This is because
the scattering amplitude of Eq. (25) is proportional to a1.
As seen, for the large a1 case, the small mχ and vs region is
already excluded by the current direct detection experi-
ment. Otherwise, the whole parameter space on this plane
satisfies the constraint.
The second and third rows of Fig. 3 show the cross

section σpSI for vS ¼ ð123; 246; 492Þ GeV and mχ ¼
ð200; 600; 1000Þ GeV, respectively. The common feature
of these graphs is that the cross section increases as
a1 increases, as already mentioned above. The larger mχ

and vs are, the smaller the cross section becomes. We note
that the theoretical constraints in Eqs. (13) and (14) are
also satisfied on the entire parameter space presented
in Fig. 3.
In Fig. 4 we show the Δm-dependence of the cross

section σpSI on the mχ–vS plane. We adopt cases in the first
row of Fig. 3 as examples to discuss the Δm-dependence so
that we list them on the first row of Fig. 4. Three different
values of Δm is chosen as Δm ¼ 1 GeV (top), 0.5 GeV
(middle), and 0.2 GeV (bottom), and a1 is ð123 GeVÞ3
(left), ð246 GeVÞ3 (center), and ð492 GeVÞ3 (right). While
the degree of the degeneracy between the two scalars is

FIG. 2. Spin-independent DM-nucleon scattering cross section as a function ofmh2 for the DM mass fixed at 200, 600, and 1000 GeV
from the left to right panels, respectively.

2Recall that χ-χ-s and χ-χ-h interactions are given by jSj4 and
jHj2jSj2 terms in (1), respectively.
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increasing, the cross section drops sharply, as already seen
in Fig. 2. For Δm ¼ 0.2 GeV, the whole parameter space
considered in Fig. 4 is no longer constrained, except a tiny
corner of the small mχ and vS for a1 ¼ ð492 GeVÞ3.
Up to now, we have studied the parameter space of the

pseudoscalar DMmodel with nearly degenerate scalars and
found that sizable parameter regions are allowed from the
direct detection experiments. In Fig. 5 we here show
constraints on parameters ðmχ ; vs; a1Þ from the relic density
of the DM Ωχh2. In the figure, contour plots of Ωχh2 on
mχ–vS, mχ–

ffiffiffiffiffi
a13

p
, and vs–

ffiffiffiffiffi
a13

p
planes are shown in the first,

second and third rows, respectively. The parameter choices
are same as in Fig. 3. We note that, although we set Δm ¼
1 GeV as a benchmark, the results are not altered forΔm ¼
0.5 GeV or 0.2 GeV, different from the DM-nucleon
scattering cross section as shown in Fig. 4. The black
curve denotes Ωχh2 ¼ 0.120 from the Planck measurement
[1], and the region of Ωχh2 > 0.120 is disfavored since the
DM is overproduced in this model.

From the first row in Fig. 5, we see that the relic density
Ωχh2 could be large as vS increases, while small as a1
increases. This can be explained as follows. The dominant
annihilation processes are χχ → hihj ði; j ¼ 1; 2Þ since the
processes for other final states (qq, ll, VV) are strongly
suppressed by the same mechanism with the case of the
DM-quark scattering χq → χq, where q, l, and V stand for
quarks, leptons and vector bosons, respectively. The scalar
trilinear interactions for h1-χ-χ and h2-χ-χ in Eq. (11) are
proportional to a ratio a1=vS. Therefore, larger vS sup-
presses the annihilation rate of the DM, while for larger a1
the scalar trilinear interactions become stronger and the
annihilation of the DM pair is enhanced. The similar
behaviors can be observed in the second and third rows,
i.e., on the different parameter planes.
One can see a strip in some particular parameter regions,

where the relic density suddenly becomes large, e.g., for
mχ ¼ 300 GeV–400 GeV on the top-right panel in Fig. 5.
This can be explained by the suppression of the annihilation

FIG. 3. Spin-independent DM–nucleon scattering cross section on the mχ–vs (top), mχ–
ffiffiffiffiffi
a13

p
(middle), and vs–

ffiffiffiffiffi
a13

p
(bottom) planes.

