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Motivated by the fermion mass hierarchy, we study the phenomenology of two flavorful two-Higgs-
doublet model (2HDM) scenarios. By virtue of the flavor or singular alignment ansatz, it is possible to link
the mass of a subset of fermions to the vacuum expectation value (VEV) of a unique Higgs doublet and to
simultaneously avoid flavor-changing-neutral-currents at tree level. We explicitly construct two models
called Type A and B. There, either the top quark alone or all third generation fermions couple to the
doublet with the larger VEV. The other fermions acquire their masses through the small VEVof the other
doublet. Thus, more natural values for the Yukawa couplings can be obtained. The main differences
between these models and conventional ones are studied, including a discussion of both their structure and
phenomenological consequences. In particular, as distinctive deviations for the Yukawa couplings of the
light fermions are predicted, we discuss possible tests at the LHC based on searches for h → J=Ψþ γ,
h → μμ and heavy scalar resonances decaying to muon pairs. We find that for a wide region of parameter
space, this specific set of signatures can be used to distinguish among the new proposed types and the
conventional ones.
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I. INTRODUCTION

Flavor-changing-neutral-current processes (FCNC)
have been experimentally observed to be strongly sup-
pressed. Their smallness in the Standard Model (SM) has
long been understood through the Glashow–Iliopoulos–
Maiani mechanism [1]. However, its simplicity requires
considering only one Higgs doublet; once two scalar
doublets are assumed, potential tree-level flavor transitions
are expected. Those FCNCs are mediated by the linear
combination of the neutral components of the doublets.
Similarly, either assuming the SM to be an effective field
theory or including only a gauge singlet scalar, the addition
of higher dimensional operators will produce undesirable
flavor violating effects. To overcome this situation, one
must invoke further assumptions. This creates many alter-
native paths and gives place to some ambiguity. Generally
speaking, going beyond the standard scenario, always, new
FCNC sources arise. In particular, for any multi-Higgs

extension, those arise already at tree level. We may
then ask: Why should we include more Higgs fields if
the single-Higgs picture is already naturally consistent with
small FCNCs?
To answer the previous question, we need to consider

which other fundamental aspects of the SM can be
addressed by extending the number of Higgs doublets
and investigate what would be the main phenomenological
consequences of such scheme. In this respect, through
naturalness arguments [2,3], fermion masses give rise to
one of the still unsolved mysteries in the SM: the problem
of mass hierarchy [4]. An application of Dirac’s naturalness
criteria [2] requires the observation of all fermion masses
around the electroweak (EW) scale, mf ¼ yfv, with yf ∼
Oð1Þ and v ¼ 174 GeV. This is because the aforemen-
tioned criteria require all dimensionless couplings of a
theory to be of order one to be considered natural.
Curiously, it is only the top quark that satisfies it in the
SM. However, the unnaturalness of the lighter fermions,
which can be described as

yt ∼ 1 ≫ yf ðf ¼ c; b; s; u; d; τ; μ; eÞ; ð1Þ

could still be called natural according to ’t Hooft’s criteria
[3]. Namely, if the system acquires a symmetry by setting
the tiny Yukawa couplings to zero, it can be called natural.
This is already the case in the SM. However, a caveat exists:
There is no common Yukawa parameter among this set of
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masses that could simultaneously bring all of them to zero.
However, in a multiscalar theory with at least two vacuum
expectation values (VEVs), v1 and v2, one could instead
use the VEVs to accomplish it, namely,

mt ¼ ytv2 and mf ¼ yfv1; ð2Þ

where f ¼ c; b; s; u; d; τ; μ; e and v ∼ v2 ≫ v1. Here,
besides yt being of order 1, as in the SM, other Yukawa
couplings could also be of the same order, e.g., for those
fermions withmasses around v1 ∼Oð1 GeVÞ. Nonetheless,
this is not a general feature of multiscalar theories, as
fermion masses normally feature a linear combination of
VEVs; e.g., for two scalar doublets, mf ¼ yf;1v1 þ yf;2v2.
Therefore, our main motivation in this work is to build
models where through a common VEV, sets of light masses
could be linked. This is certainly an ambitious goal. First, we
need to check if such models satisfy all current theoretical
and phenomenological constraints. Moreover, as previously
mentioned, this small VEV should be consistent with
’t Hooft’s criteria of naturalness. This means that its nonzero
value should come from the breaking of a symmetry.
Furthermore, we note that due to v21 being sufficiently
smaller than v22 such that v2 ∼ v, even in the case where
no additional Yukawa coupling are of order 1, the scalar
sector would still fulfill ’t Hooft’s criteria for naturalness.
Hence, in the two aforementioned meanings, the following
theories are called natural.
The simplest renormalizable choice along this line

is to extend the scalar sector to contain two Higgs
doublets (Φ1, Φ2), the so-called two-Higgs doublet models
)2 HDMs) [5]. Often, the Yukawa sector of these models
includes a family or flavor universalZ2-parity assignments,
which also operates on the Higgs potential. This is under-
standable as natural flavor conserving (NFC) theories
demand it [6,7]. Nonetheless, more recently, some family
nonuniversal setups have been investigated [8–16]. In
general, all of these setups contain tree-level FCNCs. As
mentioned before, in this case, one must invoke different
mechanisms to ensure the suppression of such currents.
The models proposed here assume their parameters
to be in a certain region of flavor space. There, all
Yukawa matrices become diagonal in the mass basis
irrespective of the fact that they were initially not propor-
tional to the mass matrix. This ansatz is known as Yukawa
alignment [17] in its flavor universal form or general flavor
(also called singular) alignment in its flavor nonuniversal
one [18,19]. The two models to be proposed here are
examples of the latter ansatz.
The outline of this paper is as follows. In Sec. II, we

review the main theoretical constraints on 2HDMs with a
softly broken Z2 symmetry and show how to build a
hierarchical VEV alignment. Afterward, in Sec. III, we
briefly revisit the singular alignment ansatz, which guar-
antees the absence of tree-level FCNCs. We then apply it in

Sec. IV in a judicious manner to construct two new types of
2HDMs whose scalar mediated fermion interactions con-
serve flavor at tree level. Thereafter, in Sec. V, we define
benchmark scenarios that will simplify our analysis and the
main phenomenological constraints that are relevant to
them. In Sec. VI, we discuss the most critical differences
between those new models and conventional 2HDMs and
explore phenomenological consequences that can test our
models. We finally conclude in Sec. VII.

