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One or more scalar leptoquarks with masses around a few TeV may provide a solution to some of the
flavor anomalies that have been observed. We discuss the impact of such new degrees on baryon number
violation when the theory is embedded in a Pati-Salam model. The Pati-Salam embedding can suppress
renormalizable and dimension-five baryon number violation in some cases. Our work extends the results of
Assad, Grinstein, and Fornal who considered the same issue for vector leptoquarks.
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I. INTRODUCTION

The StandardModel (SM) describes awealth of laboratory
data1 within an elegant framework based on the spontane-
ously broken gauge group SUð3Þ × SUð2ÞL × Uð1ÞY .
In the area of flavor physics there are a number of laboratory
measurements that point to discrepancies with the SM:
muon g − 2 [1,2], RKð�Þ ¼ BrðB → Kð�Þμþμ−Þ=BrðB →
Kð�Þeþe−Þ [3–6], and RDð�Þ ¼ BrðB → Dð�Þτν̄τÞ=BrðB →

Dð�ÞeðμÞν̄eðμÞÞ [7–15]. Adding leptoquarks (for a review see
Ref. [16]) with masses around a few TeV to the usual SM
degrees of freedom has been proposed as an explanation for
these discrepancies, see for example [17–41]. Vector and
scalar leptoquarks are predicted in Pati-Salam models [42].
They are attractive extensions of the SM which have quark-
lepton unification based on the SUð4Þ gauge group.
Treating the SM with minimal particle content as a low-

energy effective theory, baryon number violating operators
first occur at dimension six and in the Lagrangian these
operators are suppressed by a mass scaleΛ squared [43,44].
The absence of observed baryon number violation in the
laboratory implies that Λ > 1015 GeV (for a review in
baryon number violation in various models see Ref. [45]).
Adding TeV mass scalar leptoquarks and diquarks to the
SM content can give rise to unacceptably large baryon
number violation at the renormalizable and dimension-five

levels [46]. This paper discusses how the pattern of baryon
number violation changes if these new scalar degrees of
freedom are embedded in a Pati-Salam model. This issue
was considered at the renormalizable level in Ref. [47]. Our
work is an extension of the work of Assad, Grinstein, and
Fornal [48], where baryon number violation mediated by
the vector leptoquarks which are associated with the broken
generators of the SUð4Þ gauge group was considered. It is
worth noting also that in Ref. [49] an additional U(1) gauge
symmetry is used to prevent renormalizable baryon number
violation mediated by a TeV mass scalar leptoquark.
We consider both the case where the Pati-Salam gauge

group is spontaneously broken at a scale much higher than
the ∼100–1000 TeV scale and when it is broken at the
∼100–1000 TeV scale.2 In the former case an awkward
tree-level tuning of parameters must be imposed to have
one (or more) of the leptoquarks mass much smaller than
the symmetry breaking scale. In both the former and latter
cases there is the fine-tuning of radiative corrections
associated with keeping scalar masses small compared
with the Planck scale. However, the same problem exists in
the minimal SM for the Higgs boson mass. We will not
comment further on these tuning issues in this paper.
In Sec. II we discuss adding leptoquarks and diquarks to

the SM effective theory. We review the implications of this
for baryon number violation treating the SM as an effective
field theory and using naive dimensional analysis.
In Sec. III we discuss embedding the SM in Pati-

Salam. We discuss the implications that additional light
leptoquark(s) have on the expected rates for baryon number
violation. Here we treat Pati-Salam as an effective theory
with a cutoff that suppresses higher dimension operators
invariant under the Pati-Salam gauge group. For Pati-Salam
symmetry breaking at a high scale we use the vacuumPublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
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1There are a few phenomena where that is not true. One must
add degrees of freedom (or nonrenormalizable operators) to the
minimal SM to accommodate neutrino masses (either Majorana
or Dirac) and of course there are the well-known cosmological
failings.

2It is the limit on the rate for KL → μ�e∓ that forces the scale
to be this high.
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expectation value (vev) of a field that also gives the right-
handed neutrinos a large mass (i.e., type-I seesaw [50–53]).
We find that the scale of Pati-Salam symmetry breaking is
constrained, by limits on baryon number violation, to be
below ∼1015 GeV. At the same time avoiding strong
coupling the scale suppressing higher dimension operators
in the Pati-Salam effective theory is constrained to be high,
i.e., above 1018 GeV. In the case of low-scale Pati-Salam
breaking we still need the cutoff scale suppressing the
higher dimension Pati-Salam invariant operators to be
above ∼1015 GeV. We follow Ref. [54] and generate
neutrino masses using the inverse seesaw mechanism
[55,56]. In this case we elucidate how the spontaneously
broken Pati-Salam symmetry protects the theory from the
light scalar leptoquarks giving rise to unacceptably large
baryon number violation.

II. LEPTOQUARKS, DIQUARKS AND BARYON
NUMBER VIOLATION

In the SM the renormalizable interactions conserve
baryon number (and lepton number) and the bosons do
not carry any baryon number (or lepton number) charge.
Operators that violate baryon number do not occur in the
Lagrangian for the SM effective field theory until dimen-
sion six. However, this is an accident of the gauge
symmetry and the matter content of the SM. Typically,
one expects a larger field content when embedding the SM
in another theory that is more complete at higher energies
(i.e., the UV). For instance, in SUð5Þ grand unified theory a
scalar boson that interacts with leptons and quarks at the
renormalizable level is predicted together with the SM
Higgs boson [57].
Leptoquark and diquark scalars can give rise to exotic

processes which could be observable in the laboratory. In
particular, order Oð1–10Þ TeV scalar leptoquarks are
popular candidates for explaining the recent anomalies
reported in B meson decays that point to violations of
lepton flavor universality. Amongst the exotic processes,
however, leptoquarks and diquarks can lead to baryon
number violation, either at the renormalizable level or by
higher dimension operators. Baryon number violation is
strongly constrained by laboratory experiments, thereby
rendering scalar or vector leptoquarks and diquarks that
give rise to renormalizable and dimension-five baryon
number violation too heavy to be relevant for the flavor
anomalies.
In this paper we use both left- and right-handed two-

component fields and spinors denoted by subscripts L and
R, respectively. We do not explicitly display Lorentz and
SUð2ÞL gauge indices. We also do not explicitly display the
two-index antisymmetric tensors used to contract those
indices. In addition flavor indices are often not displayed
explicitly.
In Table I we list all possible leptoquark and diquark

scalars able to interact at the renormalizable level with

matter,3 according to Lorentz invariance and the SM gauge
symmetry, that carry a nonzero baryon number charge for
their individual Yukawa interactions to conserve baryon
number. In the second column we show the explicit
interactions with matter at the renormalizable level. In
the third column we classify the type of the scalar:

(i) Pure diquark (DQ): The scalar X has only renorma-
lizable interactions with a pair of quarks, i.e., X has a
nonzero baryon number charge.

(ii) Pure leptoquark (LQ): The scalar X only has
interactions where both quarks and leptons are
involved at the renormalizable level, i.e., X has
nonzero baryon and lepton number charges.

(iii) Mixed (M): The scalar X has interactions with a pair
of quarks as well as with both leptons and quarks.
No baryon or lepton number charge can be assigned
to the scalar in this case.

The mixed scalars violate baryon number at the renor-
malizable level due to the simultaneous presence of diquark
and leptoquark couplings. In general, they contribute to
jΔBj ¼ 1 processes through tree-level X exchange.
Consistency with laboratory experiments requires (assum-
ing order one Yukawa couplings) that MX ≳ 1015 GeV.
Exceptions of this case are the mixed scalars whose diquark
coupling with up quarks is antisymmetric in the flavor
indices. For example, the scalar X ∼ ð3; 1;−4=3ÞSM whose
renormalizable interactions with matter are

−L ⊃ YDQðuαRuβRÞXγϵαβγ þ YLQðdαReRÞX†
α þ H:c: ð2:1Þ

Here and later in this section the Yukawa matrices are in the
mass eigenstate basis. In this case the proton can only decay
by an additional exchange of aW gauge boson [58–60] as the
diagram in the top-left panel of Fig. 1 shows. Following the
calculation inRef. [60] for the decay rate of the protonvia the
most experimentally constrained mode p → π0eþ4 implies

MX ≳ 3 × 1012 GeV

����
X

Q¼2;3
VQ1
CKMY

1Q
DQY

11
LQ

�
GeV
mQ

�����
1=2

:

ð2:2Þ

In the above expression the superscripts correspond to
the entries of the matrix in the flavor space. We will adopt
this convention in the equations where the flavor of fermion
fields is explicitly displayed. Assuming order one Yukawa
couplings, from the above equation one obtains that
MX ≳ 1012 GeV, ruling out TeV scale mixed scalars.

3We are assuming one new boson at a time. If two or more are
present, new interactions could arise through the mixing terms in
the scalar potential.

4In Eq. (2.2) we have updated the proton lifetime to the recent
limit τðp → π0eþÞ > 2.4 × 1034 years [61] by the Super-Kamio-
kande collaboration.
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Pure leptoquark scalars can be given a definite charge so
that baryon number is simultaneously conserved in
all the allowed renormalizable interactions.5 There are
only two scalars in Table I satisfying this property,
Φ3 ∼ ð3̄; 2;−1=6ÞSM and Φ4 ∼ ð3; 2; 7=6ÞSM.6 However,
as the authors in Ref. [46] pointed out, baryon number
can still be violated by operators of dimension five, which
generate a diquark coupling as listed below:

ϵαβγ
Λ

ðdαRuβRÞðΦ†
3ÞγH†;

ϵαβγ
Λ

ðQα
LQ

β
LÞðΦ†

3ÞγH†;

ϵαβγ
Λ

ðdαRdβRÞðΦ†
3ÞγH;

ϵαβγ
Λ

ðdαRdβRÞΦγ
4H

†: ð2:3Þ

The top-right panel of Fig. 1 shows the diagram contrib-
uting to ΔB ¼ −ΔL ¼ −1 processes corresponding to the
first operator above. In Eq. (2.3) and elsewhere the
Hermitian conjugate partners are understood to also be
present. In Ref. [46] it is explicitly shown that experimental
bounds on nucleon decays rule out the two pure lepto-
quarks with TeV scale masses even when the cutoff Λ is
equal to the Planck scale [note that any coupling constants
are absorbed into Λ in Eq. (2.3)].
The following dimension-five operators also contribute

to nucleon decay:

ϵαβγ
Λ

ðdαReRÞðΦ†
3ÞβΦγ

4;
ϵαβγ
Λ

ðQα
LLLÞðΦ†

3ÞβðΦ†
3Þγ;

ϵαβγ
Λ

ðuαReRÞðΦ†
3ÞβðΦ†

3Þγ; ð2:4Þ

as displayed in the bottom-left panel of Fig. 1 for the first of
the above operators. However they give rise to rates that are
suppressed compared to those that follow from the oper-
ators in Eq. (2.3).
The same argument applies to the pure diquarks.

Although they seem harmless at the renormalizable level,
leptoquark couplings could arise in dimension-five oper-
ators leading to baryon number violating processes. For
instance, the pure diquark X ∼ ð3; 1; 2=3ÞSM has the fol-
lowing leptoquark couplings at dimension five:

1

Λ
H†ðLLðd†RÞαÞXα;

1

Λ
Hððu†RÞαLLÞXα; and

1

Λ
ððQ†

LÞαeRÞHXα; ð2:5Þ

which lead to ΔB ¼ −ΔL ¼ −1 processes similar to the
top-right panel of Fig. 1. Analogously to the pure lepto-
quark cases, these processes rule out a TeV scale X mass for
Yukawa couplings YDQ ∼Oð1Þ even when the cutoff is
equal to the Planck mass [46].
The scalar diquarks that are in the symmetric 6 repre-

sentation of SUð3Þ do not give rise to baryon number
violating processes at the renormalizable level. At
dimension five jΔBj ¼ 1 processes do not occur, however
jΔBj ¼ 2 processes can be present. To illustrate this
consider the pure diquark X ∼ ð6̄; 1;−1=3ÞSM. Through
the dimension-five operator