Δm ¼ mh2 −mh1 is fixed at 1 GeV for all the panels, while the other parameter, a1 (top), vs (middle), and mχ (bottom), is taken as the
low to high scale from the left to right panels.

PROBING A DEGENERATE-SCALAR SCENARIO IN A … PHYS. REV. D 104, 035023 (2021)

035023-5



cross section due to a nontrivial cancellation among
the χχ → hihj amplitudes; the four-point, s-channel
hi-mediated, and t-channel χ-mediated amplitudes.
In Fig. 5 we overlay the exclusion regions from the

XENON1T direct detection experiment, shown in Fig. 3.
The exclusion regions from the direct detections tend to
correspond to the regions where the relic density is very
small, and vice versa. The wide parameter regions of
ðmχ ; vs;

ffiffiffiffiffi
a13

p Þ are still unconstrained from both the direct
DM detection experiments and the measurement of the DM
relic density. If a DM signal at direct detection experiments
is observed in near future, the parameter space in this model
can be narrowed down.
Before closing this section, we briefly mention a case for

the low DM mass, especially for around mχ ∼mh1=2. In
Fig. 6 we show contour plots of the spin-independent cross
section σpSI (left) and the relic density of the DM Ωχh2

(right) on mχ–mh2 plane for vS ¼
ffiffiffi
3

p
a1 ¼ 246 GeV. As

for the DM-nucleon scattering cross section, the suppres-
sion around mh2 ∼mh1 can also be seen in this low mχ

region, while the mχ dependence is very mild. On the other
hand, the relic density strongly depends on mχ as well as
mh2 . As seen, in this low mχ case, the degenerate scalar
scenario, mh2 ∼mh1 , is excluded by the limit from the relic
density. This is because, different from the case shown in
Fig. 5, the DM annihilation to the fermions and the gauge
bosons are dominant, and are strongly suppressed in this
scenario. Apart from the case of mh2 ∼mh1 , especially for
mχ ∼mh1=2 or mχ ∼mh2=2, the relic density becomes very
low since the DM annihilation is enhanced by the scalar
resonance, which can be commonly observed in Higgs-
portal DM models [26].

IV. TEST FOR A DEGENERATE-SCALAR
SCENARIO AT THE ILC

We have so far discussed that the stringent constraints on
DM models from direct detection experiments could be
avoided in the pseudoscalar DM model with nearly
degenerate scalars without contradicting the observed relic

FIG. 4. Spin-independent DM-nucleon scattering cross section on themχ–vs plane forΔm ¼ 1.0, 0.5, 0.2 GeV from the top to bottom
panels, where a1 is set as ð123 GeVÞ3, ð246 GeVÞ3, ð492 GeVÞ3 from the left to right panels.
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density of the DM as well as theoretical constraints on the
scalar potential. In this section we discuss possibilities
to verify such a degenerate-scalar scenario in collider
experiments.

A typical DM signature at colliders is missing energy
from DM production. In the pseudoscalar DM model, the
DM χ (the CP-odd scalar) only couples to the CP-even
scalars h1 and h2 (the SM-like 125 GeV Higgs boson and

FIG. 5. DM relic density on the mχ–vs (top), mχ–
ffiffiffiffiffi
a13

p
(middle), and vs–

ffiffiffiffiffi
a13

p
(bottom) planes. Δm ¼ mh2 −mh1 is fixed at 1 GeV for

all the panels, while the other parameter, a1 (top), vs (middle), and mχ (bottom), is taken as the low to high scale from the left to right
panels. Gray shaded regions denote the region excluded by the XENON1T direct detection experiment.