II. THE 2HDM, HIERARCHICAL VEVs AND
THEORETICAL CONSTRAINTS

The components of the two Higgs doublets are written as
follows:

Φj ¼
� ϕþ

j

vj þ ϕ0
j

�
ðj ¼ 1; 2Þ; ð3Þ

where vj represents the VEV that could, in general, be
complex, e.g., in a charge-parity (CP) violating potential.
Introducing a Z2 symmetry reduces the arbitrariness in
the Higgs potential. In addition, if wisely applied to the
Yukawa sector, it guarantees the absence of tree-level
FCNCs [6,7] (later discussed in more detail). We conven-
tionally assign the Z2-parities,

Φ2 → þΦ2 and Φ1 → −Φ1: ð4Þ

Then, the most general Z2-invariant scalar potential is
given by

VZ2

2HDM ¼
X
x¼1;2

�
m2

xxðΦ†
xΦxÞ þ

λx
2
ðΦ†

xΦxÞ2
�

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ

þ 1

2
½λ5ðΦ†

1Φ2Þ2 þ λ�5ðΦ†
2Φ1Þ2�: ð5Þ

Notice that by demanding Hermiticity, the potential keeps
λ5 as the only complex coefficient, while m2

11, m
2
22, and

λ1;2;3;4 are real. By a phase redefinition, the complex phase
of λ5 can be turned to zero without loss of generality.
Therefore, only seven parameters are physical, and the
potential is CP symmetric. For a thorough assessment of
2HDMs, please refer to [5] and, for more recent reviews,
to [20,21].
In order to create a hierarchy among the VEVs, we

guarantee that in a first stage, only Φ2 develops a VEV by
assuming

m2
22 < 0 and m2

11 > 0: ð6Þ

Therefore, the Z2 symmetry is preserved, and
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v2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
−m2

22

λ2

s
; ð7Þ

while v1 ¼ 0. The second stage requires one to softly break
the symmetry by adding the terms,

−m2
12ðΦ†

2Φ1 þΦ†
1Φ2Þ; ð8Þ

to Eq. (5). Choosing m2
12 to be real ensures that these terms

preserve CP. If the condition m2
12tβ ≫ λ1v21 with tβ ¼

v2=v1 is met, Φ2 induces a small VEV to Φ1 of the form,

v1 ≃
m2

12v2
m2

11 þ λ345v22
; ð9Þ

where λ345 ≡ λ3 þ λ4 þ λ5. One can show that, in this
case, the heavy scalar masses are above the EW scale.
For completeness, we add here the two minimization
conditions:

m2
22v2 ¼ m2

12v1 − λ2v32 − λ345v2v21;

m2
11v1 ¼ m2

12v2 − λ1v31 − λ345v1v22; ð10Þ

from which, Eqs. (7) and (9) are derived.
For the sake of illustration, the small VEV can be

estimated by assuming λ345 ∼Oð1Þ and m11 ∼ v2, thus
obtaining

v1 ∼
m2

12

v
: ð11Þ

Hence, if m12 ∼Oð10 GeVÞ, then v1 ∼Oð1 GeVÞ. The
smallness of v1 is natural as setting it to zero, one recovers
the initial Z2 symmetry. Now, as both VEVs contribute to
the W-boson mass they satisfy

v2 ¼ v21 þ v22 ¼ ð174 GeVÞ2: ð12Þ

It is straightforward to realize that we still expect the large
VEV to be close to the EW scale, i.e., v2 ≈ v.
The physical states of the CP-symmetric potential are

two CP even (h, H), one CP odd (A) neutral scalars, and a
pair of charged scalars (H�). The transition from the
interaction (Reðϕ0

1;2Þ; Imðϕ0
1;2Þ;ϕ�

1;2) to the mass basis
(h;H; A;H�; G0; G�) depends on two mixing angles (α, β),

�
h

H

�
¼
�
cos α − sin α

sin α cos α

��
Reðϕ0

2Þ
Reðϕ0

1Þ

�
;

�
A

G0

�
¼
�
cos β − sin β

sin β cos β

��
Imðϕ0

2Þ
Imðϕ0

1Þ

�
;

�
Hþ

Gþ

�
¼
�
cos β − sin β

sin β cos β

��
ϕþ
2

ϕþ
1

�
; ð13Þ

where G0 and Gþ denote the required two massless SM
Goldstone bosons. In the following, we denote the SM-like
Higgs as h with the mass mh ¼ 125 GeV.
Through the invariants of the scalar mass matrices and

t2α ¼
2ðv2λ345s2β −m2

12Þ
m2

12ðtβ − t−1β Þ þ 2v2ðc2βλ1 − s2βλ2Þ
; ð14Þ

the quartic couplings of the scalar potential can be
expressed in terms of the Higgs mass eigenvalues [22–24],

λ1 ¼
1

2v2c2β
ðm2

hc
2
α þm2

Hs
2
α −M2s2βÞ;

λ2 ¼
1

2v2s2β
ðm2

hs
2
α þm2

Hc
2
α −M2c2βÞ;

λ3 ¼
1

2v2

�
s2α
s2β

ðm2
H −m2

hÞ þ 2mH� −M2

�
;

λ4 ¼
1

2v2
ðM2 þm2

A − 2m2
H�Þ;

λ5 ¼
1

2v2
ðM2 −m2

AÞ; ð15Þ

where M2 ≡ 2m2
12=s2β. We note that λ345 ¼ ½M2 þ

ðm2
H −m2

hÞs2α=s2β�=ð2v2Þ. Moreover, for the scalar poten-
tial to be bounded from below (BFB), the quartic couplings
should fulfill [25,26]