1

Λ
ðX†Þαα0 ðX†Þββ0 ðdγRdγ

0
RÞϵαβγϵα0β0γ0 ; ð2:6Þ

TABLE I. Scalar leptoquarks and diquarks. In the first column, their quantum numbers under the SM gauge group are listed. In the
second column, we list their renormalizable interactions with matter. Between parentheses right after the Yukawa interaction we
indicate, for those which enjoy some flavor symmetry, whether the flavor indices are symmetric (S) or antisymmetric (A). In the third
column we classify them as pure diquark (DQ), pure leptoquark (LQ) or mixed (M) scalars, as described in the text. In the last column
we specify at which dimension in the SM effective field theory baryon number violation occurs.

ðSUð3Þ;SUð2ÞL;Uð1ÞYÞSM Renormalizable interactions Type B violation

ð3; 3;−1=3ÞSM Xα
AðQβ

Lτ
AQγ

LÞϵαβγðAÞ, Xα
AððQ†

LÞατAL†
LÞ M dim 4

ð3; 1;−4=3ÞSM Xαððd†RÞαe†RÞ, XαðuβRuγRÞϵαβγðAÞ M dim 4

ð3; 1;−1=3ÞSM XαðQβ
LQ

γ
LÞϵαβγðSÞ, XαððQ†

LÞαL†
LÞ, XαðuβRdγRÞϵαβγ , Xαððu†RÞαe†RÞ M dim 4

ð3; 2; 7=6ÞSM XαððQ†
LÞαeRÞ, XαðLLðu†RÞαÞ LQ dim 5

ð3; 2; 1=6ÞSM XαðLLðd†RÞαÞ LQ dim 5
ð3; 1; 2=3ÞSM XαðdβRdγRÞϵαβγðAÞ DQ dim 5

ð6̄; 3;−1=3ÞSM XA
αβðQα

LτAQ
β
LÞðSÞ DQ dim 5

ð6̄; 1;−1=3ÞSM XαβðuαRdβRÞ, XαβðQα
LQ

β
LÞðAÞ DQ dim 5

ð6̄; 1; 2=3ÞSM XαβðdαRdβRÞðSÞ DQ dim 5

ð6̄; 1;−4=3ÞSM XαβðuαRuβRÞðSÞ DQ > dim 6

5Naively one might have thought that the ð3; 2; 1=6ÞSM
leptoquark gives rise to renormalizable baryon number violation
through the operator ϵαβγϵijXαiXβjXγkH†

k. Here we have explicitly
displayed the SUð2ÞL indices i, j, k which take on values 1 and 2.
Expanding the SUð2ÞL contractions the operator contains at least
two X’s with the same SUð2ÞL index value and so it vanishes
because of the antisymmetry of the ϵαβγ used to contract the X
color indices.

6The nomenclature Φ3 and Φ4 used for these scalar lepto-
quarks will be motivated in the following section.

SCALAR LEPTOQUARKS, BARYON NUMBER VIOLATION, AND … PHYS. REV. D 104, 035017 (2021)

035017-3



and the renormalizable diquark interactions listed in
Table I, the following term in the effective Hamiltonian
(amongst others7) is generated once the scalar X is
integrated out:

Heff ⊃
1

Λ
1

M4
X
ðdαRuα0R ÞðdβRuβ

0
R ÞðdγRdγ

0
RÞϵαβγϵα0β0γ0 þ H:c: ð2:7Þ

This is illustrated in the bottom-right panel of Fig. 1. Such
an interaction leads to jΔBj ¼ 2 transitions, for example
n − n̄ oscillations. Following Ref. [59] the bound on the
mass of X coming from the experimental limit on n − n̄
oscillations in this case is

MX ≳ 300 GeV
�
MPL

Λ

�
1=4

: ð2:8Þ

Therefore, these scalar diquarks in the symmetric repre-
sentation of SUð3Þ can be at the TeV scale and be consistent
with laboratory constraints on baryon number violation for
a cutoff in the allowed range 1015 GeV < Λ < MPL ¼
1019 GeV.
Here we have assumed only one light scalar. Other

baryon number violating processes are possible if several
are light.

III. EMBEDDING IN PATI-SALAM

The take-home message from the previous section is that
TeV scale (color triplet) leptoquarks are generically ruled

out by laboratory constraints on baryon number violating
processes. In this section, we point out that this need not be
the case if the SM is embedded in a larger symmetry group.
Wewill show that embedding the SM in the minimal theory
for quark-lepton unification à la Pati-Salam [42], based on
the gauge symmetry group [54,62],

SUð4Þ ⊗ SUð2ÞL ⊗ Uð1ÞR

protects the Pati-Salam effective theory from unacceptably
large baryon number violation at the renormalizable level
and by higher dimension operators.
The matter content we use is as follows. Each family of

the SM fermions and a right-handed neutrino are collected
in three representations,8

Fd ¼ ðdrR; dbR; dgR; eRÞ ∼ ð4; 1;−1=2ÞPS;
Fu ¼ ðurR; ubR; ugR; νRÞ ∼ ð4; 1; 1=2ÞPS;
and FQL ¼ ðQr

L;Q
b
L;Q

g
L; LLÞ ∼ ð4; 2; 0ÞPS; ð3:1Þ

where the three colors of QCD [red (r), blue (b) and green
(g)] are explicitly displayed to illustrate that leptons are
treated as the fourth color in the matter representations.
Only the representations containing right-handed fields are
charged under Uð1ÞR. As before, color indices which take
values r, b, g (or equivalently 1,2,3) will be represented by
indices α; β; γ;…. SUð4Þ indices that go over 1,2,3,4 will
be denoted by A;B; C;…. In this section we will denote
quantum numbers under the Pati-Salam gauge group,
½SUð4Þ;SUð2ÞL;Uð1ÞR�, with the subscript PS, and

FIG. 1. On the top panels, diagrams for ΔB ¼ −ΔL ¼ −1 processes. On the bottom panels, diagram for ΔB ¼ −ΔL ¼ −1 (bottom-
left panel) and diagram for ΔB ¼ −2;ΔL ¼ 0 (bottom-right panel) processes.