FIG. 6. Spin-independent DM-nucleon scattering cross section (left) and DM relic density (right) on the mχ–mh2 plane for the low mχ

region.
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the other scalar). Therefore, unless mχ > mh1;2=2, the h1;2
productions followed by their decays into a pair of χ can
lead to such a missing-energy signature. The degenerate-
scalar case, especially, can be observed as invisible Higgs
decay. We note that in such a case it is very difficult to
distinguish the model from a simpler Higgs portal DM
model, where DM only couples to the single SM-like Higgs
boson. In the following, however, we will show that it is
possible to examine the degenerate-scalar scenario using
the process other than the invisible decay.
In order to test a degenerate-scalar scenario, instead of the

missing-energy signature, here we focus on degenerate-
scalar productions at the ILC [27], and investigate how well
we can distinguish the degenerate states from the single state
of mh ¼ 125 GeV in the SM. We note that, at the Large
Hadron Collider (LHC), by using the high resolution of the
diphoton channel of the Higgs boson decays, the mass
difference between the two degenerate states Δm≳ 3 GeV
is disfavored at the 2σ level from the LHC Run-I data [28].
Although no such specific analyses can be found
in Refs. [29,30] with the LHC Run-II data, we expect a
better resolution. The phenomenological studies on
mass-degenerate Higgs bosons are also found in, e.g.,
Refs. [31–34].
The main target of the ILC at

ffiffiffi
s

p ¼ 250 GeV (ILC250)
is Higgs boson production associated with a Z boson [35].
The mass of the Higgs boson is precisely determined by the
recoil-mass technique in the process [17]

eþe− → h1;2Z → h1;2lþl−; ð26Þ
where the Higgs mass is reconstructed from l ¼ e or μ as

m2
recoil ¼ ð ffiffiffi

s
p

− EllÞ2 − jp⃗llj2: ð27Þ
The recoil mass is independent of how the degenerate
scalars decay, and hence this analysis is independent of the
mass hierarchy between the DM and the degenerate scalars.
We note that, different from processes where the DM
involves such as DM-nucleon scattering and DM annihi-
lation, there is no cancellation between the two amplitudes
mediated by h1 and h2 in the SM-like processes.3 In the
following, we parametrize the mass difference of the two
scalars as

mh1;h2 ¼
�
125� Δm

2

�
GeV: ð28Þ

Figure 7 shows recoil-mass distributions with a
muon-pair final state in the pseudoscalar DM model with
nearly degenerate scalars for various Δm denoted by
different colors. For simulation, using the same CxSM

UFO model as in the DM computations, we employed
MadGraph5_aMC@NLO v2.7.3 [36] with PYTHIA 8.2 [37] for
event generation and DELPHES v3.4.2 [38] to take into
account detector effects. We used the ILCDELPHES card;
a DELPHES model describing a parametrized generic ILC
detector [39,40] based on two types of detectors proposed
for the ILC [41], the Silicon Detector (SiD) [42], and the
International Large Detector (ILD) [43]. The total cross
section for the signal, i.e., the sum of the two resonances is
independent of Δm, while the relative strengths for the two
resonances depend on the mixing angle α. Here, as before,
we assume α ¼ π=4, i.e., the two resonances have the same
signal strengths.
In Fig. 7, forΔm ¼ 1.0 GeV, we can clearly observe two

peaks. ForΔm < 0.5 GeV, on the other hand, we no longer
observe two peaks, instead see a broader peak than for the
single resonance case denoted by a dotted curve (Δm ¼ 0).
We note that, as expected, the results strongly depend on
the resolution of muon momenta determined by detectors.4

In order to assess the minimal luminosity to exclude or
discover such a degenerate-scalar scenario, we perform
tests of significance with the χ2 function defined as

χ2 ¼
XN
i¼1

ðni − niSMÞ2
niSM

; ð29Þ

where ni is the number of events in the ith bin expected in
our pseudoscalar DM model, and niSM is the corresponding

FIG. 7. Recoil-mass distributions for various Δm for eþe− →
h1;2Z; Z → μþμ− at

ffiffiffi
s

p ¼ 250 GeV, where the generic ILC
detector is assumed.