λ1;2 ≥ 0; λ3 ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

λ3 þ λ4 − jλ5j ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ð16Þ

From requiring unitarity and perturbativity, the coefficients
have to satisfy the following relations [20,27]:

jλ3þ2λ4�3λ5j≤16π;

jλ3�λ4j≤16π; jλ3�λ5j≤16π;����12
�
λ1þλ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1−λ2Þ2þ4λ24

q �����≤16π;����12
�
λ1þλ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1−λ2Þ2þ4λ25

q �����≤16π;����12
�
3λ1þ3λ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðλ1−λ2Þ2þ4ð2λ3þλ4Þ2

q �����≤16π: ð17Þ

These constraints indirectly ensure that the potential
remains perturbative up to very high scales. Any additional
constraint on the sizes of the λi will make the analysis more
restrictive.
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For the last, the requirement that should be met in order
to guarantee that the minimum is a global one is [28]

m2
12

 
m2

11 −m2
22

ffiffiffiffiffi
λ1
λ2

s ! 
tβ −

ffiffiffiffiffi
λ1
λ2

4

s !
> 0: ð18Þ

III. SINGULAR ALIGNMENT OR HOW TO AVOID
TREE-LEVEL FCNCs

In general, Yukawa interactions in 2HDMs without a Z2

symmetry imply two independent contributions to the
fermion mass matrices,

M ¼ v1Y1 þ v2Y2: ð19Þ

As the diagonalization of the mass matrices do not imply
simultaneous diagonalization of both Yukawa matrices,
tree-level FCNCs occur. This scenario is typically called
Type-III. However, once we introduce a parity symmetry in
the scalar sector, two scenarios arise for the mass matrices:
(i) only one Yukawa matrix contributes; i.e., Z2 is flavor
universal, or (ii) certain columns (or rows, depending on the
parity assignment) of both Yukawa matrices contribute; i.e.,
Z2 is flavor nonuniversal. The former case allows for four
different combinations to assign the charged fermions to
Φ1;2. Those are conventionally called Type I, II, X, Y and
are shown in Table I. The four combinations prohibit tree-
level FCNCs and are called NFC theories [6,7].
On an equal footing, two scenarios without tree-level

FCNCs are possible: (i) the two Yukawa matrices are
proportional to each other, or (ii) the rank one matrices
corresponding to the eigenvalues of each Yukawa matrix
are proportional. The former ansatz is called Yukawa
alignment [17], whereas the latter one is its generalized
version [18], also known as singular alignment [19].
When considering NFC theories, the Z2 symmetry is

usually applied to the right-handed (RH) fermion fields, but
it could also be applied to the left-handed ones. To illustrate
the previous discussion, we consider the Z2 assignments
for the Type-II scenario,

di;R → −di;R; ei;R → −ei;R; ui;R → þui;R; ð20Þ

with i ¼ 1, 2, 3. All left-handed fermions are even under
the parity symmetry. Then, Φ2 can only couple to up-type
quarks, while Φ1 couples to down-type quarks and charged
leptons, shown in the second column of Table I.
Interestingly, the four types can be encompassed via the
Yukawa-alignment [17] ansatz,

Y1 ∝ Y2; ð21Þ

as well as through its generalization in [18,19].
In the latter ansatz [18], theZ2 symmetry is applied family

nonuniversally as each Higgs doublet couples only to a
given generation of each fermion family. In one literature
example [12],Φ2 couples only to the third generation, while
Φ1 to the first and second ones. Compared to the first case
(global application of the symmetry), a general feature of
these scenarios is that they give rise to tree-level FCNCs.
Therefore, onemust findways to sufficiently suppress them.
The singular alignment ansatz introduced in [19]

approaches Eq. (21) in an independent but complementary
way compared to the Yukawa alignment. By the virtue of its
conceptual transparency, the models studied here are
obtained. The singular alignment ansatz takes the singular
value decomposition of Eq. (19) as its starting point,

L†MdiagR ¼ v1Y1 þ v2Y2: ð22Þ

Then, by noting that Mdiag ¼
P

i miPi, with ½Pi�jk ¼ δijδik
(i, j, k ¼ 1, 2, 3), it is possible to redefine the lhs toX

i

miΔi ¼ v1Y1 þ v2Y2; ð23Þ

whereΔi ¼ L†PiR. In return, the ansatz means demanding
that each Yukawa matrix satisfies

Yk ¼ αkΔ1 þ βkΔ2 þ γkΔ3; ðk ¼ 1; 2Þ: ð24Þ

This gives place to the relations,

m1 ¼
X
k

αkvk; m2 ¼
X
k

βkvk; m3¼
X
k

γkvk: ð25Þ

It is straightforward to see how substituting the ansatz in
Eq. (24) into Eq. (22) guarantees the absence of tree-level
FCNCs. Namely, each Yukawa matrix is diagonal in the
mass basis,

Ȳk ¼ LYkR† ¼ αkP1 þ βkP2 þ γkP3: ð26Þ

Moreover, when αk ∝ βk ∝ γk, the ansatz implies the
Yukawa alignment [17]. In fact, singular alignment is
equivalent to the generalized version of the Yukawa align-
ment [18], which is flavor nonuniversal. Interestingly, this
kind of apparently ad hoc ansatz could originate from a
family symmetry as shown in Ref. [29] or from an effective

TABLE I. The four different types of 2HDMs with NFC. The
allowed couplings between each fermion and a certain Higgs
doublet are imposed by a group symmetry, e.g., a Z2. Here, either
the right-handed or left-handed components obtain a nontrivial
charge assignment.

Type I II X Y

ui Φ2 Φ2 Φ2 Φ2

di Φ2 Φ1 Φ2 Φ1

li Φ2 Φ1 Φ1 Φ2
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approach with additional hidden scalars [30]. More impor-
tantly, the family universal alignment and its generalized
nonuniversal version are both linear realizations of the
minimal flavor violation (MFV) hypothesis [31]. This
implies that the appearance of FCNCs at loop level poses
no risk as all experimental bounds are respected; see, for
example, [18,32]. Lastly, it has been shown recently that
the family universal MFV ansatz can be generalized to a
nonuniversal one [33]; see [34] for an application to a
2HDM framework.