7Other operators with ΔB ¼ −2 are also generated due to the
two possible diquark couplings of X ∼ ð6̄; 1;−1=3ÞSM. In the
above example we have not considered the interaction
ðQα

LQ
β
LÞXαβ because it is less constrained experimentally due

to the antisymmetry in the flavor indices.

8We have suppressed the lepton field in the subscript used for
the right-handed Pati-Salam representations to avoid confusion
with the field-strength tensor Fμν in the Fu case.
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quantum numbers under the SM gauge group, [SUð3Þ;
SUð2ÞL;Uð1ÞY], with the subscript SM.
Apart from the matter content, the theory requires scalars

in order to reproduce the experimental observations. First, a
scalar nonsinglet SUð4Þ representation with a neutral
component under the SM gauge charges is needed to
break SUð4Þ down to SUð3Þ. For instance, a scalar
representation with quantum numbers χ ∼ ð4; 1; 1=2ÞPS
or Δ ∼ ð10; 1;−1ÞPS can do the job with hχAi ¼
δA4vχ=

ffiffiffi
2

p
or hΔABi ¼ δA4δB4vΔ=

ffiffiffi
2

p
, respectively. Each

of these vevs breaks SUð4Þ ⊗ Uð1ÞR to SUð3Þ ⊗ Uð1ÞY
and defines the hypercharge of the SM fields. The hyper-
charge is given by a combination of the charge R and the
nonsingular diagonal generator of SUð4Þ, i.e.,

Y ¼ Rþ
ffiffiffi
6

p

3
T4; where T4 ¼

1

2
ffiffiffi
6

p diagð1; 1; 1;−3Þ:

ð3:2Þ

Second, the SMHiggs fieldH ∼ ð1; 2; 1=2ÞPS is added to
spontaneously break the electroweak symmetry. At this
stage the theory predicts equal masses for down quarks and
charged leptons, as well as up quarks and neutrinos. A third
scalar field in the adjoint representation of SUð4Þ is added
to achieve realistic fermion masses,

Φ15 ¼
�Φ8 Φ3

Φ4 0

�
þH2T4 ∼ ð15; 2; 1=2ÞPS: ð3:3Þ

It contains a second Higgs doublet, H2 ∼ ð1; 2; 1=2ÞSM,
whose coupling to matter distinguishes leptons from
quarks. The Yukawa couplings in the Lagrangian,

−L ¼ Y1HðFA
QLðF†

uÞAÞ þ Y2ðΦ15ÞBAðFA
QLðF†

uÞBÞ
þ Y3H†ðFA

QLðF†
dÞAÞ þ Y4ðΦ†

15ÞBAðFA
QLðF†

dÞBÞ; ð3:4Þ

generate the following mass matrices for the SM fermions
after the spontaneous symmetry breaking of the electro-
weak symmetry,

Mu¼Y1

vHffiffiffi
2

p þ 1

2
ffiffiffi
6

p Y2

vΦffiffiffi
2

p ; Md¼Y3

vHffiffiffi
2

p þ 1

2
ffiffiffi
6

p Y4

vΦffiffiffi
2

p ;

MDirac
ν ¼Y1

vHffiffiffi
2

p −
3

2
ffiffiffi
6

p Y2

vΦffiffiffi
2

p ; Me¼Y3

vHffiffiffi
2

p −
3

2
ffiffiffi
6

p Y4

vΦffiffiffi
2

p ;

ð3:5Þ

where hHji ¼ δj2vH=
ffiffiffi
2

p
and hHj

2i ¼ δj2vΦ=
ffiffiffi
2

p
. In

addition to the second Higgs doublet, a color octet
Higgs field Φ8 ∼ ð8; 2; 1=2ÞSM and the scalar leptoquarks
Φ3 ∼ ð3̄; 2;−1=6ÞSM and Φ4 ∼ ð3; 2; 7=6ÞSM are also con-
tained in the Φ15 representation. The interaction terms of
the leptoquarks with matter are

− L ⊃ Y2ðQα
Lν

†
RÞΦ3α þ Y2ðLLðu†RÞαÞΦα

4

þ Y4ðQα
Le

†
RÞðΦ†

4Þα þ Y4ðLLðd†RÞαÞðΦ†
3Þα þ H:c:; ð3:6Þ

which do not violate baryon (or lepton) number if baryon
(lepton) number charges QBðΦ3Þ ¼ −1=3 and QBðΦ4Þ ¼
1=3 (QLðΦ3Þ ¼ 1 andQLðΦ4Þ ¼ −1) are assigned to them.
Under these charge assignments, baryon and lepton number
are also conserved by the renormalizable interactions in the
scalar potential. Following the classification introduced in
Sec. II, Φ3 and Φ4 are the pure leptoquarks of Table I.
The gauge sector of this theory also does not violate

baryon number at the renormalizable level. The massive
gauge fields associated with the broken Pati-Salam
generators transform under the SM gauge group as
V ∼ ð3; 1; 2=3ÞSM. As Assad, Fornal and Grinstein pointed
out in Ref. [48], adding this vector leptoquark to the SM
effective field theory gives rise to baryon number violation at
the dimension-five level and if it is embedded in Pati-Salam
this is absent. We shall see that in the Pati-Salam effective
theory the gauge bosons associated with the broken gen-
erators first give rise to baryon number violation at dimen-
sion seven. Broken gauge generators however do give rise to
meson leptonic decays such as KL → μ∓e� which set a
bound on their mass of MV ≳ 106 GeV [63,64], up to
possible suppressions coming from the unitary matrices
introduced to diagonalize the fermion mass matrices.
This is the field content composing the minimal theory

based on Pati-Salam symmetry. However this theory would
require a very awkward tree-level tuning of parameters to
get small neutrino masses. In this paper we will add fields
that give neutrino masses either by the type-I or inverse
seesaw mechanisms. Note from Eq. (3.5) that the Yukawa
couplings Y2 and Y4 are the ones that determine the
coupling of the leptoquarks to the fermions. Either the
Yukawa coupling Y1 or Y2 (but not both) could be very
small and still reproduce the correct fermion masses. The
Yukawa couplings Y3 and Y4 are constrained by the masses
of the down quarks and charged leptons. For simplicity in
this paper we assume that the matrices that diagonalize the
charged fermion mass matrices are close to the identity. For
example,