3Even when the h1;2 → χχ decays are allowed in the process
(26), unless the mass difference is smaller than the widths of h1;2,
no cancellation happens.

4In the early stage of this work, we performed two detector
simulations, SiD and ILD, implemented as a DELPHES detector
card in the previous ILC study [44]. The resolution of the recoil-
mass spectrum, i.e. the muon resolution, for SiD (ILD) is slightly
worse (better) than that for the generic ILC detector.
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prediction in the SM. As the background in the recoil-mass
distribution is estimated well in ref. [17], we simply take
the SMHiggs signal as our zero hypothesis. We fix the total
number of events at a certain integrated luminosity by the
total cross section 10 fb [¼σðeþe−→hZÞ×BðZ→μþμ−Þ]
for mh ¼ 125 GeV at

ffiffiffi
s

p ¼ 250 GeV with the planned
beam polarization Pðe−; eþÞ ¼ ð−0.8; 0.3Þ [35]. We
require at least ten events in each bin to count as the
degree of freedom for the χ2 calculation in Eq. (29).
Figure 8 (left) shows the p-value calculated from the χ2

for the distinction of the degenerate mass spectra of various
Δm as a function of the integrated luminosity L up to
2 ab−1 planned at the ILC250, where we take N ¼ 25 bins
in the 120 GeV–130 GeV range, i.e., Δmbin ¼ 0.4 GeV.
We find that, e.g., the scenario with Δm < 0.3 GeV is
excluded (discovered) with L ∼ 30 fb−1 (240 fb−1), while
that with Δm < 0.2 GeV is L ∼ 520 fb−1 (1300 fb−1).
We also investigate the effect of the bin size on the

distinction; from the left to right panels, we take the number
of bins in the 120 GeV–130 GeV range as N ¼ 25, 50 and
100, i.e. Δmbin ¼ 0.4, 0.2, 0.1 GeV, respectively. Even for
Δmbin > Δm, we expect a sensitivity to exclude or discover
the degenerate-scalar scenario within the planned integrated
luminosity 2 ab−1 ifΔm > 0.2 GeV.A better sensitivity can
be expected with more optimized analyses, and more
dedicated studies such as including the background and
the systematic errors should be reported elsewhere.

V. SUMMARY

In this paper, we studied a pseudoscalar DM model
arising from the CxSM. The scalar potential we adopted in
our study is the most general and renormalizable, in which
the global symmetry is softly broken by the operators up
to the mass dimension two so that does not suffer from
the domain-wall problem as opposed to the minimal
pseudo-Nambu–Goldstone DM model. We showed that
the DM-nucleon scattering amplitudes mediated by two
scalar particles (h1 and h2) are cancelled when the masses

of two scalars are degenerate, and we investigated the
allowed model parameter space of the degenerate scenario
under the direct-detection experiments as well as the
measurements of the relic density of the DM.
In addition, we discussed a possibility to verify such a

degenerate-scalar scenario by using the recoil-mass tech-
nique at the ILC. The recoil mass is independent of how the
degenerate scalars decay, and hence the analysis is inde-
pendent of the mass hierarchy between the DM and the
degenerate scalars in the model. We found that a pair of
states separated by 0.2 GeV can be distinguished from the
single SM-like Higgs state at 5σ with integrated luminosity
of 2 ab−1.
Finally, we briefly mention constraints on the degenerate

scalar scenario from so-called indirect detection experi-
ments, which restrict the annihilation processes of the DM.
We expect that the degenerate scalars suppress the annihi-
lation rates of the DM pair to fermions or gauge bosons
owing to the cancellationmechanism so that these processes
are not severely constrained from the indirect detection
experiments. This consequence is different from a typical
Higgs portal DM model (e.g., [45]), which does not have
such a cancellation mechanism. In the degenerate scenario,
as is mentioned in Sec. III, the DM annihilation to scalar
pairs, χχ → hihj, is not suppressed. Therefore, the indirect
detection experiments might give some constraints on the
model parameter space; this will be reported elsewhere.
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