IV. TWO NEW 2HDM TYPES

We are now able to discuss two different models, which
we denote as Type A and Type B. The field content is that
of a 2HDM with a softly broken Z2 symmetry. The Type A
offers a collective distinction between the top quark and all
the other fermions motivated by the big mass splitting. On
the other hand, the Type B creates a distinction between the
whole third fermion family and the two light ones. Only
Type A properly adopts the idea of natural small fermion
masses, mf ≪ mt, as they are all connected to the small
VEV, v1. In comparison, in Type B, the smallness of the
bottom and tau masses cannot be called natural as yb;τ ≪ 1.
Despite this fact, the scalar sector still possesses a natural
small VEV. Thus, Type B can be called natural.
The Z2 assignments for Type A are

u3;R → þu3;R

fuj;R; dj;R; ej;Rg → −fuj;R; dj;R; ej;Rg; ð27Þ

and Type B,

fu3;R; d3;R; e3;Rg → þfu3;R; d3;R; e3;Rg
fuj;R; dj;R; ej;Rg → −fuj;R; dj;R; ej;Rg: ð28Þ

Here, j denotes the remaining right-handed fermions. All
left-handed ones are chosen even under the Z2 symmetry.
We summarize the two models in Table II. The Yukawa
Lagrangians are then expressed in Type A as

−LQ
Y ¼

X3
i¼1

Q̄i;L½ytiΦ̃2u3;Rþ Φ̃1ðyci u2;Rþyui u1;RÞ�

þ
X3
i¼1

Q̄i;LΦ1ðybi d3;Rþysid2;Rþydi d1;RÞþH:c:

−Ll
Y ¼

X3
i¼1

l̄i;LΦ1ðyτi e3;Rþyμi e2;Rþyei e1;RÞþH:c:; ð29Þ

and in Type B as

−LQ
Y ¼

X3
i¼1

Q̄i;L½ytiΦ̃2u3;Rþ Φ̃1ðyci u2;Rþyui u1;RÞ�

þ
X3
i¼1

Q̄i;L½ybiΦ2d3;RþΦ1ðysid2;Rþydi d1;RÞ�þH:c:

−Ll
Y ¼

X3
i¼1

l̄i;L½yτiΦ2e3;RþΦ1ðyμi e2;Rþyei e1;RÞ�þH:c:

ð30Þ

Generally speaking, our two models feature tree-level
FCNCs. However, as aforementioned and discussed,
through the introduction of the singular alignment ansatz,
we choose the right parameter region of family space such
that the Yukawa matrices become diagonal in the mass
basis. Thus, FCNCs are absent at tree level. For further
details, we refer the reader to Ref. [19].
Let us shortly notice an important feature of our two

models related to the implied fermion mixing. As the
fermion mass matrices are given in terms of two hierar-
chical VEVs, v1 ≪ v2, one can study the implications of
setting the smaller one to zero. In Type A, all mass matrices
are equal to zero, except the one for the up-type quarks,
which takes the form,

Mu ¼ v2

0
B@

0 0 yt1
0 0 yt2
0 0 yt3

1
CA: ð31Þ

As the down-type quarks have a null mass matrix, a
simultaneous unitary transformation in the quark weak
doublet leaves the kinetic terms invariant and simultane-
ously brings us to the mass basis. Therefore, at this level,
the quark mixing matrix is given by the identity, which is a
good first approximation to the observed quark mixing
matrix.
For the sake of completeness, and in order to discuss also

lepton mixing, one must introduce massive neutrinos. Let’s
assume we have done that without specifying them to be of
Dirac or Majorana nature. Under this circumstance, as the
mass matrices for both the charged leptons and neutrinos
depend on the same VEV (even in the Majorana scenario),
their mixing is expected to strongly deviate from the

TABLE II. Each column shows the fermions with the same Z2

charge assignment as a certain Higgs doublet, Φ1ð2Þ. This defines
the new types A and B. Note that a flavor conserving ansatz is
required in order to avoid tree-level FCNCs.

Type A B

u3;R Φ2 Φ2

d3;R, e3;R Φ1 Φ2

Other RH fermions Φ1 Φ1
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identity and behave more anarchically [35], which is a good
description of observations.
On the other hand, for Type B, all mass matrices take the

form of Eq. (31) in the limit v1 → 0. In return, this implies
that all fermion should mix anarchically, which is not the
case. This undesired issue can be solved by reassigning all
Z2 odd charges to the left-handed fermions instead of the
right-handed ones. Thereafter, a weak-basis transformation
in the right-handed fields would be enough to diagonalize
the Yukawa matrices and recover the trivial quark mixing.
However, in the lepton sector, one would have anarchic
mixing only if Majorana neutrinos are assumed.
Hence, in terms of fermion mixing, both models are able

to predict trivial mixing for the quark sector (under the right
Z2 charge assignment) and anarchic mixing for the lepton
sector (if neutrinos are considered as Majorana particles).
Fermion mixing has been explicitly related to tβ in the
recent study in Ref. [36]. Moreover, similar conclusions
were obtained for Type B in [12].
The Yukawa Lagrangian in the mass basis is

expressed by

−LY ⊃
X
f

mf

ð246 GeVÞ ðξ
h
ff̄fhþ ξHf f̄fH − iξAf f̄γ5fAÞ

−Hþ
ffiffiffi
2

p P
ijV

CKM
ij

ð246 GeVÞ ūiðmuiξ
Hþ
qu PL þmdjξ

Hþ
qd PRÞdj

−Hþ
ffiffiffi
2

p
ml

ð246 GeVÞ ξ
Hþ
l ν̄L;ilR;j þ H:c:; ð32Þ

where VCKM is the quark mixing matrix. The SM is
recovered for ξhf ¼ 1 and ξH;A;Hþ

f ¼ 0. In Table III, we
show the corresponding couplings for the conventional
NFC scenarios, while in Table IV, the respective ones for
our Types A and B. The two tables show great similarities,

as the main change from the conventional ones is breaking
their family universality.
To derive the Yukawa couplings shown in Tables III