Y4 ¼
ffiffiffi
3

p

v
ðMd −MeÞ ∼

ffiffiffi
3

p

v
Mdiag

d : ð3:7Þ

In the above expression and later in this section we assume
that v ¼ vH ¼ vΦ ¼ 246=

ffiffiffi
2

p
GeV.

Hereafter we distinguish two possible scenarios for the
breaking of SUð4Þ: the case where vχ ∼ 100–1000 TeV,
and the case where the SUð4Þ breaking occurs well above
1000 TeV. We call these respectively low-scale Pati-Salam
breaking and high-scale Pati-Salam breaking. See Fig. 2 for
a summary of the different energy scales involved in these
scenarios.
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In either the high- or low-scale Pati-Salam symmetry
breaking scenarios baryon number violation occurs at the
dimension-six level through the following terms in the
Pati-Salam effective field theory:

1

Λ2
PS
ϵABCDðFA

QLF
B
QLÞðFC

QLF
D
QLÞ;

1

Λ2
PS
ϵABCDðFA

uFB
d ÞðFC

uFD
d Þ þ � � � ; ð3:8Þ

which set a lower bound on the cutoff scale
ΛPS ≳ 1015 GeV.
We use the same cutoff ΛPS for all the nonrenormalizable

operators in the Pati-Salam effective field theory.

A. High-scale Pati-Salam breaking

When the Pati-Salam gauge group is broken at a high
scale the type-I seesaw mechanism is an attractive way to
generate large right-handed neutrino masses that then give
rise to small left-handed Majorana neutrino masses. This is
implemented by adding to the minimal particle content a
field Δ in the ð10; 1;−1ÞPS representation. The interaction
term YνFA

uFB
uΔAB generates the Majorana right-handed

neutrino mass matrix MνR when Δ gets a vev in its Δ44

component. The vev hΔABi ¼ δA4δB4vΔ=
ffiffiffi
2

p
is also respon-

sible for breaking the Pati-Salam gauge group down to
the SM.
The heaviest active (left-handed) neutrino mass is

∼m2
t =mνR , where we assumed MDirac

ν ∼Mu [see
Eq. (3.5)] and mνR is the magnitude of the typical element

in MνR .
9 Observations of neutrino oscillations provide a

lower bound on the heaviest active neutrino, which we take
to be

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p
¼ 0.05 eV [65], while an upper bound

arises from the cosmological limit on the sum of neutrino
masses,

P
ν mν < 0.12 eV [66].10 These upper and lower

bounds are not far apart and imply thatmνR ∼ 1014 GeV. To
avoid strong coupling of the right-handed neutrinos to Δ
this implies that vΔ ≳ 1013 GeV. See Ref. [67] for a related
discussion of neutrino masses.
In Sec. II it was noted that in the context of the SM

baryon number violating processes for Φ3 and Φ4 occur at
dimension five. We now turn to studying the analogous fact
when the SM is embedded in Pati-Salam. The leading
contribution to a diquark coupling for the scalar lepto-
quarks now occurs at dimension six through terms involv-
ing Δ. For example,

1

Λ2
PS
ðFA

uFB
d ÞðΦ†

15ÞCEH†ðΔ†ÞEDϵABCD

⟶
hΔi vΔffiffiffi

2
p

Λ2
PS

ðuαRdβRÞðΦ†
3ÞγH†ϵαβγ: ð3:9Þ

We note that the same diquark coupling for Φ3 can be
generated by either Higgs doublet (H or H2). The other

FIG. 2. Energy scales for the two breaking scenarios of the Pati-Salam gauge group. On the left panel is the high-scale Pati-Salam
breaking induced by the vev of Δ ∼ ð10; 1;−1ÞPS described in Sec. III A. Neutrinos acquire mass through the type-I seesaw mechanism
in this scenario. On the right panel is the low-scale Pati-Salam breaking induced by the vev of χ ∼ ð4; 1; 1=2ÞPS described in Sec. III B.
Neutrinos acquire mass through the inverse seesaw mechanism in this scenario.

9We assume that all the elements in the right-handed neutrino
masses are similar.

10This is a 95% C.L. combined bound for Planck including TT,
TE, EE, lowE, lensing, and baryonic acoustic oscillations, and it
depends on the other parameters in the fit. For example, larger
values of H0 will give tighter constraints on this sum.
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case arises by replacing the H boson field by the Φ15 field
in the dimension-six Pati-Salam operator above as the
following example shows:

1

Λ2
PS
ðFE

uFB
d ÞðΦ†

15ÞAEðΦ†
15ÞCFðΔ†ÞFDϵABCD

⟶
hΔi vΔffiffiffi

2
p

Λ2
PS

ðuαRdβRÞðΦ†
3ÞγH†

2ϵαβγ: ð3:10Þ

Either Eq. (3.9) or Eq. (3.10) lead to ΔB ¼ −ΔL ¼ −1
interactions through the following effective Hamiltonian at
a scale much below MΦ3

:

Heff ¼ G6ðν†μLsαRÞðdβRuγRÞϵαβγ þ H:c:; ð3:11Þ

where we have explicitly specified the flavor of quarks and
leptons that will lead to proton decay via the dominant
mode p → Kþνμ. From Eqs. (3.6) and (3.9) it follows, after
integrating out the Φ3, that the dimensionful Fermi-like
parameter G6 is given by