and IV, we insert Φ1;2 from Eq. (3) into Eqs. (29) and (30).
We change to the mass basis by performing a rotation
in the neutral and charged scalar sector as in Eq. (13). The
resulting terms depend on β and α, as well as on the two
VEVs, v1;2. In addition, we use the relations between the
fermionic Yukawa couplings and masses,

yf ¼
mf

cβv
or yf ¼ mf

sβv
: ð33Þ

Here, the former relation should be used if the given
fermion couples to Φ1 and the latter if it couples to Φ2.
After carefully following these steps, we arrive at the
couplings shown in Tables III and IV. See Ref. [15] for an
example where the couplings acquire a completely different
behavior when enlarging the flavor symmetry to a larger
group. For other related phenomenological applications of
the Yukawa alignment see for example [37].
The couplings of the CP-even scalars, h and H, to a pair

of vector bosons, V ¼ W�, Z, are modified by

ξhVV ¼ sβ−α and ξHVV ¼ cβ−α: ð34Þ

The SM values are favored by present data. This means that
to a very good degree of approximation,

sinðβ − αÞ ≃ 1: ð35Þ

This is called the alignment limit (AL). It defines the
condition for h to be SM-like besides the correct mass.
In terms of angles we can approach this limit as:

TABLE III. Flavor universal Yukawa couplings of the charged
fermions to the Higgs bosons h, H, A, and Hþ in the four
conventional 2HDMs.

Type I II X Y

ξhqu cα=sβ cα=sβ cα=sβ cα=sβ
ξhqd cα=sβ −sα=cβ cα=sβ −sα=cβ
ξhl cα=sβ −sα=cβ −sα=cβ cα=sβ
ξHqu sα=sβ sα=sβ sα=sβ sα=sβ
ξHqd sα=sβ cα=cβ sα=sβ cα=cβ
ξHl sα=sβ cα=cβ cα=cβ sα=sβ
ξAqu 1=tβ 1=tβ 1=tβ 1=tβ
ξAqd −1=tβ tβ −1=tβ tβ
ξAl −1=tβ tβ tβ −1=tβ
ξH

þ
qu

1=tβ 1=tβ 1=tβ 1=tβ
ξH

þ
qd

1=tβ −tβ 1=tβ −tβ
ξH

þ
l

1=tβ −tβ −tβ 1=tβ

TABLE IV. Flavor non-universalYukawa couplings, cf. Eq. (32),
of the charged fermions to the scalars h, H, A, and Hþ in Type A
and B with light ¼ fu; c; d; s;lg and l ¼ fe; μg.
Type A B

ξht cα=sβ cα=sβ
ξhb;τ −sα=cβ cα=sβ
ξhlight −sα=cβ −sα=cβ
ξHt sα=sβ sα=sβ
ξHb;τ cα=cβ sα=sβ
ξHlight cα=cβ cα=cβ
ξAt 1=tβ 1=tβ
ξAb;τ tβ −1=tβ
ξAu;c −tβ −tβ
ξAd;s;l tβ tβ
ξH

�
t 1=tβ 1=tβ
ξH

�
b;τ

−tβ 1=tβ

ξH
�

light
−tβ −tβ
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β ¼ αþ π=2 − ϵ with ϵ → 0. As an implication of this one
obtains ξhf → 1 in Tables III and IV. This again shows the
fact that h behaves as the SM Higgs in the AL. Therefore,
our two proposed models satisfy the same alignment
conditions as the conventional NFC ones. To better under-
stand the behavior of the Yukawa couplings, we rewrite the

relevant ξðh;HÞ
f in terms of tβ, cβ−α, and sβ−α. Including

terms for the AL up to OðϵÞ leads to

cα=sβ ¼ sβ−α þ cβ−α=tβ ≃ 1þ ϵ=tβ;

−sα=cβ ¼ sβ−α − cβ−αtβ ≃ 1 − ϵtβ;

cα=cβ ¼ cβ−α þ sβ−αtβ ≃ ϵþ tβ;

sα=sβ ¼ cβ−α − sβ−α=tβ ≃ ϵ − 1=tβ: ð36Þ

Thus, away from the exact AL, significant deviations are
expected in Type A and B compared to the SM Higgs
couplings to first and second generation fermions.
We note that regarding the Higgs couplings Type A is

closely related to Type II besides the up and charm quark
couplings. Due to their small Yukawa values, they have
limited phenomenological relevance at colliders, although
some efforts have been made to constraint their values. In
particular, the decay h → J=Ψþ γ is sensitive to potential
deviations in the charm-Yukawa coupling, which could be
tested. We investigate this in the next section.
For Type B, the situation is slightly different. Compared

to Type I, the couplings to d; s; u; c; e; μ are changed.
Therefore, in Type B, in case of deviations from the AL,
those couplings can be enhanced for large values of tβ
instead of being suppressed as in Type I. The changes in
the muon coupling are of special interest as it is exper-
imentally constrained [38–40]. We further investigate this
in the next sections. Last, Type I is mostly constrained for
tβ ≲ 10 due to the 1=tβ suppressed b-Yukawa coupling,
while for Type II, relevant constraints also arise for large
values of tβ [41].
To visualize deviations from the SM Higgs couplings

and the differences of the four types, we show the
branching ratios (BRs) of h as a function of tβ in
Fig. 1 with cβ−α ¼ 0.1 for Type A and II (top), as well
as for Type B and I (bottom) [42,43]. While for Type A,
most decay modes behave very similar to Type II, the
BRðh → cc̄Þ differs significantly. In Type B, all BRs
show distinct behavior compared to Type I for tβ ≳ 30

as BRðh → cc̄Þ becomes sizeable. Similarly, BRðh →
μþμ−Þ also shows deviations from predictions in the usual
2HDM-types. A detailed discussion of this mode and the
Higgs decay into charmonium plus a photon is presented
in the next section. In addition, the total decay width
deviates stronger from the SM value for Type A than for
Type B, as shown in Fig. 2. In the lower panel, regions
outside the solid contour lines are excluded at 95% CL by
CMS [44].

In a similar manner, we show the BRs for the heavy
scalar,H, in Fig. 3. The BRs of the pseudoscalar, A, behave
similarly. Therefore, we do not discuss them explicitly.
Here, BRðH → tt̄Þ dominates for tβ ≲ 5 in Type A and II,
respectively, for tβ ≲ 12 in Type B, and for all values of tβ
in Type I. For values of tβ ≳ 10, BRðH → bb̄Þ becomes
dominant in Type A and II, while in Type B, the BRðH →
cc̄Þ takes over. In Type A and II, the decay H → τþτ−
features the second biggest BR for tβ ≳ 10. Only in Type A,
the decay H → cc̄ reaches a relevant BR. In Type B, the
BRðH → μþμ−Þ reaches a significant value for tβ ≳ 10. In
Type I, the ratios of the BRs stay constant, and the gg
channel is next-to-dominant. Considering deviations from
the AL decays to weak gauge bosons become relevant. For
example, for cβ−α ¼ 0.1, the maxima of BRðH → WWÞ ≃
0.33 and BRðH → ZZÞ ≃ 0.16 are at tβ ≈ 5. For higher
values of tβ, both approach values of Oð1%Þ.

FIG. 1. Branching ratios of the SM-like scalar h in Type A (top)
and B (bottom) for cβ−α ¼ 0.1 [42,43]. For comparison, we show
the BRs in Type II (top) and I (bottom) as dashed lines using the
same color for each mode.
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Recently, the importance of studying the couplings of the
SM Higgs as a way to distinguish among different multi-
scalar scenarios was highlighted in Ref. [45]. In particular,
different imprints that the SM and BSM scenarios leave on
the Higgs Yukawa couplings were identified. Namely, in the
SM, those couplings lay on a single line if plotted as a
function of the fermionmass. This also occurs for the 2HDM
ofType I butwith a different slope.On the other hand, for the
Type II, the Higgs Yukawa couplings will lay on two lines,
one for down-type quarks and leptons and one for up-type
quarks. Now, within Type A, the top Yukawa coupling will
deviate from the line defined by the remaining fermions. In
Type B, all third generation Yukawa couplings will lay on a
different line than the ones of the light fermions.

V. MODEL CONSTRAINTS AND BENCHMARKS

There are mainly two ways to study multiscalar scenar-
ios: (i) by possible deviations from the SM predictions,

like Higgs properties, and (ii) by direct searches for
the new scalar states. For our analysis, we take both into
consideration.
While a full investigation of the 2HDM parameter space

is beyond the scope of this article, we make use of results
derived for the well-studied Types I and II and discuss
differences occurring in our Types A and B. In particular,
we refer the reader to Ref. [41]. There a summary of the
most relevant constraints and a comprehensive analysis
regarding the present situation of the 2HDM neutral scalars
from current LHC searches is presented.

A. Constraints

We consider the following experimental constraints for
2HDMs as the most relevant ones for our study:

FIG. 2. Top panel: Total decay width of h for Type A, B, I, and
II with cβ−α ¼ 0.1. The SM value is depicted as the black dotted
line and the experimentally allowed band [44] at 95% CL as the
gray hatched region. Lower panel: Contours of Γh ¼ const. for
Type A (blue) and B (orange). Regions outside the solid lines are
excluded at 95% CL [44].

FIG. 3. Dominant BRs of the heavy CP-even scalar,H, in Type
A (top) and B (bottom) for cβ−α ¼ 0 and mH ¼ 500 GeV. For
comparison, we also show the BRs for Type II (top) and Type I
(bottom) as dashed lines. The BRs of the pseudoscalar, A, behave
similarly.
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(i) Higgs couplings: As aforementioned, the couplings
of the SM-like Higgs, h, get modified. The Higgs
coupling modifiers, κi, are defined as the ratio
of the Higgs coupling to the corresponding SM
value κi ¼ ghii=gSMhii , where i denotes a SM field
[38,39]. This, in turn, implies

κ2i ¼
σi
σSMi

or κ2i ¼
Γi

ΓSM
i

; ð37Þ

which correspond to ðξhi Þ2 in our models. In
Table V, we summarize the current limits on those
derived from combined measurements of ATLAS
and CMS [38,39]. Of special interest for the models
under consideration are the channels h → μμ and
h → J=Ψþ γ. In those decays, the coupling struc-
ture differs from the conventional types.
In addition, the recent limit on the total decay

width of the SM Higgs by CMS [44] (0.08 MeV <
Γh < 9.16 MeV at 95% CL) strongly constrains
enhanced couplings of h to fermions and additional
decay modes. In this regard, Fig. 2 shows the
observed limit together with Γh as a function of
tβ in Types I, II, A, and B for cβ−α ¼ 0.1, as well as a
contour plot in the ðcβ−α; tβÞ plane.

(ii) Direct collider searches: As an example, we explic-
itly consider the ATLAS and CMS searches for
heavy scalar resonances decaying to muon pairs
[40,46]. In those searches, we expect significant
deviations for Type B compared to Type I. In [40]
model-independent exclusion limits, on the produc-
tion cross section times, the BRs have been deter-
mined for scalars in the mass range from 130 to
1000 GeV. In other channels, the behavior is
expected to be similar to the conventional types.
As shown in Ref. [41], values of tβ ≳ 10 are
excluded by searches for A=H → τ−τþ for the mass
degenerated scenario and cβ−α ¼ 0.05. Therefore,
we adapt these constraints for Type II and A.

(iii) Electroweak precision constraints: The two
terms in the scalar potential proportional to λ4 and
λ5 break the custodial symmetry. This leads to
additional contributions to the ρ parameter, which
can be avoided by taking mA ¼ mH� or/and mH ¼
mH� [47–49].

(iv) Flavor observables: Even after avoiding FCNCs at
tree level in 2HDMs, they can arise at loop level
from charged Higgs loops. Constraints from the
Belle II dataset [50,51] on b → sγ decays are
especially relevant. They require mH� > 600 GeV.
The Type II is most sensitive to this constraint.
After a careful study of the involved couplings,
it is possible to show that our two proposed types
behave in the same way as the Type II for this flavor
violating transition. Therefore, we require in the
following that the charged scalar mass lies above
600 GeV. We note that these flavor constraints are
model dependent and could be relaxed in the
presence of more intricate BSM sectors.