G6 ¼
vΔvðY22

4 Þ�
2Λ2

PSM
2
Φ3

∼
ffiffiffi
3

p
vΔmsðMZÞ
2Λ2

PSM
2
Φ3

; ð3:12Þ

where in the right-hand side of the above equation the
texture in Eq. (3.7) has been applied. We note that the
fermion masses entering in the texture are defined at
the quark-lepton unification scale. However there are other
renormalizable effects that we have not included and so, for
simplicity, we evaluate the fermion masses at the Z boson
mass. In this example we use msðMZÞ ¼ 55 MeV (see for
example Ref. [68]).
The decay width of proton through the mode p → Kþν

is given by

Γp→Kþν ¼
mp

32π

�
1 −

m2
Kþ

m2
p

�
2

jG6j2β2Kþ ; ð3:13Þ

where βKþ ¼ 0.139 GeV2 [69] quantifies the hadronic
matrix element hKþjðduÞRsRjpi ¼ βKþPRup. Here up is
the spinor of the proton. The experimental bound on the
lifetime for the proton decay mode τðp → KþνÞ < 5.9 ×
1033 years [70] from the Super-Kamiokande collaboration
imposes a lower bound of

G6 < 1.9 × 10−31 GeV−2: ð3:14Þ
This implies through Eq. (3.12) that the vev ofΔ satisfies

that

vΔ ≲ 1 × 1015 GeV

�
MΦ3

2 TeV

�
2
�
ΛPS

MPL

�
2

: ð3:15Þ

Even for ΛPS ¼ MPL the above bound is barely large
enough to accommodate the right-handed neutrino masses

without strong coupling. Avoiding strong coupling for the
right-handed neutrino interactions with Δ together within
the above bound on vΔ gives

ΛPS ≳ 1018 GeV

�
2 TeV
MΦ3

�
; ð3:16Þ

which is only 1 order of magnitude away from the
Planck scale.
The right-hand sides of Eqs. (3.15) and (3.16) are

strongly impacted by the smallness of the Yukawa coupling
Y22
4 ∼ 3 × 10−4. This factor arises because with the minimal

model we are considering this coupling is related to the
strange quark mass.
The bounds in Eqs. (3.15) and (3.16) will be improved

by future data from the Hyper-Kamiokande [71] and
DUNE [72] collaborations.
With the minimal particle content the renormalizable

Pati-Salam couplings have a U(1) fermion number sym-
metry. This is broken down to a discrete Z4 subgroup by the
nonrenormalizable four-fermion operators in Eq. (3.8).
This means that quantum corrections cannot generate from
these dimension-six operators the dimension-five baryon
number violating couplings of the leptoquark scalars
mentioned in Sec. II since they only respect a Z2 subgroup
of this Z4. However this is no longer true when one adds
fields to the minimal Pati-Salam particle content that
generate neutrino masses.
As Fig. 3 shows, in this case the diquark coupling for the

leptoquark Φ3 can also be generated at the quantum level
through, for example, the one-loop diagrams displayed in
this figure. The contribution of these loop diagrams to the
diquark coupling of Φ3 is

∼
1

16π2
1

Λ2
PS
½ðYν3

2 Þ�Y33
3 þ Y33

4 ðY3ν
1 Þ��

× log

�
Λ2
PS

M2
Φ3

�
ϵαβγmνRðdαRuβRÞðΦ†

3ÞγH†; ð3:17Þ

where we have assumed the heaviest quarks are in the loop.
The term on the left of the expression between squared
brackets in Eq. (3.17) refers to the contribution from the
loop process in the left panel of Fig. 3, while the term on the
right corresponds to the contribution from the loop process
displayed in the right panel of the same figure. The
logarithm indicates that this should be thought of as an
operator mixing effect. From the scale ΛPS to the scale of
Pati-Salam symmetry breaking it is mixing between Pati-
Salam invariant dimension-six operators and below the
scale of Pati-Salam breaking it is mixing between the
dimension-six baryon number violating four-fermion oper-
ators in the SM and the effectively dimension-six operator
ϵαβγmνRðdαRuβRÞðΦ†

3ÞγH†. This mixing effect does not give a
stronger lower bound on ΛPS than Eq. (3.16).
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B. Low-scale Pati-Salam breaking

For Pati-Salam breaking at the low scale, we use the
inverse seesaw mechanism to generate neutrino masses
[54]. The Pati-Salam gauge group is broken through the vev
of the field χ ∼ ð4; 1; 1=2ÞPS, explicitly hχAi ¼ δA4vχ=

ffiffiffi
2

p
.

The field Δ introduced earlier does not occur in the low-
scale breaking scenario.
In the Pati-Salam theory there are no dimension-five or

dimension-six operators whose tree-level matrix elements
give rise to the dimension-five diquark couplings of Φ3 and
Φ4 discussed in Sec. II. Baryon number violation involving
these leptoquarks first occurs at dimension seven through
the following interactions,11

1

Λ3
PS

ðFA
uFB

d ÞðΦ†
15χÞCχDH†ϵABCD

⟶
hχi v2χ

Λ3
PS

ðdαRuβRÞðΦ†
3ÞγH†ϵαβγ; ð3:18Þ

1

Λ3
PS

ðFA
QLF

B
QLÞðΦ†

15χÞCχDH†ϵABCD

⟶
hχi v2χ

Λ3
PS

ðQα
LQ

β
LÞðΦ†

3ÞγH†ϵαβγ; ð3:19Þ

1

Λ3
PS

ðFA
dF

B
d ÞðΦ†

15χÞCχDHϵABCD⟶
hχi v2χ

Λ3
PS

ðdαRdβRÞðΦ†
3ÞγHϵαβγ;

ð3:20Þ

1

Λ3
PS

ðFA
dF

B
d ÞðΦ15χÞCχDH†ϵABCD⟶

hχi v2χ
Λ3
PS

ðdαRdβRÞΦγ
4H

†ϵαβγ;