B. Benchmark scenarios

The number of independent free parameters in the scalar
sector is seven. We choose them to be given by

fm2
12; mh;mH;mA;mH� ; tβ; αg: ð38Þ

To simplify the analysis and reduce the number of free
parameters, we investigate the most relevant phenomeno-
logical aspects of our two models by focusing on the
following well-motivated benchmarks:

(i) Alignment limit: Two facts may help us to reduce the
parameter space. We have β ¼ αþ π=2. In addition,
we know that v2 ≫ v1 such that we could take
v1 ∈ ð3; 58Þ GeV. Here, the lower bound is ob-
tained by demanding the bottom Yukawa coupling
to be of order one, yb ∼Oð1Þ; i.e.,mb ≈ 3 GeV. The
upper bound is obtained by relaxing the previous
condition and just demanding v1=v2 ≲Oð10−1Þ. In
return, we obtain a region for tβ ∈ ð3; 58Þ that
implies for the scalar mixing angle,

α ∈ ð−18.43;−0.99Þ°: ð39Þ

In the AL, flavor universality in the Yukawa cou-
plings is restored for h but not for H and A.

We recall the two employed criteria for natural-
ness, as they are crucial to understand why we
conceive tβ ∈ ð3; 58Þ as the natural range for our
discussion. In the Type A, only for tβ ∼ ð20; 58Þ,
hierarchical fermion masses (mb, mτ, mc) are natu-
ral, whereas for tβ ∼ ð3; 20Þ, they stop being so.
However, we employ the latter range as it is
connected to a natural small value of v1. For Type

TABLE V. Current 68% probability sensitivities and best fit
values for the Higgs coupling modifiers, κi, as obtained from a
Bayesian statistical analysis and from combined data taken by
ATLAS and CMS at

ffiffiffi
s

p ¼ 13 TeV. The ATLAS fit assumes all
coupling modifiers to be positive.

Bayesian fit [52] CMS [38] ATLAS [39]

κW 1.01� 0.06 1.10þ0.12
−0.17 1.05� 0.08

κZ 1.01� 0.06 0.99þ0.11
−0.12 1.10� 0.08

κt 1.04þ0.09
−0.10 1.11þ0.12

−0.10 1.02þ0.11
−0.10

κb 0.94� 0.13 −1.10þ0.33
−0.23 1.06þ0.19

−0.18
κτ 1.0� 0.1 1.01þ0.16

−0.20 1.07� 0.15

κμ 0.58þ0.40
−0.38 0.79þ0.58

−0.79 <1.53 at 95% C.L.
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B, there is no range of natural hierarchical fermion
masses (except tβ ≫ 58).

(ii) Degenerate masses: Contributions to the oblique
parameter T (or ρ) are the most restrained ones. As
they basically depend on the relative mass squared
differences, one may define three different cases:
(i)mH ¼ mH� , (ii)mA ¼ mH� , and (iii)mH ¼ mA ¼
mH� . The bounds from electroweak precision mea-
surements can be more easily satisfied in the
last case.

(iii) Unitarity and vacuum stability: It has been shown that
in the AL the soft Z2 breaking parameter is fixed to

m2
12 ¼

tβ
1þ t2β

m2
H; ð40Þ

by unitarity and vacuum stability [53]. Nonetheless,
away from the AL and for large tβ, perturbativity
requires the soft-breaking parameter to satisfy [53]

jm2
12 −m2

Hsβcβj≲ v2: ð41Þ

The simultaneous employment of the different bench-
mark scenarios significantly reduces the number of param-
eters. In its two minimal forms, the analysis could require
three or four free parameters. This is a consequence of
Eq. (40), the AL, and the degenerate masses assumption. In
the following, we will employ these benchmarks as a
complimentary aspect of our discussions.

VI. PHENOMENOLOGICAL RESULTS

We start this section by commenting on the plane
spanned by tβ and cβ−α. In Fig. 4, we show the allowed
regions from the measured SM-like Higgs couplings shown

in Table V. Each plotted point satisfies the contributions to
the oblique parameter T, BFB, unitarity, perturbativity, and
global minimum conditions. Also, the charged scalar mass
is required to be mH� > 600 GeV, as implied by the b → s
flavor violating transitions. The range of scalar masses
satisfying the previous conditions are shown in Fig. 5. In
both figures, the two new types (A and B) can be compared
with the conventional ones (I and II).
One of the salient features of our models concerns the

Higgs coupling with muons which could significantly
deviate from the SM. Recently, the CMS collaboration
announced results for the Higgs decay into a muon pair.
The obtained limits are 0.8 × 10−4 < BRðh → μþμ−Þ <
4.5 × 10−4 at 95% CL [54]. A comparison of BRðh →
μþμ−Þ in the four common types (I, II, X, Y) and our types
(A, B) is depicted in Fig. 6 for cβ−α ¼ 0.1. We note that

FIG. 5. Allowed masses for the 2HDM Type I (purple), B (red),
A and II (both in yellow) in the bi-dimensional plane (mH� , mA).
The gray (applicable to Type II, A, and B) and cyan (applicable to
Type I and tβ < 2) regions are excluded by flavor constraints
(mostly b → s transitions). A similar looking plot can be obtained
for (mH� , mH).

FIG. 4. Current allowed regions from the measured SM-like
Higgs couplings to fermions, κht;b;τ, and gauge bosons, κhV , at
95% CL for 2HDMs of Type I (purple), B (red), A and II (both in
yellow). The vertical dashed line corresponds to the AL, whereas
the two horizontal ones to the previously discussed natural range
(3 < tβ < 58).

FIG. 6. BRðh → μþμ−Þ in all six 2HDM types for cβ−α ¼ 0.1.
The SM value is shown as a dashed black line and the
experimental allowed region at 95% CL as the hashed band [54].
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large values of tβ are excluded for Type B, while for Type
A, most of the range of tβ is still consistent with the data.
Another interesting prediction of our models is the

enhancement of the Higgs coupling to charm quarks.
Although the detection of the Higgs decay to a charm
pair probably has to wait for a linear collider, it might be
possible to search for the Higgs decay to J=ψ þ γ at the
high-luminosity LHC. In Fig. 7, we present the BRðh →
J=ψ þ γÞ for Types A, B, I, and II. We note that the newly
proposed types give the strongest enhancement above the
SM value [55].
Finally, the most direct signature of any 2HDM is the

discovery of the full Higgs spectrum at the LHC. The main
production mechanism of the heavy scalar,H, for tβ ≲ 10 is
gluon-fusion where the top loop dominates the cross
section. However, for larger values of tβ, the contributions
from the bottom loop in Type A and II or the charm loop in
Type B have to be included. In fact, the large enhancement
for the bottom-Yukawa coupling arising in Type A opens
the possibility to consider the b-associated production
of H. This has already been considered in the literature.
For Type B, due to the enhancement of the charm-Yukawa
coupling, also c-associated production could become
relevant. A detailed discussion of this aspect is beyond
the scope of this paper.
Searches for the heavy resonances decaying into muon

pairs are of potential interest for our models. The recent
ATLAS and CMS searches in [40,46] distinguish between
the gluon-fusion and b-associated production channels.
The results are present as upper limits on the production
cross section, σ, times the BRðH → μþμ−Þ. To obtain the
production cross sections of H, we rescaled the NNLO
results from Ref. [56] to our parameter space. For small to
intermediate values of tβ, the suppression of ξHt is already
effective, but ξHbðcÞ is not strongly enhanced yet. For

mH ¼ 500 GeV and tβ > 10ð50Þ, the bottom (charm)

FIG. 7. BRðh → J=ψ þ γÞ in the four 2HDMs types (Type-X
and Y are identical to Type I and II, respectively) for cβ−α ¼ 0.1.
The SM value is depicted as the dashed black line.

FIG. 8. Values of σ × BRðH → μþμ−Þwith cβ−α ¼ 0 forMH ¼
500 GeV (top) and MH ¼ 250 GeV (bottom) in Type A (blue)
and B (orange), together with the corresponding limits from CMS
(black) [40]. The dashed (solid) lines indicate b-associated (gluon
fusion) production. Contributions from b and c loops to the gluon
fusion production are included. We note that Type A is identical
to Type II in this channels.

FIG. 9. Summary of the discussed constraints on Type A (blue)
and B (blue) for MH ¼ 500 GeV. For Type A, we observe an
interesting interplay of various measurements. For Type B, the
dominant constraint arises from deviations of BRðh → μþμ−Þ.

NATURAL 2HDMs WITHOUT FCNCs PHYS. REV. D 104, 035018 (2021)

035018-11



contributions to gluon fusion start to compensate the top
coupling suppression in Type A (B). For Type A, the
enhancement of ξHb is strong enough to exclude high
values of tβ in b-associated production. These effects are
shown in Fig. 8. There, we adopted the slightly stronger
upper bounds from CMS [40] considering both produc-
tion modes.
To summarize the constraints of special interest for Type

A and B, we plot them together in Fig. 9 in the (cβ−α; tβÞ
plane. We find that even with this selection of channels,
large parts of the parameter space can be excluded.

VII. CONCLUSIONS

Motivated by the mass hierarchy between the top quark
and the other fermions, or between the third generation and
the first two generation fermions, respectively, we inves-
tigated two new, interesting types of 2HDMs (called A and
B) with a softly broken Z2 symmetry. Phenomenologically
speaking, the new types are closely related to the well-
known types of 2HDMs (I and II). This is a direct
consequence of the great similarity between the models
when only the heaviest fermions are considered. In return,
that allowed us to comprehensively investigate their phe-
nomenological viability and to make use of derived
constraints to restrict the parameter space. Nevertheless,
the proposed types feature deviations from the conventional
ones in channels of potential reach of the HL-LHC,
enabling a distinction between them.
We studied the implications of assuming a flavor

conserving ansatz, namely general flavor or singular align-
ment [18,19]. By the virtue of it, FCNCs are forbidden at
tree level. This allowed us to discuss new multiscalar
scenarios, which address simultaneously the fermion mass
hierarchy and the smallness of flavor violating processes
mediated by neutral bosons. The former aspect became
possible through two VEV scales, v22 ≫ v21. Within the new
types, two naturalness criteria (Dirac and ’t Hooft) might be
realized in the scalar and/or Yukawa sector. In that sense,
we obtain more natural models.
Most of the low-energy and collider constraints derived

for models of Type I and II also apply to our two models.

As aforementioned, this is mainly a consequence of the
strong similarity between our two types to the conventional
ones. Therefore, we adopt constraints derived for them. In
particular, strong constraints originate from b → s flavor
violating transitions, which require the charged scalar mass
to be above 600 GeV. Given the phenomenological
relevance of the AL, we allowed at most small deviations
from it.
However, specific signatures can be identified

and used to distinguish our models from the conventional
ones, namely (i) h → μþμ−, (ii) H → μþμ−, and (iii) h →
J=ψ þ γ. With the former decay, it is possible to exclude
large values of tβ for Type B, while for Type A, most of the
range remains consistent with current data. On the other
hand, for the latter decay, we found that our two types give
the strongest enhancement above the SM value compared
to the conventional NFC scenarios. Additionally, since the
most direct signature of any 2HDM is the detection of the
full scalar spectrum, we considered viable decay channels
of the heavy CP-even neutral scalar. In particular, the decay
into muon pairs can exclude large values of tβ for Type A
even in the AL.
Overall, the architecture of the two newly proposed types

offers new exciting possibilities to construct multi-Higgs
models, taking the observed hierarchies in the fermion
mass spectrum into account and at the same time avoiding
dangerous FCNCs in a natural manner. This is certainly an
ambitious goal. Many issues should still be addressed to
fully understand the pros and cons compared to the well-
studied conventional types.
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