ð3:21Þ

and

1

Λ3
PS

ðFA
uFB

d ÞðΦ†
15χÞCðΦ†

15χÞDϵABCD

⟶
hχi v2χ

Λ3
PS

ðuαReRÞðΦ†
3ÞβðΦ†

3Þγϵαβγ; ð3:22Þ

1

Λ3
PS

ðFA
QLF

B
QLÞðΦ†

15χÞCðΦ†
15χÞDϵABCD

⟶
hχi v2χ

Λ3
PS

ðQα
LLLÞðΦ†

3ÞβðΦ†
3Þγϵαβγ; ð3:23Þ

1

Λ3
PS

ðFA
dF

B
d ÞðΦ†

15χÞCðΦ15χÞDϵABCD

⟶
hχi v2χ

Λ3
PS

ðdαReRÞðΦ†
3ÞβΦγ

4ϵαβγ: ð3:24Þ

Here for example ðΦ†
15χÞC ¼ ðΦ†

15ÞCFχF. Equations (3.18),
(3.19), (3.20), and (3.21) are analogous to the nonrenor-
malizable operators in Eq. (2.3), while Eqs. (3.22), (3.23),
and (3.24) are analogous to those in Eq. (2.4). Note that the
leptoquark couplings above are proportional to v2χ=Λ3

PS.
Recall that an acceptable nucleon decay rate requires
ΛPS > 1015 GeV. Therefore, since we are considering
low-scale breaking vχ ∼ 100–1000 TeV, the dimension-
seven operators above will not give rise to observable
baryon number violation.
Vector leptoquarks with the same SM quantum numbers

ð3; 1; 2=3ÞSM as the broken generators of Pati-Salam give
rise to baryon number violation at dimension five in the SM
effective field theory [48]. However, in Pati-Salam models
their effects are much more suppressed. Baryon number
violation does not occur until dimension seven in the Pati-
Salam effective theory. See the operator below for an
example,

1

Λ3
PS

ðFA
QLσμF

B
d ÞχCH†ðDμχÞDϵABCD: ð3:25Þ

Similarly to the case of the leptoquarks Φ3 and Φ4, the
gauge bosons associated with the broken generators of

FIG. 3. Examples of one-loop contributions to the diquark coupling of Φ3 in Eq. (3.17).

11Note that analogous operators exist with the
H replaced by H2 in Φ15. For example, in Eq. (3.18),
ðFE

uFB
d ÞðΦ†

15ÞAEðΦ†
15χÞCχDϵABCD=Λ3

PS.

CLARA MURGUI and MARK B. WISE PHYS. REV. D 104, 035017 (2021)

035017-8



SUð4Þ will not give rise to unacceptably large baryon
number violation.

C. Additional particle content

In principle the theory could have a larger scalar content
than the minimal scenarios presented so far. Here we aim to
illustrate with a simple example how the symmetry of the
Pati-Salam theory can protect mixed scalars (with both
leptoquark and diquark couplings at the renormalizable
level) with masses at the TeV scale that would be naively
ruled out from the low-energy perspective. For example,
add to the minimal content a single scalar field with the
following quantum numbers:

Φ10 ¼
�
SDQ SLQ
SLQ δþþ

�
∼ ð10; 1; 1ÞPS: ð3:26Þ

This symmetric SUð4Þ representation contains a scalar
leptoquark SLQ ∼ ð3̄; 1; 4=3ÞSM, a scalar diquark SDQ∼
ð6̄; 1; 2=3ÞSM, and a doubly charged scalar δþþ∼
ð1; 1; 2ÞSM. The new Yukawa interactions are given by

−L ¼ Y10ðFA
dF

B
d ÞðΦ10ÞAB þ H:c:

¼ Y10ðdαRdβRÞðSDQÞαβ þ 2Y10ðdαReRÞðSLQÞα
þ Y10ðeReRÞδþþ þ H:c:; ð3:27Þ

where Y10 is symmetric in the flavor space. Already at the
renormalizable level we can see that, contrary to what we
expected from Sec. II, the scalar SLQ is a pure leptoquark in
this case. The SUð4Þ symmetry forbids the diquark cou-
pling of SLQ with matter, which would be otherwise
allowed by the SM gauge symmetry and would rule out
a SLQ lighter than 1012 GeV (for order one Yukawa
couplings).
To proceed further we first consider the case of high-

scale breaking. We imagine that only the SLQ scalar is
allowed to be at the TeV scale. A diquark coupling for SLQ
can be generated at dimension six through the following
nonrenormalizable interaction:

1

Λ2
PS
ðFA

uFB
u ÞðΦ†

10ÞCFΔFGðΔ†ÞGDϵABCD þ H:c:

⟶
hΔi v2Δ

Λ2
PS
ðuαRuβRÞðS†LQÞγϵαβγ þ H:c: ð3:28Þ

Note that the above operator is antisymmetric in the flavor
indices and, as discussed in Sec. II, it can only mediate
proton decay by the exchange of a W gauge boson as the
top-left panel of Fig. 1 illustrates. Identifying the diquark
coupling in Eq. (2.2) as YDQ ¼ v2Δ=Λ2

PS and the leptoquark
coupling as YLQ ¼ 2Y11

10, the bound from Eq. (2.2) can be

translated to the operator in the right-hand side of
Eq. (3.28), giving

vΔ ≲ 1010 GeV

�
MSLQ

2 TeV

��
ΛPS

MPL

�
; ð3:29Þ

where Y11
10 ≃ 1 has been assumed. This rules out the high-

scale breaking scenario under the assumption of an order
one Yukawa coupling for a TeV scale leptoquark SLQ since
vΔ ≳ 1013 GeV is required to accommodate the active
neutrino masses.
Next we consider low-scale breaking. In this case the

diquark coupling of SLQ arises from the following dimen-
sion-six Pati-Salam invariant operator:

1

Λ2
PS
ðFA

uFB
u ÞðΦ†

10χ
†ÞCχDϵABCD þ H:c:

⟶
hχi v2χ

Λ2
PS
ðuαRuβRÞðS†LQÞγϵαβγ þ H:c: ð3:30Þ

Now Eq. (3.29) holds when one replaces the vev of Δ by
the vev of χ. Note that if ΛPS ≃ 1015 GeV and
MSLQ ≃ 2 TeV, the bound becomes vχ ≲ 1000 TeV which
is near the limit imposed by the decay KL → μ�e∓.
With low scale breaking the scalars Φ3, Φ4 and SLQ are

all light. Baryon number violation occurs at dimension-five
through the operator12

1

ΛPS
ðΦ†

10ÞAFðΦ15ÞBFðΦ†
15ÞCEχEχDϵABCD

⟶
hχi v2χ

ΛPS
ðS†LQÞαΦβ

4ðΦ†
3Þγϵαβγ: ð3:31Þ

Such operator, together with the renormalizable inter-
actions of the scalar leptoquarks Φ3 and Φ4 given in
Eq. (3.6), and the renormalizable interactions of the scalar
leptoquark SLQ given in Eq. (3.27) give rise to ΔB ¼
−ΔL ¼ −1 processes such as n → νeþe− through an
effective Hamiltonian:

Heff ¼
v2χ
ΛPS

Y11
10jY11

4 j2
M2

SLQ
M2

Φ3
M2

Φ4

ðuαLe†RÞðν†LdβRÞðdγReRÞϵαβγ

þ � � � þ H:c: ð3:32Þ

Figure 4 shows the diagram for this process. Following
Ref. [73], the bound on the vev of χ is given by

12Note that the left-hand side of Eq. (3.31) can also lead to
other jΔBj ¼ 1 processes by contracting the SUð4Þ indices
differently. The bounds derived in those cases are very similar
to the example in the right-hand side of Eq. (3.31).
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vχ≲3×1010GeV

�
MSLQ

2TeV

��
MΦ3

2TeV

��
MΦ4

2TeV

��
ΛPS

MPL

�
1=2

;

ð3:33Þ

where we used Y11
4 ≃mdðMZÞ=v ≃ 1.7 × 10−5, and

assumed that Y11
10 ≃ 1. Here the bound on the lifetime

τðn → νeþe−Þ [74] from the IMB-3 experiment has been
used. The bound in Eq. (3.33) is influenced by the small-
ness of the Yukawa couplings for the leptoquarks Φ3 and
Φ4. If they were taken to be order 1, the above bound would
be 5 orders of magnitude stronger.
Our results are strongly dependent on the field content

we have assumed. It is well known that renormalizable
baryon number violation is possible in Pati-Salam models
[75]. Consider for example adding to the minimal theory
based on Pati-Salam symmetry a scalar field,

Φ6 ¼
�
ϵαβγðϕDQÞγ ϕα

LQ

−ϕα
LQ 0

�
∼ ð6; 1; 0ÞPS; ð3:34Þ

where ϕDQ ∼ ð3̄; 1; 1=3ÞSM and ϕLQ ∼ ð3; 1;−1=3ÞSM.
According to Table I, ϕLQ and ϕDQ are mixed scalars.
This is also true in Pati-Salam models as can be seen
explicitly in their Yukawa couplings,

−L¼Y6FA
uFB

d ðΦ†
6ÞABþY 0

6ϵABCDF
A
uFB

dΦCD
6

þY 00
6F

A
QLF

B
QLðΦ†

6ÞABþY6
000ϵABCDFA

QLF
B
QLΦCD

6 þH:c:

ð3:35Þ

¼Y6ϵαβγuαRd
β
Rðϕ†

DQÞγ þ2Y 0
6u

α
ReRϕDQαþ�� �þH:c: ð3:36Þ

This example shows that even after the embedding of ϕDQ

and ϕLQ in a Pati-Salam model throughΦ6, they give rise to
renormalizable baryon number violation.

IV. CONCLUDING REMARKS

Treating the SM as an effective theory it contains higher
dimension operators that give rise to baryon number
violation at dimension six. There are a number of flavor
anomalies that can be addressed by adding to the SM scalar

leptoquarks with masses around a few TeV. However,
adding such leptoquarks to the SM effective theory one
finds that baryon number violation can now occur at the
renormalizable and/or dimension-five levels. Experimental
limits on baryon number violating processes force the
leptoquarks mass to be too large to explain the flavor
anomalies even when the cutoff of the SM effective theory
is the Planck mass.
To address this issue, we have studied embedding the

SM in the minimal Pati-Salam model with one or more
leptoquark scalars with masses at the TeV scale. The
Pati-Salam model was treated as an effective theory with
a cutoff scale ΛPS ≤ MPL that suppresses higher dimension
operators.
When the Pati-Salam model is broken at a high scale and

the neutrino masses arise from the type-I seesaw mecha-
nism we found by using experimental constraints on baryon
number violation that ΛPS ≳ 1018 GeV and the vev defin-
ing the Pati-Salam breaking is constrained to be in the
window 1013 ≲ vΔ ≲ 1015 GeV.
When the Pati-Salam model (with minimal particle

content) is broken at the low scale, neutrinos get
mass through the inverse seesaw mechanism. In this case
in the Pati-Salam effective field theory baryon number
violating operators involving the leptoquarks first occur at
dimension seven. Baryon number violation arising
from dimension-six operators involving four fermions
will dominate in this case and provide a bound
ΛPS ≳ 1015 GeV.
We also studied a case where the Pati-Salam model had

nonminimal particle content. Adding a scalar to the SM
that has both leptoquark and diquark couplings gives rise
to renormalizable baryon number violation through the
tree-level exchange of that scalar. We showed in an
example that embedding the SM and such a scalar in
the Pati-Salam effective field theory can protect the
theory for having unacceptably large baryon number
violation.
It is worth emphasizing that our conclusions depend on

the field content of the model. Adding more degrees of
freedom, several of which are at the TeV scale, can lead to
unacceptably large baryon number violation.
An interesting extension of this work would be to study

how other embeddings of the SM with additional TeV scale
leptoquarks influence baryon number violation.
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